
Chapter 3

Extensibility and Usability of the
Kenzo framework

The previous chapter was mainly devoted to present a framework which provides a me-
diated access to the Kenzo system, constraining its functionality, but providing guidance
to the user in his navigation on the system. However, we cannot consider that the Kenzo
framework is enough to fully cover our aims.

On the one hand, we want to be able to increase the capabilities of the system
by means of new Kenzo functionalities or the connection with other systems such as
Computer Algebra systems or Theorem Prover tools. On the other hand, the XML
interface (to be more concrete, the OpenMath interface) is not desirable for a human user;
then, a more suitable way of interacting with the Kenzo framework must be provided.

To cope with the extensibility challenge, we have deployed the Kenzo framework as
a client of a plug-in framework that we have developed. This allows us to add new
functionality to the Kenzo framework without accessing to the original source code.
Moreover, as a client of both Kenzo and plug-in frameworks, an extensible friendly
front-end has been developed. Combining the frameworks and the front-end we are able
to improve the usability and the accessibility of the Kenzo system, increasing the number
of users who can take profit of the Kenzo computation capabilities. The whole system,
that is to say, the merger of the two frameworks and the front-end, is called fKenzo, an
acronym for friendly Kenzo [Her09].

The rest of this chapter is organized as follows. The plug-in framework, which the
Kenzo framework is a client of, is explained in Section 3.1. The main client of the Kenzo
framework, an extensible user interface, is introduced in Section 3.2.

99

100 Chapter 3 Extensibility and Usability of the Kenzo framework

3.1 A plug-in framework

Architectures providing plug-in support are used for building software systems which
are extensible and customizable to the particular needs of an individual user. Several
interesting plug-in approaches exist. One of the first plug-in platforms was Emacs (“Ed-
itor MACroS”) [Sta81], whose extensions are written in elisp (a Lisp dialect) and can be
added at runtime. The Eclipse platform [Ecl03] is certainly the most prominent represen-
tative of those plug-in platforms and has driven the idea to its extreme: “Everything is a
plug-in”. Plug-ins for Eclipse are written in Java. Other examples are OSGi [OSG03], a
Java-based technology for developing components, Mozilla [Moz], a web browser with a
great amount of extensions, or Gimp [Pec08], a famous image processing software which
allows one the addition of new functionality by means of plug-ins.

Kenzo is also a plug-in system: to add new functionality to the Kenzo system, a
file with the new functions must be included; remaining untouched the Kenzo core. In
general, all the systems implemented in Common Lisp are extensible. Therefore, to
extend the functionality of a Common Lisp program, we, usually, only need to load new
functions by means of Common Lisp files.

One of the most important challenges that we faced in the development of the Kenzo
framework was the management of its extensibility. On the one hand, we wanted that
the Kenzo framework could evolve at the same time as Kenzo. On the other hand, the
framework should be enough flexible to integrate new tools, such as other Computer
Algebra systems and Theorem Provers tools. In addition, we wanted that the original
source code of the Kenzo framework remained untouched when the system was extended.
Therefore, we decided to include a plug-in support in our framework by means of a plug-
in framework developed by us.

The rest of this section is organized as follows. Subsection 3.1.1 is devoted to present
the architecture of the plug-in framework. Explanations about the way of adding new
functionality to the Kenzo framework through the plug-in framework are provided in
Subsection 3.1.2.

3.1.1 Plug-in framework architecture

Extensibility is very important because an application is never really finished. There
are always improvements to include and new features to implement.

With the aim of being able to extend different systems we have developed a plug-
in framework. This framework may have systems of very different nature as clients.
Therefore, the way of extending a client can be different to the way of extending the rest
of them. This issue has been taken into account in the design of the plug-in framework.

The implementation of the plug-in framework has been based on the plug-in pattern
presented in [MMS03]. This pattern distinguishes two main components: the plug-ins

3.1 A plug-in framework 101

Plug-in Framework

O
M

D
oc

P

lu
g-

in
Plug-in repository

Plug-in
Registry

Client

Plug-in Manager

Client-3
Module

Client-1
Module

Client-4
Module

Client-2
Module __

__
__

Figure 3.1: Plug-in framework

and the plug-in manager. Moreover, we have included two improvements of our own, the
plug-in repository and the plug-in registries (each client of the plug-in framework will
have associated a plug-in registry). A high level perspective of the plug-in framework
is depicted in Figure 3.1. Let us explain each one of the constituents of our plug-in
framework.

A plug-in in our system is an OMDoc document which consists of different resources
used to extend a concrete client. Since the clients of the plug-in framework can be very
different, the nature of the resources included in them are different, too. However, as it
is desirable that the format of all the plug-ins (not the format of the resources which
obviously depends on each client) was common for the different clients, we have chosen
OMDoc [Koh06] as the format to encode our plug-ins. OMDoc is an open markup
language for mathematical documents, and the knowledge encapsulate in them. The
OMDoc plug-ins are documents that wrap the necessary resources to extend a concrete
client of the plug-in framework.

Essentially, an OMDoc plug-in is an XML document, that stores the metadata about
the plug-in (authorship, title, and so on) and wraps the resources (by means of references
to other files that, of course, depend on the concrete client) which extend a client of the
plug-in framework.

For instance, let us suppose that we have a client, called client-1, of our plug-in
framework; and we want to extend that client by means of the resources stored in a
file called client-1-resources. Then, the OMDoc plug-in, called new-module-client-1,
will contain, in addition to the metadata about the plug-in, the following XML fragment
(all the OMDoc plug-ins follow the same pattern).

<code id="new-module-client-1">
<data format="client-1"> client-1-resources </data>

</code>

The above XML code must be read as follows. The id argument of the code tag
indicates the name of the new module. Inside this tag the different resources to extend

102 Chapter 3 Extensibility and Usability of the Kenzo framework

client-1 with the new plug-in are referenced by means of the data tag. This tag has as
format attribute the name of the concrete client, in this case client-1, and the value of
the data tag is the reference to the concrete resource. This information is very useful
for the plug-in manager.

When the plug-in framework receives as input an OMDoc plug-in, the plug-in man-
ager is invoked. The plug-in manager is a Common Lisp program that consists of several
modules, one per client of the plug-in framework. As we have said, each one of these
modules is related to a concrete client, and then, is implemented depending on the exten-
sibility needs of each one of them. The plug-in manager, depending on the information
stored in the plug-in (namely the value of the format attribute of the data tag), invokes
the corresponding client module. Subsequently, this module extends the client with the
indicated resources.

The plug-ins and the resources referenced by them are stored in a folder included in
the plug-in framework called the plug-in repository.

Finally, each client of the plug-in framework has associated a file called plug-in reg-
istry. Each one of these files stores a list of the plug-ins that were added to the cor-
responding client. When a new plug-in is included in a client, the information about
that plug-in is stored in its plug-in registry. Moreover, when a client is started its first
task consists in sending the information of the plug-in registry to the plug-in manager
in order to achieve the same state of the last configuration of the client.

If some problem appears during the loading of a plug-in the plug-in framework in-
forms of the error and aborts the loading in order to avoid inconsistencies.

Once we have presented the plug-in framework, let us explain how one of its clients,
that is the Kenzo framework, uses it. Another client of this framework is a customizable
front-end that will be presented in Section 3.2.

3.1.2 The Kenzo framework as client of the plug-in framework

As it was discussed earlier, one of the most important issues tackled in the design of the
Kenzo framework was the deployment of an extensible architecture. A good approach
to solve this question consists in having a component-based architecture as base-system,
and then equipping it with different components. This is the approach followed in the
Kenzo framework. As was explained in the previous chapter, the base-system of the
Kenzo framework is based on the Microkernel architectural pattern, therefore, we have
a component-based architecture. Moreover, to be able to include new improvements
and features, the Kenzo framework has been implemented as a client of the plug-in
framework.

As we explained previously, all the Kenzo framework components are Common Lisp
modules, see Section 2.2, and since Common Lisp programs are designed to be extensible,
we only need to load new functions in each component by means of Common Lisp files.

3.1 A plug-in framework 103

This is the same method followed in Kenzo to extend its functionality.

The plug-in manager of the plug-in framework contains a component that is devoted
to load new functionality in the Kenzo framework. This module extends the functionality
of the Kenzo framework components with two different aims. On the one hand, to
provide access to new Kenzo functionality through the Kenzo framework. On the other
hand, to interact with other systems, such as Computer Algebra systems or Theorem
Provers tools, by means of the Kenzo framework. Let us present the integration of new
functionality in the Kenzo framework.

Let us suppose that we have developed a new module for Kenzo that allows us
to construct a kind of spaces that were not included in the Kenzo system, we will see
concrete examples in Chapter 5, and, of course, we want to include the new functionality
in our framework. Then, we need to extend all the components of the framework by
means of the following files:

• a file (let us called it new-constructor.lisp) with the functionality to include the
new constructor developed for the Kenzo system in the Kenzo component of the
internal server,

• a file (let us called it new-constructor-is.lisp) with the functionality to expand
the interface of the internal server to support the access to the new Kenzo func-
tionality,

• a file (let us called it new-constructor-m.lisp) with the functionality for the mi-
crokernel to include a new construction module. This functionality follows the
pattern explained in Subsubsection 2.2.3.3 for constructions modules. Moreover,
this file also expands the microkernel interface to provide access to the functionality
of the new construction module,

• the new specification of the XML-Kenzo language including the new constructor.
As we have explained previously in Subsection 2.2.4, this will extend the capabili-
ties of the external server. The file containing the XML-Kenzo specification is the
XML-Kenzo.xsd file, and

• a file (let us called it new-constructor-a.lisp) with the functionality which in-
creases the adapter functionality to transform from OpenMath requests to XML-
Kenzo requests.

The new-constructor plug-in is an OMDoc document which contains some metadata
about the document and references the different files in the following way.

104 Chapter 3 Extensibility and Usability of the Kenzo framework

<code id="new-constructor">
<data format="Kf/internal-server"> new-constructor.lisp </data>
<data format="Kf/internal-server"> new-constructor-is.lisp </data>
<data format="Kf/microkernel"> new-constructor-m.lisp </data>
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/adapter"> new-constructor-a.lisp </data>

</code>

Each data element has specified in the format attribute one of the Kenzo framework
components (internal server, microkernel, external server and adapter). The value of a
data element is a file which extends the Kenzo framework. The indicated component in
the format attribute of a data element is extended by means of the file indicated with
the value of the data element. For instance in the case of the first data element, the
functionality of the internal server is extended by means of the new-constructor.lisp

file.

The plug-in framework receives as input the new-constructor plug-in. Subsequently,
the Kenzo framework module of the plug-in framework is invoked. This module is
split in four constituents, one per Kenzo framework component. The behavior of the
constituents in charge of the internal server, the microkernel and the adapter consists in
loading the new functionality in the corresponding Kenzo framework component. The
constituent for the external server overwrites the XML-Kenzo specification with the new
one (no additional interaction is needed to extend the functionality of the external server,
since when the XML-Kenzo specification is changed the external server is automatically
upgraded).

Finally, the information of the new plug-in is stored in the plug-in registry of the
Kenzo framework to store the configuration for further uses.

This was related to the inclusion of new Kenzo functionality in the Kenzo framework;
the case of widening the Kenzo framework through the addition of an internal server (a
Computer Algebra system or a Theorem Prover tool) is practically analogous. The main
difference is the file related to the internal server which, instead of adding new Kenzo
functionality to the current internal server, shows how to connect with the new system.
Examples of the addition of new internal servers will be presented in Chapter 4.

The features associated to the Kenzo framework owing to its implementation as a
client of the plug-in framework are listed below.

• Extensibility: the Kenzo framework can be extended by plug-ins. Each new func-
tionality can be realized as an independent plug-in.

• Flexibility: each unnecessary plug-in can be removed and each necessary plug-in
can be loaded at run-time. Therefore the Kenzo framework can be configured in
such a way that it has only the needed functionality.

• Storage of configuration: thanks to the registry associated to the Kenzo framework,

3.2 Increasing the usability of the Kenzo framework 105

the configuration of a session is stored for the future.

• Easy to install: the installation of plug-ins is friendly from the plug-in folder.

3.2 Increasing the usability of the Kenzo framework

The design of a client for our framework was one of the most important issues tackled
in our development. The client should not only take advantage of all the enhancements
included in the Kenzo framework but also be designed to increase the usability and
accessibility of the Kenzo system. In this context, the program designers in Symbolic
Computation always meet the same decision problem: two possible organizations1.

1. Provide a package of procedures in the programming language L, allowing a user
of this language to load this package in the standard L-environment, and to use
the various functions and procedures provided in this package. The interaction
with the procedures is by means of a command line interface.

2. Provide a graphical user interface (GUI) with the usual buttons, menus and other
widgets to give to an inexperienced user a direct access to the most simple desired
calculations, without having to learn the language L.

The main advantage of the former alternative is that the total freedom given by
the language L remains available; however, the technicalities of the language L remain
present as well. Moreover, the prompt of a command line interface does not usually pro-
vide adequate information to the user about the correct command syntax. Besides, since
the user has to memorise the syntax and options of each command, it often takes consid-
erable investment in time and effort to become proficient with the program. Therefore,
command line interfaces may not be appealing to new or casual users of a software sys-
tem. The vast majority of Computer Algebra systems fall in this category, including
GAP, CoCoA, Macaulay, and Kenzo. On the contrary, graphical interfaces (the second
alternative) are easier to use, since instead of relying on commands, the GUI commu-
nicates with the user through objects such as menus, dialog boxes and so on. These
objects are a means to provide a more intuitive user interface, and supply more informa-
tion than a simple prompt. However, no reward comes without its corresponding price
and GUIs can slow down expert users.

Since the final users of our framework are Algebraic Topology students, teachers
or researchers that usually do not have a background in Common Lisp, we opted for
implementing a user-friendly front-end allowing a topologist to use the Kenzo program
guiding his interaction by means of the Kenzo framework, without being disconcerted
by the Lisp technicalities which are unavoidable when using the Kenzo system. This
GUI is communicated with the Kenzo framework through the OpenMath interface of the

1These are, of course, two extreme positions: many other possibilities can be explored between them.

106 Chapter 3 Extensibility and Usability of the Kenzo framework

adapter and can be customized by means of the plug-in framework. The whole system,
that is to say the two frameworks and the GUI, is called fKenzo, an acronym for friendly
Kenzo [Her09]. We have talked at length about the Kenzo framework in Chapter 2 and
also about the plug-in framework in Section 3.1, so, let us present now the GUI of the
fKenzo system.

The fKenzo GUI was implemented with the IDE of Allegro Common Lisp [Incc].
Various features have been implemented in this GUI. They improve the interaction with
the Kenzo system from the user point of view. The main features of the fKenzo GUI
are listed below.

1. Easy to install : the installation process is based on a typical Windows installation.

2. No external dependencies : the fKenzo GUI does not need any additional installa-
tion to work.

3. Functionality : the fKenzo GUI allows the user to construct topological spaces of
regular usage and compute homology and (some) homotopy groups of these spaces.

4. Error handling : this GUI is a client of the Kenzo framework; and all the enhance-
ments included in the framework are inherited by the GUI. In this way, the user
is guided in his interaction with the system and some errors are avoided.

5. Consistent metaphors : an advanced user of Kenzo feels comfortable with the
fKenzo GUI; in particular, the typical two steps process (first constructing an
space, then computing groups associated to it) is explicitly and graphically cap-
tured in the GUI.

6. Interaction styles : the user can interact with the GUI by means of the mouse and
also using keyboard shortcuts.

7. Mathematical rendering : the fKenzo GUI shows results using standard mathemat-
ical notation.

8. Storage of sessions : session files include the spaces constructed during a session,
and can be saved and loaded in the future. Moreover, these session files can be
exported, used to communicate them to other users and rendered in browsers.

9. Storage of results : result files storing the results obtained during a session, as in
the case of session files, can be saved, exported, used to communicate them to
other users and rendered in browsers.

10. Customizable: the fKenzo GUI can be configured to the needs of its users.

11. Extensibility : the fKenzo GUI can evolve with the Kenzo framework using the
plug-in framework.

The rest of this section is devoted to present the GUI of the fKenzo program, trying
to cover both the user (Subsections 3.2.1 and 3.2.2) and the developer (Subsections 3.2.3
and 3.2.4) perspectives.

3.2 Increasing the usability of the Kenzo framework 107

Figure 3.2: Initial screen of fKenzo

3.2.1 fKenzo GUI: a customizable user interface for the Kenzo
framework

To use fKenzo, one can go to [Her09] and download the installer. After the installation
process, the user can click on the fKenzo icon, accessing to an “empty” interface, which
is shown in Figure 3.2.

Then, the first task of the user consists in loading some functionality in the fKenzo
GUI through the different modules included in the distribution of fKenzo. From the user
point of view, a module is a file which loads functionality in the fKenzo GUI.

The main toolbar of the fKenzo GUI is organized into two menus: File and Help.
The File menu has the following options: Add Module, Delete Module, and Exit. The
aim of the Add Module option consists in loading the functionality of a module. The
user can configure the interface by means of five modules: Chain Complexes, Simplicial
Sets, Simplicial Groups, Abelian Simplicial Groups and Computing. Each one of these
modules corresponds with one of the XML-Kenzo groups explained in Subsection 2.2.1.
In addition, some other experimental modules can be installed, such as a possibility
of interfacing the GAP Computer Algebra system or the ACL2 Theorem Proving tool;
these modules will be presented in Chapter 4.

When one of the “construction modules” (Chain Complexes, Simplicial Sets, Simpli-
cial Groups or Abelian Simplicial Groups) is loaded, a new menu appears in the toolbar
allowing the user to construct the spaces specified in the XML-Kenzo schema for that
type, see Figure 2.5 of Subsection 2.2.1. Moreover, two new options called Save Session
and Load Session are added to the File menu. When saving a session a file is produced
containing the spaces which have been built in that session. These session files are saved
using the OpenMath format and can be rendered in different browsers. These session
files can be loaded, from the Load Session option, and allow the user to resume a saved

108 Chapter 3 Extensibility and Usability of the Kenzo framework

session.

When the Computing module is loaded, a new menu appears in the toolbar allowing
the user to compute homology and homotopy groups of the constructed spaces. Besides,
a new option called Save Computing appears in the File menu. This option works in
a similar way to Save Session but instead of saving the spaces built during the current
session, it saves the computations also using the OpenMath format. However, these
results cannot be reloaded into the fKenzo GUI, since they cannot be re-used in further
computations. It is worth noting that computations depend on the state of the system,
and this state cannot be exported, so we cannot re-use computations performed in
a different session. When the user exits fKenzo, its configuration is saved for future
sessions.

The visual aspect of the fKenzo panel is as follows. The “Main” tab contains, at its
left side, a list of the spaces constructed in the current session, identified by its type (CC
= Chain Complex, SS = Simplicial Set, SG = Simplicial Group, AG = Abelian simplicial
Group) and its internal identification number (the idnm slot of the mk-object instance
of the microkernel). When selecting one of the spaces in this list, its standard notation
appears at the bottom part of the right side. At the upper part, there are two tabs
“Session” (containing a textual description of the constructions made, see an example
of session in Figure 3.3) and “Computing” (containing the homology and homotopy
groups computed in the session; see an example in Figure 3.4). In both “Session” and
“Computing” tabs the results are rendered using again standard mathematical notation.

In the fKenzo GUI, focus concentrates on the object (space) of interest, as in Kenzo.
The central panel takes up most of the place in the interface, because it is the most
growing part of it (in particular, with respect to computing results). It is separated by
means of tabs not only because on the division between spaces and computed results
(the system moves from one to the other dynamically, putting the focus on the last user
action), but also due to the extensibility of fKenzo. To be more precise, our system is
capable of evolving to integrate with other systems (computational algebra systems or
theorem proving tools), so playing with tabs in the central panel allows us to produce a
user sensation of indefinite space and separation of concerns. Examples of the integration
of a Computer Algebra system and a Theorem Prover tool in fKenzo will be presented
in Chapter 4.

3.2.2 fKenzo in action

To illustrate the performance of the fKenzo program, let us consider a hypothetical
scenario where a graduate course is devoted to fibrations, in particular introducing the
functors loop space Ω and classifying space B. In the simplicial framework, [May67]
is a good reference for these subjects. In this framework, if X is a connected space,
its loop space ΩX is a simplicial group, the structural group of a universal fibration
ΩX ↪→ PX → X. Conversely, if G is a simplicial group, the classifying space BG is
the base space also of a universal fibration G ↪→ EG → BG. The obvious symmetry

3.2 Increasing the usability of the Kenzo framework 109

Figure 3.3: Example of session in fKenzo

between both situations naturally leads to the question: in an appropriate context, are
the functors Ω and B inverse of each other?

For the composition BΩ, let us compare for example the first homology groups of S2

with the homology groups of BΩS2, and the homology groups of ΩS2 and ΩBΩS2.

Since we are planning to work with simplicial sets and simplicial groups, we
can load the necessary functionality using File → Add Module, and then choosing
Simplicial-Groups.omdoc. The interface changes including now a new menu called Sim-
plicial Sets and another one called Simplicial Groups. When selecting Simplicial Sets
→ sphere, fKenzo asks for a natural number, as we saw in the definition of XML-Kenzo,
limited to 14. Then (see Figure 3.3) the space denoted by SS 1 appears in the left side
of the screen; when selecting it, the mathematical notation of the space appears in the
bottom part of the right side of the panel. The history of the constructed spaces is
shown in the “Session” tab.

If we try to construct a classifying space from the Simplicial Group menu, fKenzo
informs us that it needs a simplicial group (thus likely an error is avoided). We can then
construct the space ΩS2. Since ΩS2 is the only simplicial group in this session, when
using Simplicial Groups → classifying space, ΩS2 is the only available space appearing
in the list which fKenzo shows. Finally, we can construct the space ΩBΩS2.

When loading the Computing.omdoc file, the menu Computing, where we can select
“homology”, becomes available. In this manner we can compute the homology groups
of the spaces as can be seen in Figure 3.4.

These results give some plausibility to the relations BΩ = id and ΩB = id.

The reader could wonder why the simpler case of S1 has not been considered. Using
again fKenzo this time a warning is produced; yet the result BΩS1 ∼ S1 is true. But
the Eilenberg-Moore spectral sequence cannot be used in this case to compute H∗ΩS

1,

110 Chapter 3 Extensibility and Usability of the Kenzo framework

Figure 3.4: Example of computations in fKenzo

Figure 3.5: Reduction degree error in fKenzo

because S1 is not simply connected, and fKenzo checks this point (see Figure 3.5).
The symmetry comparison between S1 and ΩBS1 fails too, for another reason: the
“standard” S1 is a topological group, but the standard simplicial representation of S1

cannot be endowed with a structure of simplicial group. This situation is reflected in
the construction of classifying spaces in fKenzo since the sphere S1 does not appear in
the list which fKenzo shows.

This is a good opportunity to introduce the Eilenberg MacLane space K(Z, 1), the
“minimal” Kan model of the circle S1, a simplicial group. In order to work with Eilenberg
MacLane spaces in fKenzo, the Abelian Simplicial Group module should also be loaded,
in this way the space K(Z, 1) can be built, as can be seen in Figure 3.3. The fKenzo
comparison between the first homology groups of K(Z, 1) and ΩBK(Z, 1) does give the
expected result.

We think this illustrates how fKenzo can be used as a research tool, precisely a
specialized computer tool, for Algebraic Topology.

Up to now, we have presented the user point of view. In the following subsections,
some explanations on the development of the fKenzo GUI are given.

3.2 Increasing the usability of the Kenzo framework 111

3.2.3 Customization of the fKenzo GUI

The most important challenge that we have faced in the development of the fKenzo GUI
was the deployment of an extensible and modular user interface. Modularity has two
aims in fKenzo. One of them is related to the separation of concerns in the user interface.
The second one allows us to design a dynamically extensible GUI, where modules are
plugged in.

3.2.3.1 Declarative programming of User Interfaces

In all the graphical user interfaces exist a separation of concerns, hence if we want to
extend a GUI we need to extend it at all its levels. With respect to this aspect, our
inspiration comes from [HK09], where a proposal for declarative programming of user
interfaces was presented. In [HK09], the authors distinguished three constituents in any
user interface: structure, functionality and layout.

Structure: Each user interface (UI) has a specific hierarchical structure which typically
consists of basic elements (like text input fields or selection boxes) and composed
elements (like dialogs).

Functionality: When a user interacts with a UI, some events are produced and the UI
must respond to them. The event handlers are functions associated with events of
some widget and that are called whenever such event occurs (for instance clicking
over a button).

Layout: The elements of the structure are put in a layout to achieve a visually appealing
appearance of the UI. In some approaches layout and structural information were
mixed, however in order to obtain clearer and reusable implementations these
issues should be distinguished.

The approach presented in [HK09] used the Curry language [Han06] to declare all
the ingredients. Instead of doing a similar work, but using the Common Lisp language
(recall that our GUI is implemented in Common Lisp) to all the ingredients, we have
preferred to employ different technologies devoted to each one of the constituents. Let
us present each one of these ingredients in our context using a concrete example, that
is the window used to construct a sphere in the fKenzo GUI, see Figure 3.6.

The structure of our GUI is provided by XUL [H+00]. XUL, XML User Interface,
is Mozilla’s XML-based user interface language which lets us build feature rich cross-
platform applications defining the structure of all the elements of a UI. Then, a XUL
description must be provided in order to define the structure of the elements of our
GUI. The main reason to encode the structure of our GUI by means of XUL is the
reusability of this language. The XUL code can be used in order to build forms in
different environments for different applications without designing new interfaces.

112 Chapter 3 Extensibility and Usability of the Kenzo framework

Figure 3.6: Sphere dialog

Let us examine the structure of the window of Figure 3.6. That window is called
“sphere” and gathers in a groupbox the following elements: the text “Build a Sphere of
dimension:”, a textbox to introduce a natural number between 1 and 14, and a row that
contains both “Create” and “Cancel” buttons. Moreover, each button has associated an
event when its state is changed, namely when the button is clicked. We can specify that
structure in the following XUL code:

<window name="sphere">
<groupbox>

<label value="Build a Sphere of dimension:"/>
<textbox id="n" type="number" min="1" max="14"/>
<hbox>
<button label="Create" name="create" event="on-change"/>
<button label="Cancel" name="cancel" event="on-change"/>

</hbox>
</groupbox>
</window>

As we have said previously, we can use the above XUL code in different clients.
For instance, the previous XUL is presented in a Mozilla browser [Moz] as shown in
Figure 3.7.

As can be thought, providing the XUL description of an element of a GUI can be a
tedious task due to the XML nature of XUL. To make this task easier, an interpreter
which is able to convert from the Allegro Common Lisp IDE forms to their XUL repre-
sentation, and viceversa, has been developed. This is a more comfortable way of working
because we define the forms in the Allegro IDE using a graphical interface, and then,
the interpreter automatically generates the XUL code.

The functionality of the elements of our GUI, that is the set of event handlers, has
been programmed in Common Lisp keeping the following convention in order to define
the names of the event handlers functions:

3.2 Increasing the usability of the Kenzo framework 113

Figure 3.7: Sphere form in Firefox browser

. .

(defun <window-name>-<element-name>-<event> (params)
;; event handler code)

. .

where <window-name>, <element-name> and <event> must be replaced with the name of
the dialog, the name of the element and the event, respectively. For instance, the event
associated with the “Create” button of the sphere dialog, see Figure 3.6, is codified as
follows:

. .

(defun sphere-create-on-change (params)
;; event handler code)

. .

Finally, the layout of the elements of our GUI, that is the visual appearance of the
GUI, can be configured by means of a stylesheet [K+07]. For instance, if we define the
following (fragment of a) stylesheet:

<xsl:template name="window">
<xsl:param name="color">blue</xsl:param>

</xsl:template>

<xsl:template name="groupbox">
<xsl:param name="color">orange</xsl:param>

</xsl:template>

<xsl:template name="label">
<xsl:param name="background-color">yellow</xsl:param>
<xsl:param name="font-color">red</xsl:param>

</xsl:template>

114 Chapter 3 Extensibility and Usability of the Kenzo framework

Figure 3.8: Sphere dialog with a stylesheet

the sphere dialog would have the aspect shown in Figure 3.8. That is to say, the stylesheet
is used to modify the visual attributes of the elements of the GUI. If we do not provide
a stylesheet the default values of the visual aspect attributes are used.

In this way, all the graphical constituents of the interface can be defined.

The next subsubsection is devoted to present how the information related to the
different constituents is stored in our modules.

3.2.3.2 fKenzo GUI modules

A fKenzo GUI module is an OMDoc document that references at least two resources: a
file that contains the structure of the graphical elements of the module and another one
containing the functionality of those elements. In addition, a fKenzo GUI module can
reference a file with the layout. Besides, a fKenzo GUI module provides some metadata
(authorship, title and so on). The following conventions have been followed in the four
fKenzo GUI construction modules and also in the computation one.

A fKenzo GUI module follows the schema presented for the rest of plug-ins
of the plug-in framework, see Subsection 3.1.1. For instance, in the case of the
Simplicial Groups module:

<code id="Simplicial Groups">
<data format="fKenzo/GUI/structure"> simplicial-groups-structure </data>
<data format="fKenzo/GUI/functionality"> simplicial-groups-functionality </data>
</code>

The first reference corresponds to the structure of the graphical constituents of that
module. This document is called “<Module>-structure” where “<Module>” is the
name of the correspondent module. This file is an OMDoc document. To introduce XUL

3.2 Increasing the usability of the Kenzo framework 115

code in these documents we have used an OMDoc feature called OpenMath foreign objects
(the <OMForeign> tag) which allows us to introduce non-OpenMath XML in OMDoc
files. For instance, the module of Simplicial Groups includes a new menu with two menu
items: one to construct Loop spaces (which has associated the shortcut “Ctrl+L” and
the event show-loop-space) and another one to Classifying spaces (which has associated
the shortcut “Ctrl+Y” and the event show-classifying). In this case the structure of the
new menu is stored in the document simplicial-groups-structure with the following
XUL code.

<OMForeign>
<toolbarbutton type="menu" label="Simplicial Groups">
<menupopup>
<menuitem label="Loop Space" acceltext="Ctrl" accesskey="L"

command="show-loop-space"/>
<menuitem label="Classifying Space" acceltext="Ctrl" accesskey="Y"

command="show-classifying"/>
</menupopup>

</toolbarbutton>
</OMForeign>

The functionality related to a concrete module is encoded in an OMDoc document
called “<Module>-functionality” where “<Module>” is the name of the corresponding
module. To this aim, we use an OMDoc feature which allows us to introduce code (in our
case Common Lisp functions) in OMDoc files by means of the code tag. For instance,
the functionality of the event called show-loop-space associated to the Loop Space menu
item of the Simplicial Groups menu is encoded in the simplicial-groups-functionality

document as follows.

<code id="show-loop-space">
<metadata>

<description> The event associated to the Loop Space menuitem </description>
</metadata>
<data format="application/fKenzo">

<![CDATA[(defun show-loop-space ()
;; code)]]>

</data>
</code>

Finally, the resource related to the layout is optional, and in particular the fKenzo
GUI modules use the default layout, so they never reference any layout file. Anyway,
if we want to provide a different appearance for the graphical elements of a module we
can define an OMDoc document where we encode the stylesheet, which customizes the
visual aspect of the elements of the module, using the same feature employed in the case
of structure documents, that is the <OMForeign> tag.

The organization presented here allows us to deal with the design of a dynamically
extensible GUI, where modules are plugged in. Our front-end becomes extensible thanks

116 Chapter 3 Extensibility and Usability of the Kenzo framework

fKenzo
GUI

fKenzo plug-in
registry

Kenzo framework

Plug-in framework

O
pe

nM
at

h

OMDoc plug-in

Figure 3.9: Plug-in framework and fKenzo GUI

to the plug-in framework since each user interface unit is encoded in a unique OMDoc
file, with its inner modular organization: structure, functionality and (optionally) layout.

3.2.3.3 fKenzo GUI as client of the plug-in framework

To tackle the extensibility question in our user interface, the fKenzo GUI has been
designed not only as a client of the Kenzo framework, but also as a client of the plug-in
framework presented in Section 3.1. In this way, the fKenzo GUI can be extended in an
easy way by means of modules, described in the previous subsubsection. In this context,
instead of using the term plug-in we prefer the term module which is more appropriate
(an application which is extended by means of modules does not have any functionality,
apart from the one which allows us to load modules, if we have not added any module,
as the fKenzo GUI; on the contrary, an application which is extended by means of plug-
ins can work without adding them, as the Kenzo framework). The relations among the
fKenzo GUI, the Kenzo framework, and the plug-in framework are depicted in Figure 3.9.

The plug-in manager (see Subsection 3.1.1) of the plug-in framework contains a
module in charge of extending the fKenzo GUI. This module extends the GUI providing
access to a concrete part of the functionality of the Kenzo framework by means of the
five modules explained for the fKenzo GUI (the four construction modules and the
computing one).

In particular, the plug-in manager of the plug-in framework includes a module in
charge of processing the modules related to the fKenzo GUI. This module is split in
two constituents. The first one is an interpreter in charge of converting from XUL code
to Common Lisp code the different graphical components. In addition if a layout file
is specified, then the layout properties are applied to the graphical components. The
second one associates the functionality of the event handlers to the elements defined in
the structure document.

3.2 Increasing the usability of the Kenzo framework 117

Then, it is enough to produce an OMDoc file with the suitable components, and
then it can be interpreted and added in our GUI. It is exactly what happened when
in Subsection 3.2.2 we described the way of working with fKenzo: using File → Add
Module with the Simplicial-Groups.omdoc module sends this module to the plug-in
framework. Subsequently, the plug-in manager invokes the fKenzo module (one of the
subcomponents of the plug-in manager) that extends the user interface.

The implementation of the fKenzo GUI as a client of the plug-in framework shows
the feasibility and usefulness of this framework.

The fKenzo GUI features partly owing to the implementation of the user interface
as a client of the plug-in framework are listed below.

• Modularity: the GUI is organized in different modules, each one devoted to a
concrete concern.

• Extensibility: the GUI can be extended by the modules. Each new functionality
can be realized as an independent module.

• Flexibility: each unnecessary module can be removed and each necessary module
can be loaded at run-time. Therefore the GUI can be configured in such a way
that it has only the needed functionality.

• Easy to install: the installation of modules is friendly (only select a file with the
option Add Module) from the plug-in folder.

• Internet based update: the GUI supports an update mechanism from the Help

menu. This allows the GUI to download new modules or updates.

• Storage of configuration: the GUI configuration is automatically saved for further
sessions.

3.2.3.4 Extending the Kenzo framework from the fKenzo GUI

The previous subsubsections have been devoted to explain how the fKenzo GUI can be
customized by means of the plug-in framework. Moreover, the plug-in framework can
also be employed to increase the functionality of the Kenzo framework as we presented in
Subsubsection 3.1.2. Besides, in the same way that we wanted that the Kenzo framework
could evolve at the same time as Kenzo, we also hope that the fKenzo GUI will be able
to evolve at the same time that the Kenzo framework.

Up to now, the fKenzo modules that we have presented (the four construction mod-
ules and the computation one) to customize the fKenzo GUI do not suppose any im-
provement in the Kenzo framework. However, it is worth noting that the modules for
the GUI not only can extend the GUI but also the Kenzo framework.

118 Chapter 3 Extensibility and Usability of the Kenzo framework

fKenzo
GUI Kenzo framework

Plug-in framework

O
pe

nM
at

h

OMDoc plug-in

Kenzo framework
plug-in registry

fKenzo plug-in
registry

Figure 3.10: Plug-in framework, fKenzo GUI and Kenzo framework

Let us retake the example presented in Subsubsection 3.1.2 where a plug-in called
new-constructor was defined to increase the functionality of the Kenzo framework by
means of a new constructor. Now, following the guidelines of Subsubsection 3.2.3.2,
we can define three files (structure, functionality and layout) to customize the GUI to
interact with the new constructor. Finally, we define a fKenzo GUI module which not
only references the three files (structure, functionality and layout) to customize the GUI
but also the plug-in which adds new functionality to the Kenzo framework.

<code id="new-constructor">
<data format="fKenzo/GUI/structure"> new-constructor-structure </data>
<data format="fKenzo/GUI/functionality"> new-constructor-functionality </data>
<data format="fKenzo/GUI/layout"> new-constructor-layout </data>
<data format="fKenzo/GUI/Kf"> new-constructor-plug-in </data>
</code>

When the user selects this new module from the Add Module option, the plug-in
framework will extend both the fKenzo GUI and the Kenzo framework. In Subsubsec-
tion 3.2.3.3, we explained that the plug-in framework includes a module in charge of
processing the modules related to the fKenzo GUI. We said that this module is split in
two constituents but we have included a new constituent devoted to invoke the Kenzo
framework module of the plug-in framework for the cases explained in this subsubsec-
tion. This last constituent is only invoked if the fKenzo GUI module references a Kenzo
framework plug-in, in that case the Kenzo framework module of the plug-in manager is
also called.

In addition, the fKenzo GUI plug-in registry and the Kenzo framework plug-in reg-
istry must be coherent in order to avoid inconsistencies in the whole system.

A high level perspective of the interaction between the two frameworks and the GUI
can be seen in Figure 3.10.

This extensibility principle makes very easy to us the incorporation of experimental
features to the system, without interfering with the already running modules, as we will

3.2 Increasing the usability of the Kenzo framework 119

see in Chapters 4 and 5.

3.2.4 Interaction design

In the previous subsection we have explained the design decisions that we took to develop
an extensible and modular interface, probably the most important feature of the fKenzo
GUI from the developer perspective. However, other decisions were taken on the fKenzo
user interface design.

3.2.4.1 Task model

The first idea guiding the construction of a user interface must be the objectives of the
interaction. In fKenzo there is only one higher-level objective: to compute groups of
spaces. This main objective is later on broken in several subobjectives, trying to emulate
the way of thinking of a typical Kenzo user. Once this first objective analysis is done,
the next step is to design a task model. That is to say, a hierarchical planning of the
main actions the user should undertake to get his objectives. This is a previous step
before devising the navigation of the user, which will give the concrete guidelines needed
to implement the interface.

In our case, the two main actions of the system are: (1) computing groups, and (2)
constructing spaces. Note that the second task is necessary to carry out the first one.
In turn, the task of constructing spaces can be separated into: (a) constructing new
fresh spaces and (b) loading spaces from a previous session. Thus, the notion of session
comes on the scene. With respect to the construction of fresh spaces, once the user has
decided to go for it, he should decide which type of space he wants to build: simplicial
set, simplicial group, and so on. Note that the construction of a space of a type can
involve the construction of other space of whether its same type or a different type. This
third layer of tasks gives us the module organization of the interface, while computing
produces a separated module.

The task design is organized hierarchically by diagrammatic means. See in Fig-
ure 3.11 a first decomposition layer depicted by means of a package diagram [Gro09].
Each task (each frame) is linked to auxiliary tasks (giving a horizontal dependency
structure). Then, each frame is described in more detail (vertical structure) by making
explicit its subtasks graph.

Task modeling provides us with both the high level modular structure and the dif-
ferent steps needed to reach a user subobjective. The concrete actions a user should
perform to accomplish the tasks are devised in the control and navigation models.

120 Chapter 3 Extensibility and Usability of the Kenzo framework

Compute Group Construct Fresh
Space

<<requires>>

User Task 2a: Construct Fresh Space

Construct Chain
Complex

Construct
Simplicial Set

Construct
Simplicial

Group

Construct
Abelian

Simplicial
Group

User Task 1 User Task 2a

User Task 2a2

User Task 2a1

User Task 2a3

User Task 2a4

Figure 3.11: Hierarchical decomposition of the “Construct Fresh Space” user task

3.2.4.2 Control and navigation model

The design of the interaction between a user and a computer program involves well-
known challenges (use of convenient metaphors, consistency of the control through
the whole application, and so on). In order to avoid some frequent drawbacks we
have followed the guidelines of the Noesis method (see [DZ07] for the general theory,
and [CMDZ06] for the design of reactive systems). In particular, our development has
been supported by the Noesis models for control and navigation in user interfaces. These
graph-supported models enable an exhaustive traversal study of the interfaces, allowing
the analyst to detect errors, disconnected areas, lack of uniformity, and so on, before the
programming phase. Figure 3.12 shows the control and navigation submodel describing
the construction of a loop space ΩnX. Different kinds of interactions are graphically
represented in Figure 3.12 by different icons. For instance, selecting from a list is de-
picted with a form icon; directly writing an input is depicted with a pen, and so on.
These pictures help the programmer to get a quick overall view of the different controls
to be implemented.

Let us observe that this diagrammatic control model is abstract, in the sense that
nothing is said about the concrete way the transitions should be translated into the user
interface. In fact, in the fKenzo GUI this model is implemented in two different manners:
one by means of the “menu & mouse” style, and the other one through control-keys. The
second style has been included thinking of advanced users, who want to use shortcuts
to access the facilities of the interface. The adaptation to different kinds of users is one
of the principles for design usability in [Nie94], and has been considered, as the rest of
principles, in our development.

3.2 Increasing the usability of the Kenzo framework 121

Object Selected in
Main tab?

Is the object, X, a
Simplicial Set?

[Yes]

Select Object X from a list of simplicial sets

[No]

[No]

[Yes]

Introduce the dimension,n, of the loop space

Is the dimension a
natural number?

[No]

Construction of the loop space iterated n times of the object X

[Yes]

Error: Invalid Object

Error: Invalid dimension

Figure 3.12: Control graph for the construction of ΩnX

3.2.4.3 Challenges in the design of the fKenzo GUI

User interface design is a central issue for the usability of a software system. Ideally, the
design of a user interface should be done following certain rules, such as those listed in
guidelines documents, see for instance [KBN04]. However these guidelines have hundreds
of rules, then instead of strictly following those rules the design of a user interface abides
by heuristics rules based on common sense. A small set of heuristic principles more suited
as the basis for practical design of user interfaces was given in [Nie94]. We have used
the nine principles given in [Nie94] for guiding the design decisions of the fKenzo GUI.

1. Visibility of system status. the fKenzo GUI should always keep users informed
about what is going on. As we have said previously, the fKenzo GUI can be used
to construct spaces and compute groups. In the case of the spaces constructed
in the fKenzo GUI this first principle is achieved, since the fKenzo GUI shows a
list with the spaces constructed in the current session to the user. Related to the
computation of groups, some calculations in Algebraic Topology may need several
hours, then to dealt with the visibility of the fKenzo status, a message informs the
user of this situation when a computation is performed. Besides, the fKenzo GUI
allows the user to interrupt the current computation and keep on working with his
session.

2. Match between system and the real world. the fKenzo GUI should show results
using well-known Algebraic Topology mathematical notation. This second aspect
has been solved by means of combining OpenMath and stylesheets. When selecting
one of the spaces of the left list of the main fKenzo GUI window, its standard nota-
tion appears at the bottom part of the right side of the fKenzo GUI. A stylesheet
has been defined using XSLT [K+07]. This stylesheet is in charge of rendering
using mathematical notation the object represented with an OpenMath instruc-
tion. In both “Session” and “Computing” tabs the results are also rendered using
mathematical notation thanks to the same stylesheet .

122 Chapter 3 Extensibility and Usability of the Kenzo framework

3. Consistency and standards. A user of Kenzo feels comfortable with the fKenzo
GUI; in particular, the typical two steps process (first constructing an space, then
computing groups associated to it) is explicitly and graphically captured. Then,
the fKenzo GUI is consistent with respect to Kenzo. It is worthwhile noting
that this is the most influential requirement with respect to the visual aspect of
our interface. In addition to the menu bar, there are three main parts in the
screen: a left part, with a listing of the objects already constructed in the current
session, a right panel with several tabs, and a bottom part with the standard
mathematical representation of the object selected. Thus, focus concentrates on
the object (space) of interest, as in Common Lisp/Kenzo. The central panel takes
up most of the place in the interface, because it is the most growing part of it. It
is separated by means of tabs not only because on the division among spaces and
computing results (the system moves dynamically from one to the other), but also
due to the capability of integrating other systems, playing with tabs in the central
panel allows us to produce a user sensation of indefinite space and separation of
concerns.

4. Error prevention. The fKenzo GUI should forbid the user the manipulations rais-
ing errors. The most important design decision related to this point is the use of the
GUI as client of the Kenzo framework. In this way, all the enhancements included
in the framework are inherited by the GUI forbidding the user some manipulations
raising errors and guiding his interaction with the system.

5. Recognition rather than recall. The fKenzo GUI should minimize the user’s mem-
ory load. This design principle is fulfilled thanks to the combination of stylesheets
and OpenMath that are used to inform the user about the selected space. More-
over, this principle was important for the design of the dialogs used to construct
spaces from other spaces and compute groups. For example, if a space is selected
in the screen of the fKenzo GUI the dialogs used to construct spaces from other
spaces and compute groups take that space by default as input, then the user does
not need to select the space in the dialog.

6. Flexibility and efficiency of use. The fKenzo GUI should provide shortcuts that
speed up the interaction for the expert user and also suit the needs of each user. To
handle this question, the interaction with the GUI is implemented in two different
manners: one by means of the “menu & mouse” style, and the other one through
control-keys used as accelerators. Moreover, thanks to the organization of the
system by means of modules, a user can load the functionality that he needs.

7. Minimalist design. The fKenzo GUI should not contain irrelevant information; to
that aim, the dialogs showed to the user only contain the key information.

8. Good error messages. the fKenzo GUI should indicate precisely the problems.
Thanks to the use of the GUI as client of the Kenzo framework, the warnings
obtained from the framework are used in the GUI. These warnings express in
plain language the problem, and constructively suggest a solution.

3.2 Increasing the usability of the Kenzo framework 123

9. Help and documentation. The fKenzo GUI should include a good documenta-
tion. Even though the fKenzo GUI can be used without documentation, help and
documentation are provided in the Help menu. This help is always available, is
focused on the user’s tasks, lists concrete steps to be carried out, and contains both
information about the use of the fKenzo GUI and the underlying mathematical
theory.

In summary, design principles have been followed in the fKenzo GUI obtaining in
this way a usable interface for the Kenzo system through the Kenzo framework.

