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Existing tools and challenges

Challenges for ITP users:

. . . size and sophistication of libraries stand on the way of efficient
knowledge reuse;

. . . applied in formal mathematical proofs: Four Colour Theorem
(60, 000 lines), Kepler conjecture (325, 000 lines), Feit-Thompson
Theorem (170, 000 lines), etc.
. . . applied in industrial proofs: seL4 microkernel (200, 000 lines),
verified C compiler (50, 000 lines), ARM microprocessor (20, 000 lines),
etc.

. . . manual handling of various proofs, strategies, libraries, becomes
difficult;

. . . team-development is hard, especially as ITPs are sensitive to
notation;

. . . comparison of proof similarities is hard.
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Existing tools and challenges

Existing tools for managing Coq libraries: Search

Several searching tools in Coq:

Search , SearchAbout, SearchPattern and SearchRewrite.

SSReflect implements its own version Search with functionality the 4
Coq’s search commands.

Example

Search "distr"in bigop

Search _ (_ * (\big[_/_]_(_ <- _| _)_))

The Whelp platform is a web search engine in Coq code, whith 3
functions:
Match (similar Search),
Hint (finds all the theorems which can be applied to derive the
current goal) and
Elim (retrieves all the eliminators of a given type).
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Existing tools and challenges

Main properties of the search engines:

goal oriented

hence the user should already know what he is searching for:
pattern/library/lemma name, etc

deterministic: if the exact requested pattern exists, they will find it.
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Existing tools and challenges

Existing tools-2: Dependency graphs

You do not have to know what you are searching for

They show “all there is”.
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Existing tools and challenges

Existing tools-2: Dependency graphs

or perhaps all there is relative to your lemma/term
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Existing tools and challenges

Dependency graphs DOs and DON’Ts

nicely visualised

not goal directed – but can be used for a goal

deterministic: if there is a dependency, it will be shown

but it would not tell you if there are similar lemmas/terms

it would not tell you which of those dependencies are more important
than others for the proof

there may be excessive information that actually hides the essence of
the proof
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Existing tools and challenges

The missing tool...

Something that could help us to:

capture and search the meaning of the libraries;

the higher-level proof strategies beyond tactics and notations

identify redundancies and repetitions....
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Existing tools and challenges

Motivating example:

Theorem (Fundamental Lemma of Persistent Homology)

βj,k
i : N× N× N→ Z

βk,l
n − βk,m

n =
∑

1≤i≤k

∑
l<j≤m

(βj,p−1
n − βj,p

n )− (βj−1,p−1
n − βj−1,p

n )

Apply case on n.

1 Prove the base case (a simple task).
2 Prove the case 0 < n:

1 expand the summation,
2 cancel the terms pairwise,
3 the only terms remaining after the cancellation are the first and the

last one.
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Existing tools and challenges

Same strategy:

Lemma
Let M be a nilpotent matrix, then

(1−M)×
∑

0≤i<n

M i = 1

where n is such that Mn = 0

Lemma
If g : N→ Z, then ∑

0≤i≤k

(g(i + 1)− g(i)) = g(k + 1)− g(0)

Lemma

Let M be a nilpotent matrix, then there exists N such that N × (1−M) = 1
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ML4PG: “Machine Learning for Proof General”
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ML4PG: “Machine Learning for Proof General”

Proof pattern recognition in ITPs

Goal: make machine-learning a part of interactive proof development

Apply machine-learning methods to:

find common proof-patterns in proofs across various scripts, libraries, users
and notations;

provide proof-hints in real-time and relative to a proof stage;

assist the user, not the prover.

ML4PG:

Proof General extension which applies machine learning methods to

Coq/SSReflect proofs. [Now available in standard Proof General
distribution]

E. Komendantskaya, J. Heras and G. Grov. Machine learning in Proof General: interfacing
interfaces. EPTCS Post-proceedings of User Interfaces for Theorem Provers. 2013.
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ML4PG: “Machine Learning for Proof General”

Machine Learning 4 Proof General: interfacing interfaces

Proof General MATLAB/WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering:
K-means, Gaussian, . . .

F.1. works on the background of Proof General extracting some low-level
features from proofs in Coq/SSReflect.

F.2. automatically sends the gathered statistics to a chosen
machine-learning interface and triggers execution of a clustering
algorithm of user’s choice;

F.3. does some post-processing of the results and displays families of
related proofs to the user.
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ML4PG: “Machine Learning for Proof General”

ML4PG approach to proof-clustering

We have integrated Proof General with a variety of clustering algorithms:

Unsupervised machine learning technique:
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ML4PG: “Machine Learning for Proof General”

Feature extraction and output strategies

Coq libraries:
one or many?

General
pattern-search

?> =<
89 :;

Relative to
Coq object

?> =<
89 :;

Terms76 5401 23

Proofs76 5401 23

Terms76 5401 23

Proofs76 5401 23

Visualise term clusters?

Visualise proof families?

Visualise the term tree?

Visualise the proof flow?

BB
BB

BB
BB

!!

||||||||

==

ooooo
77

OOOOO
''

ooooo
77

OOOOO
''

//

//

//

//
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ML4PG: “Machine Learning for Proof General”

Feature Extraction for Terms

specifically developed for Coq and ML4PG

Terms are understood broadly: ...Definitions, type declarations,
(co)fixpoint function definitions, lemma and theorem statements...

Example

forall (n : nat) (H : even n), odd (n + 1).

Convert to a term-tree:
forall

n : nat H : even n odd : nat -> Prop

+ : nat -> nat -> nat

n : nat 1 : nat
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ML4PG: “Machine Learning for Proof General”

What are the important features of a term tree?

forall

n : nat H : even n odd : nat -> Prop

+ : nat -> nat -> nat

n : nat 1 : nat

1 its topology

2 what populates its nodes:

terms and their types
definitions of those terms and types, their meaning and structure...
their role in this proof library...
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ML4PG: “Machine Learning for Proof General”

The method of Recurrent Clustering:

level index 0 level index 1 level index 2
td0 ([forall]Gallina,-1,-1) (0,0,0) (0,0,0)
td1 ([n]term,[nat]type ,0) ([H]term,[even n]type ,0) ([odd]term,[nat->Prop]type ,0)
td2 ([+]term,[nat->nat->nat]type ,2) (0,0,0) (0,0,0)
td3 ([n]term,[nat]type ,0) ([1]term,[nat]type ,0) (0,0,0)

The matrix captures the topology

The function [.] gives the meaning:

it is defined recurrently and adaptively, using clustering, for every
given library and proof-stage;

...starts with Gallina pre-defined symbols, and uses them to find
similarity of the first few Coq definitions; and then proceeds
recursively.

The more two terms or types are “semantically similar”, the closer
values they get. Thus, this matrix should have similar content to e.g.
the matrix of forall (n : nat) (H : odd n), even (n + 1).
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ML4PG: “Machine Learning for Proof General”

Motivation for this feature extraction:

For each term, we get a matrix of size up to 300 features, which capture:

1 term-tree structure of that term – via the term-depth, level-size, and
additional “third” feature relating the above;

2 its types as related to terms; (pattern-recognition tools analyse the
relative values of all features, as 1 Coq object is a point in
300-dimensional space)

3 its dependency to other definitions and Coq terms types – via
recurrent clustering
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ML4PG: “Machine Learning for Proof General”

A simple example

General library clustering:

SSReflect Base library, 12 standard files, 457 terms, 91 clusters (the
number and size of clusters can be changed using PG options); 5-10
seconds.

Example

Fixpoint eqn (m n : nat) :=

match m, n with

| 0, 0 => true

| m’.+1, n’.+1 => eqn m’ n’

| , => false end.

Fixpoint eqseq (s1 s2 : seq T) :=

match s1, s2 with

| [::], [::] => true

| x1 :: s1’, x2 :: s2’ => (x1 == x2) && eqseq s1’ s2’

| , => false end.

Note: common structure across types and type constructors
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ML4PG: “Machine Learning for Proof General”

A simple example

General library clustering:

SSReflect Base library, 12 standard files, 457 terms, 91 clusters (the
number and size of clusters can be changed using PG options); 5-10
seconds.

Example
Fixpoint drop n s := match s, n with

| :: s’, n’.+1 => drop n’ s’

| , => s end.

Fixpoint take n s := match s, n with

| x :: s’, n’.+1 => x :: take n’ s’

| , => [::] end.

Intuitive...
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ML4PG: “Machine Learning for Proof General”

A simple example

General library clustering:

SSReflect Base library, 12 standard files, 457 terms, 91 clusters (the
number and size of clusters can be changed using PG options); 5-10
seconds.

Example

Definition flatten := foldr cat (Nil T).

Definition sumn := foldr addn 0.

Analyses deep into structures of subterms by recurrent clustering: cat and
addn are defined on lists and natural numbers, but are in the same cluster
recurrently. These 2 grouped together out of 15 other definitions using
foldr.

Goal-oriented clustering: do the same but show only what is related
to certain Coq object: e.g. related to flatten. (See demo)
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ML4PG: “Machine Learning for Proof General”

ML4PG

Coq libraries:
one or many?
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ML4PG: “Machine Learning for Proof General”

Proof-clustering

Similarly to term-clustering, the feature extraction:

relies on recurrently computed features;

considers a fragment of a proof-tree – a proof-patch – to find relative
dependencies between goals, tactics and tactic arguments;

considers relation of the tactic arguments to the (inductive)
hypotheses or library lemmas.

As before,

a 5-step proof patch is given by 85 features;

each proof patch is a point in 85-dimensional space;

the proof pattern is determined by looking at their correlation in
several proofs.
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ML4PG: “Machine Learning for Proof General”

A proof-feature algorithm by example

HoTT Path library
Lemma dpath path l A : Type x1 x2 y : A

(p : x1 = x2) (q : x1 = y) (r : x2 = y) :

q = p @ r <∼> transport (fun x => x = y) p q = r.

Proof.

destruct p; simpl.

exact (equiv concat r (concat 1p r) q).

Qed.

Lemma transport paths lr A : Type x1 x2 : A (p : x1 = x2) (q : x1 = x1)

: transport (fun x => x = x) p q = p^ @ q @ p.

Proof.

destruct p; simpl.

exact ((concat 1p q)^ @ (concat p1 (1 @ q))^ ).

Qed.
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ML4PG: “Machine Learning for Proof General”

A proof-feature algorithm by example

HoTT Path library
Lemma dpath path l A : Type x1 x2 y : A

(p : x1 = x2) (q : x1 = y) (r : x2 = y) :

q = p @ r <∼> transport (fun x => x = y) p q = r.

Proof.

destruct p; simpl.

exact (equiv concat r (concat 1p r) q).

Qed.

tactics n arg type arg symbols goals

g1 ([destruct]tac , 2 ([paths x1 x2]type ([p]term, 0, 0, 0) ([<∼>]term, 1
[simpl ]tac , 0, 0) 0, 0, 0) [=]term, [=]term)

g2 ([exact]tac , 1 ([Prop]type , 0, 0, 0) ([(equiv concat r(concat 1p r)q)]term, ([<∼>]term, 0
0, 0, 0) 0, 0, 0) [=]term, [=]term)
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ML4PG: “Machine Learning for Proof General”

Proof-patch analysis

Knowing how to prove Lemma dpath path l, what else can I prove?
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ML4PG: “Machine Learning for Proof General”

ML4PG: visualisation
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ML4PG: “Machine Learning for Proof General”

Visualisation: HoTT library Term Similarity Graph
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ML4PG: “Machine Learning for Proof General”

Visualisation: HoTT library Proof Similarity Graph
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Conclusions and Further work

User Scenarios

Detect proof-patterns prior to new library development

Request a proof-hint during an on-going proof-development;

Import a proof methodology from a different library;

Find how different proof strategies in two libraries about the same
subject are;

Share work-load in a team development.

J. Heras and K. Komendantskaya. ML4PG in Computer Algebra Verification.
MKM/Calculemus/DML 2013: 354-358.

J. Heras and K. Komendantskaya. Recycling Proof-Patterns in Coq: Case Studies. MCS,
2014.
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Conclusions and Further work

Benefits of this approach:

ML4PG can be used on user’s demand and in real-time;

does not assume any knowledge of machine-learning interfaces from
the user;

modular: allows the user to make choices regarding approach to levels
of proofs and particular statistical algorithms;

tolerant to mixing and matching different proof libraries and different
notation used in proofs across different users.

ML4PG is now a part of standard Proof General distribution.
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Conclusions and Further work

ML4PG in comparison

Search Dependency
graphs

ML4PG

Method Search Parsing
Statistical
Pattern-
recognition

Goal-oriented?

Yes Not necessarily Not necessarily

Deterministic?

Yes Yes No

Visual representation

No Yes Yes

Covers proofs or terms?

Terms/types Both Both

Takes into consideration depen-
dencies?

No Yes Yes

Finds structural similarities be-
yond concrete syntax?

No No Yes

Finds structurally similar pat-
terns in proofs?

No No Yes

Good for proof automation?

No No ?
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Conclusions and Further work

Percentage of atomtaically re-proven theorems:

Library Granularity 1 Granularity 3 Granularity 5

ssrnat (SSReflect) 48% 36% 28%

seq (SSReflect) 21% 20% 15%

ssrbool (SSReflect) 70% 77% 62%

fintype (SSReflect) 7% 7% 9%

JVM 56% 58% 65%

summations 0% 10% 12%

Paths (HoTT) 92% 91% 94%

Nash Equilibrium 40% 37% 36%
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Using ML4PG: Demo
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Can we use ML4PG to automatically prove theorems?

Given the statement of a theorem T and the associated library L, we can
use ML4PG to try to find a proof for T as follows:

1 Use ML4PG to obtain the cluster C from the library L that contains
the theorem T .

2 Obtain the sequence of tactics {T i
1, . . . ,T i

ni
}i used to prove each

lemma in C .
3 For each i , try to prove T using T i

1, . . . ,T i
ni

.
4 If no sequence of tactics prove T , then for each tactic use ML4PG to

infer the argument for each tactic T i
j :

If the argument of T i
j is an internal hypothesis from the context of a

proof, try all the internal hypothesis from the context of the current
proof.
If the argument of T i

j is an external lemma L, use ML4PG to compute
all the lemmas in the same cluster as L and try all those lemmas.

*** This can be naturally extended to tactics with several arguments, just
trying all the possible combinations.
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