
Formalisation and execution of
Linear Algebra: theorems and

algorithms

Jose Divasón Mallagaray

Dissertation submitted in partial fulfilment of the
requirements for the degree of Doctor of Philosophy

Supervisors: Dr. D. Jesús Maŕıa Aransay Azofra
Dr. D. Julio Jesús Rubio Garćıa

Departamento de Matemáticas y Computación
Logroño, June 2016

Examining Committee
Dr. Francis Sergeraert (Université Grenoble Alpes)
Prof. Dr. Lawrence Charles Paulson (University of Cambridge)
Dr. Laureano Lambán (Universidad de La Rioja)

External Reviewers
Dr. Johannes Hölzl (Technische Universität München)
Ass. Prof. Dr. René Thiemann (Universität Innsbruck)

This work has been partially supported by the research grants FPI-UR-12,
ATUR13/25, ATUR14/09, ATUR15/09 from Universidad de La Rioja, and by
the project MTM2014-54151-P from Ministerio de Economı́a y Competitividad
(Gobierno de España).

Abstract

This thesis studies the formalisation and execution of Linear Algebra algorithms
in Isabelle/HOL, an interactive theorem prover. The work is based on the HOL
Multivariate Analysis library, whose matrix representation has been refined to
datatypes that admit a representation in functional programming languages.
This enables the generation of programs from such verified algorithms. In par-
ticular, several well-known Linear Algebra algorithms have been formalised in-
volving both the computation of matrix canonical forms and decompositions
(such as the Gauss-Jordan algorithm, echelon form, Hermite normal form, and
QR decomposition). The formalisation of these algorithms is also accompanied
by the formal proofs of their particular applications such as calculation of the
rank of a matrix, solution of systems of linear equations, orthogonal matrices,
least squares approximations of systems of linear equations, and computation
of determinants of matrices over Bézout domains. Some benchmarks of the
generated programs are presented as well where matrices of remarkable dimen-
sions are involved, illustrating the fact that they are usable in real-world cases.
The formalisation has also given place to side-products that constitute them-
selves standalone reusable developments: serialisations to SML and Haskell, an
implementation of algebraic structures in Isabelle/HOL, and generalisations of
well-established Isabelle/HOL libraries. In addition, an experiment involving
Isabelle, its logics, and the formalisation of some underlying mathematical con-
cepts presented in Voevodsky’s simplicial model for Homotopy Type Theory is
presented.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions and Structure . 5
1.3 Publications . 7
1.4 Related Work . 9

2 Preliminaries 11
2.1 Mathematical Definitions and Theorems 11

2.1.1 Introduction to Linear Maps 12
2.1.2 The Fundamental Theorem of Linear Algebra 13
2.1.3 Matrix Transformations 15

2.2 Isabelle . 18
2.2.1 Isabelle/HOL . 19
2.2.2 HOL Multivariate Analysis 20
2.2.3 Code Generation . 22
2.2.4 Archive of Formal Proofs 23

3 Framework to Formalise, Execute, and Refine Linear Algebra
Algorithms 25
3.1 Introduction . 25
3.2 Refining to Functions over Finite Types 28

3.2.1 Code Generation from Finite Types 28
3.2.2 From vec to Functions over Finite Types 30

3.3 Refining to Immutable Arrays . 32
3.4 Serialisations to SML and Haskell Native Structures 35
3.5 Functions vs. Immutable Arrays vs. Lists 38

4 Algorithms involving Matrices over Fields 41
4.1 Introduction . 41
4.2 The Rank-Nullity Theorem of Linear Algebra 42
4.3 Gauss-Jordan Algorithm . 44

4.3.1 The Gauss-Jordan Algorithm and its Applications 44
4.3.2 The Refinement to Immutable Arrays 50
4.3.3 The Generated Programs and Related Work 51
4.3.4 Conclusions and Future Work 55

4.4 Generalisations . 56
4.4.1 Generalisation of the HMA library 57
4.4.2 Conclusions . 60

iii

Contents

4.5 The QR Decomposition . 60
4.5.1 Introduction . 60
4.5.2 The Fundamental Theorem of Linear Algebra 62
4.5.3 A Formalisation of the Gram-Schmidt Algorithm 64
4.5.4 A Formalisation of the QR Decomposition Algorithm . . 66
4.5.5 Solution of the Least Squares Problem 69
4.5.6 Code Generation from the Development 71
4.5.7 Related Work . 78
4.5.8 Conclusions . 79

5 Algorithms involving Matrices over Rings 81
5.1 Introduction . 81
5.2 Echelon Form . 82

5.2.1 Introduction . 82
5.2.2 Algebraic Structures, Formalisation, and Hierarchy 83
5.2.3 Parametricity of Algorithms and Proofs 89
5.2.4 Applications of the Echelon Form 97
5.2.5 Related Work . 100
5.2.6 Conclusions and Future Work 100

5.3 Hermite Normal Form . 101
5.3.1 Formalising the Hermite Normal Form 102
5.3.2 Formalising the Uniqueness of the Hermite Normal Form 111
5.3.3 Conclusions and Future Work 112

6 Formalising in Isabelle/HOL a Simplicial Model for Homotopy
Type Theory: a Naive Approach 113
6.1 Introduction . 113

6.1.1 HOL, ZF, and HOLZF . 114
6.2 Mathematics Involved . 115
6.3 Formalising the Infrastructure . 119
6.4 The Simplicial Model . 131
6.5 Formalising the Simplicial Model 132

6.5.1 Porting the Development to Isabelle/HOLZF 136
6.6 Conclusions . 138

7 Conclusions and Future Work 139
7.1 Results . 139
7.2 Future Work . 140

A Detailed List of Files and Benchmarks 143
A.1 Detailed List of Files . 143
A.2 Benchmarks . 146

Bibliography 149

iv

Chapter 1

Introduction

1.1 Motivation

9th May 2015. A military Airbus A400M crashed near Seville (Spain), after
a failed emergency landing during its first flight. The four crew members on
board were killed in the accident. Investigators found evidence the crash had
been caused by software problems [26].

A software bug will usually cause a program to crash, to have an unexpected
behaviour or to return erroneous computations. Nothing will normally explode
and the bug will only cause an inconvenience. However, software and hardware
faults can also have a huge economic impact, considerably damage enterprises’
reputation, and the worst of all is that it can also cause loss of human lives.

Likely, the most world-renowned instances happened in the nineties. It took
the European Space Agency 10 years and e 6000 million to produce the Ariane-
5 rocket. It exploded 36.7 seconds after the launch due to a data-conversion
from a 64-bit floating-point number to a 16-bit signed integer value [7]. The
Intel’s Pentium II processor could return incorrect decimal results during math-
ematical calculations [116]. It caused a loss of about $475 million to replace
faulty processors, and severely damaged Intel’s reputation as a reliable chip
manufacturer.

Both of them are just two examples, but unfortunately the truth is that these
are only the tip of a very large iceberg. A software flaw in the control part of the
radiation therapy machine Therac-25 caused the death of six cancer patients in
the late eighties, since they were exposed to an overdose of radiation (up to 100
times the intended dose) [105]. A software failure caused Mars Pathfinder to
reset itself several times after it was landed on Mars in 1997 [132]. NASA had
to remotely fix the code on the spacecraft. In 1999, the $125 million satellite
Mars Climate Orbiter produced some results which were not converted from the
United States customary unit into metric unit: the software calculated the force
the thrusters needed to exert in pounds of force. A separate piece of software
took the data assuming it was in the metric unit newtons. The satellite burned
up in the Martian atmosphere during the orbital insertion [136].

Software development is error prone and examples of bugs with disastrous
consequences make up a never-ending list. Thus, it is necessary to verify software
somehow, in order to minimise possible faults. Software testing is one of the

1

Chapter 1 Introduction

major software verification techniques used in practice and it is a significant
part, in both time and resources, of any software engineering project.

Mainly, software testing involves the execution of a program or application
with the intent of finding software bugs, that is, running the programs and
comparing the actual output of the software with the expected outputs. As
exhaustive testing of all execution paths is infeasible (there are usually infinite
many inputs), testing can never be complete. Subtle bugs often escape detection
until it is too late. Quoting the famous theoretical computer scientist Edsger
Dijkstra:

Program testing can be used to show the presence of bugs, but never to
show their absence!

– Edsger W. Dijkstra, Notes On Structured Programming

Formal methods refer to “mathematically rigorous techniques and tools for
the specification, design and verification of software and hardware systems” [75].
The value is that they provide a means to establish a correctness or safety prop-
erty that is true for all possible inputs. One should never expect a hundred
percent of safety, but the use of formal methods significantly increases the reli-
ability and confidence in a computer program. Thus, formal methods are one
of the highly recommended verification techniques for software development of
safety-critical systems [23].

Formalisation of Mathematics is a related topic. Why formalise? The main
answer is to improve the rigour, precision, and objectivity of mathematical
proofs. There are plenty of examples of mathematical proofs that have been
reviewed and then published containing errors. Sometimes these errors can be
fixed, but other times they cannot and indeed published theorems were false.
A book by Lecat [103] gives over 100 pages of errors made by major math-
ematicians up to the nineteenth century. Maybe today we would need many
volumes.

A mathematical proof is rigorous when it has been formalised, that is, it has
been written out as a sequence of inferences from the axioms (the foundations),
each inference made according to one of the stated rules. However, to carry it out
from scratch is tedious and requires much effort. In 1910, Whitehead and Russell
formally proved 1 + 1 = 2 after 379 pages of preliminary and related results in
the book Principia Mathematica [153], the first sustained and successful actual
formalisation of Mathematics. Russell finished exhausted.

My intellect never quite recovered [from the strain of writing Principia
Mathematica]. I have been ever since definitely less capable of dealing
with difficult abstractions than I was before.

– Bertrand Russell, The Autobiography of Bertrand Russell

Fortunately, nowadays we have computers and interactive theorem provers
where formal proofs can be carried out and automatically checked by the com-
puter. Interactive theorem provers are usually based on a small trusted kernel.
A proof is only accepted by the theorem prover if it is a consequence of the few
primitive inferences belonging to the kernel. Interactive theorem provers (such
as Coq [45] and Isabelle [118]) are growing day by day and they have shown to

2

Section 1.1 Motivation

be successful in large projects, but to develop a complex mathematical proof
in an interactive theorem prover is far from straightforward and it demands
human-effort, resources and dedication to decompose it in little affordable mile-
stones. For instance, the four colour theorem was formalised by Gonthier [70]
and it took 5 years. The Kepler conjecture was formalised by Hales, after it was
stated during the review process that the nature of the proof made it hard for
humans to check every step reliably [81]. The formal proof took 11 years.

Computer Algebra systems (CAS) are used nowadays in various environ-
ments (such as education, diverse fields of research, and industry) and, after
years of continuous improvement, with an ever increasing level of confidence.
Despite this, these systems focus intensively on performance, and their algo-
rithms are subject to continuous refinements and modifications, which can un-
expectedly lead to losses of accuracy or correctness. On the other hand, theorem
provers are specifically designed to prove the correctness of program specifica-
tions and mathematical results. This task is far from trivial, except for standard
introductory examples, and it has a significant cost in terms of performance,
paying off exclusively in terms of the simplicity and the insight of the programs
one is trying to formalise.

In fact, in standard mathematical practice, formalisation of results and ex-
ecution of algorithms are usually (and unfortunately) rather separate concerns.
Computer Algebra systems are commonly seen as black boxes in which one has
to trust, despite some well-known major errors in their computations [59], and
mathematical proofs are more commonly carried out by mathematicians with
pencil & paper, and sometimes formalised with the help of a proving assistant.
Nevertheless, some of the features of each of these tasks (formalisation and com-
putation) are considered as a burden for the other one; computation demands
optimised versions of algorithms, and very usually ad hoc representations of
mathematical structures, and formalisation demands more intricate concepts
and definitions in which proofs have to rely on.

Fortunately, after years of continuous work, theorem proving tools have re-
duced this well-known gap, and the technology they offer is being used to imple-
ment and formalise state of the art algorithms and generate programs to, usually,
functional languages, with a reasonable performance (see for instance [62,137]).
Code generation is a well-known and admitted technique in the field of for-
mal methods. Avigad and Harrison in a recent survey about formally verified
Mathematics [20], enumerate three different strategies to verify “mathematical
results obtained through extensive computations”; the third one is presented
as “to describe the algorithm within the language of the proof checker, then
extract code and run it independently”.

In this thesis, we mainly present both formalisation of pure Mathematics
(the Fundamental Theorem of Linear Algebra, algebraic structures, coordinates,
and so on) and verification of Linear Algebra algorithms (Gauss-Jordan, Gram-
Schmidt process, QR decomposition, echelon form and Hermite normal form).
The connection between both fields has tried to be preserved, which is not
usually carried out: most of the times algorithms are verified in the sense that
they are formally proven to return, for a suitable input, an output which satisfies
some properties. However, few times the real pure mathematical meaning of the
algorithm is taken into account: for example, to triangularise a matrix by means
of elementary operations is equivalent to apply a change of basis to a linear map.

As the title of this thesis points out, we seek formalisation and execution

3

Chapter 1 Introduction

at the same time, so our formalisations give room to verified algorithms which
are later code-generated to the functional languages SML [112] and Haskell [86]
following the third strategy quoted above. These algorithms are also refined to
efficient structures in order to try to get a reasonable performance and make our
verified programs usable in practice. They are also formally proven to be appli-
cable to solve some of the central problems in Linear Algebra, such as computing
the rank of matrices, computing determinants, inverses and characteristic poly-
nomials, solving systems of linear equations, normal forms and decompositions,
orthogonalisation of vectors, bases of the fundamental subspaces, and so on.

Besides, an extra chapter on foundations of Mathematics is presented in this
thesis. Foundations of Mathematics are the basic pillars (axioms) from which all
mathematical theorems are formulated and deduced. From the late nineteenth
century, the study of the foundations of Mathematics has had a noteworthy
interest. The naive set theory was one of its first attempts [35]. However, the
celebrated Russell’s paradox arose in 1901 spoiling it and showed that such a
naive set theory was inconsistent [135]. Then, other foundations of Mathematics
which avoid the paradox were proposed, such as the Zermelo-Fraenkel set theory.
Soon after, a very important result was proven by Gödel in 1931: the consistency
of any sufficiently strong formal mathematical theory cannot be proven in the
theory itself [69]. This is widely accepted as to find a complete and consistent
foundations for all Mathematics is impossible. The result was also formalised
in Isabelle by Paulson in 2013 [128]. Finally, the Zermelo-Fraenkel set theory is
nowadays accepted as the most common foundation of Mathematics.

Nevertheless, in the last few years a new question is gaining ground. Will
computers redefine the roots of Maths? (See for instance the article of the same
title in [92].) It all comes from Voevodsky’s work. He has proposed a new
foundations of Mathematics: the univalent foundations based on Homotopy
Type Theory which try to bring the languages of Mathematics and computer
programming closer together. This is thought to be a revolution [133].

Voevodsky told mathematicians that their lives are about to change.
Soon enough, they’re going to find themselves doing Mathematics at
the computer, with the aid of computer proof assistants. Soon, they
won’t consider a theorem proven until a computer has verified it. Soon,
they’ll be able to collaborate freely, even with mathematicians whose
skills they don’t have confidence in. And soon, they’ll understand the
foundations of Mathematics very differently.

– Julie Rehmeyer, Voevodsky’s Mathematical Revolution

In broad terms, Homotopy Type Theory is an attempt to formally redefine
the whole mathematical behaviour somehow much closer to how informal Math-
ematics are actually done and to how Mathematics should be implemented to
be checkable by a computer in an easy way. It is well-known that mathematical
proofs are, in principle, already computationally checkable by means of a formal-
isation in an interactive theorem prover. In fact, we have already cited concrete
examples of formal developments. Nevertheless, we have also shown that some
of these instances, in which complex mathematical proofs are involved, have
needed several years to be formalised using interactive theorem provers. These
new foundations are expected to imply that the relationship between writing

4

Section 1.2 Contributions and Structure

a mathematical proof and checking it with a computer would be more natural
and direct.

To sum up, a formal proof checked step by step manually is like to cover a
very long distance on foot. Thanks to the current theorem provers, this way
can be done like riding a bicycle. The new univalence foundations might make
things go faster, like driving a car. The informal proof is more like a guide map
where the steps are proposed, but they are not formally given.

Then, this thesis also includes something different from the formalisation
of Linear Algebra: a more tentative chapter with a naive experiment where
we have tried to formalise a small piece of Voevodsky’s simplicial model for
Homotopy Type Theory.

1.2 Contributions and Structure

The main topic of this thesis is the formalisation and execution of Linear Algebra
algorithms. In more detail, the central contributions are listed below together
with the chapter where each one of them is presented.

• First executable operations over matrices in the HOL Multivariate Anal-
ysis library, both using functions and immutable arrays. This provides a
framework where algorithms over matrices can be formalised, executed,
refined and coupled with their mathematical meaning (Chapter 3).

• The first formalisation in Isabelle/HOL of the Rank-Nullity theorem and
the Fundamental Theorem of Linear Algebra (Chapter 4).

• A formalisation of the Gauss-Jordan algorithm as well as its applica-
tions, which allow computing ranks, determinants, inverses, dimensions
and bases of the four fundamental subspaces of a matrix, and solutions of
systems of linear equations (Chapter 4).

• A formalisation of the Gram-Schmidt process, the QR decomposition, and
its application to the least squares problem (Chapter 4).

• Generalisation of some parts of the HOL Multivariate Analysis library of
Isabelle/HOL (Chapter 4).

• A formalisation of the echelon form algorithm and its application to the
computation of determinants and inverses of matrices over Bézout domains
(Chapter 5).

• Enhancements of the HOL library about rings: implementation of princi-
pal ideal domains, Bézout domains, and other algebraic structures as well
as their properties and relationships (Chapter 5).

• As far as we know, the first formalisation of the Hermite normal form of
a matrix over Bézout domains and its uniqueness in any theorem prover
(Chapter 5).

• The first formalisation about simplicial sets in Isabelle/HOL as well as
some experiments in Isabelle/HOLZF about Voevodsky’s simplicial model
for Homotopy Type Theory (Chapter 6).

5

Chapter 1 Introduction

Most of the formalisations enumerated above have been published in the
Archive of Formal Proofs (it is an online library, also known as AFP, of devel-
opments carried out in Isabelle). The only exception is the experiment related
to Voevodsky’s simplicial model, which has been published in [48, 49]. The de-
velopments sum up ca. 35000 Isabelle code lines. This number of lines includes
the formalisations, examples of execution as well as documentation about the
code. Although each one of such 35000 Isabelle code lines has been written by
me, I feel it appropriate to value my Ph.D. supervisors’ advice. Thus, this thesis
is written in plural, that is, using we instead of I.

This thesis is structured as follows:

Chapter 1: Introduction.

Chapter 2: Preliminaries.

Chapter 3: Framework to Formalise, Execute, and Refine Linear Algebra
Algorithms.

Chapter 4: Algorithms involving Matrices over Fields.

Chapter 5: Algorithms involving Matrices over Rings.

Chapter 6: Formalising in Isabelle/HOL a Simplicial Model for Homo-
topy Type Theory: a Naive Approach.

Chapter 7: Conclusions and Future Work.

Appendix A: Detailed List of Files and Benchmarks.

Chapter 2 presents both the mathematical and the interactive-proof ma-
chinery which have been necessary for this work. In Chapter 3 one of the main
contributions of this thesis, at least in the sense that all the algorithms we have
formalised are based on it, is presented: the framework that we have devel-
oped to formalise, execute, refine and link algorithms with their mathematical
meaning. Following such an infrastructure, four Linear Algebra algorithms have
been formalised. They are presented in two different chapters, depending on the
algebraic structure of the elements of the matrices that are involved. The first
kind of matrices we deal with are matrices over fields. We have formalised two
algorithms, the Gauss-Jordan algorithm (over an arbitrary field) and the QR
decomposition (for real matrices) which are presented in Chapter 4. Algorithms
involving matrices over more general rings are presented in Chapter 5, concretely
algorithms to compute the echelon form and Hermite normal form of a matrix.
It is worth noting that each algorithm comes together with its own conclusions
and related work, leaving to Chapter 7 the general conclusions and future work
of this thesis. Chapter 6 shows an experiment on formalising the first definitions
of Voevodsky’s simplicial model for Homotopy Type Theory in Isabelle/HOL.
The chapters are intended to be read in order, except for Chapter 6 which is
independent from the rest of the thesis. A detailed enumeration of the Isabelle
files that were developed for this work can be found in Appendix A as well as
some benchmarks of the Gauss-Jordan algorithm and the QR decomposition.
All of the benchmarks and execution tests presented throughout this thesis have
been carried out in a laptop with an Intel R© CoreTM i5-3360M processor with
4GB of RAM, and Ubuntu GNU/Linux 14.04.

6

Section 1.3 Publications

In addition, in each algorithm we will also show the formalisation of its corre-
sponding applications, such as the computation of solutions of systems of linear
equations and the least squares problem. We also provide some examples of
real-world applications of the verified code obtained, such as the computation
of the number of connected components of digital images (which is of inter-
est in the study of the number of neurons’ synapses) and the computation of
determinants that some commercial software computes erroneously.

1.3 Publications

The formalisations which this work consists of have been published in the
Archive of Formal Proofs (AFP). They are listed below. The chronological
order of those AFP entries (in which they are given) corresponds closely to the
section order in this thesis.

[52] Jose Divasón and Jesús Aransay. Rank-Nullity theorem in Linear Algebra.
Archive of Formal Proofs, January 2013. http://afp.sf.net/entries/

Rank_Nullity_Theorem.shtml, Formal proof development.

[54] Jose Divasón and Jesús Aransay. Gauss-Jordan Algorithm and Its Ap-
plications. Archive of Formal Proofs, September 2014. http://afp.sf.

net/entries/Gauss_Jordan.shtml, Formal proof development.

[51] Jose Divasón and Jesús Aransay. QR Decomposition. Archive
of Formal Proofs, February 2015. http://afp.sf.net/entries/QR_

Decomposition.shtml, Formal proof development.

[50] Jose Divasón and Jesús Aransay. Echelon Form. Archive of Formal
Proofs, February 2015. http://afp.sf.net/entries/Echelon_Form.

shtml, Formal proof development.

[57] Jose Divasón and Jesús Aransay. Hermite Normal Form. Archive of For-
mal Proofs, July 2015. http://afp.sf.net/entries/Hermite.shtml,
Formal proof development.

As we have already pointed out, the formalisation explained in Chapter 6 has
not been published in the AFP yet. Nevertheless, all the Isabelle code written
for such an experiment is accessible through [48,49].

This thesis builds upon the following referred papers (ordered chronologi-
cally):

[11] Jesús Aransay and Jose Divasón. Performance Analysis of a Verified Lin-
ear Algebra Program in SML. In L. Fredlund and L. M. Castro, editors,
V Taller de Programación Funcional: TPF 2013, pages 28 – 35, 2013.

[10] Jesús Aransay and Jose Divasón. Formalization and Execution of Linear
Algebra: from Theorems to Algorithms. In G. Gupta and R. Peña, editors,
Preproceedings of the International Symposium on Logic-Based Program
Synthesis and Transformation: LOPSTR 2013, pages 49 – 66. 2013.

7

http://afp.sf.net/entries/Rank_Nullity_Theorem.shtml
http://afp.sf.net/entries/Rank_Nullity_Theorem.shtml
http://afp.sf.net/entries/Gauss_Jordan.shtml
http://afp.sf.net/entries/Gauss_Jordan.shtml
http://afp.sf.net/entries/QR_Decomposition.shtml
http://afp.sf.net/entries/QR_Decomposition.shtml
http://afp.sf.net/entries/Echelon_Form.shtml
http://afp.sf.net/entries/Echelon_Form.shtml
http://afp.sf.net/entries/Hermite.shtml

Chapter 1 Introduction

[12] Jesús Aransay and Jose Divasón. Formalization and Execution of Linear
Algebra: from Theorems to Algorithms. In G. Gupta and R. Peña, editors,
Postproceedings (Revised Selected Papers) of the International Symposium
on Logic-Based Program Synthesis and Transformation: LOPSTR 2013,
volume 8901 of LNCS, pages 01 – 19. Springer, 2014.

[14] Jesús Aransay and Jose Divasón. Generalizing a Mathematical Analysis
Library in Isabelle/HOL. In K. Havelund, G. Holzmann, and R. Joshi,
editors, NASA Formal Methods, volume 9058 of LNCS, pages 415–421.
Springer, 2015.

[13] Jesús Aransay and Jose Divasón. Formalisation in higher-order logic and
code generation to functional languages of the Gauss-Jordan algorithm.
Journal of Functional Programming, 25, 2015.

[16] Jesús Aransay and Jose Divasón. Verified Computer Linear Algebra. Ac-
cepted for presentation at the XV Spanish Meeting on Computer Algebra
and Applications (EACA 2016), 2016.

[17] Jesús Aransay and Jose Divasón. Formalisation of the Computation of
the Echelon Form of a matrix in Isabelle/HOL. Accepted for publication
in Formal Aspects of Computing, 2016.

In addition, the following two draft papers are under revision process:

[15] Jesús Aransay and Jose Divasón. Proof Pearl - A formalisation in HOL
of the Fundamental Theorem of Linear Algebra and its application to the
solution of the least squares problem. Draft paper, 2015.

[18] Jesús Aransay, Jose Divasón, and Julio Rubio. Formalising in Is-
abelle/HOL a simplicial model for Homotopy Type Theory: a naive ap-
proach. Draft paper, 2016.

This thesis is not presented officially as a compendium of publications, how-
ever most of its chapters are built upon the articles presented above. Mate-
rial from these publications has been reused with my supervisors’ permission.
More concretely, I have reused some parts of [12, 13] in order to develop Chap-
ter 3. Chapter 4 is divided into four related parts: the Rank-Nullity theorem
(based on [12, Sect. 2]), the Gauss-Jordan algorithm (based again on the ar-
ticles [12, 13]), generalisations of the HOL Multivariate Analysis library (built
upon [14]) and the QR decomposition (based on [15]). The echelon form algo-
rithm has been described in Chapter 5 following our paper [17]. Furthermore,
the Hermite normal form presented in such a chapter had never been published
before. Chapter 6 is essentially based on the work presented in [18].

In addition, there exist another published papers which are related to this
thesis, but they have not been presented as part of it:

[9] Jesús Aransay and Jose Divasón. Formalizing an Abstract Algebra Text-
book in Isabelle/HOL. In J. R. Sendra and C. Villarino, editors, Proceed-
ings of the XIII Spanish Meeting on Computer Algebra and Applications
(EACA 2012), pages 47–50. 2012.

8

Section 1.4 Related Work

[19] Jesús Aransay, Jose Divasón, Jónathan Heras, Laureano Lambán, Maŕıa
Vico Pascual, Ángel Luis Rubio, and Julio Rubio. Obtaining an ACL2
specification from an Isabelle/HOL theory. In G. A. Aranda-Corral,
J. Calmet, and F. J. Mart́ın-Mateos, editors, Artificial Intelligence and
Symbolic Computation - 12th International Conference, AISC 2014. Pro-
ceedings, volume 8884 of Lecture Notes in Computer Science, pages 49–63,
2014.

1.4 Related Work

Although more detailed related work will be presented for each algorithm in
the corresponding chapters, together with a comparison to ours, let us give here
some broad strokes of it.

• Coq Effective Algebra Library: It is a set of libraries and commodities
(also known as CoqEAL) developed by Cohen, Dénès, and Mörtberg [44]
for the Coq proof assistant, where dependent types are allowed. The work
presents an infrastructure over which algorithms involving matrices can
be implemented, proved correct, refined, and finally executed. More con-
cretely, they designed a methodology based on refinements which allows to
prove the correctness of Linear Algebra algorithms and then refine them
to efficient computation-oriented versions. Refinements can be performed
both on the algorithms and on the data structures [39], data type refine-
ments in CoqEAL are made in a parametricity fashion. In practice, the
data type refinements in CoqEAL are reduced to using either functions
or lists for representing vectors (and then matrices iteratively). In the
CoqEAL framework computations are usually carried out over the Coq
virtual machine (and thus “inside” the Coq system). It is a rich library,
containing many formalisations of Linear Algebra algorithms, such as the
Strassen’s fast matrix product [143], Karatsuba’s fast polynomial prod-
uct [97], the Sasaki-Murao algorithm for efficiently computing the charac-
teristic polynomial of a matrix [41], and an algorithm for computing the
Smith normal form [34].

• Jordan normal forms in Isabelle/HOL: During the last year while
developing this thesis, a new development about matrices in Isabelle/HOL
was published: Matrices, Jordan Normal Forms, and Spectral Radius The-
ory by Thiemann and Yamada [148]. They have studied the growth rates
of matrices in Jordan normal form. Their representation of matrices is
slightly different (but related) from the one present in the HOL Multivari-
ate Analysis library (which we will make use of), since they use a generic
type to represent matrices of any dimension, whereas the one we use has
a hardwired representation of the size in the matrices types. Their choice
enables them to apply the algorithm to input matrices whose dimension
is unknown in advance, one of their prerequisites. In fact, this new library
for matrices admits to conveniently work with block matrices and it is
also executable by a suitable setup of the Isabelle code generator. They
refine algorithms to immutable arrays and reuse some of our serialisations.
Their work is devoted to be applied to improve CeTA [146], their certifier
to validate termination and complexity proof certificates.

9

Chapter 2

Preliminaries

Let us to lay the cards on the table to show the context which this thesis is
based on, both the mathematical and the interactive-proof machinery. The
chapter is organised as follows: Section 2.1 gives a brief introduction to the
main mathematical theorems and notions which will play a central role in this
thesis. Above all, we present concepts related to the manipulation of matrices
and normal forms. In Section 2.2 we show the computer programs we have
been working with, mainly Isabelle as well as some tools and facilities around
such a theorem prover. In fact, all chapters of this thesis are concerned with
formalising or implementing mathematical results and algorithms in Isabelle.

2.1 Mathematical Definitions and Theorems

Let us here introduce the main mathematical concepts which this thesis deals
with. They will make up a mathematical basis for Chapters 3, 4, and 5. We
let the introduction of some concrete concepts to their corresponding sections
and chapters, due to they are quite specific to some parts of the thesis and they
do not form a core to the whole work (specially in Chapter 6). Anyway, some
of the following definitions and theorems will be revisited in their correspond-
ing chapters, in order to see easily the relationship between the mathematical
statements and the corresponding formalised results.

We suppose the reader to be familiar with Linear Algebra and algebraic
structures. We have followed the references [22,68,115,134,142], where further
details about the definitions and theorems can be found.

First of all, we should define some notation. By PIR (principal ideal ring)
we mean a commutative ring with identity in which every ideal is principal
(see Definition 17). We use PID (principal ideal domain) to mean a PIR which
has no zero divisors. It is worth noting that some authors use PIR to refer to
what we call PID, such as Newman [115]. Nevertheless, we consider that it is
important to make the difference: for instance, the Hermite normal form, which
will be presented later, is not a canonical form for left equivalence of matrices
over a PIR, but it is over PIDs (see [140]). In the sequel, we assume that F
is a field and R a commutative ring with a unit. We also focus our work on
finite-dimensional vector spaces.

11

Chapter 2 Preliminaries

2.1.1 Introduction to Linear Maps

Let us revisit the relationship between linear maps and matrices, since this link
plays a fundamental role in this thesis. We omit the proofs, but they can be
found in [134].

Definition 1 (Linear map). Let V and W be vector spaces over a field F . A
function τ : V →W is a linear map if

τ(ru+ sv) = rτ(u) + sτ(v)

for all scalars r, s ∈ F and vectors u, v ∈ V . The set of all linear maps from V
to W is denoted by L(V,W).

Throughout this thesis, the application of a linear map τ on a vector v is
denoted by τ(v) or by τv, parentheses being used when necessary or to improve
readability.

Let {e1, . . . , en} be the standard basis for Fn, that is, the ith standard
vector has 0’s in all coordinate positions except the ith, where it has a 1. Given
any m × n matrix A over F the multiplication map τA(v) = Av is a linear
map. In fact, any linear map τ ∈ L(Fn, Fm) has this form, that is, τ is just
multiplication by a matrix, for we have

(τe1 | · · · | τen)ei = (τe1 | · · · | τen)(i) = τei

and so τ = τA where A = (τe1 | · · · | τen)
Then, we have the following theorem, which corresponds to Theorem 2.10

in [134]. It states the existing link between linear maps and matrices.

Theorem 1 (Matrix of a linear map).

1. If A is an m× n matrix over F then τA ∈ L(Fn, Fm).

2. If τ ∈ L(Fn, Fm) then τ = τA, where

A = (τe1 | · · · | τen)

The matrix A is called the matrix of the linear map τ .

Suppose that B = (b1, . . . , bn) and C = (c1, . . . , cn) are ordered bases for
a finite-dimensional vector space V . Let [v]B be the coordinates of v ∈ V for
the basis B and [v]C the coordinates of v ∈ V for the basis C. The coordinate
vectors [v]B and [v]C are related by means of the following theorem.

Theorem 2 (Change of basis matrix). The change of basis matrix, also known
as matrix of change of basis, from B to C is denoted as MB,C and it is

MB,C = ([b1]C | · · · | [bn]C)

Hence
[v]C = MB,C [v]B

and
M−1
B,C = MC,B

12

Section 2.1 Mathematical Definitions and Theorems

The theorem presented below states that any invertible matrix is indeed a
matrix of change of basis.

Theorem 3. If we are given any two of the following:

1. an invertible n× n matrix A;

2. an ordered basis B for Fn;

3. an ordered basis C for Fn;

then the third is uniquely determined by the equation A = MB,C .

Theorem 1 states that any linear map τ ∈ L(Fn, Fm) can be represented as
a matrix. The following theorem states that we can indeed represent any linear
map τ ∈ L(V,W) with respect to two ordered bases for V and W by means of
a matrix (whenever V and W are finite-dimensional vector spaces).

Theorem 4. Let τ ∈ L(V,W) and let B = (b1, . . . , bn) and C = (c1, . . . , cm) be
ordered bases for V and W respectively. Then τ can be represented with respect
to B and C as a matrix multiplication, that is,

[τv]C = [τ]B,C [v]B

where [τ]B,C = ([τb1]C | · · · | [τbn]C) is called the matrix of τ with respect to the
bases B and C.

Let us show now another two important theorems, which relate coordinates
of a vector and change of basis matrices:

Theorem 5. Let τ ∈ L(V,W) and let (B,C) and (B′, C ′) be pairs of ordered
bases of V and W respectively. Then,

[τ]B′,C′ = MC,C′ [τ]B,CMB′,B

Theorem 6. Let τ ∈ L(V, V) and let B and C be ordered bases for V . Then
the matrix of τ with respect to C can be expressed in terms of the matrix of τ
with respect to B as follows:

[τ]C = MB,C [τ]BM
−1
B,C

2.1.2 The Fundamental Theorem of Linear Algebra

Let us start introducing here the four fundamental subspaces of a matrix. From
here on, by the notation Mn×m(F) we mean the set of all n×m matrices over
a field F (and analogously, over R, a ring R, and so on).

Definition 2 (The four fundamental subspaces). Given a matrix
A ∈Mn×m(F),

• The column space of A is {Ay | y ∈ Fm}.

• The row space of A is {AT y | y ∈ Fn}.

• The null space of A is {x | Ax = 0}.

13

Chapter 2 Preliminaries

• The left null space of A is {x | ATx = 0}.

These four subspaces (usually named four fundamental subspaces) together
share interesting properties about their dimensions and bases, that tightly con-
nect them. These connections also provide valuable insight to study systems of
linear equations Ax = b, as we will show in Section 4.5.

Another interesting concept is the inner product of vectors, which indeed
introduces a geometrical interpretation in Rn for the aforementioned subspaces
and results. It is an algebraic operation (〈·, ·〉 : V × V → F , for a vector space V
over a field F , where F is either R or C), which satisfies the following properties:

• 〈x, y〉 = 〈y, x〉, where 〈·, ·〉 denotes the conjugate;

• 〈ax, y〉 = a〈x, y〉, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉;

• 〈x, x〉 ≥ 0, 〈x, x〉 = 0⇒ x = 0.

Note that in the particular case of the finite-dimensional vector space Rn over R,
the inner or dot product of two vectors u, v ∈ Rn is defined as u · v =

∑n
i=1 uivi.

When F = R, the conjugate is simply the identity.
Then, two vectors are said to be orthogonal when their inner product is

0 (which geometrically means that they are perpendicular). The row space
and the null space of a given matrix are orthogonal complements, and so are
the column space and the left null space. These results are brought together
in an important result of Linear Algebra. In fact, some textbooks name it
the Fundamental Theorem of Linear Algebra, see [142]. We present here its
statement:

Theorem 7 (Fundamental Theorem of Linear Algebra). Let A ∈Mn×m(F) be
a matrix and r = rankA; then, the following equalities hold:

1. The dimensions of the column space and the null space of A are equal to
r and m− r respectively.

2. The dimensions of the row space and the left null space of A are equal to
r and n− r respectively.

3. The row space and the null space are orthogonal complements.

4. The column space and the left null space are orthogonal complements.

A complete formalisation of this theorem will be presented in Section 4.5.
Let us stress that items 1 and 2 hold for A ∈Mn×m(F), with F an arbitrary
field, whereas items 3 and 4 hold for inner product spaces where either F = R
or F = C.

In addition, Item 1 in Theorem 7 is usually labelled as the Rank-Nullity
Theorem and it is normally stated as follows:

Theorem 8 (The Rank-Nullity Theorem). Let τ ∈ L (V,W).

dim(ker(τ)) + dim(im (τ)) = dim(V)

or, in other notation,

rk (τ) + null (τ) = dim(V)

14

Section 2.1 Mathematical Definitions and Theorems

The statement presented above has been obtained from [134]. This part
of the Fundamental Theorem of Linear Algebra will be crucial to compute,
among other things, the dimension of the image of a linear map by means of
the corresponding matrix associated to such a linear map. A formalisation of it
will be presented in Section 4.2.

Furthermore, let f be f : Fn → Fm and A ∈Mm×n(F) the matrix repre-
senting f with respect to suitable bases of Fn and Fm. Thanks to the existing
link between matrices and linear maps, which has been presented in the previ-
ous subsection, the properties of A provide relevant information about f . For
instance, computing the dimension of the range of f (or the rank or dimension
of the column space of A), or the dimension of its kernel (or the null space of
A) we can detect if f is either injective or surjective.

2.1.3 Matrix Transformations

This thesis presents the formalisation of some Linear Algebra algorithms, which
transform matrices into different canonical forms (echelon form, reduced row
echelon form, Hermite normal form) and decompositions (QR decomposition).
Most of these transformations can be carried out by elementary row (column)
operations. There are three types of elementary row (column) operations over
a matrix A ∈ Mm×n(R). Let us remark that in this case we generalise the
definition in order to work with matrices over a ring R (we do not restrict
ourselves to a field F).

Definition 3 (Elementary operations).

• Type 1. Interchange of two rows (columns) of A.

• Type 2. Multiplication of a row (column) of A by a unit of R.

• Type 3. Addition of a scalar multiple of one row (column) of A to another
row (column) of A.

Definition 4 (Elementary matrix). If we perform an elementary operation of
type k (k ∈ {1, 2, 3}) to an identity matrix, the result is called an elementary
matrix of type k.

Theorem 9. All elementary matrices are invertible.

It is worth noting that, in order to perform an elementary row operation of
type k to a matrix A ∈ Mm×n(R), we can perform such an operation on the
identity matrix Im to obtain an elementary matrix P and then take the product
PA. A similar multiplication on the right (starting from In) has the same effect
of performing elementary column operations.

Definition 5 (Equivalent matrices).

• Two matrices A and B are equivalent if there exist invertible matrices P
and Q for which

B = PAQ−1

• Two matrices A and B are row equivalent if there exists an invertible
matrix P for which

B = PA

15

Chapter 2 Preliminaries

• Two matrices A and B are column equivalent if there exists an invertible
matrix Q for which

B = AQ

Given a matrix, it can be transformed into another row (column) equiva-
lent matrix by means of elementary operations. These transformations are very
useful when they are applied properly, since they allow obtaining equivalent ma-
trices which simplify the computation of, for instance, the inverse, determinant,
decompositions such as LU and QR, and so on, of the original matrix.

Let us introduce the relationship between equivalent matrices, linear maps
and change of basis matrices.

Theorem 10. Let V and W be vector spaces with dimV = n and dimW = m.
Then two m × n matrices A and B are equivalent if and only if they represent
the same linear map τ ∈ L(V,W), but possibly with respect to different ordered
bases.

In a straightforward way, we can define the concept of similar matrices:

Definition 6 (Similar matrices). Two matrices A and B are similar if there
exists an invertible matrix P for which

B = PAP−1

Finally, we get the analogous version of Theorem 10 for square matrices:

Theorem 11. Let V be a vector space of dimension n. Then two n × n ma-
trices A and B are similar if and only if they represent the same linear map
τ ∈ L(V, V), but possibly with respect to different ordered bases.

Essentially, Theorems 10 and 11 represent the link between elementary trans-
formations over matrices and their corresponding change of basis of linear maps.
Thanks to this, as we have already said, elementary transformations allow us
to obtain equivalent matrices which can simplify the computation of interesting
properties of linear maps, such as the rank.

The most basic matrix canonical form (in the sense that many other canon-
ical forms are based on it) that can be obtained using elementary operations is
the echelon form.

Definition 7. The leading entry of a nonzero row is its first nonzero element.

Definition 8 (Echelon form). A matrix A ∈Mm×n(R) is said to be in echelon
form if:

1. All rows consisting only of 0’s appear at the bottom of the matrix.

2. For any two consecutive nonzero rows, the leading entry of the lower row
is to the right of the leading entry of the upper row.

Note that a matrix in echelon form has many advantages from the manipu-
lation point of view. For instance, it is upper triangular so it is straightforward
to compute its determinant. An algorithm to compute the echelon form of a
matrix is presented in Section 5.2.

Furthermore, the reduced row echelon form is another useful matrix canonical
form, since it is the output of the Gauss-Jordan algorithm which is presented
in Section 4.3.

16

Section 2.1 Mathematical Definitions and Theorems

Definition 9 (Reduced row echelon form). A matrix A ∈Mm×n(F) is said to
be in reduced row echelon form (or shorter, in rref) if:

1. A is in echelon form.

2. In any nonzero row, the leading entry is a 1.

3. Any column that contains a leading entry has 0’s in all other positions.

By means of elementary operations, any matrix over a PID can be trans-
formed into an echelon form and any matrix over a field can be transformed into
its reduced row echelon form, which is unique (see [140]). It is also a well-known
result that over more general rings than fields it could be impossible to get the
reduced row echelon form of a given matrix (leading entries different from 1
could appear).

There are many other kinds of canonical matrices which are based on the
echelon form and present useful properties, such as the Hermite normal form.
The Hermite normal form is the natural generalisation of the reduced row ech-
elon form for PIDs, although it is normally studied just in the case of integer
matrices. A primary use of such a normal form is to solve systems of linear
diophantine equations over a PID [32]. Another example is the Smith normal
form, which is useful in topology for computing the homology of a simplicial
complex. The minimal echelon form and the Howell form are also examples of
other canonical matrix forms (see [140] for detailed definitions).

It is worth noting that there is not a single definition of Hermite normal
form in the literature. For instance, some authors [115] restrict their definitions
to the case of square nonsingular matrices (that is, invertible matrices). Other
authors [40] just work with integer matrices. Furthermore, given a matrix A its
Hermite normal form H can be defined to be upper triangular [140] or lower
triangular [115]. In addition, the transformation from A to H can be made by
means of elementary row operations [115] or elementary column operations [40].

In our case, we have decided to work as general as possible, so we do not
impose restrictions in the input matrix (thus, the case of nonsquare matrix is
included and the coefficients can belong to a generic PID). We have decided
to carry out the transformation from A to H by means of elementary row
operations, obtaining H upper triangular. In fact, any algorithm or theorem
using an alternative definition of Hermite normal form (for example, in terms of
column operations and/or lower triangularity) can be easily moulded into the
form of Definition 12.

Firstly, we have to define the concepts of complete set of nonassociates and
complete set of residues modulo µ.

Definition 10 (Complete set of nonassociates). An element a ∈ R is said
to be an associate of an element b ∈ R, if there exists an invertible element
u ∈ R such that a = ub. This is an equivalence relationship over R. A set of
elements of R, one from each equivalence class, is said to be a complete set of
nonassociates.

Definition 11 (Complete set of residues). Let µ be any nonzero element of R.
Let a and b be elements in R. It is said that a is congruent to b modulo µ if
µ divides a − b. This is an equivalence relationship over R. A set of elements
of R, one from each equivalence class, is said to be a complete set of residues
modulo µ (or a complete set of residues of µ).

17

Chapter 2 Preliminaries

Definition 12 (Hermite normal form). Given a complete set of nonassociates
and a complete set of residues, a matrix H ∈Mm×n(R) is said to be in Hermite
normal form if:

1. H is in echelon form.

2. The leading entry of a nonzero row belongs to the complete set of nonas-
sociates.

3. Let h be the leading entry of a nonzero row. Then each element above h
belongs to the corresponding complete set of residues of h.

Definition 13 (Hermite normal form of a matrix). A matrix H ∈ Mm×n(R)
is the Hermite normal form of a matrix A ∈Mm×n(R) if:

1. There exists an invertible matrix P such that A = PH.

2. H is in Hermite normal form.

Any matrix whose elements belong to a PID can be transformed by means
of elementary operations to a matrix in Hermite normal form.

The complete sets of nonassociates and residues appear to define the Hermite
normal form as general as possible. As we have already there is no one single
definition of it in the literature, so some authors impose different conditions.
In the particular case of integer matrices, leading coefficients (the first nonzero
element of a nonzero row) are usually required to be positive, but it is also
possible to impose them to be negative since we would only have to multiply by
−1, since −1 is a unit in Z.

In the case of the elements hik above a leading coefficient hij (they have to
be residues modulo hij), some authors demand 0 ≤ hik < hij (see [40]), other
ones impose the conditions hik ≤ 0 and | hik |< hij (see [32]), and other ones

−hij

2 < hik ≤ hij

2 (see [5]). More different options are also possible. All the
possibilities can be represented selecting a complete set of nonassociates and a
complete set of residues.

The following theorem states the uniqueness of the Hermite normal form of
a nonsingular matrix, which corresponds to Theorem II.3 in [115].

Theorem 12. If A ∈ Mn×n(R) is a nonsingular matrix, then its Hermite
normal form is unique.

We will show a formalisation of an algorithm to obtain the Hermite normal
form of a matrix and its uniqueness in Section 5.3.

2.2 Isabelle

The main software that we have used in the development of our work is the
Isabelle theorem prover. In addition, we have also taken advantage of some
other well-known tools such as existing libraries and code generation facilities.
Let us show a brief toolkit overview:

• Isabelle (Lawrence Paulson [124])

• Isabelle/Isar (Makarius Wenzel [151])

18

Section 2.2 Isabelle

• Type Classes (Florian Haftmann [77])

• Locales (Clemens Ballarin [24])

• HOL Multivariate Analysis library (John Harrison [85])

• Code Generation (Florian Haftmann [78])

All of them will be superficially explained throughout this section, although
we let the reader explore the references presented above for further details. Let
us start explaining what Isabelle is.

2.2.1 Isabelle/HOL

Isabelle [124] is a generic theorem prover which has been instantiated to sup-
port different object-logics. It was originally created by Paulson and nowadays
it is mainly developed at University of Cambridge by Paulson’s group, at Tech-
nische Universität München by Nipkow’s group, and by Wenzel, as well as it
also includes numerous contributions from other institutions and individuals
worldwide.

Its main application is the “formalisation of mathematical proofs and in par-
ticular formal verification, which includes proving the correctness of computer
hardware or software and proving properties of computer languages and proto-
cols”, see [6]. It is an LCF-style theorem prover (written in Standard ML [127]),
so it is based on a small logical core to ease logical correctness.

The most widespread object-logic supported by Isabelle is higher-order logic
(or briefly, HOL [118]). Isabelle’s version of HOL (usually called Isabelle/HOL)
corresponds to Church’s simple type theory [38] extended with polymorphism,
Haskell-style type classes, and type definitions. HOL allows nested function
types and quantification over functions. HOL is a logic of total functions and
its predicates are simply functions to the Boolean type (bool). HOL conventions
are a mixture of mathematics and functional programming and it is usually
introduced following the equation HOL = Functional Programming + Logic. It
is by far the logic where the greatest number of tools (code generation, automatic
proof procedures) are available and the one which most of developments are
based on. These two reasons encourage us to carry out our development in
Isabelle/HOL. However, it is worth noting that there exist other logics that
have been implemented in Isabelle, such as Zermelo-Fraenkel set theory (whose
Isabelle’s version is known as Isabelle/ZF) and higher-order logic extended with
ZF axioms (denoted as Isabelle/HOLZF). These logics will specially take on
importance in Chapter 6.

Isabelle/HOL also includes powerful specification tools, e.g. for
(co)datatypes, (co)inductive definitions and recursive functions with complex
pattern matching. More concretely, the HOL type system is based on non-empty
types, function types (⇒) and type constructors of different arities (list, ×)
that can be applied to already existing types (nat, bool) and type variables
(α, β). The notation t :: τ means that the term t has type τ . Types can be
also introduced by enumeration (bool) or by induction, as lists (by means of the
datatype command). Additionally, new types can be also defined as non-empty
subsets of already existing types (α) by means of the typedef command; the

19

Chapter 2 Preliminaries

command takes a set defined by comprehension over a given type {x :: α | P x},
and defines a new type σ.

Isabelle incorporates some automatic methods and algebraic decision proce-
dures which are used to simplify proofs and to automatically discard goals and
trivial facts. For instance, the Isabelle’s classical reasoner, which simulates a
sequent calculus, can perform chains of reasoning steps to prove formulas and
the simplifier can reason about equations. Let us note that, if it does not cause
confusion, we usually write Isabelle when we mean Isabelle/HOL.

Isabelle also introduces type classes in a similar fashion to Haskell [77]; a
type class is defined by a collection of operators (over a single type variable)
and premises over them. For instance, the HOL library has a type class field

representing the algebraic structure. Concrete types (real, rat) can be proven
to be an instance of a given type class (field in our example). Type classes are
also used to impose additional restrictions over type variables; for instance, the
expression (x :: ’a :: field) imposes the constraint that the type variable ’a

possesses the structure and properties stated in the field type class, and can
be later replaced exclusively by types which are instances of that type class.

Another interesting Isabelle’s feature is locales [24], which are an approach
for dealing with parametric theories. They are specially suitable to represent
the complex inter-dependencies between structures found in Abstract Algebra,
since they allow us to talk about carriers, sub-structures and existence of struc-
tures. However, they have proven fruitful also in other applications, such as
software verification [99]. Locales enable to prove theorems abstractly, relative
to sets of assumptions. Such theorems can then be used in other contexts where
the assumptions themselves, or instances of the assumptions, are theorems.
This form of theorem reuse is called interpretation. For instance, any theorem
proven over vector spaces (within the locale vector space) can be reused in
real vector spaces (class real vector), since real vector is an interpretation of
vector space. The idea is similar to that of instance of a type class.

One of the most famous Isabelle’s facilities is the Intelligible semi-automated
reasoning, denoted as Isar [152]. Isar is an approach to get readable formal proof
theories and it sets out to bridge the semantic gap between internal notions of
proof given by Isabelle and an appropriate level of abstraction for user-level
work. Isar is intended as a generic framework for developing formal mathemat-
ical documents with full proof checking and it works for all of the usual Isabelle
object-logics.

Isabelle/HOL has been successfully used, for instance, in the proof of the
Kepler conjecture [81] (the largest formal proof completed to date), in the formal
verification of seL4 [99] (an operating-system kernel), and in the first machine-
assisted formalisation of Gödel’s second incompleteness theorem [128].

2.2.2 HOL Multivariate Analysis

The HOL Multivariate Analysis (or HMA for short) library [88] is a set of Is-
abelle/HOL theories which contains theoretical results in mathematical fields
such as Analysis, Topology and Linear Algebra. It is based on the impressive
work of Harrison in HOL Light [85], which includes proofs of intricate theorems
(such as the Stone-Weierstrass theorem) and has been used as a basis for ap-
pealing projects such as the formalisation of the proof of the Kepler conjecture
by Hales [82]. The translation of this library from HOL Light to Isabelle/HOL

20

Section 2.2 Isabelle

is far from complete. It is mainly being done by hand and, apparently, translat-
ing HOL Light tactics and proofs to Isabelle is quite intricate.1 Among others,
Paulson, Hölzl, Eberl, and Immler are actively contributing to this translation,
and also to extend the HMA library in other directions. The HMA library
intensively uses the implementation of type classes to represent mathematical
structures (such as semigroups, rings, fields and so on). We recommend the
work by Hölzl, Immler, and Huffman [90] for a thorough description of the type
classes appearing in the HMA library.

Among the fundamentals of the library, one of the keys is the representa-
tion of n-dimensional vectors over a given type ’a. The idea (first presented
by Harrison in [84]) is to represent n-dimensional vectors (type vec) over ’a

by means of functions from a finite type variable ’b :: finite to ’a, where
card (’b) = n (the cardinal of a type can be interpreted as an abuse of nota-
tion; it really stands for the cardinal of the universe set of such a type). For
proving purposes, this type definition is usually sufficient to support the generic
structure Rn, where R is a ring. Note that the HOL family of provers, such
as HOL Light and Isabelle/HOL, excludes dependent types, and consequently
the possibility of defining n-dimensional vectors depending directly on a natural
number, n.

The Isabelle vec type definition is as follows; vectors in finite dimensions are
represented by means of functions from an underlying finite type to the type of
the vector elements. The Isabelle constant UNIV denotes the set of every such a
function. Indeed, typedef builds a new type as a subset of an already existing
type (in this particular case, the set includes every function whose source type
is finite). Elements of the newly introduced type and the original one can be
converted by means of the introduced morphisms, in this case the functions
vec_nth and vec_lambda are the morphisms between the abstract data type
vec and the underlying concrete data type, functions with finite domain. The
notation clause introduces an infix notation ($) for converting elements of type
vec to functions and a binder χ that converts functions to elements of type vec.

typedef (’a ,’b) vec = "UNIV :: ((’b::finite) ⇒ ’a) set"

morphisms vec_nth vec_lambda ..

The previous type also admits in Isabelle the shorter notation ’a^’b. Addi-
tional restrictions over ’a and ’b are added only when required for formalisation
purposes. The idea of using underlying finite types for vectors indices has great
advantages from the formalisation point of view, as already pointed out by Har-
rison. For instance, the type system can be used to guarantee that operations on
vectors (such as addition) are only performed over vectors of equal dimension,
i.e., vectors whose indexing types are exactly the same (this would not be the
case if we were to use, for instance, lists as vectors). Moreover, the functional
flavour of operations and properties over vectors is kept (for instance, vector
addition can be defined in a pointwise manner).

The representation of matrices is then derived in a natural way based on the
representation of vectors by iterating the previous construction (matrices over
a type ’a will be terms of type ’a^’m^’n, where ’m and ’n stand for finite type
variables).

1See the messages in this email thread for some subjective estimations: https://www.

mail-archive.com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg06184.html.

21

https://www.mail-archive.com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg06184.html
https://www.mail-archive.com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg06184.html

Chapter 2 Preliminaries

A subject that has not been explored either in the Isabelle HMA library,
or in HOL Light, is the possibility of executing the previous data types and
operations. Another aspect that has not been explored in the HMA library is
algorithmic Linear Algebra. One of the novelties of our work is to establish
a link between the HMA library and a framework where algorithms can be
represented and also executed (see Chapter 3).

Furthermore, the HMA library is focused on concrete types such as R, C
and Rn and on algebraic structures such as real vector spaces and Euclidean
spaces, represented by means of type classes. This limitation had been pointed
out in some previous developments over this library (see, for instance [21]). The
generalisation of the HMA library to more abstract algebraic structures (such
as vector spaces in general and finite-dimensional vector spaces) is something
desirable but it has not been tackled yet. In Section 4.4 we show how we
have generalised part of the library in order to be able to execute some of our
formalised algorithms involving matrices over arbitrary fields (for instance, Fp,
Q, R, and C).

2.2.3 Code Generation

Another interesting feature of Isabelle/HOL is its code generation facility [78].
Its starting point are specifications (in the form of the different kinds of defi-
nitions supported by the system) whose properties can be stated and proved,
and (formalised) rewriting rules that express properties from the original spec-
ifications. From the previous code equations, a shallow embedding from Is-
abelle/HOL to an abstract intermediate functional language (Mini-Haskell) is
performed. Finally, straightforward transformations to the functional languages
SML, Haskell, Scala and OCaml are performed. Then, the code can be exported
to such functional languages, obtaining programs and computations from veri-
fied algorithms. The expressiveness of HOL (such as for instance universal and
existential quantifiers and the Hilbert’s ε operator) is greater than that of func-
tional programming languages, and therefore one must restrict herself to use
Isabelle “executable” specifications, if she aims at generating code from them
(or she must prove code equations that refine non-executable specifications to
executable ones).

One weakness of this methodology is the different semantics among the
source Isabelle constructs and their functional languages counterparts; this gap
can be narrowed to a minimum, since the tool is based on a partial correct-
ness principle. This means that whenever an expression v is evaluated to some
term t, t = v is derivable in the equational semantics of the intermediate lan-
guage, see [80] for further details. Then, from the intermediate language, the
code generation process can proceed to the functional languages by means of
the aforementioned straightforward transformations, or, in a broadly accepted
way of working [20, 62, 79], ad-hoc serialisations to types and operations in the
functional languages library can be performed. These serialisations need to be
trusted, and, therefore, they are kept as simple as possible (in Section 3.4 we
explicitly introduce these transformations).

In this thesis, the approach to get verified code is to describe algorithms
within the language of Isabelle/HOL, then extract code and run it indepen-
dently. Furthermore, the existing code-generator infrastructure provides three
different evaluation techniques within Isabelle, each one comprising different

22

Section 2.2 Isabelle

aspects: expressiveness, efficiency and trustability. We summarise them here,
further details can be obtained in [78]:

• The simplifier (simp): The use of the simplifier together with the orig-
inal code equations of the underlying program is the simplest way for
evaluation. This allows fully symbolic evaluation as well as the highest
trustablity, but with the cost of the usual (low) performance of the sim-
plifier.

• Normalization by evaluation (nbe): it provides a comparably fast
partially symbolic evaluation which permits also normalization of func-
tions and uninterpreted symbols. The stack of code to be trusted is con-
siderable.

• Evaluation in ML (code): The highest performance can be achieved
by evaluation in ML, at the cost of being restricted to ground results and
a layered stack of code to be trusted, including code generator configu-
rations by the user (serialisations). Evaluation is carried out in a target
language Eval which inherits from SML but for convenience uses parts of
the Isabelle runtime environment. The performance of this evaluation is
essentially the same as if code is exported to SML and run it indepen-
dently. The soundness of the computations carried out depends crucially
on the correctness of the code generator setup, this is why serialisations
must be introduced carefully and kept as simple as possible.

2.2.4 Archive of Formal Proofs

The Archive of Formal Proofs, also known as AFP, is an online library of for-
malisations carried out in Isabelle and contributed by its users. It is organised
like a scientific journal (in fact, each contribution is called an article) and sub-
missions are refereed. Its aim is to be the main place for authors to publish
their developments, being a resource of knowledge and formal proofs for users.
The AFP was started in 2004 and nowadays it contains over 200 articles, in-
cluding very different areas such as Graph Theory [119] and Rewriting [138].
Articles presented in the AFP slightly evolve throughout time to be up to date
with the latest Isabelle version. One important point is that despite reusing li-
braries is something desirable, unfortunately it is not done as often as expected
(see [30]). As we have already said in the previous chapter, the formalisation of
the theorems and algorithms which are presented throughout this thesis have
been published in the AFP. Thus, any other user of Isabelle can make use of
them. Moreover, we have tried to reuse as many existing libraries as possible.

23

Chapter 3

Framework to Formalise,
Execute, and Refine Linear
Algebra Algorithms

3.1 Introduction

HMA [88] is a huge library which contains many theoretical results in math-
ematical fields such as Analysis, Topology and Linear Algebra. However, a
subject that had not been explored either in the HMA library or in HOL Light
is the possibility of obtaining an executable representation from its data types
that represent vectors and matrices as well as the corresponding operations over
them. For instance, matrix multiplication is defined in the HMA library, but
it was not possible to compute it. Furthermore, the formalisation of Linear
Algebra algorithms had not been explored in the HMA library: there is no
implementation of common algorithms such as Gaussian elimination or diago-
nalisation.

In this chapter, we aim to show that we can provide a framework where
algorithms over matrices can be formalised, executed, refined, and coupled with
their mathematical meaning.

As we will show, the formalisation of Linear Algebra results, implementation
of algorithms, and code generation to functional programs is achieved with an
affordable effort within this framework, by using well-established tools. It also
shows that the performance of the generated code is enough (even if it is not
comparable to specialised programs in Computer Algebra) to obtain interesting
computations (such as determinants with big integers that disclosed a bug in
Mathematica R© [59] and relevant properties of digital images, see Section 4.3). In
addition, this part of the thesis shows that the ties between matrix algorithmics
and Linear Algebra can be established thanks to the HMA library infrastructure
(a property that is not possible in Computer Algebra systems).

The idea is to make executable the matrix representation presented in the
HMA library, define algorithms over it, formalise their correctness, refine them
to more efficient matrix representations, export verified code to functional lan-
guages (SML and Haskell), and connect algorithms with their mathematical

25

Chapter 3 Framework to Formalise Linear Algebra

meaning. For the latter purpose, we provide a large library (see the file Lin-
ear Maps.thy in [54]) about the existing relations between matrices and linear
maps: for instance, the rank of a matrix is the dimension of the image of the
linear map associated to such matrix, and it is preserved by elementary trans-
formations since they correspond to a change of basis. In fact, an invertible
matrix corresponds to a change of basis, which has also been proven. In Sec-
tion 4.3 we will present some examples of this link between Linear Algebra and
algorithmics. In this context we have also formalised the definitions of the four
fundamental subspaces together with the properties among them.

Let us start to explain the approach. It is worth noting that most of Linear
Algebra algorithms are based on the three types of elementary row/column
transformations (see Definition 3). We have defined them in Isabelle as follows
(we present the row version, the column operations are analogous):

definition interchange_rows :: "’a^’n^’m⇒’m⇒’m⇒’a^’n^’m"

where "interchange_rows A a b = (χ i j. if i=a then A $ b $ j else if

i=b then A $ a $ j else A $ i $ j)"

definition mult_row :: "(’a::times)^’n^’m⇒’m⇒’a⇒’a^’n^’m"

where "mult_row A a q = (χ i j. if i=a then q*(A $ a $ j) else A $ i

$ j)"

definition row_add :: "(’a::{plus,times})^’n^’m⇒’m⇒’m⇒’a⇒’a^’n^’m"

where "row_add A a b q = (χ i j. if i=a then (A $ a $ j) + q*(A $ b $

j) else A $ i $ j)"

Apart from proving the expected properties of each operation, we have
demonstrated that there exist invertible matrices which apply such elementary
transformations (Theorem 9). For example, in the case of interchanging two
rows:

lemma interchange_rows_mat_1:

shows "interchange_rows (mat 1) a b ** A = interchange_rows A a b"

lemma invertible_interchange_rows:

shows "invertible (interchange_rows (mat 1) a b)"

Let us note that mat 1 is the implementation of the identity matrix in the
HMA library. Thanks to the previous definitions, an algorithm based on them
can be defined using the vec representation for matrices (see Subsection 2.2.2),
proven its correctness inside the HMA library, and connected with the mathe-
matical meaning thanks to the proven correspondence between linear maps and
matrices. However, we would also like to execute the algorithm and here is
where refinements come into play.

Data refinement [79] offers the possibility of replacing an abstract data type
in an algorithm by a concrete type, Figure 3.1 shows how it works in general.
The correctness of an algorithm should be proven using an abstract structure,
that is, using the one where it is easier to formalise the specified properties.
This abstract representation usually makes the formalisation easier, but also
makes it too slow or even prevents the execution. Then, we want to get efficient

26

Section 3.1 Introduction

Abstract representation //

Projection

��

Abstract definitions

Code lemmas

��

// Proof

Concrete representation // Concrete definitions // Execution

Figure 3.1: How a refinement works

computations. From such an abstract type, in our case the vec data type
presented in the HMA library, a projection is defined and proven to another
data type that admits a representation in a programming language. After that,
the operations of the algorithm must be defined in the concrete representation
as well, and these operations must be connected with the corresponding ones in
the abstract representation by means of code lemmas. These code lemmas will
translate the abstract (and possibly non-computable) operations to the concrete
(and computable) ones. Then, execution can be carried out inside Isabelle or
extracting code to functional programming languages such as SML and Haskell
(see Subsection 2.2.3).

As we explained in Subsection 2.2.2, the vec type is an abstract type, pro-
duced as a subset of the concrete type of functions from a finite type to a variable
type; this type cannot be directly mapped into an SML type, since its definition,
a priori, could involve HOL logical operators unavailable in SML. In the code
generation process, a data type refinement from the abstract to a concrete type
must be defined; the concrete type is then the one chosen to appear in the target
programming language. A similar refinement is carried out over the operations
of the abstract type; definitions over the concrete data type (functions, in our
case) have to be produced, and proved equivalent (modulo type morphisms) to
the ones over the abstract type. The general idea is that formalisations have to
be carried out over the abstract representation, whereas the concrete representa-
tions are exclusively used during the code generation process. The methodology
admits iterative refinements, as long as their equivalence is proved. A detailed
explanation of the methodology by Haftmann and Nipkow is found in [80]; an
interesting case study by Esparza et al. in [62].

Let us focus on our framework; in our case vec is itself an abstract type which
is non-executable and also has to be refined to concrete data types that can be
code generated. We present here two such refinements. The first one consists
in refining the abstract type vec to its underlying concrete type functions (with
finite domain). We expected the performance to be unimpressive, but the close
gap between both types greatly simplifies the refinement; interestingly, at a
low cost, executable versions of algorithms can be achieved, capable of being
computed over matrices of small sizes. The second data type refinement is more
informative; we refine the vec data type to the Isabelle type iarray, representing
immutable arrays (which are generated in SML to the Vector structure [67] and
to IArray.array in Haskell [4], as it is explained in Section 3.4).

In order to do that, we define both the basic operations involving matrices
(addition, multiplication, manipulation of rows/columns, . . .) and the elemen-
tary transformations using functions and also immutable arrays. Then, we will
prove the equivalence between these new executable definitions and the corre-
sponding non-executable ones of the vec representation.

27

Chapter 3 Framework to Formalise Linear Algebra

This framework will be strongly reused in the formalisation of the Gauss-
Jordan algorithm (Section 4.3), the QR decomposition (Section 4.5), the echelon
form algorithm (Section 5.2) and the Hermite normal form (Section 5.3).

3.2 The Natural Refinement: from vec to Func-
tions over Finite Types

In this section we show how we have carried out the refinement from the abstract
type vec to its underlying concrete type, functions with finite domain. We
present it in two steps:

1. Code generation from finite types which represent the indexes of the
rows/columns of a matrix (Subsection 3.2.1).

2. Data type refinement from vec to functions over finite types (Subsec-
tion 3.2.2).

The second one depends on the first one: first, we need to be able to execute
and work with the indexes, and after that, achieve the execution of the matrix
representation which makes use of them.

3.2.1 Code Generation from Finite Types

As we have already said, our work is based on the HMA library and thus, we
have used in our development an abstract data type vec (and its iteration for
representing matrices), for which the underlying concrete types are functions
with an indexing type.

The indexing type is instance of the finite, enum and mod type type classes.
These classes demand the universe of the underlying type to be finite, to have an
explicit enumeration of the universe, and some arithmetical properties. Let us
explain why we have demanded the finite types to be instances of such classes.

The finite type class is enough to generate code from some abstract data
structures, such as finite sets, which are later mapped into the target program-
ming language (for instance, SML) to data structures such as lists or red black
trees (see the work by Lochbihler [108] for details and benchmarks). Our case
study (Linear Algebra algorithms) is a bit more demanding, since the indexing
types of vectors and matrices usually have to be also enumerable. The enum

type class allows us to execute operations such as matrix multiplication, A ∗B
(as long as the type of columns in A is the same as the type of rows in B), al-
gorithms traversing the universe of the rows or columns indexing types (such as
operations that involve the logical operators ∀ or ∃ or the Hilbert’s ε operator),
enabling operators like “every element in a row is equal to zero” or “select the
least position in a row whose element is not zero”.

In many Linear Algebra algorithms, the proof of correctness is performed
by induction over column or row indices, so they must be inductive. Thus, we
make use of an additional type class mod type, which resembles the structure
Z/nZ, together with some required arithmetic operations and conversion func-
tions from it to the integers (to nat and from nat). We have implemented them
in Isabelle as follows:

28

Section 3.2 Refining to Functions over Finite Types

class mod_type = times + wellorder + neg_numeral +

fixes Rep :: "’a ⇒ int"

and Abs :: "int ⇒ ’a"

assumes type: "type_definition Rep Abs {0..<int CARD (’a)}"

and size1: "1 < int CARD (’a)"

and zero_def: "0 = Abs 0"

and one_def: "1 = Abs 1"

and add_def: "x + y = Abs ((Rep x + Rep y) mod (int CARD (’a)))"

and mult_def: "x * y = Abs ((Rep x * Rep y) mod (int CARD (’a)))"

and diff_def: "x - y = Abs ((Rep x - Rep y) mod (int CARD (’a)))"

and minus_def: "- x = Abs ((- Rep x) mod (int CARD (’a)))"

and strict_mono_Rep: "strict_mono Rep"

Therefore, if one pursues execution the underlying types used for represent-
ing the rows and columns of the input matrices must be instances of the type
classes finite, enum and mod type. However, to state an algorithm just the type
class mod type is necessary, as it can be noted in the following Isabelle definition
of the Gauss-Jordan algorithm:

definition Gauss_Jordan::"’a::{inverse, uminus,

semiring_1}^columns::{mod_type}^rows::{mod_type} ⇒ ’a^columns^rows"

where . . .

In the previous algorithm definition we exclusively included the type classes
required to specify the algorithm; in the later proof of the algorithm, we have
to restrict ’a to be an instance of the type class field ; additionally, if we try to
execute the algorithm (or generate code from it), the rows and columns types
need to be instances of enum. The finite type class is implicit in the rows and
columns types, since mod type is a subclass of it.

The standard setup of the Isabelle code generator for (finite) sets is de-
signed to work with sets of generic types (for instance, sets of natural numbers),
mapping them to lists on the target programming language. This poses some
restrictions, since operations such as coset ∅ cannot be computed over arbitrary
finite types, whereas in an enumerable type coset ∅ is equal to a set containing
every element of the enumerable type (and therefore, in the target programming
language, the result of the previous operation will produce a list containing ev-
ery element in the corresponding type). The particular setup enabling this kind
of calculations (only for enumerable types), which is ad-hoc for our framework,
can be found in the file Code Set.thy of our development [54].

Another different but related issue is the election of a concrete type to be
used as index of vectors and matrices; we already know that the type has to be
an instance of the type classes finite, enum and mod type. The Isabelle library
contains an implementation of numeral types used to represent finite types of
any cardinality. It is based on the binary representation of natural numbers (by
means of the two type constructors, bit0 and bit1, applied to underlying finite
types, and of a singleton type constructor num1).

typedef ’a bit0 = "{0 . . . <2 * CARD(’a::finite)}"

typedef ’a bit1 = "{0 . . . <1 + 2 * CARD(’a::finite)}"

29

Chapter 3 Framework to Formalise Linear Algebra

From the previous constructors, an Isabelle type representing Z/5Z (or 5
in Isabelle notation) can be used, which is internally represented as bit1 (bit0

(num1)). The representation of the (abstract) type 5 is the set {0, 1, 2, 3, 4 ::
5}; its concrete representation is the subset {0, 1, 2, 3, 4 :: int}. The integers
as underlying type allow users to reuse (with adequate modifications) integer
operations (subtraction and unary minus) in the resulting finite types. As part
of our development, we prove that the num1, bit0 and bit1 type constructors
are instances of the enum and mod type type classes.

instantiation bit0 :: enum

begin
definition "(enum::’a bit0 list) =

map (Abs_bit0’◦ int) (upt 0 (CARD ’a bit0))"

definition "enum_all P = (∀ b ∈ enum. P b)"

definition "enum_ex P = (∃ b ∈ enum. P b)"

instance proof (intro_classes) . . .

The Isabelle library already provides basic arithmetic functions for numeral
types, with definitions of addition, subtraction, multiplication and division.
Note that, for these operations to be defined generally for arbitrary cardinal-
ities, the cardinality of the finite type must be computed on demand (adding
3 and 4 in type 5 must return 2). To this aim, the Isabelle library has a type
class (card UNIV) for types whose cardinality is computable; we prove that the
previous numeral types are instances of such a class, enabling the computation
of their cardinals. These proofs have been included as part of the official Isabelle
library.

3.2.2 From vec to Functions over Finite Types

Up to now, we have been able to obtain executable representations (that can
be implemented in programming languages) for finite types which represent the
indexes of rows and columns of matrices. Now, we want to obtain a representa-
tion for the vec data type that can be implemented in a programming language:
functions over finite types. In order to achieve it, the type morphisms between
the type vec and its counterpart (functions) have to be labelled precisely in the
code generator setup.

lemma [code_abstype]: "vec_lambda (vec_nth v) = (v::’a^’b::finite)"

Additionally, every operation over the abstract data type has to be mapped
into an operation over the concrete data type (and their behavioural equivalence
proved). It can be noted that because of the iterative construction of matrices
(as elements of type vec over vec) each operation over matrices (as multipli-
cation below) usually demands two lemmas to translate it to its computable
version. The reason for this is that the code generator does not support nested
abstract datatypes directly, thus a trick to get code execution is needed: rede-
fine the operations in terms of the behaviour in each row. It is also remarkable
that setsum is computable as long as there is an explicit version of the UNIV set,
and this holds since we have restricted ourselves to enum types.

definition "mat_mult_row m m’ f =

30

Section 3.2 Refining to Functions over Finite Types

vec_lambda(λj. setsum (λi.(mfi * m’ij)) UNIV)"

lemma [code abstract]: "vec_nth (mat_mult_row m m’ f) =

vec_lambda (λj. setsum (λi.(mfi * m’ij)) UNIV)"

lemma [code abstract]: "vec_nth (m ** m’) = mat_mult_row m m’"

We have developed a refinement where the main operations involving vectors
and matrices as well as the elementary row/column transformations can be
transformed from the abstract type vec to computable versions using functions
over finite types. This formalisation is presented in the file Code Matrix.thy
of [54]. As long as our algorithms are based on (abstract) operations which are
mapped into corresponding concrete operations, the later ones will be correctly
code generated.

Since dealing with matrices as functions can become rather cumbersome,
we also define additional functions (such as list of list to matrix below) for
conversion between lists of lists and functions (so that the input and output of
the algorithm are presented to the user as lists of lists).

One subtlety appears at this step; from a given list of elements, a vector of a
certain dimension is to be produced. In a logic such as HOL, where dependent
types are not available, the user must add a type annotation declaring which
dimension the generated vector has to be (in other words, the size of the list
needs to be known in advance).

Below we present examples of the evaluation (by means of SML generated
code) of a couple of basic operations (matrix multiplication and interchange
rows). The evaluation can be also performed in Isabelle (and therefore the code
generator would not intervene):

value[code] "let A = list_of_list_to_matrix

[[0,0,0],[0,0,1],[2,3,4]]::rat^3^3

in matrix_to_list_of_list (A**A)"

value[code] "let A = list_of_list_to_matrix

[[0,0,0],[0,0,1],[2,3,4]]::rat^3^3

in matrix_to_list_of_list (interchange_rows A 0 1)"

Their corresponding outputs are respectively:

[[0, 0, 0], [2, 3, 4], [8, 12, 19]] :: rat list list

[[0, 0, 1], [0, 0, 0], [2, 3, 4]] :: rat list list

We would also like to show how execution involving the indexes of the rows
and columns of a matrix works. Many Linear Algebra algorithms require op-
erators based on indexes (positions) of the matrices, which are represented by
finite types within this matrix representation. For instance, it is quite common
to “select the least position in a row whose element is not zero”. The fact of
being able to use such kind of operators in an algorithm is a great advantage
from the formalisation point of view. Indeed now these statements are also ex-
ecutable in our approach since num1, bit0 and bit1 are proven to be instances
of enum.

As an example, we show how we can obtain the least (the first) nonzero row
of a matrix:

31

Chapter 3 Framework to Formalise Linear Algebra

value[code] "let A = list_of_list_to_matrix

[[0,0,0],

[0,0,1],

[2,3,4]]::rat^3^3

in (LEAST n. row n A 6= 0)"

The result is 1, since row and column indexes start in 0.

The previous computations have been carried out with matrices represented
as functions. The main advantage of this refinement is that it is quite straight-
forward to carry out (proofs are almost immediate) and thus it is easy to get
execution from the abstract type vec. Unfortunately, the performance obtained
makes algorithms based on this representation unusable in practice, except for
testing purposes like the examples presented above. For instante, the computa-
tion of the Gauss-Jordan algorithm, which will be presented later, over matrices
of size 15× 15 is already very slow (several minutes).

More concretely, there are two sources of inefficiency in the results obtained.
First, Isabelle is not designed as a programming language (it is an interactive
theorem prover), and execution inside of the system offers poor performance.
In Section 3.4 we present a solution to translate our specifications to functional
programming languages. Second, the data structures (functions) are optimal for
formalisation, but not for execution. Section 3.3 describes a verified refinement
between the type used for representing matrices in our formalisation (vec and
its iterated construction) and immutable arrays, a common data structure in
functional programming.

3.3 Looking for a Better Performance: from vec
to Immutable Arrays

Some data types present better properties for specification and formalisation
purposes. For instance, specifying an algorithm over sets could be easier than
doing so over lists. However, the latter data type is better suited for execu-
tion tests. Following this idea, the poor performance presented by functions
representing matrices can be solved by means of a data refinement to a better
performing data structure. Our intention is to replace the vec type representing
vectors before applying code generation. In our development, we have used the
Isabelle type iarray as the target type of our refinement. As it will be presented
in Section 3.4, the Isabelle iarray data type will be serialised to Vector.vector
in SML and IArray.array in Haskell. Both Vector.vector and IArray.array are
the implementations in the target languages for immutable arrays, which are
immutable sequences with constant-time access. The latter feature is the one
that will allow us to achieve a better performance, improving an implementation
with lists.

One of the first things that we have to do is to define the addition of im-
mutable arrays, that is, to prove iarray to be an instance of the plus class. We
present two different possibilities:

32

Section 3.3 Refining to Immutable Arrays

• First possibility:

instantiation iarray :: (plus) plus

begin
definition plus_iarray :: "’a iarray ⇒ ’a iarray ⇒ ’a iarray"

where "plus_iarray A B = IArray.of_fun (λn. A!!n + B !! n)

(IArray.length A)"

instance
proof
qed

end

• Second possibility:

instantiation iarray :: ("{plus,zero}") plus

begin

definition plus_iarray :: "’a iarray ⇒ ’a iarray ⇒ ’a iarray"

where "plus_iarray A B =

(let length_A = (IArray.length A);

length_B= (IArray.length B);

n=max length_A length_B ;

A’= IArray.of_fun (λa. if a < length_A then A!!a else 0) n;

B’=IArray.of_fun (λa. if a < length_B then B!!a else 0) n

in

IArray.of_fun (λa. A’ !! a + B’ !! a) n)"

instance
proof
qed

end

The first option just adds two iarrays componentwise without taking care
of their length (which indeed is not necessary in our refinement, since when
coming from vec, we will just want to add iarrays of the same length). This
definition will be used in the Gauss-Jordan algorithm (Section 4.3), the echelon
form algorithm (Section 5.2) and the Hermite normal form (Section 5.3).

In the second one, the addition of iarrays is done up to the length of the
shortest vector and it is completed with zeros up to the length of the longest
vector. This is less efficient, but on the other hand it allows us to prove the
datatype constructor iarray to be an instance of comm monoid add (to be a
commutative monoid), which is quite useful for some algorithms. For instance,
we make use of this definition in the QR decomposition (Section 4.5), where we
are able to directly execute setsums involving immutable arrays (which is not
possible using the first option, since setsums are only defined over types which
are instance of the comm monoid add class).

Both options are just alternative definitions of addition of immutable arrays.
The user should decide which definition to use depending on the algorithm to
formalise.

33

Chapter 3 Framework to Formalise Linear Algebra

On another note, we have to define functions vec to iarray that convert
elements of type vec to elements of type iarray (an operation matrix to iarray

will convert iterated vectors to iterated iarrays, the natural representation for
matrices in this setting).

definition vec to iarray::"’a^’col::{mod type} ⇒ ’a iarray"

where "vec to iarray v = IArray.of fun (λi.v$(from nat i)) (CARD(’col))"

Each function over elements of type vec needs to be replaced by a new
function over type iarray. This requires first specifying a function over the
type iarray, and then proving that it behaves as the one over type vec. The
following result is labelled as a code equation, that will be later used in the code
generation process.

lemma [code-unfold]:

fixes A::"’a::{semiring-1}^’col::{mod type}^’row::{mod type}"

shows "matrix to iarray (interchange rows A i j) =

interchange rows iarray (matrix to iarray A) (to nat i)(to nat j)"

The code equation certifies that it is correct to replace the function
interchange rows (defined over abstract matrices, or elements of type vec) by
the function interchange rows iarrays . As it can be observed, the code equation
does not include premises; this is a requirement from the Isabelle code gener-
ator [78]. The label code unfold instructs the code generation tool to record
the lemma as a rewriting rule, replacing occurrences of the left-hand side in the
execution and code generation processes by the right-hand side. From a broader
perspective, the function matrix to iarray has to be proved to be a morphism
between the original and the refined type.

Again, we have defined and proved a framework to operations that can
be used in most of Linear Algebra algorithms. In this framework there have
been included both basic operations over vectors/matrices and the well-known
elementary row/column operations over matrices. Among others, the following
ones have been defined over the iarray structure and proved the equivalence
with their corresponding definitions involving vec :

• Vector addition

• Vector subtraction

• Pointwise vector multiplication

• Multiply a vector by a scalar

• Scalar product of vectors (inner product)

• Obtain a row/column of a matrix

• Obtain the set of all rows/columns of a matrix

• Matrix addition

• Matrix subtraction

34

Section 3.4 Serialisations to SML and Haskell Native Structures

• Matrix multiplication

• Multiply a matrix by a vector on the left/right

• Identity matrix

• Interchange two rows/columns of a matrix

• Multiply a row/column of a matrix by a constant

• Add to a row/column of a matrix another row/column multiplied by a
constant

• . . .

The equivalence proofs are almost straightforward, since the iarray and vec

representations share a functional flavour (in the way of accessing elements)
that can be exploited in proofs. This effort pays off in terms of reusability, since
the lemmas proving the equivalence between abstract and concrete operations
for such operations can be reused in implementations of different algorithms
over matrices.

Mapping some other operations on the type vec to the type iarray may
involve programming decisions. For instance, the LEAST operator, which in its
Isabelle original definition merely has a logical specification (a description of the
properties that the least element satisfying a predicate possesses), needs to be
proved equivalent to a user provided operation on the data type iarray. The
definition below shows an operation on the type iarray, which is itself based on
the operation find of lists. The Isabelle corollary presented below proves that
this operation successfully finds the least (with respect to the indexing order)
nonzero element in a matrix column j over a row i (if such an element exists,
as expressed in the assumes clause).

definition "least nonzero position index v i =

the (List.find (λx. v!!x 6= 0) [i..<(IArray.length v)])"

corollary
fixes A::"’a::zero^’col::mod type^’row::mod type" and "j::’col"

defines "colj ≡ vec to iarray (column j A)"

assumes "¬(vector allzero from index (to nat i, colj))"

shows "least nonzero position index (colj) (to nat i) =

to nat (LEAST n. Anj 6= 0 ∧ i ≤ n)"

The formalisation of the infrastructure presented in this section is available
from the file Matrix To IArray.thy in [54].

3.4 Serialisations to SML and Haskell Native
Structures

Since the Isabelle code is not suitable for computing purposes, the original
Isabelle specifications are translated to a programming (functional) language,
as introduced in Subsection 2.2.3. Our choices (from the available languages in
the standard Isabelle code generation setup) were SML (since the SML Standard

35

Chapter 3 Framework to Formalise Linear Algebra

Library includes a Vector type representing immutable arrays) and Haskell (for a
similar reason, with the Haskell IArray class type and its corresponding instance
IArray.Array, and also because there is a built-in Rational type representing
arbitrary precision rational numbers).

Additionally, we make use of serialisations, a process to map Isabelle types
and operations to the corresponding ones in the target languages. Serialisations
are a common practice in the code generation process (see the tutorial by Haft-
mann [78] for some introductory examples); otherwise, the Isabelle types and
operations would be generated from scratch in the target languages, and the
obtained code would be less readable and efficient (for instance, the nat type
would be generated to an ad-hoc type with 0 and Suc as constructors, instead
of using the built-in representation of integers in the target language). As we
show below, and for the sake of correctness, serialisations are usually kept to
a minimum, serialising Isabelle constants and operations (0::nat, op +, access
operations) to the same ones in the target languages. The advantage of apply-
ing serialisations to the target languages suitably is stressed by an empirical
result; profiling the computations carried out over matrices of rational numbers
in SML, we detected that the greatest amount of time was spent in normalis-
ing fractions (operations gcd and divmod). Serialising these Isabelle operations
to the corresponding built-in Poly/ML [130] and MLton [113] functions (which
are not part of the SML Standard Library, but particular to each compiler),
decreased the running time by a factor of 20.

We have carried out serialisations from Isabelle/HOL to SML and Haskell
of:

• Immutable arrays (the efficient type used to represent vectors and matri-
ces)

• Z2, Q and R numbers (the types of the coefficients of the matrices)

The following Isabelle code snippet presents the serialisation that we pro-
duced from the Isabelle type rat representing rational numbers (which is indeed
based on equivalence classes), to the Haskell type Prelude.Rational. As it can
be observed, it merely identifies operations (including type constructors) from
the source and the target languages.

code-printing
type-constructor rat ⇀ (Haskell) "Prelude.Rational"

| class-instance rat :: "HOL.equal" ⇒ (Haskell) -

| constant "0 :: rat" ⇀ (Haskell) "Prelude.toRational (0::Integer)"

| constant "1 :: rat" ⇀ (Haskell) "Prelude.toRational (1::Integer)"

| constant "Frct-integer" ⇀ (Haskell) "Rational.fract (_)"

| constant "numerator-integer ⇀ (Haskell) "Rational.numerator(_)

| constant "denominator-integer ⇀ (Haskell) "Rational.denominator(_)

| constant "HOL.equal :: rat ⇒ rat ⇒ bool" ⇀ (Haskell) "(_) == (_)"

| constant "op < :: rat ⇒ rat ⇒ bool" ⇀ (Haskell) "_ < _"

| constant "op ≤ :: rat ⇒ rat ⇒ bool" ⇀ (Haskell) "_ <= _"

| constant "op + :: rat ⇒ rat ⇒ rat" ⇀ (Haskell) "(_) + (_)"

| constant "op - :: rat ⇒ rat ⇒ rat" ⇀ (Haskell) "(_) - (_)"

| constant "op * :: rat ⇒ rat ⇒ rat" ⇀ (Haskell) "(_) * (_)"

| constant "op / :: rat ⇒ rat ⇒ rat" ⇀ (Haskell) " (_) ’/ (_)"

| constant "uminus :: rat ⇒ rat" ⇀ (Haskell) "Prelude.negate"

36

Section 3.4 Serialisations to SML and Haskell Native Structures

The complete set of Isabelle serialisations that we used is shown in Table 3.1.
The Isabelle types rat, real and bit represent respectively Q, R and Z2. The
SML type IntInf.int represents arbitrarily large integers. It is worth noting that
the Isabelle type real, internally constructed as equivalence classes of Cauchy
sequences over the rational numbers, can be also serialised to the types used for
rat in SML and Haskell, preserving arbitrary precision and avoiding numerical
stability issues. Types presented in bold face identify serialisations that were
introduced by us as part of this thesis.

The Vector structure in SML defines polymorphic vectors, immutable se-
quences with constant-time access. The serialisation of the Isabelle datatype
iarray to Vector.vector in SML was already part of the Isabelle library. We
also contributed some improvements to such an Isabelle library in the seriali-
sation to the SML type Vector.vector, such as the serialisation of the Isabelle
functions IArray.all and IArray.exists (given a function f :: ’a ⇒ bool and
an immutable array A :: ’a iarray, they check if ∀a ∈ A.fa = True and if
∃a ∈ A.fa = True respectively) to the corresponding Vector.exists and Vec-
tor.all presented in the SML library.

In the case of Haskell, we have serialised the iarray Isabelle datatype
to the Data.Array.IArray.array (or shorter, IArray.array) constructor pre-
sented in the standard Haskell’s library. It is worth noting that there ex-
ist other implementations of immutable arrays in Haskell, such as UArrays
(Data.Array.Unboxed.array). According to the Haskell library, “a UArray will
generally be more efficient (in terms of both time and space) than the equiva-
lent Array with the same element type, but UArray is strict in its elements”.
However, in the case of the code generated from our Isabelle/HOL develop-
ments, we have empirically tested that IArray.array performs slightly better
than if the Unboxed.array constructor is used. As an example, the computation
of the determinant of a 1500× 1500 Z2 matrix by means of the code generated
to Haskell from the verified Gauss-Jordan algorithm that will be presented in
Section 4.3 takes 6.09 secs using Data.Array.IArray.array and 6.37 secs using
Data.Array.Unboxed.array. Nevertheless, if one specifically wants to make use
of UArrays, the file which serialises the corresponding Isabelle structure to them
is presented in [47].

Furthermore, a more specific Haskell module for immutable arrays is
Data.Array. The Data.Array.IArray module, the one that we use, provides
a more general interface to immutable arrays: it defines operations with the
same names as those defined in Data.Array (where the Data.Array.array con-
structor is involved), but with more general types, and also defines instances of
the relevant classes. We have also empirically checked if there is a substantial
difference between using Data.Array.IArray.array and Data.Array.array. As in
the case of unboxed immutable arrays, the use of Data.Array.array does not
suppose an advantage in terms of performance.

On another note, the SML Standard Library lacks of a type representing
arbitrary precision rational numbers, and thus the proposed serialisation for rat

is quotients of arbitrarily large integers. In this particular case, Haskell takes
advantage of its native Rational type to challenge SML performance, which
otherwise tends to be poorer.

We also explored the serialisation of Isabelle type real to double-precision
floating-point formats (Double in Haskell, Real.real in SML) in the target lan-

37

Chapter 3 Framework to Formalise Linear Algebra

Isabelle/HOL SML Haskell
iarray Vector.vector IArray.Array
rat IntInf.int / IntInf.int Rational
real Real.real Double
bit Bool.bool Bool

Table 3.1: Type serialisations

guages, but the computations performed present the expected round-off errors.
This means that, although exported code has been generated from verified al-
gorithms, computations cannot be trusted since they make use of floating-point
numbers.

The bit type, which will be used to represent Z2 admits multiple serialisa-
tions, ranging from boolean values to subsets of the integers (with either fixed or
arbitrary size). Experimental results showed us that the best performing option
was to serialise bit and its operations to the corresponding boolean types in
the target languages.

The previous serialisations are carried out in order to improve the perfor-
mance of the exported code in the target languages (SML and Haskell). They
can be reused, indeed they have already been reused, in other non-related de-
velopments. For instance, our Haskell serialisation for immutable arrays was
reused in a development by Thiemann and Yamada [148]. Their matrix repre-
sentation in Isabelle is different to the one that we are using (the one presented
in the HMA library): they define a new datatype for matrices which is also
based on immutable arrays. Then, they reuse the serialisation presented in our
work to connect the immutable arrays in Isabelle (iarray) to the corresponding
structure in Haskell (IArray.array).

3.5 Functions vs. Immutable Arrays vs. Lists

Previous sections have shown two refinements that we have developed in order
to get execution from the vec data type. However, there are some questions
that remain: how good is the performance with each representation? Is it really
worth using immutable arrays? How about using lists? In this section we try
to answer such questions.

We have carried out some benchmarks in order to compare the performance
of vec implemented as functions over finite domains, as immutable arrays and
also as lists (using an existing AFP entry about an implementation of matrices
as lists of lists [139]). To do that, we have defined a recursive function which
takes as input a matrix A, and in each iteration interchanges the first two rows
of A + A. Thus, just two basic operations are involved: addition of matrices
and interchange rows. The following one is the version for vec (which will be
executed as functions over finite domains), the definitions for immutable arrays
and lists are analogous.1

1The AFP entry [139] bases its matrix implementation on a list of columns. Our Benchmark
function in this representation will interchange columns instead of rows. If one uses interchange
rows, times would be much slower.

38

Section 3.5 Functions vs. Immutable Arrays vs. Lists

primrec Benchmark ::

"nat ⇒ ’a::{semiring_1}^’cols::{mod_type}^’rows::{mod_type}

⇒ ’a^’cols::{mod_type}^’rows::{mod_type}

where
"Benchmark 0 A = A"

|

"Benchmark (Suc n) A = Benchmark n (interchange_rows (A+A) 0 1)"

We execute the previous function in two cases:

1. Applied to the 50× 50 rational identity matrix with n = 5.

2. Applied to the 100× 100 rational identity matrix with n = 20.

As it was said in Subsection 2.2.3, there are three ways to execute code from
Isabelle’s definitions: using simp, nbe and code. Table 3.2 shows the perfor-
mance obtained in each case (simp, nbe, code) involving the three representa-
tions (function over finite domains, immutable arrays, lists). It is worth noting
that inside Isabelle (but not when code is exported), iarray is just a wrapper
of list.

Results show that applying the function Benchmark to the 50 × 50 identity
matrix (over rational numbers) with n = 5 is usable in practice with any of
the three representations. However, when using bigger matrices, functions over
finite domains become too slow. Immutable arrays outperform functions and
lists in any case, as expected. In the sequel, unless otherwise stated, we will
use iarray to perform execution tests and to produce refinements from the
algorithms over the abstract vec representation to the concrete one based on
iarray.

These benchmarks have been carried out in a laptop with an Intel R© CoreTM

i5-3360M processor with 4GB of RAM and Ubuntu GNU/Linux 14.04. The
Isabelle code developed to carry out the benchmarks can be obtained from [46].

vec IArray List

50× 50
n = 5

simp 250.496s - 22.775s
nbe 3.984s 0.486s 4.289s
code 0.639s 0.159s 2.084s

100× 100
n = 20

code 813.539s 1.137s 3.982s

Table 3.2: Time to execute the Benchmark function using different matrix rep-
resentations.

39

Chapter 4

Algorithms involving
Matrices over Fields

4.1 Introduction

In Chapter 3 a framework where algorithms over matrices can be formalised,
executed, refined, and coupled with their mathematical meaning was presented.
In this chapter, we show two case studies in which we aim at developing a
formalisation in Linear Algebra in which computations are still possible, based
on the previous framework. This shows that formalisation and computation can
be brought together.

In particular, we have formalised two algorithms involving matrices over
fields: the Gauss-Jordan algorithm (Section 4.3) and the QR decomposition
(Section 4.5).

Firstly, we will show how we have formalised a mathematical result, known
as the “Rank-Nullity theorem” (Theorem 8). The result is of interest by itself
in Linear Algebra (some textbooks name it the first part of the Fundamental
Theorem of Linear Algebra, see [142]) but it is even more interesting if we
consider that each linear map between finite-dimensional vector spaces can be
represented by means of a matrix with respect to some provided bases. Every
matrix over a field can be turned into a matrix in reduced row echelon form
(rref, from here on) by means of operations that preserve the behaviour of the
linear map, but change the underlying bases; the number of nonzero rows of
such a matrix is equal to the rank of the (original) linear map; the number
of zero rows is the dimension of its kernel. There exist specific algorithms to
obtain other forms from which the rank of a matrix can be computed, but the
rref pays off since it can also be applied to solve other well-known problems in
Linear Algebra, as we will see later.

The best-known algorithm for the computation of the rref of a matrix is the
Gauss-Jordan elimination method, which will be formalised in this chapter. We
also link the original statement of the Rank-Nullity theorem together with the
Gauss-Jordan elimination algorithm, and we use both tools to produce certified
computations of the rank and kernel of linear maps, as well as other certified
computations involving some other well-known applications of the algorithm:
computation of inverses of matrices, determinants, bases and dimensions of the

41

Chapter 4 Algorithms over Fields

four fundamental subspaces, and solutions of systems of linear equations.
As we have said, we also formalise another algorithm involving matrices over

fields (in this case, concretely over R): the QR decomposition, which is specially
interesting for the computation of the least squares approximation of a system
of linear equations with no solution.

It is worth noting that the HMA library of Isabelle/HOL is focused on con-
crete types such as R, C and Rn and on algebraic structures such as real vector
spaces and Euclidean spaces, represented by means of type classes. This means
that the most important lemma which links linear maps and matrices (and
hence, algorithmics with the mathematical meaning) is only proven for real
matrices:

theorem matrix_works:

assumes "linear f"

shows "matrix f *v x = f (x ::real ^ ’n)"

Thus, if we exclusively base our work on the HMA library we will just be
able to prove the Rank-Nullity theorem over real vector spaces, as we show in
Section 4.2. Furthermore, the applications of the Gauss-Jordan algorithm could
only be proven for real matrices. However, our interest lies on generating verified
code for matrices over arbitrary fields, which is useful in many applications,
for instance, in Bioinformatics [87]. This forces us to generalise part of the
HMA library, as it is explained in Section 4.4. Once such a task is carried
out, the Rank-Nullity theorem will be proven involving finite-dimensional vector
spaces over an arbitrary field. Even more, the applications of the Gauss-Jordan
algorithm will also be proven in the general case of matrices over fields.

This chapter is divided as follows: firstly, the formalisation of the Rank-
Nullity theorem based on the HMA library is presented in Section 4.2. In
Section 4.3 we show the formalisation of the Gauss-Jordan algorithm as well
as its applications for matrices over fields, explaining briefly where we had to
carry out generalisations. Then, the process and difficulties we found while
generalising are explained in Section 4.4. Finally, the formalisation of the QR
decomposition together with its application to the computation of the least
squares approximation of a system of linear equations is shown in Section 4.5.

4.2 The Rank-Nullity Theorem of Linear Alge-
bra

In this section we present how we did the formalisation of the Rank-Nullity the-
orem, based on the infrastructure presented in the HMA library. This allows us
to prove the theorem for real vector spaces, but not involving finite-dimensional
vector spaces in general. However, thanks to the generalisation which will be
presented in Section 4.4, finally we were able to prove the theorem in its gener-
alised statement.

The Rank-Nullity theorem is a well-known result in Linear Algebra. Its
formulation was presented as Theorem 8. It states that the dimension of the
null space plus the dimension of the range of a linear map equals the dimension
of the domain. The following formalisation is part of the Isabelle AFP [53];
thanks to the infrastructure in the HMA library, the complete formalisation

42

Section 4.2 The Rank-Nullity Theorem of Linear Algebra

(involving real matrices) comprises a total of 380 lines of Isabelle code (the
proof of the theorem itself is 165 lines). The Isabelle statement of the result is
as follows:

theorem rank_nullity_theorem:

assumes "linear (f::(’a::{euclidean_space}) ⇒ (’b::{real_vector}))"

shows "DIM (’a) = dim {x. f x = 0} + dim (range f)"

Following the ideas in the HMA library, the vector spaces are represented
by means of types belonging to particular type classes; the finite-dimensional
premise on the source vector space is part of the definition of the type
class euclidean space (in the hierarchy of algebraic structures of the HMA li-
brary [90], this is the first type class to include the requisite of being finite-
dimensional). Accordingly, real vector is the type class representing vector
spaces over R. The operator dim represents the dimension of a set of a type,
whereas DIM is equivalent to dim, but refers to the carrier set of that type.

There is one remarkable result that we did not find in textbooks, but that
proved crucial in the formalisation. It is somehow specific to how formalising
in HOL (HOL Light and Isabelle/HOL) works. Its Isabelle statement reads as
follows:

lemma inj_on_extended:

assumes "linear f" and "finite C"

and "independent C" and "C = B ∪ W"

and "B ∩ W = {}" and "{x. f x = 0} ⊆ span B"

shows "inj_on f W"

The result claims that any linear map f is injective over any collection (W)
of linearly independent elements whose images are a basis of the range; this is
required to prove that, given {e1 . . . em} a basis of ker(f), when we complete
this basis up to a basis {e1 . . . en} of the vector space V , the linear map f is
injective over the elements W = {em+1 . . . en}, and therefore its cardinality is
the same than the one of {fem+1 . . . fen} (and equal to the dimension of the
range of f).

The Isabelle statement of the Rank-Nullity theorem over matrices turns out
to be straightforward; we make use of a result in the HMA library (labelled
as matrix works) which states that, given any linear map f, f (x::real^’n) is
equal to the (matrix by vector) product of the matrix associated to f and x. The
picture has slightly changed with respect to the Isabelle statement of the Rank-
Nullity theorem; where the source and target vector spaces were, respectively,
an Euclidean space and a real vector space (of any dimension), they are now
replaced by a real^’n^’m matrix, i.e., the vector spaces real^’n and real^’m .

lemma fixes A::"real^’a^’b"

shows "DIM (real^’a) = dim (null_space A) + dim (col_space A)"

This statement is used to compute the dimensions of the rank and kernel
of linear maps by means of their associated matrices. It exploits the fact that
the rank of a matrix is defined to be the dimension of its column space, also
known as column rank, which is the vector space generated by its columns; this
dimension is also equal to the ones of the row space and the range.

43

Chapter 4 Algorithms over Fields

Finally, let us remark that we have presented here the theorem involving real
vector spaces (and real matrices in its matrix version). However, as we have
said at the beginning of this chapter, the Rank-Nullity theorem can be stated
and proven involving finite-dimensional vector spaces over arbitrary fields. We
explain the generalisations that we carried out to accomplish such a task in
Section 4.4. The generalised version is also part of the AFP and it can be
obtained from [52]. The formalisation of the Gauss-Jordan algorithm and its
applications will rely on it.

4.3 Gauss-Jordan Algorithm

In this section we present a formalisation of the well-known Gauss-Jordan al-
gorithm together with its applications. In the previous section we have shown
how we formalised the Rank-Nullity theorem. As it was said, if we exclusively
base the formalisation on the HMA library, the theorem can only be proven
involving real matrices. Same occurs to the Gauss-Jordan algorithm: if we
base its formalisation on the results presented in the HMA library, then its
applications can only be stated and proven involving real matrices. The first
version was developed that way and it was published in [55]. However, that was
not completely satisfactory, since the algorithm can be executed over matrices
over arbitrary fields, which increases the range of applications. To formalise
a generalised version of the algorithm, firstly we had to generalise part of the
HMA library (see Section 4.4 for further details) and the Rank-Nullity theorem
(see [52]). Finally, we were able to accomplish such a task, so the formalised
version of the Gauss-Jordan algorithm and its applications involving matrices
over arbitrary fields was published as part of the AFP entry [54].

This section will be divided as follows: in Subsection 4.3.1, we present a for-
malised version of the Gauss-Jordan algorithm over fields, as well as the different
applications of it that we have formalised in Isabelle/HOL. In Subsection 4.3.2,
we present the code generation process from the formalised Isabelle algorithm
to the running versions in SML and Haskell. In Subsection 4.3.3 we introduce
some case studies in which the generated algorithms show their usefulness, and
some relevant related work. The website [56] includes the SML and Haskell code
generated from the Isabelle specifications, an implementation of the algorithm
in C++, whose performance is compared to ours, and some input matrices that
have been used for profiling and benchmarking. Finally, in Subsection 4.3.4, we
draw some conclusions and possible research lines that follow from our work.

4.3.1 The Gauss-Jordan Algorithm and its Applications

In the previous section we have shown how we formalised the Rank-
Nullity theorem of Linear Algebra. In our formalisation, it is estab-
lished that, given V a finite-dimensional vector space over R, W a
vector space over R, and τ ∈ L (V,W) (a linear map between V
and W), dim(ker(τ)) + dim(im (τ)) = dim(V) or, in a different notation,
null (τ) + rk (τ) = dim(V). As it has already been said, in our development [52]
the previous result was generalised replacing R by a generic field F of any char-
acteristic. Unfortunately, having formalised the previous result does not provide
us with an algorithm that computes the dimension of the image and kernel sets

44

Section 4.3 Gauss-Jordan Algorithm

of a given linear map.

As it has been formalised in [52], every linear map between finite-dimensional
vector spaces over a field F is equivalent to a matrix Fm×n (once a pair of
bases have been fixed in both Fn and Fm), and, therefore, we can reduce the
computation of the dimensions of the range (or rank) and the kernel (or nullity)
of a linear map to the computation of the reduced row echelon form [134] (or
rref) of a matrix; the number of nonzero rows of such a matrix provides its rank,
and the number of zero rows its nullity. The Gauss-Jordan algorithm computes
the rref of a matrix.

Algorithm 1 describes the Gauss-Jordan elimination process that inspired
our Isabelle formalisation. We must note that our Isabelle implementation of
the algorithm differs from Algorithm 1 since we have replaced side effects and
imperative statements (such as for loops) by standard functional constructs
that are detailed below.

Algorithm 1 Gauss-Jordan elimination algorithm

1: Input: A, a matrix in Fm×n;
2: Output: The rref of the matrix A
3: l← 0; . l is the index where the pivot is placed
4: for k ← 0 to (ncolsA)− 1 do
5: if nonzero l (col k A) then . Check that col. k has a pivot over pos. l
6: i← index-nonzero l (col k A) . Let i be the such entry
7: A← interchange-rowsA i l . Rows i and l are interchanged
8: A l← mult-rowA l (1/A l k) . Row l is multiplied by (1/A l k)
9: for t← 0 to (nrowsA)− 1 do

10: if t 6= l then . Row t is added row l times (−A t k)
11: A t← row-addA t l (−A t k)
12: end if
13: end for
14: l← l + 1
15: end if
16: end for

Algorithm 1 traverses the columns of the input matrix, finding in each col-
umn k an element in the i-th row (the first nonzero element in a row greater
than or equal to the index l); if such an element (the pivot) exists, rows i and
l are interchanged (if the matrix has maximum rank, l will be equal to the col-
umn index, otherwise it will be smaller), and the l-th row is multiplied by the
inverse of the pivoted element; this row is then used to perform row operations
to reduce all remaining coefficients in column k to 0. If a column does not con-
tain a pivot, the algorithm processes the next column. The algorithm performs
exclusively elementary row operations.

In our Isabelle specification, rows and columns are assigned finite enumer-
able types (in the sense that they admit an extensional definition), over which
matrices are represented as functions (see Section 3.2). We have replaced the
operations in the previous algorithm that produce side effects (for instance,
interchange-rows, mult-row, row-add) by Isabelle functions whose outputs are
matrices (see the definitions in Section 3.1). We have replaced the first (and
outer) for loop ranging along the columns indexes in the original algorithm by

45

Chapter 4 Algorithms over Fields

means of a fold operation of a list with the desired indexes. The second (and
inner) for loop, whose range is the rows of a given column, is replaced by means
of a lambda expression over the rows type (indeed, each row is itself a function
over this finite type).

Note that we have represented matrices by means of functions over the
columns type of a function over the rows type (see Section 2.2.2). The fol-
lowing Isabelle code snippets are presented to provide a better understanding
of the gap between Algorithm 1 and our Isabelle implementation; additionally,
they provide the complete Isabelle definition of the Gauss-Jordan algorithm, in
terms of elementary row operations.

The Isabelle definition Gauss Jordan in pos shown below selects an index i
greater than or equal to l in the k-th column (line 6 in Algorithm 1), interchanges
rows i and l (line 7), multiplies the row l by the multiplicative inverse of the
element in position (l, k) (line 8) and reduces the rest of the rows of the matrix,
by means of a lambda expression, which represents the new created matrix (lines
9 to 13).

definition "Gauss Jordan in pos A l k =

(let

i = (LEAST n. A $ n $ k 6= 0 ∧ n ≥ l);

interchange A = (interchange rows A i l);

A’ = mult row interchange A l (1/interchange A $ l $ k)

in

vec lambda (λt. if t = l then A’ $ l

else (row add A’ t l (-(interchange A $ t $ k)))$ t))"

The definition Gauss Jordan column checks if there is a pivot on column k
of a matrix A, starting from position i and then applies the previous operation
Gauss Jordan in pos (and corresponds with line 5 in Algorithm 1).

definition "Gauss Jordan column (i’, A) k’ =

(let

i = from nat i’;

k = from nat k’

in

if (∀ m≥i. A $ m $ k = 0) ∨ (i = nrows A) then (i, A)

else (i+1, (Gauss Jordan in pos A i k)))"

The traversing operation over columns (line 4) is performed by folding the
operation Gauss Jordan column over the list containing the columns type uni-
verse, starting with a pair given by the index 0 (line 3) and the input matrix
A.

definition "Gauss Jordan upt A k = snd (foldl Gauss Jordan column (0,A)

[0..<Suc k])"

definition "Gauss Jordan A = Gauss Jordan upt A ((ncols A) - 1)"

The algorithm admits several variants, both to speed up its performance and
also to avoid numerical stability issues with floating-point numbers [68, Chap.
9], but in order to reduce the complexity of its formalisation we chose the above
presentation.

46

Section 4.3 Gauss-Jordan Algorithm

The rref of a matrix has indeed further applications than computing the
rank. Since this version of Gauss-Jordan is based on elementary row operations,
it can be also used for:

• Computation of the inverse of a matrix, by “storing” the elementary row
operations over the identity matrix.

• Determinants, taking into account that some of the elementary row oper-
ations can introduce multiplicative constants.

• Computation of bases and dimensions of the null space, left null space,
column space, and row space (also known as fundamental subspaces) of a
matrix.

• Discussion of systems of linear equations ({x ∈ Fm | A · x = b}), both
consistent (with unique or multiple solutions) and inconsistent ones.

The formalisation of the Gauss-Jordan algorithm, together with numerous
previous results in Linear Algebra, and the different applications that are pre-
sented above, summed up ca. 10000 lines of code (see Table A.2); the proofs
check that the defined objects (determinant, inverse matrix, solution of the lin-
ear system, fundamental subspaces) are preserved (or modified in a certain way)
after each algorithm step (and more concretely, after each elementary row oper-
ation). By using product types, we store an initial value for the desired object,
and the input matrix. In the case of determinants, the initial pair is (1, A).

definition "Gauss Jordan upt k det P A k =

(let step = foldl Gauss Jordan column k det P (1,0,A) [0..<Suc k]

in (fst step, snd (snd step))))"

definition "Gauss Jordan det P A =

Gauss Jordan upt k det P A ((ncols A) - 1)"

After each algorithm step, a corresponding modification is applied to the first
component. The previous function Gauss Jordan upt k det P takes as inputs a
matrix A and a column k, performs Gauss-Jordan in the first k columns of
A, and returns a pair whose first component is the product of the coefficients
originated when performing Gauss-Jordan in the first k columns, and the second
component contains the matrix obtained after performing Gauss-Jordan in the
first k columns.

In the computation of each of the previous pairs, there is a notion of invariant
that is preserved through the Gauss-Jordan algorithm steps. For instance, in the
case of determinants, given a matrix A, after n elementary operations the pair
(bn, An) is obtained, and it holds that bn× (detA) = detAn, and bn 6= 0. Since
the algorithm terminates (the elements indexing the columns are an enumerable
type), after a finite number, m, of operations, we obtain a pair (bm, rrefA) such
that bm × (detA) = det(rrefA); since we proved that the determinant of rrefA
is the product of its diagonal elements, the computation is completed.

lemma det Gauss Jordan det P:

fixes A::"’a::field^n^n::mod type"

defines "comp == Gauss Jordan det P A"

shows "(fst comp) * det A = det (snd comp)"

47

Chapter 4 Algorithms over Fields

In a similar way, we perform the proof of the computation of the inverse
of a matrix (starting from an input square matrix A of dimension n, the pair
(In, A) is built and after every row operation, (P ′, A′) is such that P ′ ·A = A′),
as long as A is invertible (in other words, rrefA = In). When the Gauss-Jordan
algorithm reaches rrefA, the first component of the pair holds the matrix P
(this matrix is indeed the product of every elementary operation performed).
The computations of the bases of the fundamental subspaces of linear maps
are also based on the computation of the matrix P generated from applying
the Gauss-Jordan algorithm to A (or AT) and the same operations to In (Im).
Their Isabelle definitions are given as follows:

definition "basis null space A =

{row i (P Gauss Jordan (transpose A)) |i. to nat i ≥ rank A}"

definition "basis row space A =

{row i (Gauss Jordan A) |i. row i (Gauss Jordan A) 6= 0}"

definition "basis col space A = {row i (Gauss Jordan (transpose A))

|i. row i (Gauss Jordan (transpose A)) 6= 0}"

definition "basis left null space A =

{row i (P Gauss Jordan A) | i. to nat i ≥ rank A}"

With respect to the solution of systems of linear equations, A · x = b, we
prove that, if a system is consistent, its set of solutions is equal to a single point
plus any element which is a solution to the homogeneous system A · x = 0 (or,
in other words, the null space of A). In order to solve the system, we start from
the pair (In, A) and after applying the Gauss-Jordan algorithm to A, and the
same elementary operations to In, a new pair (P, rrefA) is obtained. The vector
b is then multiplied by P , and from its number of nonzero positions and the
rank of A (or rrefA) the system is classified as consistent or inconsistent. In
the first case, a single solution is computed by taking advantage of rrefA. The
basis of the null space is computed applying Gauss-Jordan elimination to AT in
(Im, A

T), and performing similar row operations to Im.

In order to consider inconsistent systems suitably, we have represented the
solutions as elements of the Isabelle option type (whose elements are of the
form (Some x) and None); the set of solutions of a system will be presented
as a singular point (whenever the system has solution), and the corresponding
vectors forming a basis of the null space (or the empty set). As an additional
result, we have formalised in Isabelle that every solution to a given system
is of the previous form. Previous formalisations of the solution of systems of
linear equations through the Gauss-Jordan algorithm (see, for instance, [117])
and most Computer Algebra systems compute exclusively single solutions (even
more, for exclusively compatible systems with equal number of equations and
unknowns).

In Chapter 3 we pointed out that the HMA library permitted us to keep
the tie between Linear Algebra and algorithmics. The crucial result to this aim
consists in establishing and formalising a link between linear maps and matrices.

The following result states that applying a linear map f to an element x of
its source vector space is equal to multiplying the associated matrix to f by the
vector x (the matrix represents the linear map with respect to some previously
fixed bases). The generalisation of this result to fields was formalised as part of

48

Section 4.3 Gauss-Jordan Algorithm

this development, inspired by the result over real vector spaces, already available
in the HMA library. This result is available in the file Generalisations.thy in [52]
and explained in Section 4.4).

lemma matrix works:

assumes "linear (op *s) (op *s) f"

shows "matrix f *v x = f (x::’a::field^n)"

Then, in file Linear Maps.thy, several results have been proven based on
this one, that relate linear maps and properties of their associated matrices.
We have proven all the theorems presented in Subsection 2.1.1, as well as most
of the theorems presented in [134, Chap. 2]. Many of them relate changes of
bases with invertible matrices and coordinates. For instance, the following one
corresponds to [134, Theorem 2.13]:

lemma invertible_matrix_is_change_of_basis:

assumes invertible_P: "invertible P"

and basis_X: "is_basis (set_of_vector X)"

shows "∃ !Y. matrix_change_of_basis Y X = P

∧ is_basis (set_of_vector Y)"

The previous theorem states that an invertible matrix corresponds to a ma-
trix of change of basis. Moreover, Theorems 10 and 11 in Subsection 2.1.3 have
also been formalised in the file Linear Maps.thy. Their corresponding state-
ments in Isabelle look as follow (matrix’ X Y f represents the matrix of a linear
map f with respect to the bases X and Y):

corollary equivalent_iff_exist_matrix’:

shows "equivalent_matrices A B ←→ (∃ X Y X’ Y’

f::’a::{field}^’n⇒’a^’m.

linear (op *s) (op *s) f ∧ matrix’ X Y f = A ∧ matrix’ X’ Y’ f = B

∧ is_basis (set_of_vector X) ∧ is_basis (set_of_vector Y)

∧ is_basis (set_of_vector X’) ∧ is_basis (set_of_vector Y’))"

corollary similar_iff_exist_matrix’:

fixes A B::"’a::{field}^’n^’n"

shows "similar_matrices A B ←→ (∃ X Y f. linear (op *s) (op *s) f ∧
matrix’ X X f = A

∧ matrix’ Y Y f = B ∧ is_basis (set_of_vector X) ∧ is_basis

(set_of_vector Y))"

Another instance of relationships between linear maps and matrices is the
following result, which proves that a linear map is bijective if and only if its
associated matrix has full column rank [134, Th. 2.11].

lemma linear bij rank eq ncols:

fixes f::"’a::field^n::mod type ⇒ ’a^n"

assumes "linear (op *s) (op *s) f"

shows "bij f ←→ rank (matrix f) = ncols (matrix f)"

The crucial result in the formalisation of an algorithm preserving the rank

49

Chapter 4 Algorithms over Fields

of matrices is that elementary operations (i.e., invertible matrices) applied to a
matrix preserve its rank:

lemma fixes A::"’a::field^’n^’m" and "P::’a^’m^’m"

assumes "invertible P" and "B = P ** A"

shows "rank B = rank A"

As a consequence of the previous result, we also proved that linear maps are
preserved by elementary operations (only the underlying bases change; thus,
algorithmics and mathematical meaning are connected). Note that the previous
machinery is not particular to the Gauss-Jordan algorithm, but it could also be
reused for different algorithms in Linear Algebra.

The rank of a matrix is now a computable property (by means of the Gauss-
Jordan algorithm presented), as it is its number of columns of its rref.

4.3.2 The Refinement to Immutable Arrays

As it has been explained in Chapter 3, we have carried out two refinements in
order to be able to execute Linear Algebra algorithms formalised in the HMA
library.

Following the infrastructure presented in Section 3.2, we can execute the
Gauss-Jordan algorithm and its applications by means of the refinement to
functions over finite types in order to get verified computations. Below we
present examples of the evaluation (by means of SML generated code) of the
Gauss-Jordan algorithm to compute the dimension of the rank (which is also
the one of the column space) and the one of the null space of given matrices of
reals:

value[code] "rank (list_of_lists_to_matrix

[[1,0,0,7,5],[1,0,4,8,-1],[1,0,0,9,8],[1,2,3,6,5]]::real^5^4)"

value[code] "vec.dim (null_space (list_of_list_to_matrix

[[1/7,0,0,7/5,5],[1,0,4/3,8,-1],[1,0,0,9,8],[1,2,3/11,6,5]]))"

The previous computations have been carried out with matrices represented
as functions and the results are respectively 4 and 1. They are almost instan-
taneous, but the computation of the algorithm over matrices of size 15 × 15 is
already very slow (several minutes). Thus, to make use of the refinement to
immutable arrays presented in Section 3.3 is necessary in order to make the
algorithm applicable to some real-world problems.

Again, each function over elements of type vec needs to be replaced by a
new function over type iarray. This requires first specifying a function over the
type iarray, and then proving that it behaves as the one over type vec. This
statement will be labelled as a code equation and it will be unfolded in the code
generation process. Let us show one example of code equation which transforms
the Gauss-Jordan algorithm over vec to iarray :

lemma [code unfold]:

fixes A::"’a::{field}^col::{mod type}^row::{mod type}"

shows "matrix to iarray (Gauss Jordan A) =

Gauss Jordan iarrays (matrix to iarray A)"

50

Section 4.3 Gauss-Jordan Algorithm

ααα ˆcols ˆrows Gauss Jordan Isabelle

Abstract representation //

Projection

��

Abstract definitions

Code lemmas

��

// Proof

Concrete representation // Concrete definitions // Execution

ααα iarray iarray Gauss Jordan iarrays Isabelle,SML,Haskell

Figure 4.1: Refinement diagram for the formalisation of the Gauss-Jordan al-
gorithm

The code equation certifies that it is correct to replace the function
Gauss_Jordan (defined over abstract matrices, or elements of type vec), the one
proven to compute the rref of a matrix, by the function Gauss_Jordan_iarrays .
Figure 4.1 shows how the refinement works for such a function. The same ap-
proach will be applied in the formalisation of the QR decomposition, the echelon
form, and the Hermite normal form. We will omit analogous figures for such
algorithms. Correctness is proven using the vec representation, execution is
carried out using iarray.

The proving effort (ca. 2800 code lines, see Table A.2) to prove the type re-
finement is significantly smaller than the formalisation itself (ca. 10000). It must
be noticed that reproducing the formalisation over iarrays would presumably
take more than the aforementioned 10000 lines, since the type vec has partic-
ular properties that ease and simplify the proofs. At least two features of this
refinement from vec to iarray can be identified that have an influence in the
modest amount of work devoted to it. First, the close relationship between the
original data type vec and the new data type iarray, since both of them share
a similar interface that allows us to easily identify operations between them, as
we have already explained in Chapter 3. Second, the fact that we preserved the
original algorithm design, replacing operations over the vec type by equivalent
ones over the iarray type. Nevertheless, the Isabelle code generator leaves the
door open to algorithmic refinements (obviously, the bigger the differences be-
tween the abstract and the concrete algorithms, the greater the proving effort
that has to be invested to fill such a gap).

4.3.3 The Generated Programs and Related Work

4.3.3.1 The Generated Programs

The Isabelle code generation facility is now applied to generate the SML and
Haskell code from the Gauss-Jordan algorithm specification. Note that in this
process both the serialisations and data type refinements presented in Sec-
tions 3.4 and 3.3 respectively are used. The automatically generated code sums
up 2300 lines in SML and 1300 in Haskell. The SML and Haskell sources can
be automatically generated from the development and they are also available
from [56]. They closely resemble the Isabelle definitions presented in Subsec-

51

Chapter 4 Algorithms over Fields

Figure 4.2: Image (2560 × 2560 px.) of a neuron acquired with a confocal
microscope.

tion 4.3.1 of the Gauss-Jordan algorithm.
It shall be clear that the programs pose a serious drawback, since the in-

put matrices are stored by means of immutable data types. Since we are using
iarrays for representing both vectors and matrices, every operation with side
effects requires additional memory consumption, whereas mutable data struc-
tures in imperative languages should avoid this matter. Even so, the obtained
programs were useful in at least a couple of interesting case studies:

• The rank (computed, for instance, as the number of nonzero rows of the
rref) of a Z2 matrix, permits the computation of the number of connected
components of a digital image; in Neurobiology, this technique can be used
to compute the number of synapses in a neuron, automating a cumbersome
task previously made “by hand” by biologists (see [87] for details). With
our programs, the computations can be carried out on images at least of
2560× 2560 px. size (which are conventional ones in real life experiments,
see Figure 4.2). The running time to obtain these computations was ca.
160 seconds.

• Varona et al. [59] detected that Mathematica R©, at least in versions 8.0,
9.0 and 9.0.1, was erroneously computing determinants of matrices of big
integers (about 10 thousand digits), even for matrices of small dimensions
(in their work they present an example of a matrix of dimension 14× 14).
The same computation, performed twice, can produce different results.
This kind of failure could be critical in cryptology. The bug was reported
to the Mathematica R© support service. The error might be originated in
the use of some arithmetic operations modulus large primes (apparently,
the prime numbers could be either not large enough or not as many as
required). With our verified program, the computation takes ca. 0.64
seconds (in MLton; Haskell and Poly/ML performance are also practically
the same over inputs of such sizes), and the result obtained is the same
as in Sage (the running time is negligible) and MapleTM. Our algorithm
relies on the arbitrarily large integers as implemented in each functional
language. The computing time in Mathematica R© (of the wrong result)
sums up 2.68 seconds.

In general, the applicability of the generated programs is widely possible. Linear
Algebra is well-known for being a central tool for graph theory, coding theory,
and cryptography, among many other fields.

52

Section 4.3 Gauss-Jordan Algorithm

4.3.3.2 Related Work

The formalisation of Abstract Algebra has been of recurrent interest for the the-
orem proving community, and it would be difficult to provide here a complete
survey on the subject; even so, the formalisation of Linear Algebra algorithms
has not received such an attention from the community. This is somehow sur-
prising, since new algorithms are being continuously implemented in Computer
Algebra systems in a search for better performance.

Nevertheless, it is worth mentioning the CoqEAL (standing for Coq Effective
Algebra Library) effort [44]. This work is devoted to develop a set of libraries and
commodities over which algorithms over matrices can be implemented, proved
correct, refined, and finally executed. We try to compare our work with theirs
in each of these terms.

The implementation of algorithms is rather similar, except for the peculiari-
ties of the Isabelle and Coq systems; the algorithms in CoqEAL take advantage
of the SSReflect library and facilities [73], which indeed represents vectors and
matrices as functions, and therefore quite close to ours. The Coq type system is
richer than the one of Isabelle; in particular, it allows the definition of dependent
types, enabling the use of submatrices and some other natural constructions,
that in our Isabelle implementation have been avoided.

In order to prove the correctness of algorithms, CoqEAL algorithms can take
advantage of the use of dependent types to extensively apply induction over the
dimension of matrices, whereas we chose to apply induction over the number
of columns; there might be algorithms where this fact really poses a difference,
but we did not detect any particular hindrance in the proof of the algorithm
computing the rref.

Refinements in CoqEAL can be performed both on the algorithms and on
the data structures [39] (as we also do in our development); data type refine-
ments in CoqEAL are made in a parametricity fashion, since algorithms are
implemented and proved over unspecified operations (by means of type classes)
that are later replaced with computational or proof oriented types. Then, some
parametricity lemmas state the equivalence between computational and proof
oriented operations. These lemmas sometimes introduce additional parameters
(such as the size of matrices) that could be unnecessary in some of the represen-
tations. In practice, the data type refinements in CoqEAL are reduced to using
either functions or lists for representing vectors (and then matrices iteratively
as lists of lists). Our approach is more flexible since it is based in proving the
equivalence (modulus type morphisms) of the operations in the computational
and proof oriented types [79]. In Isabelle, there is no special requirement over
the proof type and the computational type, as long as a suitable morphism
exists between both, and operations that are proven equivalent in both types.

Regarding execution, there is a crucial difference between CoqEAL’s ap-
proach and ours. In the CoqEAL framework computations are carried out over
the Coq virtual machine (and thus “inside” the Coq system, avoiding code gen-
eration), a bundle of Coq libraries to optimise running time. Our approach is
thought for code generation, and executions are completed in Haskell or SML
(they can be also performed “inside” of Isabelle, but execution times are con-
siderably slower). This provides us with a remarkable edge in performance.
For instance, the computation of the rank of a Z2 matrix of size 1000× 1000
consumes 32 seconds in Poly/ML but 121 seconds in Coq (following the figures

53

Chapter 4 Algorithms over Fields

“Imperative” version Verified version
Function Time perc. Function Time perc.
nth.fn 29.8% sub 33.4%
upd.fn.fn.fn 12.2% of fun 32.7%
IntInf.schckToInt64 12.1% IntInf.extdFromWord64 9.3%
make.fn 8.1% IntInf.schckToInt64 7.5%
plus nat.fn 7.9% row add iarray.fn 6.3%
.
Total
9.42 seconds of CPU time 10.06 seconds of CPU time
(0.04 seconds of GC) (0.22 seconds of GC)

Table 4.1: Profiling of the “imperative” and verified versions of Gauss-Jordan.

in [60]), even if their algorithm exclusively computes the rank of the matrix,
without any additional information, whereas ours produces the rref of the ma-
trix. One potential source of inefficiency in CoqEAL performance could be the
use of lists to encode vectors and matrices.

A different tempting approach would be to verify an imperative version of
the algorithm producing the rref of a matrix. The implementation of imperative
programs and (mutable) arrays in Isabelle/HOL has been studied by Bulwahn
et al. [33], through the use of suitable monads, giving place to a library called
Imperative HOL. When applying code generation, mutable arrays are refined to
the SML Array.array type, which is also mutable (whereas immutable arrays
were refined in our work to the SML type Vector.vector). The authors present
two different case studies; in one of them the performance gain is a 30% with
respect to a purely functional implementation using balanced trees. The use of
monads introduces inherent intricacies both in the definitions and also in the
consequent formalisations.

As an experiment, we produced a (non-formalised) imperative implementa-
tion of the Gauss-Jordan algorithm, inspired by Algorithm 1 and our functional
representation (see file Gauss Jordan Imp.thy in [56]). Algorithm 1 involves
numerous matrix rows and column traversals that we have implemented by re-
cursion (up to our knowledge, there is not a suitable array traverse operator in
Imperative HOL).

We generated SML code from this imperative version, and carried out some
performance tests between the functional verified version presented in Subsec-
tion 4.3.3.1 and the new imperative one. Rather surprisingly, the functional and
imperative versions performed almost equally (with a little bias of a 10% for
each version depending on the compiler used, MLton or Poly/ML). Profiling
both algorithms (see Table 4.1) it seemed clear that the amount of time spent
in the functional version of the algorithm in the construction of new immutable
arrays (operation of fun) was greater than the amount of time devoted in the
imperative version (operation make.fn), but this amount of time was balanced
with the time spent in the imperative version performing updating and the
remaining recursive operations (operations sub and nth.fn represent both the
array access operation).

Table 4.1 presents the result of profiling in MLton the computation of the
rref of a 600× 600 matrix with inputs in Z2 (profiling itself adds up an overhead
of almost 20% in computing time).

Replacing some of the recursive operations used in the imperative version

54

Section 4.3 Gauss-Jordan Algorithm

Matrix sizes C++ version Verified version
600× 600 01.33s. 06.16s.
1000× 1000 05.94s. 32.08s.
1200× 1200 10.28s. 62.33s.
1400× 1400 16.62s. 97.16s.

Table 4.2: C++ and verified versions of the Gauss-Jordan algorithm.

by traversals may reduce computing time, but apparently by a low margin. An
additional drawback of using Imperative HOL is that the underlying types (used
in arrays) have to be proven instances of the type class countable, since the heap
is modelled as an injective map from addresses to values. In our particular case,
this limitation prevents us from using this representation for the type real.

As an additional test of the performance of the obtained verified code, we
implemented the same algorithm as presented in Algorithm 1 in C++ (see file
Gauss Jordan.cpp in [56]), where vectors are represented by C++ arrays, and
array traversals are replaced by for loops. We produced some benchmarking (in-
volving Z2 matrices, where the coefficients are represented by means of booleans
in both SML and C++) to compare our verified functional version, executed
with the Poly/ML interpreter, against the C++ version, that is presented in
Table 4.2.

The obtained times with both versions are of the same order of magnitude,
and grow cubically with respect to the number of rows of the matrices (it is
worth noting that the Gauss-Jordan algorithm is of cubic order). Apparently,
the use of immutable arrays in our verified code does not pose a drawback, and
both algorithms scale similarly. For more execution tests and benchmarks of
the Gauss-Jordan algorithm applied to randomly generated matrices over the
fields Z2, Q, and R see Appendix A.

4.3.4 Conclusions and Future Work

In this section we have presented a formalisation of the Gauss-Jordan algorithm
and its principal applications in Linear Algebra. The algorithm has been proved
in an environment (the HMA library and the framework presented in Chapter 3)
that allows us to keep the mathematical meaning of the results (for instance, the
relation between matrices and linear maps) and over a representation of matrices
which simplifies the proving effort. Additionally, the algorithm has been refined
to a more suitable data type, and generated to SML and Haskell, languages in
which we have been capable of executing the algorithm over matrices of remark-
able dimensions (in our case study with digital images) and inputs (in matrices
with big coefficients, which were erroneously handled by Mathematica R©). The
infrastructure created can be certainly reused; some of the serialisations intro-
duced in Section 3.4 are already part of the Isabelle library. The mathematical
results are proven over a well-established Isabelle library (the HMA library).
Results on matrices include many basic operations. The data type refinement
from vectors as matrices to immutable arrays is also easily reusable, not only
for Linear Algebra purposes.

The number of lines of verified code generated in our work (ca. 2300 in SML,
1300 in Haskell) is considerable and covers a wide range of applications in Lin-

55

Chapter 4 Algorithms over Fields

ear Algebra. Both its formalisation and the refinement, available in [54], took
ca. 10000 lines of Isabelle code. Our development of the Rank-Nullity theo-
rem [52] and the HMA library infrastructure were intensively reused, reducing
significantly the amount of mathematical results to be formalised. Isabelle/HOL
also provided powerful and efficient features to produce data type refinements.
Table A.2 shows the collection of files and their sizes produced in our work.

The design decisions that we are subject to (specially, the use of iarrays
in the generated code) does not seem to pose a real limitation, since the other
options explored (use of monads and use of imperative languages) do not provide
a remarkable edge over our verified version.

4.4 Generalisations

In the previous sections, we have presented a formalisation of the Rank-Nullity
theorem and the Gauss-Jordan algorithm based on the HMA library and our
framework explained in Chapter 3. In such developments, we also set up Isabelle
to generate code from the matrix representation presented in the HMA library.
A refinement to immutable arrays was carried out to improve performance.
We also formalised some of the well-known applications of the Gauss-Jordan
algorithm: computation of ranks, inverses, determinants, dimensions and bases
of the four fundamental subspaces of a matrix, and discussion of systems of linear
equations (in every case: unique solution, multiple solutions and no solution).
Verified code of these computations is generated to both SML and Haskell.

However, while formalising the previous results we found a limitation in the
HMA library: some important results that we needed were only proven for real
matrices or for real vector spaces. Due to this fact, we were only able to prove
the Rank-Nullity theorem for real vector spaces and generate verified code of the
Gauss-Jordan algorithm for real matrices. But we were especially interested in
matrices whose coeffients belong to some other fields. For instance, as we have
already explained, the rank over Z2 matrices permits the computation of the
number of connected components of a digital image. This limitation arises since
the HMA library derives from earlier formalisations limited to concrete types,
such as R, C and Rn. Many results presented in the HMA library are ported
from Harrison’s work in HOL Light [85], where most theorems are proven only
for Rn.

Hölzl et al. [90] improved significantly the HMA library. They presented a
new hierarchy of spaces based on type classes to represent the common struc-
tures of Multivariate Analysis, such as topological spaces, metric spaces and
Euclidean spaces. This improvement showed the power of Isabelle’s type sys-
tem. Some limitations still remain; for instance, most properties about vector
spaces are only demonstrated in the HMA library over real vector spaces, im-
peding us from working with matrices whose elements belong to other fields.
Generalising the results in the HMA library is a known problem but has not
been tackled. Harrison already pointed it out in his work [85]: “many proofs are
morally the same and it would be appealing to be able to use similar technology
to generalise the proofs”. Avigad also found this limitation when working with
the HMA library in his formalisation of the Central Limit Theorem [21]; he
said that some concepts “admit a common generalisation, which would unify
the library substantially”.

56

Section 4.4 Generalisations

In this section we present a work in progress which aims at being the foun-
dation stone to get such a generalisation. The final aim would be to generalise
the library as far as possible. As work done, we present the generalisations and
the methodology that permitted us to prove the Gauss-Jordan algorithm over
matrices whose elements belong to an arbitrary field.

4.4.1 Generalisation of the HMA library

Mathematical structures presented in the HMA library are defined by means
of type classes [77]; type classes, as presented in Subsection 2.2.1, are provided
by Isabelle and have great advantages: they allow us to organise polymorphic
specifications, to create a hierarchy among different classes, to provide instances,
to produce a simple syntax and to simplify proofs thanks to the Isabelle type
inference mechanism. A type class C specifies assumptions P1, . . . , Pk for con-
stants c1, . . . , cm (that are to be overloaded) and may be based on other type
classes B1, . . . , Bn. Only one type variable α is allowed to occur in the type
class specification. Hence, if we want to prove properties of arbitrary vector
spaces (where two type variables appear), we have to use locales instead.

As it was explained in Subsection 2.2.1, locales [24] are an Isabelle approach
for dealing with parametric theories and they are specially suitable for Abstract
Algebra. On the other hand, code generation within locales with assumptions
essentially does not work.

We are on the borderline: we want to use abstract structures such as vector
spaces or modules (we have to use locales) but preserving the executability
(code generation). Our proposal is to work with a mix between locales and type
classes: every possible lemma is generalised to newly introduced locales, but
lemmas required in type classes are kept (because they belong there, or because
they are obtained thanks to an interpretation of the corresponding abstract
locale).

4.4.1.1 An Example of Generalisation

Let us illustrate the previous methodology with an example. A key lemma in
the HMA library is the one which states the link between matrices and linear
maps:

theorem matrix_works:

assumes "linear f"

shows "matrix f *v x = f (x ::real ^ ’n)"

It is stated for linear maps between real vector spaces. The linear predicate
in the premise is introduced by the following locale definition:

locale linear = additive f for f :: "’a::real_vector ⇒ ’b::real_vector"

+ assumes scaleR: "f (scaleR r x) = scaleR r (f x)"

Only one parameter is required: a map f . In the heading, the type of f
is fixed as a map between two real vector spaces (real vector type class; do
note that the definition of the locale is using underlying type classes). In order
to generalise it to arbitrary vector spaces over the same field, we propose the
following definition:

57

Chapter 4 Algorithms over Fields

locale linear = B: vector_space scaleB + C: vector_space scaleC

for scaleB :: "(’a::field ⇒ ’b::ab_group_add ⇒ ’b)" (infixr "*b" 75)

and scaleC :: "(’a ⇒ ’c::ab_group_add ⇒ ’c)" (infixr "*c" 75) +

fixes f :: "(’b⇒’c)"

assumes cmult: "f (r *b x) = r *c (f x)"

and add: "f (a + b) = f a + f b"

This new locale has three parameters, instead of one: the scalar multiplica-
tions scaleB and scaleC, which fix both the vector spaces and the field, and the
map f. Now we can interpret Fn (where F is a field) as a vector space over F
and prove the linear interpretation for Fn (the corresponding linear map is the
multiplication of a matrix by a vector):

interpretation vec: vector_space "op *s :: ’a::field ⇒ ’a^’b ⇒ ’a^’b"

interpretation vec: linear "op *s" "op *s" "(λx. A *v (x::’a::field^_))"

After reproducing in the new locale the lemmas involved in the proof, we
obtain the generalised version. Note the differences between both statements:

theorem matrix_works:

assumes "linear (op *s) (op *s) f"

shows "matrix f *v x = f (x :: ’a ::field ^ ’n)"

4.4.1.2 The Generalisation of the Gauss-Jordan Algorithm

Our aim is to generalise the Gauss-Jordan algorithm to generate verified code
for matrices with elements belonging to a generic field. In Subsection 4.4.1.1,
we have shown an example of how to carry out this generalisation. As Harrison
pointed out [85], in many cases the proof is essentially the same. However,
the procedure is not immediate and almost every demonstration involves subtle
design decisions: introduce new locales, syntactic details, interpretations inside
the lemma to reuse previous facts, change the types properly and so on. In broad
terms, we have carried out four kinds of generalisations in the HMA library to
achieve verified execution over matrices with elements belonging to a field:

1. Lemmas involving real vector spaces (a class) are now generalised to ar-
bitrary vector spaces (a locale).

2. Lemmas involving Euclidean spaces (a class) have been generalised to
finite-dimensional vector spaces (a locale).

3. Lemmas involving real matrices have been generalised to matrices over
any field (thanks to the previous two points).

4. Lemmas about determinants of matrices with coefficients in a real vector
space are now proven for matrices with coefficients in a commutative ring.

In the HMA library the first time that the notion of a finite basis ap-
peared was in the euclidean space class. Now, we have introduced a new lo-

cale finite dimensional vector space and generalised several proofs from the
euclidean space class to that locale. Thanks to those generalisations, some
lemmas that were stated in the HMA library only over real matrices are now

58

Section 4.4 Generalisations

proven over more general types. Let us take a look at the following lemma,
which claims that a matrix is invertible iff its determinant is not null. The
following version is the one available in the HMA library, stated for integral
domains:

lemma det_identical_rows:

fixes A :: "’a::linordered_idom^’n^’n"

assumes ij: "i 6= j" and r: "row i A = row j A"

shows "det A = 0"

proof-
have tha: "

∧
(a::’a) b. a = b =⇒ b = - a =⇒ a = 0" by simp

have th1: "of_int (-1) = - 1" by simp

let ?p = "Fun.swap i j id"

let ?A = "χ i. A $?p i"

from r have "A = ?A" by (simp add: vec_eq_iff row_def Fun.swap_def)

then have "det A = det ?A" by simp

moreover have "det A = - det ?A" by (simp add: det_permute_rows[OF

permutes_swap_id] sign_swap_id ij th1)

ultimately show "det A = 0" by (metis tha)

qed

The original statement comes from Harrison’s formalisation [85], where the
lemma is proven over real matrices. The Isabelle proof presented above follows
the one presented in most of the literature. Essentially, in the proof it is deduced
that det(A) = −det(A) and thus det(A) = 0. But such a property does not hold
in rings whose characteristic is 2 (such as Z2). For instance, in a book by
Axler [22] the statement is presented for commutative rings but it is proven
without taking into account rings with characteristic 2. The same appears in
a book by Strang [142], but the author warns that the demonstration fails in
the case of Z2 matrices. To generalise the result to an arbitrary ring, we had to
change totally the proof and work over permutations.1

Not only we need to change some proofs, sometimes we have to in-
troduce new definitions. For instance, to multiply a matrix by a scalar.
The HMA library works with real matrices, so the next operation is used:
(op *R) :: real ⇒ ’a ⇒ ’a . In the generalisation, we would like to mul-
tiply a matrix of type ’a^’n^’m by an element of type ’a. We cannot use (op

*R) to do that. The most similar operation presented in the HMA library is:
(op *s) :: ’a⇒’a^’n⇒’a^’n.

We cannot reuse it because it is thought to multiply a vector (and not a
matrix) by a scalar. Then, we define the multiplication of a matrix by a scalar
as follows:

definition matrix_scalar_mult :: "’a ⇒ ’a^’n^’m ⇒ ’a^’n^’m"

(infixl "*k" 70) where "k *k A ≡ (χ i j. k * A $ i $ j)"

The statements for the real matrix version and the general one are different:

lemma scalar_matrix_vector_assoc:

fixes A :: "real^’m^’n"

1We followed the proof presented in http://hobbes.la.asu.edu/courses/site/442-f09/

dets.pdf.

59

http://hobbes.la.asu.edu/courses/site/442-f09/dets.pdf
http://hobbes.la.asu.edu/courses/site/442-f09/dets.pdf

Chapter 4 Algorithms over Fields

shows "k *R (A *v v) = (k *R A) *v v"

lemma scalar_matrix_vector_assoc:

fixes A :: "’a::{field}^’m^’n"

shows "k *s (A *v v) = (k *k A) *v v"

Some other particularities arose in the generalisation. For instance, we had
to completely change another demonstration: the row rank and the column
rank of a matrix are equal. We had followed an elegant proof but only valid
for real matrices, see [110]. We based its generalisation on the output of the
Gauss-Jordan algorithm (a reduced row echelon form) following [1]. This change
forced us to completely reorganise the files of our development. Another example
arises in systems of linear equations: in the real field there could be infinite
solutions, but in other fields such as Z2 there is always finitely many solutions.

Finally, we have generalised more than 2500 lines of code: about 220 theo-
rems and 9 definitions, introducing 6 new locales, 3 new sublocales and 8 new
interpretations. The generalised version of the Gauss-Jordan formalisation was
published in the AFP [54]. Moreover, the generalisations are also useful for the
Rank-Nullity theorem [52], as it has already been explained in Section 4.2. The
final generalised statements of this theorem are the following ones:

theorem rank_nullity_theorem:

shows "V.dimension = V.dim {x. f x = 0} + W.dim (range f)"

lemma rank_nullity_theorem_matrices:

fixes A::"’a::{field}^’cols::{finite, wellorder}^’rows"

shows "ncols A = vec.dim (null_space A) + vec.dim (col_space A)"

Let us note that the Rank-Nullity theorem has been proven in a context
where a linear map f between a finite-dimensional vector space V and an ar-
bitrary vector space W is fixed. Thus, the Rank-Nullity theorem has been for-
malised in the most general case.

4.4.2 Conclusions

The generalisation of the HMA library is useful and desirable, but doing it can
be overwhelming at a first glance. The process can be partially automated
with suitable scripts, but the full goal cannot be discharged automatically and
it requires to make some design decisions. The careful combination of locales,
type classes and interpretations has been shown to be a sensible methodology.
A remarkable number of proofs have been reused in this way. This contribution
shows that the aim is feasible and the generalisation has served for our initial
purposes of executing a verified version of the Gauss-Jordan algorithm over
fields such as Z2 and Q.

4.5 The QR Decomposition

4.5.1 Introduction

Interactive theorem proving is a field in which impressive problems are be-
ing challenged and overcome successfully. Still, new challenges usually require

60

Section 4.5 The QR Decomposition

an accordingly impressive previous infrastructure to succeed (for instance, the
SSReflect extension created for the four colour theorem [70] and the odd order
number theorem [72], and the Simpl imperative language and the AutoCorres
translator which are keystones in the seL4 verification [99]). This infrastructure,
once developed, shall be reusable and applicable enough to overcome new chal-
lenges. Even if some developments or libraries reach a status of “keystones”,
and new projects are regularly built on top of them, this design principle does
not always hold. Blanchette et al. [30] presented a survey about the reutilisation
of the AFP entries. Directly quoting the conclusions of this survey, “There is
too little reuse to our taste; the top 3 articles are reused 9, 6 and 4 times.”;
we assume that these conclusions can be spread to theorem provers as a whole.
In this section we present various pieces of work which take great advantage of
previously developed tools (either well-established parts of the Isabelle library
or 10 existing developments of the AFP, including our infrastructure presented
in Chapter 3 and the formalisation of the Gauss-Jordan algorithm presented
in Section 4.3) to fulfil in an affordable number of lines a complete work in
Linear Algebra, which includes the formalisation of the Fundamental Theorem
of Linear Algebra, the Gram-Schmidt process, the QR decomposition, and its
application to the least squares problem.

Hence, this work can be divided into four different parts. Firstly, we intro-
duce the formalisation of Theorem 7, a result called by Strang the Fundamental
Theorem of Linear Algebra (see [141, 142]), which establishes the relationships
between the dimensions and bases of the four fundamental subspaces (the row
space, column space, null space, and left null space) associated to a given lin-
ear map between two finite-dimensional vector spaces. This theorem is also
closely tied to the notion of orthogonality of subspaces. The notion is already
present in the HMA library, but related concepts such as the projection of a
vector onto a subspace are not. Secondly, we formalise the Gram-Schmidt pro-
cess, which permits to obtain an orthogonal set of vectors from a given set of
vectors. Gram-Schmidt possesses remarkable features, such as preserving the
spanning set of collections of vectors and providing linearly independent vec-
tors, whose formalisation we present. Thirdly, as a natural application of the
Gram-Schmidt process we implement the QR decomposition of a matrix into
the product of two different matrices (the first one containing an orthonormal
collection of vectors, the second one being upper triangular). We formalise the
relevant properties of this decomposition reusing some of the previous work that
we presented in Chapter 3 and that was successfully applied in the formalisation
of the Gauss-Jordan algorithm (Section 4.3 and [13]). Fourthly, we formalise the
application of the QR decomposition of a matrix to compute the least squares
approximation to an unsolvable system of linear equations, exploiting some of
the infrastructure for norms and distances in the HMA library, and reusing the
computation of solutions to consistent systems of linear equations provided by
the Gauss-Jordan algorithm.

Finally, and based on our previous infrastructure, we present examples of
execution of the least squares problem (which internally uses Gram-Schmidt and
QR decomposition) inside Isabelle and also from the code generated to SML.
More particularly, taking advantage of an existing development in Isabelle for
symbolically computing with Q extensions of the form Q[

√
b] by Thiemann [145],

exact symbolic computations of the QR decomposition, and thus of the least
squares solution of systems of linear equations are performed. We also present

61

Chapter 4 Algorithms over Fields

some optimisations performed over the original algorithm to improve its perfor-
mance, and explore its numerical properties, in comparison to the Gauss-Jordan
algorithm. Consequently, this work completes our previous development about
the Gauss-Jordan algorithm and its applications (Section 4.3) where the compu-
tation of the solution to systems of linear equations was formalised (for systems
with unique solution, multiple solutions and without solution), computing also
the least squares approximation to systems without solution.

In Computational Linear Algebra, the raison d’être of the QR decomposition
is that it significantly reduces round-off errors when computing the least squares
approximation (see for instance Björck [29] for details). Additionally, the de-
composition comprises a valuable method to approximate the eigenvalues of a
matrix, by successively computing QR decompositions [63, 100]; this method
approximates the eigenvalues of the original matrix rather quickly and accu-
rately, especially when compared to other known methods (it has been declared
“one of the top ten algorithms with the greatest influence on the development
and practice of science and engineering in the 20th century” [58]). The previous
applications make QR decomposition more appealing than the conventional LU
decomposition in that particular use cases. In this work we do not directly tackle
numerical considerations (even if we introduce some examples of execution with
floating-point numbers in Subsection 4.5.6.1), but we refer the interested reader
to the works by Björck et al. [29, 43].

In Linear Algebra the QR decomposition is of interest by itself because of
the insight that it offers about the vector subspaces of a linear map (it provides
orthonormal bases of the four fundamental subspaces). We point the interested
reader to the work by Strang [142, Chap. 4] for further information and applica-
tions. The method of least squares is usually attributed to Gauss, who already
had a solution to it in 1795 that successfully applied to predict the orbit of the
asteroid Ceres in 1801 (see [29]).

This section is divided as follows. In Subsection 4.5.2 we introduce the for-
malisation of the Fundamental Theorem of Linear Algebra. In Subsection 4.5.3
we present our formalisation of the Gram-Schmidt process. Subsection 4.5.4
presents the formalisation of the QR decomposition. Subsection 4.5.5 shows
the application of the QR decomposition to the least squares approximation. In
Subsection 4.5.6 we describe code generation of the aforementioned algorithms,
introduce some code optimisations to improve performance, and present some
examples of execution. Subsection 4.5.7 presents a brief survey of related for-
malisations. Finally, in Subsection 4.5.8 we present some conclusions of the
completed work. The development is available from the Isabelle Archive of
Formal Proofs [14] and it relies upon 10 AFP articles.

4.5.2 The Fundamental Theorem of Linear Algebra

In Subsection 2.1.2 we introduced Theorem 7, which is named as the Fundamen-
tal Theorem of Linear Algebra (see [142]). Both the Gram-Schmidt algorithm
and the QR decomposition are built upon the notion of orthogonality, a concept
which is also important for some items in Theorem 7. This notion requires a
new type class based upon vector spaces, named in the HMA library real_inner

(which describes an inner product space over the reals). It introduces an inner
or dot product, which is then used to define the orthogonality of vectors.

62

Section 4.5 The QR Decomposition

context real_inner

begin
definition "orthogonal x y ←→ x · y = 0"

end

Item 1 in Theorem 7 is usually labelled as the Rank-Nullity theorem, and we
completed its formalisation generalised to matrices over fields (see Section 4.2).
From an existing basis of the null space and its completion up to a basis of Fm,
it is proven that the dimension of the column space is equal to r. Then, the
column space is proved equal to the range by means of algebraic rewriting.

In order to prove Item 2 in Theorem 7, we apply again the Rank-Nullity
theorem to AT . Additionally, it must be proven that the dimension of the
row space is equal to the rank of A. This particular proof, for matrices over
generic fields, involves the computation of the reduced row echelon form (or rref)
of A, and it requires reusing our formalisation of the Gauss-Jordan algorithm
(Section 4.3). The key idea is to prove that elementary row operations preserve
both the row rank and the column rank of A, and then to compare the row
and column ranks of the rref of A, concluding that they are equal. We describe
this proof in Subsection 4.4. Up to now, proofs have been carried out in full
generality (for matrices over a generic field F).

Items 3 and 4 in Theorem 7 claim that the row space and the null space of
a given linear map are orthogonal complements, and so are the column space
and the left null space. The orthogonal complement of a subspace W is the set
of vectors of V orthogonal to every vector in W (note that, following the HMA
library, the notion of orthogonality already places us in inner product spaces
over R):

definition "orthogonal_complement W = {x. ∀ y∈W. orthogonal x y}"

Since the definition of the null space claims that this space is equal to the x
such that Ax = 0 and the row space of A is the one generated by the rows of
A, both spaces are proven to be orthogonal ; a similar reasoning over AT proves
that the left null space and the column space are also orthogonal.

lemma complementary_subspaces:

fixes A::"real^’cols::{finite,wellorder}^’rows::{finite,wellorder}"

shows "left_null_space A = orthogonal_complement (col_space A)"

and "null_space A = orthogonal_complement (row_space A)"

Note that the Rank-Nullity theorem is the key result to prove that the
fundamental subspaces are complementary. The definitions and proofs intro-
duced in this section can be found in the files Fundamental Subspaces.thy and
Least Squares Approximation.thy (where the Rank-Nullity theorem is already
incorporated to the development) of our development [14]. Thanks to the in-
tensive reuse of these definitions and results, the complete proof of Theorem 7
took us 80 lines of Isabelle code.

As a matter of experiment, we tried to generalise the notion of inner product
space over R to that of inner product space over a field F , and then replay the
proof of Theorem 7. This generalisation can be found in file Generalizations2.thy
of our development [14] and it follows the same approach as the one presented

63

Chapter 4 Algorithms over Fields

in Section 4.4. The number of lines devoted to define the required notions, state
Items 3 and 4 of Theorem 7 in Isabelle and prove them in full generality was
ca. 650. We can now obtain explicit statements for concrete instances of inner
product spaces over other fields than R, such as the version of Items 3 and 4 in
Theorem 7 involving complex numbers:

theorem left_null_space_orthogonal_complement_col_space_complex:

fixes A::"complex^’cols::{finite,wellorder}^’rows::{finite,wellorder}"

shows "left_null_space A = complex_matrix.orthogonal_complement

(col_space (χi j. cnj (A $ i $ j)))"

lemma null_space_orthogonal_complement_row_space_complex:

fixes A::"complex^’cols::{finite,wellorder}^’rows::{finite,wellorder}"

shows "null_space A = complex_matrix.orthogonal_complement (row_space

(χi j. cnj (A $ i $ j)))"

Let us note that the statements presented above together with the gener-
alised version of the Rank-Nullity theorem presented in Section 4.4 constitutes
a formalisation of the Fundamental Theorem of Linear Algebra in full gener-
ality (Items 1 and 2 involving matrices over a field, Items 3 and 4 involving
inner product spaces over a field). The use of arbitrary inner product spaces
requires using cnj (the conjugate element) in the statements (in the concrete
case of real numbers, cnj is just the identity, obtaining the Isabelle statement
complementary subspaces).

Being the generalisation of the results presented in this work to inner product
spaces over a field a sensible and interesting work, we stick in this section to
inner product spaces over R since this decision gives us the chance to reuse the
results in the HMA library, instead of starting from scratch and reproducing
them in full generality.

4.5.3 A Formalisation of the Gram-Schmidt Algorithm

In this subsection we introduce the Gram-Schmidt process that leads to the
computation of an orthogonal basis of a vector space and its formalisation. Let
us note that orthonormal vectors are orthogonal vectors whose norm is equal
to 1. Sets of orthogonal vectors play a crucial role in Linear Algebra. For
instance, thanks to the orthogonality of the row and null spaces, every vector
x ∈ Rm can be decomposed as x = xr + xn, where xr belongs to the row space
of A and xn belongs to the null space of A, and therefore xr · xn = 0. Now,
Ax = A (xr + xn) and this is equal to Axr (this hint will be crucial for the
least squares approximation of systems of linear equations that we describe in
Subsection 4.5.5). Another relevant concept is the projection of a vector v onto
a vector u, and that of the projection onto a set. Our Isabelle definitions follow
(they can be found in file Projections.thy of our development [14] together with
some of their relevant properties):

definition "proj v u = (v · u / (u · u)) *R u"

definition "proj_onto a S = setsum (λx. proj a x) S"

The Gram-Schmidt process takes as input a (finite) set of vectors {v1 . . . vk}
(which need not be linearly independent, neither be a set with size less than or

64

Section 4.5 The QR Decomposition

equal to the dimension of the underlying vector space) and iteratively subtracts
from each of them their projection onto the previous ones. The process can be
implemented in Isabelle as follows. The following definition takes a vector a
and a list of vectors ys and subtracts from a its projections onto the vectors of
ys. The obtained vector will be orthogonal to every vector in the input list ys.
Note that we have replaced sets of vectors by lists of vectors for simplicity (op
@ denotes the appending operation on lists); a similar process could be applied
to finite indexed sets:

definition "Gram_Schmidt_step a ys = ys @ [a - proj_onto a (set ys)]"

This step is folded over a list of vectors xs and the empty list, obtaining thus
a list of vectors whose projections onto each other are 0 (i.e., are orthogonal).

definition "Gram_Schmidt xs = foldr Gram_Schmidt_step xs []"

The defined function Gram_Schmidt satisfies two properties. First, the vec-
tors in its output list must be pairwise orthogonal (which means that any two
different vectors in the output list must be orthogonal):

lemma Gram_Schmidt_pairwise_orthogonal:

fixes xs::"(’a::{real_inner}^’b) list"

shows "pairwise orthogonal (set (Gram_Schmidt xs))"

Second, the span of the sets associated to both the output and input lists
must be equal (note that here the definition real_vector.span does not require
the underlying scalar product, as it was the case with vector_space.span):

lemma Gram_Schmidt_span:

fixes xs::"(’a::{real_inner}^’b) list"

shows "real_vector.span (set (Gram_Schmidt xs)) = real_vector.span

(set xs)"

The proofs of the properties Gram_Schmidt_pairwise_orthogonal and
Gram_Schmidt_span are carried out by induction over the input list. Under these
two conditions, whenever the input list is a basis of the vector space, the output
list will also be a basis (the predicate distinct is used to assert that there are
no repeated vectors in the input and output lists).

corollary orthogonal_basis_exists’:

fixes V :: "(real^’b) list"

assumes B: "is_basis (set V)" and d: "distinct V"

shows "is_basis (set (Gram_Schmidt V)) ∧ distinct (Gram_Schmidt V)

∧ pairwise orthogonal (set (Gram_Schmidt V))"

As a previous step for the QR decomposition of matrices, we introduced a
definition of the Gram-Schmidt process directly over the columns of a matrix.
To get that, the above operation Gram_Schmidt could be applied to the list
of columns of the matrix (indeed, that was our first version), but that would
require two conversions between matrices and lists. Instead, in order to improve
efficiency, we have preferred to build a new matrix from a function, using the χ
binder (the morphism defining a vec from a function).

65

Chapter 4 Algorithms over Fields

The operation Gram_Schmidt_column_k returns a matrix where Gram-Schmidt
is performed over column k and the remaining columns are not changed. This
operation is then folded over the list of the input matrix columns. Note that k

is a natural number, whereas the rows and columns indexes are elements of the
finite types introduced in Subsection 3.2.1, and thus the operation from_nat is
applied to convert between them.

definition "Gram_Schmidt_column_k A k = (χ a b. (if b = from_nat k

then (column b A - (proj_onto (column b A) {column i A|i. i < b}))

else (column b A)) $ a)"

definition "Gram_Schmidt_upt_k A k = foldl Gram_Schmidt_column_k A

[0..<k+1]"

definition "Gram_Schmidt_matrix A = Gram_Schmidt_upt_k A (ncols A - 1)"

The definition of Gram_Schmidt_matrix has been proven to satisfy similar
properties to Gram_Schmidt. Additionally, both definitions have been set up to
enable code generation and execution from Isabelle to both SML and Haskell.

The following expression can be now evaluated in Isabelle. In this setting,
the function Gram_Schmidt_matrix is being evaluated. In Subsection 4.5.6 we
will improve its performance using a refinement of these functions to immutable
arrays, following the infrastructure developed in Chapter 3:

value "let A = list_of_list_to_matrix [[4,-2,-1,2], [-6,3,4,-8],

[5,-5,-3,-4]]::real^4^3 in matrix_to_list_of_list (Gram_Schmidt_matrix

A)"

The obtained result is:

"[[4,50/77,15/13,0], [-6,-75/77,10/13,0], [5,-130/77,0,0]]"

Note that the output vectors are orthogonal, but not orthonormal. We ad-
dress this issue in the next subsection, when formalising the QR decomposi-
tion. The formalisations presented in this subsection are available in the file
Gram Schmidt.thy from [14].

4.5.4 A Formalisation of the QR Decomposition Algo-
rithm

The QR decomposition of a matrix A is defined as a pair of matrices, A = QR,
where Q is a matrix whose columns are orthonormal and R is an upper tri-
angular matrix (which in fact contains the elementary column operations that
have been performed over A to reach Q). The literature includes different
variants of this decomposition (see for instance [29, Chapt. 3 and 4]). More
concretely, it is possible to distinguish two different decompositions of a given
matrix A ∈Mm×n(R):

1. If A has full column rank, A can be decomposed as QR,
where Q ∈Mm×n(R) and its columns are orthonormal vectors, and
R ∈Mn×n(R) is an upper triangular and invertible matrix.

2. A can be also decomposed as QR, where Q ∈Mm×m(R) and is orthonor-
mal, and R ∈ Mm×n(R) is an upper triangular (but neither square, nor

66

Section 4.5 The QR Decomposition

invertible) matrix. This case is called full QR decomposition.

In this work we formalise the first case, where the number of rows of A will
be greater than or equal to the number of columns. Indeed, this is the version of
the decomposition which is directly applicable to solve the least squares problem,
as we explain in Subsection 4.5.5. In the particular case where A has no full
column rank, we do not compute the QR decomposition, but, as we present in
Subsection 4.5.5, we solve the problem by means of the Gauss-Jordan algorithm.
Let us describe how the decomposition is performed.

Given a matrix A = (a1 | · · · | an) ∈ Mm×n(R) (where n ≤ m) whose
columns ai are linearly independent vectors, the matrix Q ∈ Mm×n(R) is the
matrix with columns (q1 | · · · | qn), where qi is the normalised vector ai minus
its projections onto q1 . . . qi−1 (and thus, orthogonal to both a1 . . . ai−1 and
q1 . . . qi−1). The matrix R ∈Mn×n(R) can be expressed as R = QTA.

Once we have computed the Gram-Schmidt process over the vectors of a
matrix in Subsection 4.5.3 (recall the Isabelle function Gram_Schmidt_matrix),
and introducing an operation to normalise every column in a matrix, the com-
putation of the QR decomposition is defined in Isabelle as follows:

definition "divide_by_norm A = (χ a b. normalize (column b A) $ a)"

definition "QR_decomposition A =

(let Q = divide_by_norm (Gram_Schmidt_matrix A)

in (Q, (transpose Q) ** A))"

The literature suggests some other ways to compute the matrices Q and
R, in such a way that the coefficients of matrix R are computed in advance,
and then used in the computation of the columns of Q; see for instance the
algorithms labelled as Classical Gram-Schmidt and Modified Gram-Schmidt by
Björck [29, Chap. 2.4]. These algorithms avoid some unnecessary operations in
our Isabelle formalisation (in particular, they avoid the computations of QT and
the product QTA). Instead, our formalised version directly uses the output of
the Gram-Schmidt orthogonalisation process presented in Subsection 4.5.3 and
computes a posteriori the coefficients in R.

The properties of Q and R need to be proved. Once that in Subsection 4.5.3
we proved that the columns of the matrix computed with Gram_Schmidt_matrix

are pairwise orthogonal and that they have a span equal to the one of the input
matrix, these properties are straightforward to prove for Q. The property of the
columns of Q having norm equal to 1 is proven also directly from the definition
of Q. For its intrinsic interest we illustrate the property of Q and A having
equal column space:

corollary col_space_QR_decomposition:

fixes A::"real^’n::{mod_type}^’m::{mod_type}"

defines "Q ≡ fst (QR_decomposition A)"

shows "col_space A = col_space Q"

Another crucial property of Q (and QT) that is required later in the
least squares problem is the following one (note that it is stated for possibly
non-square matrices with more rows than columns):

lemma orthogonal_matrix_fst_QR_decomposition:

67

Chapter 4 Algorithms over Fields

fixes A::"real^’n::{mod_type}^’m::{mod_type}"

defines "Q ≡ fst (QR_decomposition A)"

assumes r: "rank A = ncols A"

shows "transpose Q ** Q = mat 1"

This property is commutative for square matrices (QTQ = QQT = In and
thus Q−1 = QT) but it does not hold that QQT = Im for non-square
ones. Its proof is completed by case distinction in the matrix indexes; being

Q = (q1 | · · · | qn), and thus QT =
(q1
···
qn

)
, when multiplying row i of QT (which

is qi) times column i of Q, the result is 1 since the vectors are orthonormal. On
the contrary, when multiplying row i of QT (which is qi) times column j of Q,
the result is 0 because of orthogonality.

Then, the most relevant properties of R are being upper triangular and

invertible. Indeed, being A = (a1 | · · · | an), R = QTA =
(
q1·a1 q1·a2 ...
q2·a1 q2·a2 ...
...

)
. The

following lemma proves the matrix R being upper triangular:

lemma upper_triangular_snd_QR_decomposition:

fixes A::"real^’n::{mod_type}^’m::{mod_type}"

defines "Q ≡ fst (QR_decomposition A)"

and "R ≡ snd (QR_decomposition A)"

assumes r: "rank A = ncols A"

shows "upper_triangular R"

The matrix R is also invertible:

lemma invertible_snd_QR_decomposition:

fixes A::"real^’n::{mod_type}^’m::{mod_type}"

defines "Q ≡ fst (QR_decomposition A)"

and "R ≡ snd (QR_decomposition A)"

assumes r: "rank A = ncols A"

shows "invertible R"

The properties satisfied by the QR decomposition (in this statement, of non-
square matrices) can be finally stated in a single result (the result for square
matrices of size n also proves the columns of Q being a basis of Rn). The
result sums up the properties of Q and R that have been formalised along
Subsections 4.5.3 and 4.5.4:

lemma QR_decomposition:

fixes A::"real^’n::{mod_type}^’m::{mod_type}"

defines "Q ≡ fst (QR_decomposition A)"

and "R ≡ snd (QR_decomposition A)"

assumes r: "rank A = ncols A"

shows "A = Q ** R ∧
pairwise orthogonal (columns Q) ∧ (∀ i. norm (column i Q) = 1) ∧
(transpose Q) ** Q = mat 1 ∧ vec.independent (columns Q) ∧
col_space A = col_space Q ∧ card (columns A) = card (columns Q) ∧
invertible R ∧ upper_triangular R"

68

Section 4.5 The QR Decomposition

The formalisations carried out in this subsection are available in the file
QR Decomposition.thy from our development [14].

4.5.5 Solution of the Least Squares Problem

The previous decomposition can be used to different aims. In this work we
focus on finding the best approximation of a system of linear equations without
solution. In this way, we complete our previous work presented in Section 4.3,
in which the computation of the solution of systems of linear equations was
formalised thanks to the Gauss-Jordan algorithm.

The best approximation of a system Ax = b, in this setting, means to find the
elements x̂ such that minimise ‖e‖, where e = Ax̂− b. Our aim is to prove that

x̂ is the solution to Ax̂ = b̂, where b̂ denotes the projection of b onto the column
space of A. The solution for the general case (also known as the rank deficient
case) is usually performed by means of the Singular Value Decomposition (or
SVD); this decomposition provides, for any real or complex matrix A, three
matrices U , Σ, V such that A = UΣV H (where V H is the result of conjugating
each element of V and then transposing the matrix, and Σ =

(
Σ1 0
0 0

)
, where

Σ1 = diag (σ1 . . . σr) and σi denotes the singular values of A, in such a way that
A =

∑n
i=1 σiuiv

H
i).

The existence of the SVD decomposition of a matrix can be proven by in-
duction without particular difficulties (see [29, Th. 1.2.1]). On the contrary,
the computation of the SVD decomposition (see, for instance, [29, Sect. 2.6])
requires the computation of eigenvalues and eigenvectors of matrices, whose
computation requires numerical methods. In this work we solve the case where
the input matrix A of the system Ax = b has full column rank by means of
the QR decomposition, and the general case will be solved applying the Gauss-
Jordan algorithm.

We define the characterisation of the least squares solution of a system as
follows (following [29, Th. 1.1.2]):

definition "set_least_squares_solution A b =

{x. ∀ y. norm (b - A *v x) ≤ norm (b - A *v y)}"

Prior to showing the utility of the QR decomposition to solve the previous
problem, we prove that the closest point to a point v /∈ S in a subspace S (being
X an orthogonal basis of S) is its projection onto that subspace:

lemma least_squares_approximation:

fixes X::"’a::{euclidean_space} set"

assumes "real_vector.subspace S" and "real_vector.independent X"

and "S = real_vector.span X"

and "pairwise orthogonal X"

and "proj_onto v X 6= y"

and "y ∈ S"

shows "norm (v - proj_onto v X) < norm (v - y)"

The lemma least_squares_approximation states that the projection of b onto
the range of A (that we denote by b̂) is the closest point to b in this subspace. Let

x̂ be such that A x̂ = b̂. Thanks to Theorem 7, b−A x̂ belongs to the orthogonal
complement of rangeA, which happens to be the left null space. Consequently,

69

Chapter 4 Algorithms over Fields

we know that the solutions to the least squares problem must satisfy the equation
AT (b−Ax) = 0 (the converse also holds). From this property, the standard
characterisation of the set of least squares solutions is obtained [29, Th. 1.1.2]:

lemma in_set_least_squares_solution_eq:

fixes A::"real^’cols::{finite,wellorder}^’rows"

defines "A_T == transpose A"

shows "(x ∈ set_least_squares_solution A b) =

(A_T ** A *v x = A_T *v b)"

The proof of lemma least_squares_approximation makes use of the
Pythagorean Theorem of real inner product spaces, whose proof we include
because of its intrinsic interest:

lemma Pythagorean_theorem_norm:

assumes o: "orthogonal x y"

shows "norm (x+y)^2=norm x^2 + norm y^2"

proof -

have "norm (x+y)^2 = (x+y) · (x+y)" unfolding power2_norm_eq_inner ..
also have "... = ((x+y) · x) + ((x+y) · y)"

unfolding inner_right_distrib ..
also have "... = (x · x) + (x · y) + (y · x) + (y · y) "

unfolding real_inner_class.inner_add_left by simp

also have "... = (x · x) + (y · y)" using o unfolding orthogonal_def

by (metis comm_monoid_add_class.add.right_neutral inner_commute)

also have "... = norm x^2 + norm y^2"

unfolding power2_norm_eq_inner ..
finally show ?thesis .

qed

Once we have characterised the set of least squares solutions, we distinguish
whether A has full column rank or not:

• If A has no full column rank, ATA does not have inverse, and the solution
to the least squares problem can be obtained by applying the Gauss-Jordan
algorithm (that we formalised in Section 4.3) to the system ATAx̂ = AT b (
[29, Eq. 1.1.15]). Our Gauss-Jordan implementation would compute a
single solution of the system plus a basis of the null space of ATA:

lemma in_set_least_squares_solution_eq:

fixes A::"real^’cols::{finite,wellorder}^’rows"

defines "A_T == transpose A"

shows "(x ∈ set_least_squares_solution A b) =

(A_T ** A *v x = A_T *v b)"

• Otherwise, ATA is an invertible matrix, and x̂ = (ATA)−1AT b. In this
case, the solution is unique, and the set in the right hand side is a singleton.
The following result proves the uniqueness and the explicit expression of
the solution [29, Eq. 1.1.16]:

lemma in_set_least_squares_solution_eq_full_rank:

fixes A::"real^’cols::mod_type^’rows::mod_type"

70

Section 4.5 The QR Decomposition

defines "A_T ≡ transpose A"

assumes r: "rank A = ncols A"

shows "(x ∈ set_least_squares_solution A b) =

(x = matrix_inv (A_T ** A) ** A_T *v b)"

As it may be noticed, the solution to the least squares problem does not
demand the QR decomposition of A. The decomposition is used when A is an
(full column rank) almost singular matrix (i.e., its condition number, σ1/σr is
“big”, and the computation of (ATA)−1 seriously compromises floating-point
precision). Even if numerical methods are not central to our aim, we point the
interested reader to the works by Björck [29, Sect. 1.4] or [42, Sect. 2.4].

Since x̂ = (ATA)−1AT b, and using that A = QR and AT = RTQT (note that
QTQ = I), one also has x̂ = (RTQTQR)−1RTQT b, and this equation can be
reduced to x̂ = R−1QT b. Now, the matrices Q and R are obtained through
the Gram-Schmidt process, and the inverse of R, which is upper triangular, can
be performed by backward substitution. The Isabelle statement of this new
equality follows [29, Th. 1.3.3]:

corollary in_set_least_squares_solution_eq_full_rank_QR2:

fixes A::"real^’cols::{mod_type}^’rows::{mod_type}"

defines "Q ≡ fst (QR_decomposition A)"

and "R ≡ snd (QR_decomposition A)"

assumes r: "rank A = ncols A"

shows "(x ∈ set_least_squares_solution A b) =

(x = matrix_inv R ** transpose Q *v b)"

The formalisations of the results in this subsection are available in the file
Least Squares Approximation.thy from our development [14]. In the next sub-
section we show how the previous results can be used to compute the least
squares solution of a linear system.

4.5.6 Code Generation from the Development

Up to now we have proved that given a matrix A ∈ Mm×n(R) and a system
of linear equations Ax = b without solution there exists one or multiple least
squares approximations to that system, and we have also provided and proved
explicit expressions to identify them. In the case where A has no full column
rank, computing the solutions requires solving the system ATAx̂ = AT b; when
A has full column rank, the solution can be directly computed by means of the
expression x̂ = R−1QT b.

The computation of the solutions, based on the previous expressions, requires
various features.

• First, the underlying real type (and the required operations) needs an
executable representation.

• Then, the representation (and the operations) chosen for matrices needs
an executable version.

• For the case where A has no full column rank, an executable version of
the Gauss-Jordan algorithm applied to compute the solution of systems
of linear equations needs to be provided.

71

Chapter 4 Algorithms over Fields

As we have already explained in Chapter 3, the first point admits various
solutions. If we seek execution inside of Isabelle, we can rely on the real type
definition and its operations, which have been already set up to be executable.
In this setting, exact real computations are obtained. Unfortunately, Isabelle
is not specially designed as an execution environment, and the performance
obtained is rather poor. As a matter of example, computing the Gram-Schmidt
process of 10 vectors in R10 (that is, apply Gram Schmidt matrix over a 10×10 real
matrix) in Isabelle consumes various minutes, whereas this same computation
is immediate using the code generated to SML or Haskell.

Therefore, our alternative solution consists in making use of the aforemen-
tioned Isabelle code generation facility (see [78,80] and Section 2.2.3) that trans-
lates Isabelle specifications to specifications in various functional languages (we
make use of SML and, in some particular cases, Haskell in this development).
Nevertheless, as it was explained in Chapter 3, the type real is generated by
default to quotients of rational numbers, obtaining again a poor performance.
Additionally, square roots computations are not possible in this setting (only
Gram Schmidt could be executed).

As in the Gauss-Jordan formalisation, we can also reuse the serialisations
presented in Section 3.4, from the Isabelle type real to SML and Haskell na-
tive types. These serialisations allow us to compute in SML and Haskell the
formalised algorithm of the least squares problem, but computations fall in the
conventional rounding errors of double-precision floating-point numbers (despite
the original algorithm being formalised, the computations cannot be trusted).
We present an example of this possibility in Subsection 4.5.6.1.

Fortunately, as we were completing this work, an Isabelle development by
Thiemann [145] was published in the Isabelle Archive of Formal Proofs. This
development provides, among many other interesting features, a data type re-
finement for real numbers of the form p+ q

√
b (with p, q ∈ Q, b ∈ N). In other

words, the refinement provides symbolic computation for that range of numbers.
This refinement is available for computations inside of Isabelle, and also for code
generation to both SML and Haskell. We make use of this development, and
obtain exact symbolic computations, as long as we restrict ourselves to matri-
ces whose inputs are in Q (if we input matrices in Q[

√
b] their normalisation

may belong to Q[
√
b][
√
a], that is out of the scope of the presented Isabelle

development).
The second concern to obtain computations is the representation of matrices.

The representation we have used along the formalisation is the one presented
in the HMA library: it relies on a type vec representing vectors (and then its
iterated construction to represent matrices) which corresponds to functions over
finite domains. Again, we have reused the infrastructure presented in Chapter 3
in order to refine the algorithm to immutable arrays. Then, we have reproduced
in Isabelle the definitions of the QR decomposition for immutable arrays and
proved their equivalence with respect to the vector versions. These lemmas are
then labelled as code lemmas and are used in the evaluation and code generation
processes.

A significant difference appears here with respect to the use of immutable
arrays and the Gauss-Jordan algorithm presented in Section 4.3 (actually, even
compared to any other algorithm presented in this thesis). In the QR decom-
position, we have made use of the second possibility explained in Section 3.3 in
order to implement the addition of two immutable arrays:

72

Section 4.5 The QR Decomposition

definition plus_iarray :: "’a iarray ⇒ ’a iarray ⇒ ’a iarray"

where "plus_iarray A B =

(let length_A = (IArray.length A);

length_B= (IArray.length B);

n=max length_A length_B ;

A’= IArray.of_fun (λa. if a < length_A then A!!a else 0) n;

B’=IArray.of_fun (λa. if a < length_B then B!!a else 0) n

in

IArray.of_fun (λa. A’ !! a + B’ !! a) n)"

This new definition is commutative, and thus it permits to show that iar-
rays over a commutative monoid is an instance of the Isabelle type class
comm monoid add ; then, several proofs involving finite sums (for instance, rang-
ing over the columns of a matrix) of iarrays are simplified. On the other hand,
this definition is more time consuming than the previous one, and it has some
impact on performance since more operations are involved.

The previous setup, together with the refinement of real numbers to field
extensions Q[

√
b], gives place to the following symbolic computations of the

matrices Q and R in Isabelle (computations are internally being performed
in SML transparently to the user; they can also be internally performed in
Isabelle). Since symbolic computations are performed, matrix coefficients are
then shown as strings. Do note that, once the refinement to iarrays has been
performed, the operations internally being executed are the ones over iarrays:

definition "A ==

list_of_list_to_matrix [[1,3/5,3],[9,4,5/3],[0,0,4],[1,2,3]]::real^3^4"

value "print_mat (fst (QR_decomposition A))"

value "print_mat (snd (QR_decomposition A))"

The results obtained follow:

"[["1/83*sqrt(83)", "4/4233*sqrt(8466)", "95/65229*sqrt(130458)"],

["9/83*sqrt(83)", "-11/8466*sqrt(8466)", "-19/130458*sqrt(130458)"],

["0", "0", "3/1279*sqrt(130458)"],

["1/83*sqrt(83)", "91/8466*sqrt(8466)", "-19/130458*sqrt(130458)"]]"

"[["sqrt(83)", "193/415*sqrt(83)", "21/83*sqrt(83)"],

["0", "7/415*sqrt(8466)", "418/12699*sqrt(8466)"],

["0", "0", "2/153*sqrt(130458)"]]"

We can also compute the least squares approximation to systems of equations
with no solution. As we mentioned in Subsection 4.5.5, when A = QR has full
column rank, solving this problem requires computing the inverse of the matrix
R, and this is done thanks to the Gauss-Jordan algorithm that we formalised in
Section 4.3. An interesting situation shows up here, related to the use of Q[

√
b]

extensions.2 The solution to the least squares problem Ax = b can be computed
as x̂ = R−1QT b.

2To clarify the notation: the b presented in Q[
√
b] and in Ax = b are different. In the fist

case b is a natural number. In the second case, b is a vector.

73

Chapter 4 Algorithms over Fields

Given a matrix A, the computation of the matrix Q may involve the use
of field extensions Q[

√
b], where b could be different in each column. Then,

the computation of R = QTA gives place to an upper triangular matrix (with
each row in a possibly different extension of Q[

√
b]), whose inverse is computed

by means of elementary row operations, based on our implementation of the
Gauss-Jordan algorithm.

The least squares solution x̂ of a system Ax = b is computed symbolically
as shown in the following example:

definition "b ≡ list_to_vec [1,2,3,sqrt(2)]::real^4"

value "let Q = fst (QR_decomposition A);

R = snd (QR_decomposition A)

in print_vec ((the (inverse_matrix R) ** transpose Q *v b))"

The computed solution (in negligible time, in SML) is "["12269/17906 -

10443/35812 * sqrt(2)", "-11840/8953 + 5900/8953 * sqrt(2)", "1605/2558

- 57/5116 * sqrt(2)"]".
As we illustrate with the following computation, being b̂ = A x̂, the difference

b− b̂ lies on the left null space of A, and therefore AT (b− b̂) = 0:

value "let Q = fst (QR_decomposition A); R = snd (QR_decomposition A);

b2 = (A *v (the (inverse_matrix R) ** transpose Q *v b))

in print_vec (transpose A *v (b - b2))"

Its output, as expected, is: "["0", "0", "0"]".
Finally, we present the result of a problem related to the computation of the

orbit of the comet Tentax [42, Ex. 1.3.4]:

value "let A = list_of_list_to_matrix

[[1,-0.6691],[1,-0.3907],[1,-0.1219],[1,0.3090],[1,0.5878]]::real^2^5;

b = list_to_vec [0.3704,0.5,0.6211,0.8333,0.9804]::real^5;

QR = (QR_decomposition A); Q = fst QR; R = snd QR

in print_vec (the (inverse_matrix R) ** transpose Q *v b)"

The obtained solution is "["3580628725341/5199785740000",

"251601193/519978574"]". It is obtained in SML thanks to the refinement to
iarrays (computing time is again negligible).

The previous algorithms and computations have been performed by means
of code generation to SML, using the refinement of vectors to iarray and the
one of real to field extensions Q[

√
b], with b ∈ N.

4.5.6.1 A Numerical Experiment

We have also explored a different possibility, which consists in refining the Is-
abelle type real to a type implementening the SML signature Real, i.e. floating-
point numbers. The computations performed through this refinement cannot be
considered formalised anymore, but we introduced them because they neatly il-
lustrate the precision of the QR decomposition in comparison with, for instance,
Gauss-Jordan (and therefore stress its utility), and also because they serve us to
better illustrate the performance of the algorithm with floating-poing numbers.

74

Section 4.5 The QR Decomposition

In order to study the precision of the algorithm with floating-point numbers,
we have used as input for the algorithm the Hilbert matrices, which are well-
known for being ill-conditioned, and thus prone to round-off errors. Hilbert
matrices are defined as:

Hij =
1

i+ j − 1

For instance, the Hilbert matrix in dimension 6, H6 has determinant equal
to 1/186313420339200000 and the order of magnitude of its condition number
is 107:

[[1 ,1/2,1/3,1/4,1/5,1/6],

[1/2,1/3,1/4,1/5,1/6,1/7],

[1/3,1/4,1/5,1/6,1/7,1/8],

[1/4,1/5,1/6,1/7,1/8,1/9],

[1/5,1/6,1/7,1/8,1/9,1/10],

[1/6,1/7,1/8,1/9,1/10,1/11]]

We have computed the least squares solution to the system
H6 x = (1 0 0 0 0 0 5)T using both the QR decomposition and also the Gauss-
Jordan algorithm. The exact solution of the least squares approximation can
be obtained symbolically:

"["-13824","415170","-2907240","7754040","-8724240","3489948"]"

If we now use the refinement from Isabelle real to SML floats, and then use
the QR decomposition and Gauss-Jordan to solve the least squares problem, the
following solutions are obtained (they shall be compared to the exact solution
presented above):

• QR solution using floats:

[-13824.0,415170.0001,-2907240.0,7754040.001,-8724240.001,

3489948.0]: real list

• Gauss-Jordan solution using floats:

[-13808.64215,414731.7866,-2904277.468,7746340.301,-8715747.432,

3486603.907]: real list

As it can be noticed, the rounding-off errors introduced by the Gauss-Jordan
algorithm are several orders of magnitude greater than the ones by the QR de-
composition. At the end of the following subsection, we present the performance
obtained with this particular refinement.

4.5.6.2 Code Optimisations

The implementation of our first version of the QR algorithm admitted different
types of performance optimisation that we also applied. Here we comment on
three of them.

75

Chapter 4 Algorithms over Fields

• First, there was an issue with the conversion from sets to lists in the code
generation process. Let us recover the Isabelle definition introduced in
Subsection 4.5.3, proj_onto a S = setsum (λx. proj a x) S. The defini-
tion applies an operation to the elements of a set S and then computes
their sum. The Isabelle code generator is set up to refine sets to lists
(whenever sets are finite), and thus the previous sum is turned into a
list sum, by means of the following code equation (note that sums are
abstracted to a generic “big operator” F defined for both sets and lists,
and that we have omitted that the underlying structure is a commutative
monoid):

lemma set_conv_list [code]:

"set.F g (set xs) = list.F (map g (remdups xs))"

It is relevant to pay attention to the operation remdups ; the input list
xs that represents the set could contain duplicated elements, and there-
fore they have to be removed from that list for the equality to hold (for
instance, the set {1, 2, 3} can be originated by both xs = [1, 2, 3, 3] and
xs = [1, 2, 3]). When we applied code generation and by means of SML
profiling techniques, we detected that remdups was one of the most time
consuming operations in the QR executions. In our particular case, after
applying Gram_Schmidt_column_k (this operation explicitly uses proj_onto,
and therefore remdups, see Subsection 4.5.3) to the first k columns of a
set, the obtained columns are either 0 or orthogonal. In the second case,
there are no duplicated columns. Interestingly, in the first case, there
might be duplicated columns equal to 0; these columns, when used in
later iterations of Gram_Schmidt_column_k, do not affect the final result.
In any case (with the previous columns being 0 or orthonormal), the fol-
lowing operation, that avoids removing duplicates, is more efficient than
Gram_Schmidt_column_k, and returns the same result when applied to the
column k + 1 of a matrix where Gram_Schmidt_column_k has been applied
to the first k columns. The following definition (where remdups over the
list of columns of the matrix has been avoided) is to be compared with
the one of Gram_Schmidt_column_k):

definition "Gram_Schmidt_column_k_efficient A k = (χ a b.

(if b = from_nat k

then (column b A - listsum

(map (λx. ((column b A · x) / (x · x)) *R x)

(map (λn. column (from_nat n) A) [0..<to_nat b]))

else column b A) $ a)"

The proof of the equivalence between both definitions can be found in file
QR Efficient.thy [14]; let us remark that the property only holds for a
column k + 1 when the first k columns have been already orthogonalised.

We have also used the standard strategy of providing code generation
for sets as lists where duplicates are removed in the computation of inner
products. By default, the inner product is computed over the set of indexes
of the vectors (that are turned into lists to which remdups is applied, even
when the set of indexes is known not to contain repeated elements). The

76

Section 4.5 The QR Decomposition

following code equation avoids this (in our case, unnecessary) check:

lemma [code]:

"inner_iarray A B = listsum (map (λn. A!!n * B!!n)

{0..<IArray.length A})"

These changes divide by > 30 the running time of the QR decomposition
algorithm applied to the Hilbert matrix H100 (whose dimension is 100 ×
100).

• A second improvement on code performance was directly introduced by
the Isabelle developers during the process of completing this work, and
is related to the code generation setup of the function map_range, that
profiling showed as another bottleneck of our programs execution. The
function map_range is internally used to apply a function to a range of
numbers (and therefore it is being used, for instance, in our previous
definitions inner_iarray or Gram_Schmidt_column_k_efficient):

definition map_range[code_abbrev]: "map_range f n = map f [0..<n]"

The original code equation for this definition follows:

lemma map_range_simps [simp, code]:

"map_range f 0 = []"

"map_range f (Suc n) = map_range f n @ [f n]"

This definition, in each iteration, builds two different lists and concate-
nates them. The operation can be completed over a single list, improving
both memory usage and performance. The previous definition of map_range
was removed from the Isabelle library on lists, and the conventional defi-
nition of map over lists used instead:

lemma [code]:

"map f [] = []"

"map f (x # xs) = f x # map f xs"

This change permitted us to divide by a factor of 7 the amount of time
used to compute the QR decomposition of the Hilbert matrix H100.

• Finally, we also realised that the definition of Gram Schmidt had room
for improvement, from a computational point of view. The definition of
Gram Schmidt column k iarrays efficient can be replaced by the following
one (they are extensionally equal):

definition "Gram_Schmidt_column_k_iarrays_efficient2 A k =

tabulate2 (nrows_iarray A) (ncols_iarray A)

(let col_k = column_iarray k A;

col = (col_k - listsum

(map (λx. ((col_k ·i x) / (x ·i x)) *R x)

((map (λn. column_iarray n A) [0..<k]))))

in (λa b. (if b = k then col else column_iarray b A) !! a))"

77

Chapter 4 Algorithms over Fields

This definition makes use of let definitions to bind variables (such
as col_k) that in Gram Schmidt column k iarrays efficient where being
performed (indeed, they were simply access operations) many times.
Proving the equivalence between both definitions is straightforward
(the proof is lemma Gram_Schmidt_column_k_iarrays_efficient_eq in file
QR Efficient.thy of our development [14]).

This final change permitted us to divide by a factor of 8 the amount of
time used to compute the QR decomposition of the Hilbert matrix H100.

Adding up the previous optimisations (whose formalisations sums up 700 lines
in file QR Efficient.thy), the time required to compute the QR decomposition of
the Hilbert matrix H100 was decreased by a factor of ca. 1500 (we used Hilbert
matrices in this example because of their numerical instability; the computing
time improvements shall be comparable for matrices of similar dimension).

The refinement from reals to symbolic computations that we have presented
can be used in SML with matrices of sizes up to 10× 10. In that sense, the re-
finement from Isabelle reals to floating-point numbers outperforms the symbolic
version. The version over floating-point numbers can be applied to matrices of
sizes up to 400 × 400 in reasonable time (ca. 3 minutes in a standard3 laptop;
see the complete benchmarks in Appendix A).

The development also allows further computations, such as the projection
of a vector onto a subspace, the Gram-Schmidt algorithm, orthogonality of vec-
tors, solution of the least squares problem for matrices without full rank, and
can be used to grasp the geometrical implications of the Fundamental The-
orem of Linear Algebra. The previous computations and some other carried
out with the refinement to floating-point numbers can be found in files Ex-
amples QR Abstract Symbolic.thy, Examples QR IArrays Symbolic.thy, Exam-
ples QR Abstract Float.thy and Examples QR IArrays Float.thy of [14].

4.5.7 Related Work

Abstract Algebra is a common topic for the theorem proving community. Some
milestones in this field have been already pointed out in Section 1.4.

Some relevant works in the Coq proof assistant are worth mentioning, such
as the CoqEAL (standing for Coq Effective Algebra Library) effort by Dénès et
al [44]. In Subsection 4.3.3.2 we presented a thorough comparison of our work
and theirs, surveying also their most recent works [39]. Here we just emphasise
that (up to our knowledge) the QR decomposition has not been formalised
in CoqEAL (or in any other theorem prover), that, over similar algorithms,
computation times were favourable to our approach (probably because of the
use of immutable arrays instead of lists to implement vectors and matrices), and
also that symbolic computation has not been considered in CoqEAL (again, to
the best of our knowledge).

Also in Coq, Gonthier [71] implemented a version of Gaussian elimination
(producing two different matrices, one describing the column space, the other
one the row space, and a number, equal to the rank of the input matrix) that he

3The benchmarks have been carried out in laptop with an Intel Core i5-3360M processor,
4 GB of RAM, PolyML 5.5.2-3 and Ubuntu 14.04.

78

Section 4.5 The QR Decomposition

later applied for the computation of several basic operations over linear maps;
for instance, the computation of the four fundamental subspaces of a given
matrix (we formalised similar computations in Section 4.3 by means of the
Gauss-Jordan algorithm, and thus performing, a priori, more elementary opera-
tions than he does in Gaussian elimination), and also basic operations between
subspaces (union, intersection, inclusion, addition). One of its most prominent
features is the simplicity that he obtains in proofs of properties concerning the
rank and the fundamental subspaces. It seems that he has formalised neither
inner product spaces nor orthogonality and the subsequent concepts (such as
Gram-Schmidt, QR decomposition, and the least squares approximation). Since
the focus of Gonthier’s work seems to be in the formalisation of Linear Algebra,
concerns about computability are neither tackled.

4.5.8 Conclusions

This formalisation can be considered as an advanced exercise in theorem prov-
ing, but at the same time it has required the use of well-established libraries
(such as the HMA library) and the adaptation and setup of some previous
works. Some of these works had been completed by us (such as the Rank-
Nullity theorem, the Gauss-Jordan development, and the code refinements to
iarrays and real numbers in Haskell) but some others tools were new to us (for
instance, real numbers and the representation of field extensions). It is worth
noting that our development relies on another 10 previous developments in the
Isabelle AFP, two of them developed by us, and 8 of them from other authors.
In that sense, with an affordable effort (the complete development sums up
ca. 2700 lines, plus 2100 lines devoted to refinements, code generation, and
examples), and also with a certain amount of previous knowledge of the un-
derlying system, we have developed a set of results and formalised programs in
Linear Algebra that corresponds to various lessons of an undergraduate text in
mathematics (for instance, material which sums up 60 pages in the textbook by
Strang [142, Sect. 3.6 and Chap. 4]). As a matter of comparison, the results
presented in [142, Chap. 1 to Sect. 3.5], which include at least all the results
that we formalised in our previous work about the Gauss-Jordan algorithm and
its applications (Section 4.3) and additional previous notions of the HMA li-
brary and code generation (explained in Chapter 3), took us more than 14000
lines of Isabelle code (see Tables A.1 and A.2). From that point of view, we
have to stress that this work would have been impossible without such previous
developments; as it usually happens in mathematics, new results have to be
built on top of established results. This principle is well-known in the formal
methods community, but it is difficult to achieve; this work shows a successful
case study where the principle has been materialised.

As further work, at least two possibilities show up. First, the results pre-
sented in Subsections 4.5.3 and 4.5.4 admit a generalisation from real inner
product spaces to inner product spaces. The HMA library would also benefit
from such a generalisation. Second, the application of the QR decomposition
to numerical problems such as the computation of the eigenvalues, and also
the formalisation of the related Singular Value Decomposition would be of wide
interest.

79

Chapter 5

Algorithms involving
Matrices over Rings

5.1 Introduction

The previous chapter shows the formalisation of two Linear Algebra algorithms
involving matrices over fields: the Gauss-Jordan algorithm and the QR de-
composition. Despite the fact that matrices over fields have been more studied
throughout time, matrices over rings possess remarkable applications. Two well-
known examples of this kind of matrices are integer matrices and matrices of
polynomials over a field (also denoted as Z and F [x]-matrices respectively).

Integer matrices are widely used, for instance, in graph theory [27] and com-
binatorics [107]. Systems of diophantine equations can be represented using
those matrices as well. Polynomial matrices are primarily used to compute the
characteristic polynomial of a matrix A. The roots of the characteristic polyno-
mial are the eigenvalues. Once the eigenvalues are known (λ), the eigenvectors
can be obtained solving the homogeneous system of equations (A− λI) · v = 0
or by means of the Cayley-Hamilton theorem. The characteristic polynomial of
a matrix has several applications, such as computing its inverse and performing
powerful simplifications computing its powers. Eigenvalues and eigenvectors are
useful both in mathematics (for instance, in differential equations [154] and fac-
tor analysis in statistics [37]) and in other varied fields, such as biometrics [65],
quantum mechanics [114] and solid mechanics [25]. They are also used in the
PageRank computation [102] (the algorithm used by Google Search to rank
websites in their search engine results).

In this chapter we will show the formalisation of two algorithms involving
matrices over more general rings than fields. Section 5.2 shows how we have
formalised in Isabelle/HOL an algorithm to compute the echelon form (see Def-
inition 8) of a matrix. This allows carrying out similar computations to the
ones that we did by means of the Gauss-Jordan algorithm. Let us note that
the Gauss-Jordan algorithm can only be applied to matrices over a field and
the echelon form algorithm enables computations to be done over more general
rings. It is worth remarking again that the Gauss-Jordan algorithm developed
in Section 4.3 is applied to matrices whose elements belong to a field. Therefore,
it is useful for doing computations, for instance, with matrices over Z2, Q, R

81

Chapter 5 Algorithms over Rings

and C, but it cannot be used for matrices over rings, such as integer matrices.
In Section 5.3 the first ever formalisation (to the best of our knowledge) of the
Hermite normal form of a matrix (see Definition 13) in an interactive theorem
prover is presented, as well as a proof of its uniqueness.

5.2 Echelon Form

5.2.1 Introduction

A classical mathematical problem is the transformation of a matrix over a ring
into canonical forms, which have many applications in computational Linear
Algebra. These canonical forms contain fundamental information of the original
matrix, such as the determinant and the rank. Examples of canonical forms
are the Hermite normal form (usually applied to integer matrices), the Smith
normal form and the reduced row echelon form. The most basic canonical form
is the one called echelon form. Some authors, for instance Leon [104], use such
a term to mean the output of the Gaussian elimination (which can only be
applied to matrices over fields). However, the concept can be generalised to
more general rings; other authors [140] have studied this generalisation and
present the algorithm to compute the echelon form of a matrix over a principal
ideal domain. Nevertheless, this canonical form can be defined over more general
structures: its existence can be proved over matrices whose coefficients belong
to a Bézout domain [89].

An algorithm to transform a matrix to its echelon form has many appli-
cations, such as the computation of determinants and inverses, since it is the
analogous to the Gaussian elimination but involving more general rings. In
addition, the echelon form can be used as a preparation step to compute the
Hermite normal form of a matrix, and thus, to compute ranks and solutions of
systems of linear diophantine equations.

Another advantage of having an algorithm to transform a matrix into its
echelon form is that, as a by-product, the characteristic polynomial can be
easily obtained (even though there exist other more efficient ways of computing
characteristic polynomials).

In this section, we present a formalisation in Isabelle/HOL of an algorithm
to obtain the echelon form of a given matrix. (The full development was pub-
lished in the AFP [50].) We have formalised the algorithm over Bézout domains,
but its executability is guaranteed only over Euclidean domains. This is possi-
ble since we have formalised the algorithm including an additional parameter:
the operation that given two elements returns their Bézout coefficients. Let
a and b be two elements of a Bézout domain; it is known that there exist p,
q and g such that pa+ qb = g where g is the greatest common divisor of a
and b. Bézout domains pose this operation, but neither its uniqueness nor its
executability are guaranteed. The executability of this operation is at least
guaranteed on Euclidean domains, based on the division algorithm. This way,
we have been able to formalise the existence and correctness of an algorithm
to obtain an echelon form over Bézout domains and get the computation over
Euclidean domains. Even more, if one were able to provide an executable opera-
tion to compute Bézout coefficients in a concrete Bézout domain, the algorithm
would become computable in that structure as well. That is, we can define a

82

Section 5.2 Echelon Form

computable version of the Bézout operation for Euclidean rings. Since there is
no generally computable version of the Bézout operation for all Bézout domains,
other Bézout domains need their own version of computable Bézout operations.
These transformations into echelon forms allow computing inverses and deter-
minants of matrices, as well as the characteristic polynomial. The wide range
of applications of these concepts constitute a motivation to formalise such an
algorithm.

The utility of this part of the thesis is threefold. First, we have enhanced
the Isabelle ring library based on type classes including some structures, con-
cepts and theorems that were missing: Bézout domains, principal ideal domains,
GCD domains, subgroups, ideals, and more. Second, we have formalised an al-
gorithm to transform a matrix into an echelon form, parametrised by a Bézout
coefficients operation (that establishes if the algorithm will or will not be com-
putable). As we have already said, this allows us to formalise the existence of
the algorithm over Bézout domains and the computation over Euclidean do-
mains. To improve the performance, a refinement to immutable arrays has also
been carried out. Verified code to compute determinants and inverses (over
matrices whose elements belong to a Euclidean domain, such as the integers
and the univariate polynomials over a field) is generated, and also applied to
compute characteristic polynomials of matrices over fields. Finally, we have
successfully reused the infrastructure presented in Chapter 3, which was devel-
oped to formalise and refine Linear Algebra algorithms. This work shows its
usefulness.

This section is divided as follows. Subsection 5.2.2 presents the algebraic
structures we have implemented in Isabelle and the hierarchy of the involved
classes. In Subsection 5.2.3 we explain both the formalisation of the algo-
rithm and its relationship with the Gauss-Jordan development presented in
Section 4.3. Subsection 5.2.4 presents the formalisation of some of the direct
applications of the algorithm: computation of determinants, inverses and the
characteristic polynomial of a matrix. Moreover, some other computations re-
lated to the Cayley-Hamilton theorem are shown as well as the verified refine-
ment of the algorithm to immutable arrays in order to improve the performance.
Subsection 5.2.5 shows some related work presented in the literature. Finally,
conclusions and possible further work are presented in Subsection 5.2.6.

5.2.2 Algebraic Structures, Formalisation, and Hierarchy

Let us recall mathematical definitions of the main algebraic structures involved
in this development as well as their formalisation that we have carried out in
Isabelle.

Figure 5.1 shows the hierarchy of the main Isabelle type classes involved in
the development. The arrows express strict inclusions (all of them have been
proven in Isabelle); hence by the transitivity property of the inclusion one could
figure out the dependencies and subclasses among the structures. As we will see
later, there exist more classes involved in the formalisation, but Figure 5.1 shows
the main ones. The structures that we have had to introduce are presented in
bold.

The algebraic structures presented in this subsection and their properties
have been formalised in the file Rings2.thy of [50]. Their mathematical defini-
tions can be obtained from standard literature [36, 64, 134]. Let us start with

83

Chapter 5 Algorithms over Rings

semiring

semiring gcd

33

comm ring 1

OO

semiring div

kk

GCD ring

77

idom

ff

Bezout ring

OO

GCD domain

OOkk

pir gcd //

OO

pir

OO

Bezout domain

kk OO

pid gcd

gg

// pid

kk OO

OO

pir div

gg

pid div

ff

oo

euclidean ring

33

euclidean ring gcd

OO

77

field

OO

Figure 5.1: Hierarchy of the main classes appearing in the echelon form devel-
opment (arrows express inclusions; transitive ones are left out). The structures
that we have had to introduce are presented in bold.

84

Section 5.2 Echelon Form

the mathematical concept of GCD ring and GCD domain.

Definition 14. A GCD ring R is a ring where every pair of elements has a
greatest common divisor, that is, for a, b ∈ R there exists gcd(a, b) ∈ R such
that:

• gcd(a, b) | a

• gcd(a, b) | b

• g ∈ R ∧ (g | a) ∧ (g | b) =⇒ g | gcd(a, b)

If the ring is an integral domain (it has no zero divisors), the structure is called
GCD domain.

We have implemented them in Isabelle avoiding fixing a gcd operation. The
existence of a gcd for each pair of elements a and b is just assumed:

class GCD_ring = comm_ring_1 +

assumes exists_gcd: "∃ d. d dvd a ∧ d dvd b

∧ (∀ d’. d’ dvd a ∧ d’ dvd b −→ d’ dvd d)"

class GCD_domain = GCD_ring + idom

Bézout rings are a structure closely related to the previous one:

Definition 15. A Bézout ring R is a ring where Bézout’s identity holds, that
is, for a, b ∈ R there exist p, q, d ∈ R such that:

• pa+ qb = d

• d is a greatest common divisor of a and b

If the ring is an integral domain, the structure is called Bézout domain.

Thus, the implementation in Isabelle that we have chosen for Bézout rings
is quite similar to the one presented for GCD rings:

class bezout_ring = comm_ring_1 + assumes exists_bezout:

"∃ p q d. (p*a + q*b = d) ∧ (d dvd a) ∧ (d dvd b)

∧ (∀ d’. (d’ dvd a ∧ d’ dvd b) −→ d’ dvd d)"

class bezout_domain = bezout_ring + idom

It is simple to prove that any Bézout ring is a GCD ring:

subclass GCD_ring

proof
fix a b

show "∃ d. d dvd a ∧ d dvd b

∧ (∀ d’. d’ dvd a ∧ d’ dvd b −→ d’ dvd d)"

using exists_bezout[of a b] by auto

qed

However, it is worth noting that the structures just assume the existence of
the gcd and Bézout coefficients for any two elements, but say nothing about how

85

Chapter 5 Algorithms over Rings

to compute them (the structures could be non-constructive, in the sense that no
witnesses could be obtained). Moreover, both the gcd and Bézout coefficients
could be non-unique.

Before introducing the concept of principal ideal ring, ideals must be pre-
sented:

Definition 16. Let R be a ring. A nonempty subset I of R is called an ideal
if:

• I is a subgroup of the abelian group R, that is, I is closed under subtrac-
tion;

a, b ∈ I =⇒ a− b ∈ I

• I is closed under multiplication by any ring element, that is,

a ∈ I, r ∈ R =⇒ ra ∈ I

The ideal generated by a set S ⊆ R is the smallest ideal containing S, that
is,

〈S〉 =
⋂
{I | ideal I ∧ S ⊆ I}

A principal ideal is an ideal that can be generated by an element a ∈ R, that
is,

I = 〈a〉 = {ra | r ∈ R}

The implementation in Isabelle is done in a straightforward manner:

definition "ideal I = (subgroup I ∧ (∀ a∈I. ∀ r. r*a ∈ I))"

definition "ideal_generated S =
⋂
{I. ideal I ∧ S ⊆ I}"

definition "principal_ideal S = (∃ a. ideal_generated {a} = S)"

Definition 17. A principal ideal ring (denoted as PIR) R is a ring where ev-
ery ideal is a principal ideal. If the ring is also an integral domain, the structure
is said to be a principal ideal domain (denoted as PID).

Once the concepts of ideal and principal ideal have been defined in Isabelle,
principal ideal rings are implemented in a direct way:

class pir = comm_ring_1

+ assumes all_ideal_is_principal: "ideal I =⇒ principal_ideal I"

class pid = idom + pir

In addition, some important lemmas have been demonstrated over this struc-
ture, for instance the ascending chain condition, which is fundamental for prov-
ing that any PID is a unique factorization domain (i.e., every element can be
written in a unique way as a product of prime elements).

Theorem 13 (The ascending chain condition). Any principal ideal domain
D satisfies the ascending chain condition, that is, D cannot have a strictly
increasing sequence of ideals

I1 ⊂ I2 ⊂ . . .

where each ideal is properly contained in the next one.

86

Section 5.2 Echelon Form

Proof. Suppose to the contrary that there is such an increasing sequence of
ideals. Consider the ideal

U =
⋃
i∈N

Ii

which must have the form U = 〈a〉 for some a ∈ U . Since a ∈ Ik for some k,
we have Ik = Ij for all j ≥ k, contradicting the fact that the inclusions are
proper.

Our corresponding proof in Isabelle requires 30 lines. We have formalised
an equivalent statement.

context pir

begin

lemma ascending_chain_condition:

fixes I::"nat⇒’a set"

assumes all_ideal: "∀ n. ideal (I(n))" and inc: "∀ n. I(n) ⊆ I(n+1)"

shows "∃ n. I(n)=I(n+1)"

Thanks to this result, it is straightforward to present the ascending chain
condition in Isabelle by means of a statement closer to the mathematical one.

lemma ascending_chain_condition2:

"@ I::nat⇒’a set. ∀ n. ideal (I n) ∧ I n ⊂ I (n + 1)"

Let us show that any PIR is a Bézout ring. This proof is not immediate,
but we have just needed about 90 lines of code in Isabelle. The demonstration
is done as follows: given two elements a and b of a PIR, since every ideal is
principal we can obtain an element d such that the ideal generated by d is equal
to the ideal generated by the set {a, b}. Finally, it is shown that d is indeed a
gcd, completing the proof.

subclass (in pir) bezout_ring

The mathematical definition of Euclidean ring is the following one:

Definition 18. A Euclidean ring is a ring R with a Euclidean norm
f : R→ N such that, for any a ∈ R and nonzero b ∈ R:

• f(a) ≤ f(ab);

• There exist q, r ∈ R such that a = bq + r and either r = 0 or f(r) < f(b).

If the ring is also an integral domain, the structure is said to be a Euclidean
domain.

We have reused the representation of Euclidean ring that was already in the
Isabelle library.1 It was developed by Eberl for a univariat form of Sturm’s
theorem [61]. Note that he uses ring to refer to an integral domain.

1Let us note that Isabelle libraries are continuously evolving. We present the current
situation in the time this thesis is written, that is, before the Isabelle 2016 official release.
Many modifications on the library are being carried out (specially by Eberl and Haftmann),
and probably some results, instances and structures presented here will be part of the standard
library after the Isabelle 2016 release.

87

Chapter 5 Algorithms over Rings

class euclidean_semiring = semiring_div +

fixes euclidean_size :: "’a ⇒ nat"

fixes normalisation_factor :: "’a ⇒ ’a"

assumes mod_size_less [simp]:

"b 6= 0 =⇒ euclidean_size (a mod b) < euclidean_size b"

assumes size_mult_mono:

"b 6= 0 =⇒ euclidean_size (a * b) ≥ euclidean_size a"

assumes normalisation_factor_is_unit [intro,simp]:

"a 6= 0 =⇒ is_unit (normalisation_factor a)"

assumes normalisation_factor_mult: "normalisation_factor (a * b) =

normalisation_factor a * normalisation_factor b"

assumes normalisation_factor_unit:

"is_unit x =⇒ normalisation_factor x = x"

assumes normalisation_factor_0 [simp]: "normalisation_factor 0 = 0"

class euclidean_ring = euclidean_semiring + idom

Both the integers (Z) and the univariate polynomials over a field (F [x]) form
Euclidean domains. In the case of the integer numbers, a Euclidean norm is the
absolute value. In the case of the polynomials, a Euclidean norm is 2deg(p(x))

(note that we assume deg(0) = −∞). We have proved that F [x] is an instance
of the euclidean ring class (Z was already proved to be an instance of it). In
addition, we have proved that any Euclidean domain is a PID (about 50 lines)
and that any field is a Euclidean domain.

instantiation poly :: (field) euclidean_ring

instantiation int :: euclidean_ring

In a Euclidean ring, a Euclidean algorithm can be defined to compute the
gcd of any two elements. Furthermore, this algorithm can always be used to
obtain Bézout coefficients. This constructive operation is presented in Isabelle
in the euclidean ring class with the name gcd euclid.

Note that one additional operation was fixed by Eberl: the normalisation
factor, which returns a unit such that dividing any element of the ring by that
unit yields the same result for all elements in the same associationclass, effec-
tively normalising the element. For instance, for integers, the normalisation
factor is the sign of the number; for polynomials, it is the leading coefficient.

Eberl also defined two more classes: euclidean semiring gcd and
euclidean ring gcd, where the operations gcd, lcm, Gcd (the gcd of the ele-
ments of a given set) and Lcm (analogous to the previous one) are fixed as
part of the structure. We have proved that both Z and F [x] are also instances
of the euclidean ring gcd class. In addition, some theorems presented in the
euclidean ring gcd class have been generalised to the euclidean ring one.

For the sake of completeness, we have also implemented rings where for each
two elements there exists a gcd in a constructive way, i.e. not only assuming the
existence of a gcd operation but fixing it. The corresponding subclasses have
also been proved:

class semiring_gcd = semiring + gcd +

assumes "gcd a b dvd a"

and "gcd a b dvd b"

88

Section 5.2 Echelon Form

and "c dvd a =⇒ c dvd b =⇒ c dvd gcd a b"

class pir_gcd = pir + semiring_gcd

class pid_gcd = pid + pir_gcd

subclass (in euclidean_ring_gcd) pid_gcd proof
fix a b c

show "gcd a b dvd a" by (simp add: gcd_dvd1)

show "gcd a b dvd b" by (simp add: gcd_dvd2)

assume ca: "c dvd a" and cb: "c dvd b" show "c dvd gcd a b"

by (simp add: ca cb dvd_gcd_iff)

qed

subclass (in euclidean_semiring_gcd) semiring_gcd

proof
fix a b c

show "gcd a b dvd a" by (simp add: gcd_dvd1)

show "gcd a b dvd b" by (simp add: gcd_dvd2)

assume ca: "c dvd a" and cb: "c dvd b" show "c dvd gcd a b"

by (simp add: ca cb dvd_gcd_iff)

qed

Let us note that when proving that a given type is an instance of the
euclidean ring gcd class, one has to prove, apart from the properties for be-
ing a Euclidean domain, that the type includes a gcd operation and provide a
witness of it.

The semiring div class is defined as a structure where there are two fixed
operations: div and mod, so there is an explicit (constructive) divisibility (note
that semiring div is not a subclass of semiring, because semiring does not have
such fixed operations). Hence we can distinguish between constructive struc-
tures (where the operations are fixed, for instance semiring div, semiring gcd,
. . .) and possibly non-constructive structures (where it is just assumed the
existence of the operations, for instance pir, bezout domain, . . .).

For a full description of other algebraic structures related to the ones pre-
sented here (semirings, fields, unique factorization domains) and the relation-
ships among them, see [64, 94, 134]. The following chain of strict inclusions is
satisfied (as it has been explained in this section, all of them have been proven
in Isabelle):

Field ⊂ Euclidean ring ⊂ Principal ideal ring ⊂ Bézout ring ⊂ GCD ring

5.2.3 Parametricity of Algorithms and Proofs

At the beginning of this section, we have said that our aim is to formalise
an algorithm proving that there exists the echelon form of any matrix whose
elements belong to a Bézout domain. In addition, we want to compute such
an echelon form, so we will need computable gcd and bezout operations which
exist, at least, over Euclidean domains. On the contrary, over more general
algebraic structures the existence of gcd and Bézout coefficients is guaranteed,
but maybe its computation is not. In order to specify gcd and bezout in such a
way that they can be introduced in Bézout domains (bezout domain class) and

89

Chapter 5 Algorithms over Rings

linked to their already existing computable definitions in Euclidean domains
(euclidean ring class), we have considered several options:

1. We could define a gcd in Bézout rings and GCD rings as follows:

definition "gcd bezout ring a b = (SOME d. d dvd a ∧ d dvd b ∧
(∀ d’. d’ dvd a ∧ d’ dvd b −→ d’ dvd d)"

The operator SOME arises since the gcd could be non-computable and there
could be more than one gcd for the same two elements. If an operation to
compute Bézout coefficients is defined in a similar way, using it one could
formalise the existence of an algorithm to obtain the echelon form over a
Bézout domain.

However, one would not be able to execute such an operation over Eu-
clidean domains (neither over constructive Bézout domains) because it is
not possible to demonstrate that gcd bezout ring is equal to gcd eucl (the
constructive operation over Euclidean domains to compute the gcd of two
elements). Let us remark that the gcd is not unique over Bézout rings
and GCD rings, and with the gcd bezout ring we would not know which
of the possible greatest common divisors is returned by the operator SOME.

2. Based on the previous option, one could create a bezout ring norm class
where the normalisation factor is fixed. Then, one could define a nor-
malised gcd over such a class:

definition "gcd bezout ring norm a b = gcd bezout ring a b div

normalisation factor (gcd bezout ring a b)"

Now one could demonstrate that: gcd bezout ring norm = gcd eucl. This
would allow us to execute the gcd function, but with Bézout coefficients
this is not possible since they are never unique.

3. The third option (and the chosen one) consists in defining the echelon
form algorithm over Bézout domains and parameterising the algorithm by
a bezout operation which must satisfy the predicate is bezout ext, which
is presented below. From the caller’s point of view, the operation can be
considered an oracle. Then the correctness of the algorithm can be proven
over Bézout domains since in such structures there always exists a possibly
non-constructive operation which satisfies such a predicate. In addition,
it can be executed over Euclidean domains, since we can demonstrate that
there exists a computable bezout operation which satisfies the properties.

The properties that a bezout operation must satisfy are fixed by means of
the predicate is bezout ext. It checks if the input is a function that given two
parameters a and b returns 5 elements (p, q, u, v, d) where d is a gcd of a and
b, p and q are the Bézout coefficients such that pa + qb = d, and u and v are
such that du = −b and dv = a. 2 We cannot define directly u = −b/d and
v = a/d because in abstract structures, such as Bézout rings, we do not have

2The elements u and v appear since they will be used in the echelon form algorithm.

90

Section 5.2 Echelon Form

explicit divisibility (if we do so, we would have to work over a bezout ring div

class instead of using the more general bezout ring one).

context bezout_ring

begin

definition is_bezout_ext :: "(’a⇒’a⇒(’a×’a×’a×’a×’a)) ⇒ bool"

where "is_bezout_ext (bezout) =

(∀ a b. let (p, q, u, v, gcd_a_b) = bezout a b in

p*a+q*b=gcd_a_b ∧ (gcd_a_b dvd a) ∧ (gcd_a_b dvd b)

∧ (∀ d’. d’ dvd a ∧ d’ dvd b −→ d’ dvd gcd_a_b)

∧ gcd_a_b * u = -b ∧ gcd_a_b * v=a)"

end

We have proven that there exists a (non-computable) function satisfying
such a predicate over a Bézout ring :

context bezout_ring

begin

lemma exists_bezout_ext: "∃ bezout_ext. is_bezout_ext bezout_ext"

Finally, we can define a computable operation (euclid ext2) over Euclidean
domains which satisfies the predicate is bezout ext.

context euclidean_ring

begin

definition "euclid_ext2 a b = (let e = euclid_ext a b;

p = fst e; q = fst (snd e); d = snd(snd e)

in (p,q,-b div d,a div d,d))"

lemma is_bezout_ext_euclid_ext2: "is_bezout_ext (euclid_ext2)"

Thanks to the lemma presented above, we know that there exists a con-
structive bezout operation over Euclidean domains. Therefore, if we define an
algorithm based on it, it will be executable. Nevertheless, if one wants to work
in more abstract structures than Euclidean domains, one must provide a com-
putable operation if execution is pursued.

Finally, the approach to demonstrate the existence and correctness of the
algorithm over Bézout domains and the execution over Euclidean domains is
the following:

1. Define the algorithm over Bézout domains. The algorithm itself (operation
echelon form of) will have a bezout operation as an additional parameter:

definition "echelon_form_of A bezout = echelon_form_of_upt_k A

(ncols A - 1) bezout"

2. Formalise the correctness of the algorithm over Bézout domains, under
the premise that bezout satisfies the corresponding properties (the pred-

91

Chapter 5 Algorithms over Rings

icate is bezout ext). We have shown previously that an operation satis-
fying such properties always exists over Bézout domains (see the lemma
exists bezout ext). For example, the following lemma is the final result
that says that the algorithm (echelon form of) indeed produces an echelon
form (the predicate echelon form) by means of elementary transformations
(so there exists an invertible matrix which transforms the original matrix
into its echelon form).

theorem echelon_form_of_invertible:

fixes A::"’a::{bezout_domain}^’cols::{mod_type}^’rows::{mod_type}"

assumes "is_bezout_ext bezout"

shows "∃ P. invertible P ∧ P**A = (echelon_form_of A bezout)

∧ echelon_form (echelon_form_of A bezout)"

3. Finally, as we know that the operation euclid ext2 has been defined
over Euclidean domains, it is computable, and it satisfies the predicate
is bezout ext, we will have a computable algorithm and the lemma stat-
ing that the algorithm produces a matrix in echelon form contains no
premises.

corollary echelon_form_of_euclidean_invertible:

fixes A::"’a::{euclidean_ring}^’cols::{mod_type}^’rows::{mod_type}"

shows"∃ P. invertible P ∧ P**A = (echelon_form_of A euclid_ext2)

∧ echelon_form (echelon_form_of A euclid_ext2)"

5.2.3.1 An Algorithm Computing the Echelon Form of a Matrix,
Parametrically

It is time to introduce the parametrised algorithm to compute the echelon form
of a matrix that we have formalised. In broad terms, the algorithm will be
implemented traversing the columns. The reduction of a column k works as
follows. Given the column k and a triple (A, i, bezout), where A is the matrix, i
the position of the column k where the pivot should be placed and bezout is the
operation that must satisfy the predicate is bezout ext, the output is another
triple (A′, i′, bezout), where A′ is the matrix A with the elements of column k
equal to zero below i, i′ is the position where the next pivot should be placed
in column k + 1 and bezout is the same operation. The main steps are:

1. If the pivot (the element in the position (i, k)) and all elements below it
are zero, then it is necessary to do nothing. Just (A, i, bezout) is returned.

2. If not, if all elements below the pivot are zero but the pivot is not, then
we just have to increase the pivot, i.e. i′ = i+ 1. Thus, (A, i+ 1, bezout)
is returned.

3. If not, then we have to look for a nonzero element below i, move it to the
position (i, k) (where the pivot must be placed) interchanging rows and
reduce the elements below the pivot by means of Bézout coefficients. We
call this matrix A′. Hence, (A′, i+ 1, bezout) is returned.

4. Apply the previous steps to the next column.

92

Section 5.2 Echelon Form

Let us explain in detail the algorithm. First of all, we have to define a special
kind of matrices: the ones that have Bézout coefficients in the suitable place to
reduce two elements of a column of a matrix. We will call this the (elementary)
Bézout matrix:

EBezout =

1 0 · · · · · · · · · · · · · · · 0
. . .

0 · · · p · · · q 0 · · · 0
...

...
. . .

...
0 · · · u · · · v 0 · · · 0
0 · · · · · · · · · · · · 1 · · · 0

. . .

0 · · · · · · · · · · · · · · · · · · 1

The coefficients not explicitly shown in this matrix are assumed to be 0,

except for the presented ones in the diagonal, which are 1. If p and q are Bézout
coefficients of Aa,j and Ab,j such that pAa,j + qAb,j = d; du = −Ab,j and
dv = Aa,j (that is, (p, q, u, v, d) are the output of a function which satisfies the
predicate is bezout ext applied to the elements Aa,j and Ab,j) then this matrix
satisfies that:

EBezout ·

∗ · · · ∗

∗ · · · Aa,j · · · ∗
...

∗ · · · Ab,j · · · ∗
∗ · · · ∗

=

∗ · · · ∗

∗ · · · d · · · ∗
...

∗ · · · 0 · · · ∗
∗ ∗

Bézout matrices have good properties, such as being invertible and having

determinant always equal to 1. Their implementation in Isabelle is:

context bezout_ring

begin

definition bezout_matrix ::"’a^’cols^’rows ⇒ ’rows ⇒ ’rows ⇒ ’cols⇒
(’a⇒’a⇒(’a × ’a × ’a × ’a × ’a))⇒’a^’rows^’rows"

where "bezout_matrix A a b j bezout

= (let (p, q, u, v, d) = bezout (A $ a $ j) (A $ b $ j) in

(χ x y. if x = a ∧ y = a then p else

if x = a ∧ y = b then q else

if x = b ∧ y = a then u else

if x = b ∧ y = b then v else

(if x=y then 1 else 0)))"

end

We can multiply the input matrix A by different elementary Bézout matrices
in order to reduce all the elements below the pivot i in a column j. This is carried
out by means of a recursive function:

93

Chapter 5 Algorithms over Rings

primrec bezout_iterate :: "’a::{bezout_ring}^’cols^’rows::{mod_type} ⇒
nat ⇒ ’rows::{mod_type}⇒’cols ⇒ (’a⇒’a⇒(’a × ’a × ’a × ’a × ’a))

⇒ ’a^’cols^’rows::{mod_type}"

where "bezout_iterate A 0 i j bezout = A"

| "bezout_iterate A (Suc n) i j bezout =

(if (Suc n) ≤ to_nat i then A else

bezout_iterate (bezout_matrix A i (from_nat (Suc n)) j bezout ** A) n

i j bezout)"

The following definition is the key operation that applies the previous oper-
ation in one column k of the matrix, that is, the algorithm chooses the pivot,
puts it in the suitable place (the position (i, k)) and reduces the elements below
it by means of the recursive bezout iterate operation presented above.

definition "echelon_form_of_column_k A’ k

= (let A = fst A’; i = fst (snd A’); bezout = snd (snd A’);

from_nat_k = from_nat k; from_nat_i = from_nat i in

if (∀ m≥from_nat_i. A $ m $ from_nat_k = 0) ∨ (i = nrows A) then

(A, i, bezout)

else

if (∀ m>from_nat_i. A $ m $ from_nat_k = 0) then

(A, i + 1, bezout)

else

let n = LEAST n. A $ n $ from_nat_k 6= 0 ∧ from_nat_i ≤ n;

interchange_A = interchange_rows A from_nat_i n

in

(bezout_iterate (interchange_A) (nrows A - 1) from_nat_i

from_nat_k bezout, i + 1, bezout))"

The previous operation is the one which carries out the four main steps
presented at the beginning of this section. Interestingly, we have reused
some of the operations presented in Chapter 3. Folding the operation
echelon form of column k over all columns of the matrix, we define the algo-
rithm:

definition "echelon_form_of_upt_k A k bezout =

(fst (foldl echelon_form_of_column_k (A,0,bezout) [0..<Suc k]))"

definition "echelon_form_of A bezout =

echelon_form_of_upt_k A (ncols A - 1) bezout"

It is worth remarking that every operation used in the algorithm has bezout

(an operation that must return appropriate elements (p, q, u, v, d)) as an addi-
tional parameter.

5.2.3.2 Formalising the Computation of the Echelon Form of a Ma-
trix, Parametrically

Let us explain how the formalisation has been accomplished. The mathematical
definition of echelon form was presented in Subsection 2.1.3. Now we have to
implement it in Isabelle. To do that, we define the concept echelon form up to
the column k by means of a predicate. Then the predicate echelon form will

94

Section 5.2 Echelon Form

just be echelon form up to the last column:

definition echelon_form_upt_k ::

"’a::{bezout_ring}^’cols::{mod_type}^’rows::{finite,ord}⇒nat⇒bool"

where "echelon_form_upt_k A k = ((∀ i. is_zero_row_upt_k i k A −→
¬ (∃ j. j>i ∧ ¬ is_zero_row_upt_k j k A)) ∧
(∀ i j. i<j ∧ ¬ (is_zero_row_upt_k i k A) ∧ ¬ (is_zero_row_upt_k j

k A) −→ ((LEAST n. A $ i $ n 6= 0) < (LEAST n. A $ j $ n 6= 0))))"

definition "echelon_form A = echelon_form_upt_k A (ncols A)"

The sketch of the proof is the following:

1. Show the basic properties of the bezout matrix : it is invertible and its
determinant is equal to 1.

2. Show by induction that the recursive function bezout iterate indeed re-
duces all the elements below the pivot.

3. Show that echelon form of column k works properly, which means that it
reduces the column k and preserves the elements of the previous columns.

4. Apply induction: if a matrix A is in echelon form up to the column k and
echelon form of column k is applied to A in the column k + 1, then the
output will be a matrix in echelon form up to the column k + 1.

The formalisation is presented in the file Echelon Form.thy of [50]. Just
one remark: remember that our approach consists of including an additional
parameter bezout that must satisfy is bezout ext. So each lemma must have
such an assumption. For instance, the following lemma states that bezout matrix

has determinant equal to 1:

lemma det_bezout_matrix:

fixes A::"’a::{bezout_domain}^’cols^’rows::{finite,wellorder}"

assumes ib: "is_bezout_ext (bezout)"

and a_less_b: "a < b" and aj: "A $ a $ j 6= 0"

shows "det (bezout_matrix A a b j bezout) = 1"

Thanks to the infrastructure developed in Chapter 3 and in the Gauss-Jordan
development (Section 4.3), we have been able to reuse many definitions and
properties, saving effort. Even so, the proof of the correctness of the algorithm
has taken about 3000 lines. The final theorem is the following one:

theorem echelon_form_of_invertible:

fixes A::"’a::{bezout_domain}^’cols::{mod_type}^’rows::{mod_type}"

assumes "is_bezout_ext bezout"

shows "∃ P. invertible P ∧ P ** A = echelon_form_of A bezout

∧ echelon_form (echelon_form_of A bezout)"

95

Chapter 5 Algorithms over Rings

5.2.3.3 Computing the Formalised Version of the Echelon Form of a
Matrix

Computation can be achieved parameterising echelon form of by an executable
bezout operation. When working with Euclidean domains, we could use
euclid ext2 for this purpose as we have explained at the beginning of this
section.

The presented Isabelle formalisation of the echelon form algorithm can be
directly executed inside of Isabelle (by rewriting specifications and code equa-
tions) with some setup modifications obtaining, thus, formalised computations.
Such setup modifications are quite related to the ones that we presented in pre-
vious chapters. Essentially, we are carrying out the natural refinement: from the
abstract and non-executable datatype vec to its executable implementation as
functions over finite types. The code equations are established again by means
of the code abstract label.

Let us show an example of execution: the following command computes the
echelon form of a 3× 3 integer matrix (the computation is almost immediate):

value "let A=(list_of_list_to_matrix[[1,-2,4],[1,-1,1],[0,1,-2]]::int^3^3)

in matrix_to_list_of_list (echelon_form_of A euclid_ext2)"

The output is: [[1,-1,1],[0,1,-2],[0,0,1]]::int list list

As in the Gauss-Jordan case, additional operations for conversion between
lists of lists and functions (list of list to matrix and matrix to list of list)
appear to avoid inputting and outputting matrices as functions, which can be-
come rather cumbersome. Hence the input and output of the algorithm are
presented to the user as lists of lists.

More examples of execution can be found in the file Exam-
ples Echelon Form Abstract.thy of the development [50]. As expected, this way
of executing the algorithm is rather slow, since the matrix representation based
on functions over finite types is inefficient, but very suitable for formalisation
purposes. For instance, the computation of the echelon form of a 8 × 8 inte-
ger matrix takes several minutes. To improve the performance, we have also
refined the algorithm to immutable arrays and exported code to functional lan-
guages, reusing the infrastructure presented in Chapter 3 and following the
same approach as in the Gauss-Jordan development (see Section 4.3) and the
QR decomposition (see Section 4.5). This refinement is presented in Subsec-
tion 5.2.4.1.

5.2.3.4 Relation to the Reduced Row Echelon Form: Code Reuse
and Differences

As we have said previously, the echelon form formalisation is highly based on
other developments of ours: the framework presented in Chapter 3 and the for-
malisation of the Gauss-Jordan algorithm and its applications (see Section 4.3),
since echelon form and reduced row echelon form (rref) are very related. The
main difference is that the Gauss-Jordan algorithm (used to obtain the rref)
works over matrices whose coefficients belong to a field, whereas the computa-
tion of the echelon form is carried out involving matrices over Bézout domains,
a more abstract type of rings. Nevertheless, the elementary operations were
defined and their properties were proven over general rings in the Gauss-Jordan

96

Section 5.2 Echelon Form

development [54], so we have been able to reuse them to implement and prove
the correctness of the echelon form algorithm.

It is clear that rref implies echelon form and we have proven this fact in
Isabelle. Thus, each lemma proved for echelon forms is also valid for rref. Fur-
thermore, in the Gauss-Jordan development there were many properties stated
over matrices in rref that have now been generalised to matrices in echelon form.
These properties were fundamental in the development; in fact, we have reused
the proofs presented in the Gauss-Jordan formalisation because some demon-
strations were exactly the same. For instance, we had proved a lemma stating
that a matrix in rref is upper triangular. Since the proof was essentially based
on properties of echelon forms (the conditions 2 and 3 of Definition 9 were not
necessary in the proof of the statement), changing rref by echelon form we got
the theorem generalised.

The proof scheme in both developments is quite similar, except for the idea of
parameterising the algorithm with the bezout operation. We followed the same
strategy to define the algorithm and induction is applied over the columns.

5.2.4 Applications of the Echelon Form

There are three important applications of the echelon form that we have for-
malised:

1. Computation of determinants.

2. Computation of inverses.

3. Computation of characteristic polynomials.

All of them are closely related: inverses and characteristic polynomials are
based on the computation of determinants. To compute the determinant of a
matrix first we have to apply the algorithm to transform it to an echelon form.
Since the echelon form is upper triangular and the transformation has been
based on elementary operations, we just have to multiply the elements of the
diagonal and maybe change the sign of the result (depending on the elementary
operations performed in the transformation) to compute the determinant.

A notion of invariant appears in its formalisation. Given a matrix A, af-
ter n elementary operations the pair (bn, An) is obtained, and it holds that
bn · (detA) = detAn. Since the algorithm terminates, after a finite num-
ber, m, of operations, we obtain a pair (bm, echelon form of A) such that
bm · (detA) = det(echelon form of A). The function echelon form of det is the
one which returns that pair of elements (bm, echelon form of A). Since we are
working in structures more general than a field, we have to prove that bm is a
unit of the ring (is invertible), in order to be able to isolate the determinant
of A. In fact, we have proven that bm will be a unit (for instance, in the case
of integer matrices it can only be either 1 or −1). Finally, we proved that the
determinant of an echelon form is the product of its diagonal elements, thus the
computation is completed. From this, we have the final lemma:

corollary det_echelon_form_of_det_setprod:

fixes A::"’a::{bezout_domain_div}^’n::{mod_type}^’n::{mod_type}"

assumes ib: "is_bezout_ext bezout"

shows "det A = ring_inv (fst (echelon_form_of_det A bezout))

97

Chapter 5 Algorithms over Rings

* setprod (λi. snd (echelon_form_of_det A bezout)ii) (UNIV::’n set)"

The inverse can be computed thanks to the fact that the following formula
has been formalised in Isabelle: A−1 = adjugate A

detA . The adjugate matrices were
defined in the Cayley-Hamilton development in the AFP (see [8]), we have made
that definition executable. The determinant will tell us if a matrix is invertible
(a matrix is invertible iff its determinant is a unit).3 So we will take care of the
invertibility of the input matrix computing the determinant and making use of
the Isabelle option type (whose elements are of the form (Some x) and None).
The final statement for computing inverses over Euclidean domains is the one
presented below:

lemma inverse_matrix_code_rings[code_unfold]:

fixes A::"’a::{euclidean_ring}^’n::{mod_type}^’n::{mod_type}"

shows "inverse_matrix A = (let d=det A in if is_unit d

then Some (ring_inv d *ss adjugate A) else None)"

It is worth noting that both determinants and inverses can already be com-
puted over fields, such as C and Z2, using the Gauss-Jordan algorithm. Thanks
to this formalisation for computing echelon forms, the computation can be ex-
tended to Euclidean domains, such as Z and F [x], and even to Bézout domains
providing a bezout executable operation.

The characteristic polynomial of a matrix A is det(tI − A), so once deter-
minants can be computed over a Euclidean domain thanks to the echelon form,
characteristic polynomials come for free: it just consists of computing the de-
terminant of a polynomial matrix. We had to prove that univariate polynomials
over a field are a Euclidean domain and make executable some definitions pre-
sented in the Cayley-Hamilton development [8], where the characteristic poly-
nomial was defined. The execution of all of these applications is carried out in
a similar way to the ones of the Gauss-Jordan algorithm and the echelon form
itself:

value "let A=(list_of_list_to_matrix [[3,2,8],[0,3,9],[8,7,9]]::int^3^3)

in det A"

value "let A=list_of_list_to_matrix([[3,5,1],[2,1,3],[1,2,1]])::real^3^3

in (charpoly A)"

value "let A=list_of_list_to_matrix([[3,5,1],[2,1,3],[1,2,1]])::int^3^3

in (inverse_matrix A)"

The corresponding outputs are the following ones:

-156::int

[:7,-10,-5,1:]::real poly

None

3In fields all nonzero elements are units, but in more abstract rings there can be nonzero
elements which are not units.

98

Section 5.2 Echelon Form

Note that the last output is None, since its corresponding input matrix
was not invertible (it is an integer matrix whose determinant is −7, which
is not a unit in Z). [:7,-10,-5,1:]::real poly represents the polynomial
x3 − 5x2 − 10x+ 7.

Finally, another contribution of our work is that we have made executable
most of the definitions presented in the Cayley-Hamilton development [8], such
as minors, adjugates, cofactor matrix, the evaluation of polynomials of matrices
and more, which have important applications in Linear Algebra. This part of the
work is presented in the file Code Cayley Hamilton.thy of our development [50].

5.2.4.1 Code Refinement

As we have said in Subsection 5.2.3.3, the formalised algorithm is computable
but the performance is not as good as it is desirable. Since the Isabelle code
is not suitable for computing purposes, the original Isabelle specifications are
refined to immutable arrays and translated to SML and Haskell, intensively
reusing the infrastructure presented in Chapter 3.

The previous algorithm echelon form of has to be redefined over immutable
arrays. After that, we have had to demonstrate the equivalence between the
formalised algorithm over matrices represented as functions over finite types,
and matrices represented as immutable arrays. The following lemma states
that the echelon form computed over functions is the same as the one computed
over immutable arrays (let us recall that matrix to iarray represents a type
morphism):

lemma matrix_to_iarray_echelon_form_of[code_unfold]:

shows "matrix_to_iarray (echelon_form_of A bezout)

= echelon_form_of_iarrays (matrix_to_iarray A) bezout"

Every operation presented in this section and every application (determi-
nants, inverses, characteristic polynomial) has been refined to immutable ar-
rays. Additionally, we make use again of serialisations. In our case, we have
made use of the serialisations presented in Chapter 3 (such as Vector.vector and
IArray.array to encode immutable arrays in SML and Haskell respectively; and
the type for representing integer numbers in the target languages). As in the
Gauss-Jordan development, we have included some more serialisations for the
gcd, div and mod integer operations. Serialising the gcd Isabelle operation to the
corresponding built-in Poly/ML [130] and MLton [113] functions (which are not
part of the SML Standard Library, but particular to each compiler), increases
notably the performance.

The generated SML code has about 2400 lines. We have said in Subsec-
tion 5.2.3.3 that the computation of the echelon form of a 8 × 8 integer ma-
trix took several minutes using the matrix representation based on functions.
Thanks to this refinement and the serialisations, when code is exported to SML
the determinant of a random 20×20 integer matrix using immutable arrays needs
0.254 seconds to be computed in a basic laptop.4 More examples of execution
of our algorithm are shown in the file Examples Echelon Form IArrays.thy.

4Intel R© CoreTM i5-3360M processor (2 cores, 4 threads) with 4GB of RAM.

99

Chapter 5 Algorithms over Rings

5.2.5 Related Work

There are several formalisations of Linear Algebra in most proof systems, above
all focusing the point on vector spaces properties. But only a few of them have
explored algorithmic aspects. Probably the closest work to ours is the one pre-
sented in [34]. It is a formalisation of Linear Algebra over elementary divisor
rings in Coq. In that paper it is presented a formalisation of the Smith nor-
mal form. The algorithm performs similar transformations to the ones we have
presented in this part of the thesis. The main difference between their work
and ours is that they are restricted to use constructive structures, such as con-
structive principal ideal domains. On the other hand, we can work with more
abstract structures where we know the existence of divisions and greatest com-
mon divisors, but maybe not how to compute them. This allows us to formalise
the algorithm involving (not necessarily constructive) Bézout domains. In addi-
tion, the computation of inverses, determinants and characteristic polynomials
are not tackled in such a paper.

As other related work, the computation of the determinant of matrices over
general rings has also been explored in a later formalisation in Isabelle/HOL
about matrices and Jordan Normal Forms [148] by Thiemann and Yamada.
The algorithm presented in such a work is specific to compute determinants
and it is not based on elementary operations, so it cannot be applied to obtain
canonical forms of matrices and thus to compute other objects such as ranks of
matrices and solutions of systems of linear diophantine equations. In addition,
they define and prove the algorithm just over computable structures, since a
computable division operation is required.

Besides, the Sasaki-Murao algorithm has been formalised in Coq [41]. The
Sasaki-Murao algorithm is specially designed to compute the determinant of
square matrices over a commutative ring. In Section 4 of the last reference,
the authors study the performance of such a formalised algorithm: computing
the determinant of a random 20 × 20 integer matrix needs 62.83 seconds over
the Coq virtual machine. Although the algorithm is specially designed for that
computation, when they generate code to Haskell that determinant is computed
in 0.273 seconds, a similar time to the one obtained by us using our echelon form
algorithm (0.254 seconds, as it was presented in Subsection 5.2.4.1).

5.2.6 Conclusions and Future Work

In this work we have presented a formalisation of an algorithm to compute
the echelon form of a matrix. The correctness of the algorithm has been proven
over Bézout domains and its executability is guaranteed over constructive struc-
tures, such as Euclidean domains. In order to do that we have parametrised
the functions of the algorithm by the operation bezout. This operation will be
the key: if bezout is treated as an oracle, we can prove the correctness of the
algorithm but we cannot compute it. That is, the algorithm is proved correct
for any choice for bezout operation. By instancing bezout by a computable op-
eration (according to suitable properties), the echelon form will be computable.
As far as we know, it is the first time that the correctness of an algorithm
is demonstrated over non-constructive algebraic structures and executed over
constructive ones. Furthermore, the algorithm has been refined to immutable
arrays in order to improve the performance. The applications of the algorithm

100

Section 5.3 Hermite Normal Form

(determinants, inverses, characteristic polynomials) have also been formalised
and refined, increasing the work that we did in the Gauss-Jordan development
(Section 4.3) to more abstract rings. Such a Gauss-Jordan formalisation and the
framework presented in Chapter 3 have intensively been reused: the infrastruc-
ture developed there (elementary operations, code generator setup, refinement
statements, relationship between matrices and linear maps, matrix properties,
. . .) has shown to be very useful. One sign of it is that the whole development
of the echelon form took ca. 8000 lines of Isabelle code, whereas the Gauss-
Jordan formalisation plus the preliminary infrastructure developed needed ca.
14000 lines. This is remarkable because the echelon form algorithm is a more
difficult algorithm than the Gauss-Jordan one (mainly because more abstract
rings are involved and not each division is exact) and shows how much code
has been reused and the helpfulness of the developed infrastructure in such a
formalisation. As a by-product, some algebraic structures (Bézout rings, prin-
cipal ideal domains, . . .) and their properties (ideals, subgroups, relationships
among them) have been formalised, enhancing the Isabelle library of rings using
type classes.

As further work, it would be desirable to increase the developed library of
rings with some other concepts, such as irreducible and prime elements, and
with more algebraic structures, such as Prüfer domains and Noetherian rings.
In addition, it would be interesting to provide more instances to Bézout domains,
apart from the already existing ones Z and F [x]. As a natural continuation to
our work, the formalisation of the Smith normal form would be very interesting.
This is feasible thanks to both the infrastructure already developed and the ring
theory presented in this contribution. In addition, the computation of eigenval-
ues and eigenvectors from the characteristic polynomial would be desirable.

Our algorithm to compute the echelon form (and hence, the characteristic
polynomial) of a matrix relies on a function to compute Bézout coefficients
and the gcd of a couple of elements, so performance strongly depends on the
efficiency of such a function. Thus, the formalisation of efficient algorithms to
compute gcds, both exact [31] and approximate [123], would be interesting.

5.3 Hermite Normal Form

The previous section has shown how we have carried out a formalisation to
compute the echelon form of a matrix. Now, we present a continuation of such
a work: the computation of the Hermite normal form. As it has already been
pointed out in Chapter 2, the Hermite normal form is an analogue of the reduced
row echelon form, but for matrices over more general rings than fields.

Let us remark again that the Hermite normal form is normally presented only
in the case of integer matrices, but indeed this form exists for matrices whose
elements belong to a Bézout domain. Accordingly, the algorithm is commonly
stated for integer matrices; but, as we have formalised, it can be executed (at
least) over matrices over any Euclidean domain.

It is worth remarking that the Hermite normal form is a well-known canon-
ical matrix due to the fact that it plays an important role in many different
applications. Concretely, it can be used for solving systems of linear diophan-
tine equations [32], loop optimisation techniques [131], algorithmic problems in
lattices [76], cryptography [149], and integer programming [66,93] among other

101

Chapter 5 Algorithms over Rings

applications.
In this section, we present a formalisation of an algorithm to compute the

Hermite normal form of a matrix based on the echelon form algorithm pre-
sented in Section 5.2. In order to obtain better performance, the algorithm has
also been refined to immutable arrays following the infrastructure explained in
Chapter 3.

The main notions required for this section are introduced in Chapter 2.
They are the complete set of nonassociates (Definition 10), the complete set of
residues (Definition 11), the definition of Hermite normal form (Definition 12),
and the definition of the Hermite normal form of a matrix (Definition 13).

As we have already said in Subsection 2.1.3, there is no one single definition
of the Hermite normal form of a matrix in the literature, but all the different
possibilities can be represented selecting a complete set of nonassociates and a
complete set of residues. We are presenting the formalisation of an algorithm
to compute the Hermite normal form. This algorithm will be parametrised by
functions which obtain appropriate leading coefficients and the suitable elements
above them (the residues). This way, one can instantiate the algorithm with
different functions to get exactly the Hermite normal form one wants, not only
involving integer matrices but matrices whose elements belong to any Bézout
domain. Once such a complete set of nonassociates and the corresponding com-
plete set of residues are fixed, the Hermite normal form is unique (this result
will also be formalised).

5.3.1 Formalising the Hermite Normal Form

The whole development was published in the AFP [57], and directly relies on our
echelon form algorithm [50] (in order to transform any matrix into its echelon
form, as a preparatory step of the Hermite normal form) and therefore, in the
Gauss-Jordan development [54] (to reuse the code generation setup presented
in Chapter 3 and Section 4.3) and the formalisation of the Rank-Nullity theo-
rem [52] as well (to reuse the link between linear maps and matrices). Thanks to
these dependences it was completed in an affordable amount of lines: it took us
ca. 2300 Isabelle code lines, including the proof of its uniqueness, the refinement
to immutable arrays, and some examples of execution. As a comparison, the
formalisation of the the Gauss-Jordan algorithm explained in Section 4.3 took
us 10000 lines.

Before starting with the definition and the proof of the Hermite algorithm,
we had to enhance the HMA library including some preliminary results, specially
about triangular matrices. Such results will be crucial when demonstrating the
uniqueness of the Hermite normal form. More concretely, we have proven the
following properties for matrices over a ring (the properties also hold for lower
triangular matrices, we just show here the case of the upper triangular ones):

1. If a matrix is upper triangular and its determinant is a unit, then each
element of the diagonal is a unit.

2. The product of two upper triangular matrices is an upper triangular ma-
trix.

3. If a matrix is upper triangular, then its adjugate is too.

102

Section 5.3 Hermite Normal Form

4. If a matrix is invertible and upper triangular, its inverse is upper triangu-
lar.

5. If A and B are upper triangular, then ∀i.(AB)i,i = Ai,iBi,i.

Their corresponding Isabelle’s statements look as follows (we are using again
the HMA library representation for matrices as functions over finite domains,
that is, based on the data type vec). They can be reused in other non-related
developments.

lemma is_unit_diagonal:

assumes U: "upper_triangular U"

and det_U: "is_unit (det U)"

shows "∀ i. is_unit (U $ i $ i)"

lemma upper_triangular_mult:

assumes A: "upper_triangular A"

and B: "upper_triangular B"

shows "upper_triangular (A**B)"

lemma upper_triangular_adjugate:

assumes A: "upper_triangular A"

shows "upper_triangular (adjugate A)"

lemma upper_triangular_inverse:

assumes A: "upper_triangular A"

and inv_A: "invertible A"

shows "upper_triangular (matrix_inv A)"

lemma upper_triangular_mult_diagonal:

assumes A: "upper_triangular A"

and B: "upper_triangular B"

shows "(A**B) $ i $ i = A $ i $ i * B $ i $ i"

Let us introduce the Isabelle definition of associated elements and congruent
elements. The definition of associated elements is already present in the Isabelle
library thanks again to Eberl:

definition associated :: "’a ⇒ ’a ⇒ bool"

where
"associated x y ←→ x dvd y ∧ y dvd x"

We have defined that two elements a, b ∈ R are congruent modulo c in the
following way:

context ring_1

begin

definition cong::"’a⇒’a⇒’a⇒bool"

where "cong a b c = (∃ k. (a - b) = c * k)"

lemma cong_eq: "cong a b c = (c dvd (a - b))"

103

Chapter 5 Algorithms over Rings

The latter lemma is just an equivalent definition, showing that a and b are
congruent modulo c if c divides (a− b).

Now, we have to define the corresponding relationships of associates and
congruence introduced by the definitions. In Isabelle, this is carried out by
means of a set of pairs: two elements (a, b) will belong to the set if they are
related. Hence:

definition "associated_rel = {(a,b). associated a b}"

definition "congruent_rel c = {(a,b). cong a b c}"

Once we have such definitions, we prove both of them to be reflexive, tran-
sitive, and symmetric. This shows that they form equivalence relationships, as
it is stated in the first part of Definitions 10 and 11.

lemma equiv_associated:

shows "equiv UNIV associated_rel"

lemma equiv_congruent:

shows "equiv UNIV (congruent_rel c)"

Let us tackle the second part of Definitions 10 and 11, that is, introducing
predicates describing the complete set of nonassociates and the complete set of
residues. They are very important, since they fix how the Hermite algorithm
works and its possible variations. Our approach consists of defining two pred-
icates, stating if a function is an associates function and a residues function,
respectively. The associates function will define Hermite algorithm’s behaviour
in the leading entries, which must belong to a complete set of nonassociates.
Then, the residues function will define Hermite algorithm’s behaviour in the el-
ements above the leading entries. Those elements must belong to a complete set
of residues. Then, we will parametrise the Hermite algorithm by two functions
(among other things): an associates function and a residues function. This way,
we can obtain the different versions of the Hermite algorithm. For example, in
the case of integer matrices if we fix the associates function as the absolute
value, we will obtain the Hermite version where the leading entries are positive
integers. On the contrary, we could also parametrise the algorithm by other
associates function: minus the absolute value, in order to get a different Her-
mite version where the leading entries are negative integers. The case of residues
functions is similar: using different ones we can obtain, for example, the Hermite
versions where the elements above the leading entry are nonnegative integers or
nonpositive integers.

Let us show what we have called associates function. A function f is an
associates function if for all a ∈ R, then a and f(a) are associated. In order to
obtain a complete set of nonassociates, we also impose the elements belonging
to the range of f to be pairwise nonassociates (that is, if f(a) 6= f(b), then f(a)
and f(b) are not associated) The Isabelle definition is the following one:

definition ass_function :: "(’a ⇒ ’a) ⇒ bool"

where "ass_function f = ((∀ a. associated a (f a))

∧ pairwise (λa b. ¬ associated a b) (range f))"

Thus, a set S will be a complete set of nonassociates if there exists an

104

Section 5.3 Hermite Normal Form

associates function f whose range is S:

definition "Complete_set_non_associates S

= (∃ f. ass_function f ∧ f‘UNIV = S)"

The following desired properties can be proven:

1. Any associates function forms a complete set of nonassociates (by means
of its range).

2. For any two elements which belong to a complete set of nonassociates, if
they are different then they are not associated.

Their corresponding proofs in Isabelle are almost straightforward from the
definitions:

lemma ass_function_Complete_set_non_associates:

assumes f: "ass_function f"

shows "Complete_set_non_associates (f‘UNIV)"

lemma in_Ass_not_associated:

assumes Ass_S: "Complete_set_non_associates S"

and x: "x∈S" and y: "y∈S" and x_not_y: "x 6=y"

shows "¬ associated x y"

Let us present now what we have called residues function. A function f is a
residues function if, fixed c ∈ R, the following conditions are satisfied.

1. For all a, b ∈ R then a and b are congruent modulo c if and only if
f c a = f c b.

2. The elements which belong to the range of f are pairwise noncongruent
modulo c.

3. For all a ∈ R, there exists k ∈ R such that f c a = a+ kc.

The latter condition just means that we can transform elements above the
leading entry by means of elementary operations (in the algorithm, c would
represent the leading entry and a would be the element above the leading entry
we want to transform to f c a).

In order to clarify this, let us introduce a toy example. Let A be the following
integer matrix:

A =

(
7 −3
0 5

)
A is a matrix in echelon form. The leading entry of the second row is

A2,2 = 5. There is just one element above it, A1,2 = −3. Let the modulo opera-
tion be the residues function (which indeed is a residues function and it satisfies
the properties presented above, as we will see later). With the previous nota-
tion, we have a = −3, c = 5. Thus f c a = 2 and k = 1. The matrix can be
transformed into the following one by means of elementary operations (adding
to the first row the second one):

105

Chapter 5 Algorithms over Rings

A′ =

(
7 2
0 5

)
In addition, let us note that the absolute value is not a residues function (we

cannot transform A1,2 into 3 by means of elementary operations, since there
exists no k ∈ Z such that 3 = (−3) + 5k).

We have defined the predicate to know if a function is a residues function in
Isabelle as follows:

definition res_function :: "(’a ⇒ ’a ⇒ ’a) ⇒ bool"

where "res_function f = (∀ c. (∀ a b. cong a b c ←→ f c a = f c b)

∧ pairwise (λa b. ¬ cong a b c) (range (f c))

∧ (∀ a. ∃ k. f c a = a + k*c))"

Now we have to define the concept of complete set of residues. In fact, we
have one complete set of residues for each element c ∈ R. So, we will say that g
is a complete set of residues5 if there exists a residues function f such that each
set g c is exactly the range of f c. We have modelled it in Isabelle by means of
the following definition:

definition "Complete_set_residues g

= (∃ f. res_function f ∧ (∀ c. g c = f c‘UNIV))"

Again, we can prove the desired properties:

1. Any residues function induces a complete set of residues.

2. For any two elements x, y ∈ g b if x 6= y then they are not congruent with
respect to b.

Fortunately, such proofs are quite direct from the definitions (we avoid pre-
senting them now, we just show the statements).

lemma res_function_Complete_set_residues:

assumes f: "res_function f"

shows "Complete_set_residues (λc. (f c)‘UNIV)"

lemma in_Res_not_congruent:

assumes res_g: "Complete_set_residues g"

and x: "x ∈ g b" and y: "y ∈ g b" and x_not_y: "x 6=y"

shows "¬ cong x y b"

This completes Definitions 10 and 11. As we have already said, the Hermite
algorithm will be parametrised by an associates function and a residues function
to obtain its existing different versions. The Hermite algorithm can only be
parametrised with certain functions, the proof of its correctness will assume
that such functions are really associates and residues functions respectively.
Therefore, we have to provide instances for them. Let us remark that we are not
working exclusively in the case of integer matrices, but involving matrices over
more general rings. As an example, we can provide (executable) associates and

5Strictly speaking, g is not a set but a function than given an element c ∈ R returns a set.

106

Section 5.3 Hermite Normal Form

residues function involving elements over Euclidean domains, which include for
instance, the integers and the univariate polynomials over a field. The general
definitions involving Euclidean domains are presented below. Concretely, the
associates function will return the absolute value of the element in the case of
the integers ring and the corresponding monic polynomial in the case of the ring
of univariate polynomials over a field.

definition "ass_function_euclidean (p::’a::{euclidean_ring}) = p div

normalisation_factor p"

definition "res_function_euclidean b (n::’a::{euclidean_ring}) = (if b =

0 then n else (n mod b))"

In order to be able to use such functions in the algorithm, we have to prove
them to be associates and residues functions respectively:

lemma ass_function_euclidean: "ass_function ass_function_euclidean"

lemma res_function_euclidean: "res_function (res_function_euclidean)"

We could provide other different instances of associates and residues func-
tion, or even define them explicitly to concrete structures. For instance, the
associates function for integer elements could have been defined by:

definition "ass_function_int (n::int) = abs n"

We can prove this definition to be an associates function and it indeed cor-
responds to the nonnegative elements of Z.

lemma ass_function_int: "ass_function ass_function_int"

lemma ass_function_int_UNIV: "(ass_function_int‘ UNIV) = {x. x≥0}"

Let us present here how we have implemented in Isabelle the predicate in
Isabelle that characterises the Hermite normal form (Definition 12):

definition "Hermite associates residues A = (

Complete_set_non_associates associates

∧ (Complete_set_residues residues)

∧ echelon_form A

∧ (∀ i. ¬ is_zero_row i A −→ A $ i $ (LEAST n. A $ i $ n 6= 0) ∈
associates)

∧ (∀ i. ¬ is_zero_row i A −→ (∀ j. j<i −→ A $ j $ (LEAST n. A $ i $

n 6= 0) ∈ residues (A $ i $ (LEAST n. A $ i $ n 6= 0))))

)"

Essentially, the definition is parametrised by a matrix A and two functions,
associates and residues, which are demanded to be associates and residues func-
tions respectively. After that, A is required to satisfy the three conditions of
Definition 12, that is, A is in echelon form, any leading entry belongs to the
complete set of nonassociates and any element above a leading entry belongs to
the complete set of residues with respect to its corresponding leading entry.

We have implemented the Hermite algorithm in Isabelle following a similar
idea to the one we used in the Gauss-Jordan algorithm, but in this traversing

107

Chapter 5 Algorithms over Rings

over rows. That is, we have defined an operation that carries out the transfor-
mations over one row and then we have defined the Hermite algorithm folding
such an operation over all rows (note that in the Gauss-Jordan algorithm we
traversed the operation over the columns).

Our Hermite algorithm relies on the echelon form algorithm and again we
follow the idea of parametrising it. In this case, the algorithm is parametrised
by three functions:

• The function that computes Bézout’s identity of two elements (necessary
to compute the echelon form).

• The function that given an element, returns its representative element 6 in
the associated equivalent class, which will be an element in the complete
set of nonassociates.

• The function that given two elements a and b, returns its representative
element in the congruent equivalent class of b, which will be an element
in the complete set of residues of b.

Given a matrix A and a Bézout operation, the associates, and residues func-
tions, our Hermite algorithm works as follows:

1. A is transformed to its echelon form by means of the formalised algorithm
which was presented in Section 5.2.

2. Each nonzero row of the matrix is transformed to have its leading entry
in the complete set of nonassociates by means of the associates function.

3. For each nonzero row, the elements above its leading entry are transformed
to belong to the complete set of residues of the leading entry by means of
the residues function.

The following functions do the job. Hermite reduce above reduces an element
above the leading entry (it has as a parameter the function which computes an
appropriate residue). In the previous examples (Gauss-Jordan, QR decomposi-
tion, echelon form) we have implemented the traversing operations over columns
by means of a foldl operator over the columns’ indexes; we use here a primitive
recursive definition (by means of the primrec constructor) over the represen-
tation of the columns indexes as natural numbers. Both approaches are similar
in practice.

primrec Hermite_reduce_above ::

"’a::ring_div^’cols::mod_type^’rows::mod_type⇒nat

⇒’rows⇒’cols⇒ (’a⇒’a⇒’a) ⇒ ’a^’cols::mod_type^’rows::mod_type"

where "Hermite_reduce_above A 0 i j res = A"

| "Hermite_reduce_above A (Suc n) i j res =

(let i’=((from_nat n)::’rows);

Aij = A $ i $ j;

Ai’j = A $ i’ $ j

in

Hermite_reduce_above (row_add A i’ i (((res Aij (Ai’j)) - (Ai’j))

6By representative element, we mean an element of the class that will represent all the
elements related to it

108

Section 5.3 Hermite Normal Form

div Aij)) n i j res)"

This function will also be reused in the Hermite of row i function, which
transforms the leading entry of a nonzero row to belong to the corresponding
complete set of nonassociates as well (and it also has both the associates and
the residues functions as parameters).

definition "Hermite_of_row_i ass res A i = (

if is_zero_row i A

then A

else

let j = (LEAST n. A $ i $ n 6= 0); Aij= (A $ i $ j);

A’ = mult_row A i ((ass Aij) div Aij)

in Hermite_reduce_above A’ (to_nat i) i j res)"

Hermite of upt row i iterates the process up to a row i.

definition "Hermite_of_upt_row_i A i ass res = foldl (Hermite_of_row_i

ass res) A (map from_nat [0..<i])"

Finally, Hermite will apply Hermite of upt row i up to the last row.

definition "Hermite_of A ass res bezout =

(let A’= echelon_form_of A bezout in Hermite_of_upt_row_i A’ (nrows A)

ass res)"

Once the Hermite algorithm has been defined, we have to prove its correct-
ness. Concretely, there are four facts to prove (see Definition 13):

1. The output matrix is in echelon form.

2. Each leading entry belongs to the complete set of nonassociates.

3. Each element above a leading entry (in the same column) belongs to the
corresponding complete set of residues.

4. The algorithm is carried out by means of elementary row operations (that
is, the resulting matrix is actually the Hermite normal form of the input
matrix).

The first one means that the operations we carried out to transform the
leading coefficients and the elements above them preserve the echelon form.
After some effort (ca. 1400 Isabelle code lines), we can obtain the final theorem
which corresponds to Definition 13.

theorem Hermite:

assumes a: "ass_function ass"

and r: "res_function res"

and b: "is_bezout_ext bezout"

shows "∃ P. invertible P ∧ (Hermite_of A ass res bezout) = P ** A ∧

109

Chapter 5 Algorithms over Rings

Hermite (range ass) (λc. range (res c)) (Hermite_of A ass res bezout)"

(range ass) and (λc. range (res c)) represent the complete sets of asso-
ciates and residues obtained from the associates and residues functions ass and
res respectively. Let us remark again that the theorem has been proven in-
volving matrices over Bézout domains, not only for the concrete case of integer
matrices.

Furthermore, with no so much effort (ca. 150 Isabelle code lines), we can
refine the algorithm to immutable arrays (and export code to SML and Haskell)
to obtain a better performance thanks to the work presented in Chapter 3.

For the sake of completeness, let us provide two examples of execution of our
formalised algorithm. The examples involve square matrices, but the algorithm
can also be applied to non-square ones. Both of them use the standard associates
and residues functions we have defined for Euclidean domains.

The first example is the computation of the Hermite normal form of the
following integer matrix: 37 8 6

5 4 −8
3 24 −7

The computation within Isabelle is done by means of the following command:

value[code] "let A = list_of_list_to_matrix

([[37,8,6],[5,4,-8],[3,24,-7]])::int^3^3

in matrix_to_list_of_list (Hermite_of A ass_function_euclidean

res_function_euclidean euclid_ext2)"

Let us note that the function is parametrised by four things:

• The input matrix A

• The standard associates function for Euclidean domains
(ass function euclidean).

• The standard residues function for Euclidean domains
(res function euclidean).

• The function which computes Bézout coefficients in Euclidean domains,
which is necessary for the echelon form algorithm (euclid ext2).

The output is:

"[[1, 44, 57], [0, 108, 52], [0, 0, 63]]" :: "int list list"

Which corresponds to the matrix:1 44 57
0 108 52
0 0 63

Let us note that, due to the fact that we have used the standard associates

and residues functions for Euclidean domains, both the leading entries and the

110

Section 5.3 Hermite Normal Form

elements above them are all positive. The elements above a leading entry are
less than such a leading entry (in the example, 57 and 52 are less than 63,
which is the leading entry of the third row). The associates function is indeed
the absolute value and the residues function is the modulo of the division by
the leading coefficient.

In the second example, the Hermite algorithm is applied to the following
matrix of polynomials:

(
5x2 + 4x+ 3 x− 2

2x2 − 1 x3 + 4x2 + 1

)
The command is:

value[code] "let A = list_of_list_to_matrix

([[[:3,4,5:],[:-2,1:]],[[:-1,0,2:],[:0,1,4,1:]]])::real poly^2^2

in matrix_to_list_of_list (Hermite_of A ass_function_euclidean

res_function_euclidean euclid_ext2)"

The corresponding result is:

"[[[:1:], [:- (44/89), 31/89, - (68/89), 137/89, 40/89:]],

[0, [:- (2/5), 4/5, 4, 22/5, 24/5, 1:]]]" :: "real poly list list"

which corresponds to the matrix:

1 40
89x

4 + 137
89 x

3 − 68
89x

2 + 31
89x−

44
89

0 x5 + 24
5 x

4 + 22
5 x

3 + 4x2 + 4
5x−

2
5

We have used again the same standard associates and residues functions

for Euclidean domains as in the first example. The difference is that now the
functions are applied to polynomials instead of integers. Thus, the associates
function transforms a polynomial to its corresponding monic one and then the
leading entries are monic. The residues (the elements above a leading entry),
will be a modulo of the division by their corresponding leading entry (that
is, an element above a leading entry will always have degree smaller than the
polynomial placed in its corresponding leading entry).

5.3.2 Formalising the Uniqueness of the Hermite Normal
Form

Once we have proven the correctness of the algorithm and refined it to immutable
arrays, we can prove a well-known theorem: the uniqueness of the Hermite
normal form (Theorem 12 in Chapter 2). In order to prove it, we have followed
the proof presented in [115, Theorem II.3] by Newman. The only difference is
that Newman considers the Hermite normal form as a lower triangular matrix
and we consider it to be upper triangular. Our Isabelle statement is the following
one:

111

Chapter 5 Algorithms over Rings

lemma Hermite_unique:

fixes K::"’a::bezout_domain^’n::mod_type^’n::mod_type"

assumes A_PH: "A = P ** H"

and A_QK: "A = Q ** K"

and inv_A: "invertible A"

and inv_P: "invertible P"

and inv_Q: "invertible Q"

and H: "Hermite associates residues H"

and K: "Hermite associates residues K"

shows "H = K"

The proof comprises 28 lines in the book [115, Theorem II.3]. Our Isabelle
formalisation took us 174 lines, thanks to the previous results that we formalised,
and it has been developed carefully to follow firmly the book’s proof line by line
(see the file Hermite.thy in [57]).

5.3.3 Conclusions and Future Work

The Hermite normal form is a canonical matrix analogue of reduced row echelon
form, but involving matrices over more general rings. In this section we have
shown a formalisation of an algorithm to compute the Hermite normal form of
a matrix by means of elementary row operations, taking advantage of some of
the results presented in previous sections. More concretely, we have based its
formalisation on the framework presented in Chapter 3 and the echelon form
algorithm introduced in Section 5.2. The formalisation has been carried out
involving matrices over Bézout domains and not only in the well-known case of
integer matrices. Following the same approach as in the echelon form formalisa-
tion, we have again parametrised the algorithm by functions, in this case to be
able to get the different existing versions of the Hermite algorithm. Concretely,
this is done thanks to the associates and residues functions, which induce com-
plete sets of associates and residues. We have proven in an affordable number
of lines the correctness of the algorithm to obtain the Hermite normal form and
we have also refined it to immutable arrays. Furthermore, we have formalised
the uniqueness of the Hermite normal form of a matrix as well. As in the other
algorithms presented in this thesis, code can be exported to functional languages
(SML and Haskell). As far as we know, this is the first ever formalisation of the
Hermite normal form and its uniqueness in any interactive theorem prover.

As a future work, it would be desirable to refine the Hermite normal form
algorithm to other versions, in order to prevent the exponential growth of the
entries in the case of integer matrices (see the work by Kannan and Bachem [95]).

112

Chapter 6

Formalising in
Isabelle/HOL a Simplicial
Model for Homotopy Type
Theory: a Naive Approach

6.1 Introduction

In this chapter, we give up Linear Algebra algorithms and we present an exper-
iment with Isabelle, its logics and a topic which defines a new trend: Homotopy
Type Theory.

Homotopy Type Theory (HoTT) is a pushful area of research presented as
a new foundation for Mathematics [150]. This is not the place to undertake a
review of HoTT; see [2] for a sample of the activities being developed around
HoTT. Let us simply stress that, since HoTT defines a formal language (to
model mathematics), the question of its intended semantics is a central one.
From the beginning, Voevodsky, the creator of HoTT, looked for a model. The
first one, documented in [96], is known as simplicial model (other approaches
have been proposed; see for instance [28]).

Another distinguishing feature of HoTT is that it is defined in a formalised
context (or, at least, in a formalisable one). Therefore, it is natural to ex-
plore the real implementation of concepts and processes in interactive theorem
provers (again, see [2]). In particular, one could ask herself whether Voevod-
sky’s simplicial model could be formalised in a proof assistant. Since one of
the characteristics of this model is that it is not constructive, one possibility
would be to try its formalisation in a classical logic tool, such as Isabelle/HOL.
In this chapter we report on a concrete attempt in that direction: formalising
Voevodsky’s model in Isabelle/HOL.

Once stated our purpose, it is necessary to define a methodology for ac-
complishing it. Our idea is to keep ourselves in the frame of HOL (that is to
say, without imposing any additional axioms) and to reuse code as much as
possible. In other words, to build on top of already-developed Isabelle/HOL
libraries. Reusing libraries is something desirable, but unfortunately it is not

113

Chapter 6 Simplicial Model in Isabelle/HOL

done as often as expected (see [30]). This strategy gave good results in other
projects undertook by us, as it has been shown in the previous chapters of this
thesis.

We qualify this approach as naive, because we are assuming that previ-
ous work in Isabelle/HOL could provide a solid core to model quite compli-
cated novel structures. In fact, as we will show in the chapter, a very small
part of the simplicial model can be formalised that way. However, it is not
clear at all whether a more sophisticated approach could not find the same
kind of obstructions (and, it is indeed clear, the proving effort would be much
bigger). Another possible strategy would be to encode Voevodsky’s model in-
side of Isabelle/HOLZF [120], where Zermelo-Fraenkel sets are axiomatised.
The drawback is that the Isabelle/HOLZF developments which make use of
Zermelo-Fraenkel sets are not comparable in number and depth with those of
Isabelle/HOL which make use of typed sets. Nevertheless, we explore cautiously
this path in the chapter, with the corresponding code [49].

The rest of the chapter is organised as follows. A brief introduction to
other Isabelle’s logics different from HOL is presented in Subsection 6.1.1. Af-
ter that, we present the mathematical infrastructure underlying the simplicial
model in Section 6.2, and then the corresponding Isabelle/HOL formalisation is
described in Section 6.3. It is worth noting that not all the formalised machinery
is required to exhibit the found obstruction; nevertheless we consider that the
general subjects formalised could have an interest on their own, for instance, in
the field of Category Theory and simplicial sets. Some details of the simplicial
model extracted from [96] are reproduced in Section 6.4 (actually, simply the
first result from [96] stopped our trial), while Section 6.5 is devoted to show
the limitation preventing us from continuing the formalisation in Isabelle/HOL.
Our first trials inside the Isabelle/HOLZF framework are described in Subsec-
tion 6.5.1. The chapter ends with conclusions. All the Isabelle code written for
this experiment is accessible through [48,49].

6.1.1 HOL, ZF, and HOLZF

As it was explained in Section 2.2, Isabelle [118] is a generic proof assistant, on
top of which different logics can be implemented and the most explored of this
variety of logics is Higher-Order Logic (or HOL). It is by far the logic where
the greatest number of tools (code generation, automatic proof procedures) are
available and the one where most of developments are based on. These two
reasons encourage us to carry out this part of the thesis also in Isabelle/HOL.
Furthermore, all articles (over 200) presented in the Archive of Formal Proofs [3]
use HOL as their object logic. Nevertheless, we must give here further details
about other logics that are implemented on top of Isabelle, since these logics
will play a fundamental role in this chapter.

Zermelo-Fraenkel set theory [83] formulates a theory of sets free of paradoxes
such as Russell’s paradox. Isabelle’s version of the Zermelo-Fraenkel set theory
is known as Isabelle/ZF. Its axioms resemble those presented by Suppes [144]
and the whole implementation is explained in [125, 126, 129]. Essentially, Is-
abelle/ZF is based on classical First-Order Logic and the axioms of ZF set
theory. Unfortunately, Isabelle/ZF has not been as developed as Isabelle/HOL,
it lacks the automatic procedures that Isabelle/HOL posses. On the other hand,
it formalises a great part of elementary set theory.

114

Section 6.2 Mathematics Involved

HOLZF [120] is a combination of HOL and ZF (HOLZF = HOL + ZF),
that is, Higher-Order Logic extended with ZF axioms. Its corresponding Is-
abelle implementation is called Isabelle/HOLZF and was developed by Obua.
Concretely, it has been implemented following the axioms presented in [74], ex-
cept from the axiom of separation, since it can be obtained from the axiom of
choice that HOL provides by means of the Hilbert choice operator. Although
HOLZF has not been as used as HOL, it seems to be stronger than ZF and
HOL, since it is very suitable to formalise set-theoretic notions but still offers
the advantages of HOL. As far as we know, this logic has only been used in the
formalisation of Partizan Games [120] and a piece of Category Theory [98]. For
a further explanation of this logic see [120, Sect. 3].

6.2 Mathematics Involved

First of all, we present some well-known definitions and theorems which play
an important role in the development, following the canonical reference [109]
and the article [96]. Voevodsky’s simplicial model is based on Category Theory
notions, thus our formalisation is useful not only for the concrete case of the
simplicial model, but for the general field of Category Theory. Further details,
examples, and proofs can be obtained from such references as well. Let us start
with the definition of category.

Definition 19 (Category). A category C consists of

• A class (a collection) Ob of objects.

• A class (a collection) Ar of arrows (also called morphisms or maps) be-
tween the objects.

• Two functions dom : Ar → Ob and cod : Ar → Ob.

• A composition, which assigns to each pair (g, f) of arrows with
domg = cod f an arrow g ◦ f : domf → cod g. That is, if f : a → b
and g : b→ c,

b
g

��
a

f
??

g◦f // c

This composition satisfies the following axioms:

– Associativity: For f : a→ b, g : b→ c and k : c→ d, the following
equality holds:

k ◦ (g ◦ f) = (k ◦ g) ◦ f

– Identity: For every object x there exists a morphism Idx : x → x
called the identity morphism for x (also denoted 1x), such that for
every morphism f : a → x and every morphism g : x → b, we have
Idx ◦ f = f and g ◦ Idx = g.

Furthermore, we present the definition of small category.

115

Chapter 6 Simplicial Model in Isabelle/HOL

Definition 20 (Small category). A category C is a small category if the col-
lection of objects Ob and the collection of arrows Ar are sets (instead of being
proper classes).

It is worth noting that there exist many related concepts, such as metacat-
egory (purely axiomatic and does not use set concepts), large and locally small
categories and more. Mathematically speaking, most of the examples which will
be presented in this chapter are indeed categories. However, only the notion of
small category has been formalised in Isabelle/HOL [121]. Since we have de-
cided to reuse such a development, all the instances of categories presented in
this chapter will be formalised as small categories. Throughout the chapter, we
will also denote as ObC the collection of objects of a category C. If the category
can be inferred from the context, then we will omit it and just say Ob (and
equivalently Ar, dom, cod, Id and ◦). Let us remark that in the literature it is
usually written X ∈ C and f ∈ C for X ∈ ObC and f ∈ ArC if that causes no
misunderstanding. We will adopt such a convention as well.

Definition 21 (Hom-set). Given a category C and two objects X,Y ∈ ObC ,
the collection of all morphisms from X to Y is denoted HomX Y (HomC X Y
if we want to write explicitly the category) and called the hom-set between X
and Y . That is, HomX Y = {f ∈ C | domf = X ∧ cod f = Y }

Definition 22 (Opposite category). Given a category C, the opposite category
of C (denoted as Cop) is a category where

ObCop = ObC

ArCop = ArC

domCop = codC

codCop = domC

IdCop = IdC

g ◦Cop f = f ◦C g

Definition 23 (∆ category). ∆ is the small category with objects all finite
ordinals (e.g. m,n) and arrows f : m→ n all order-preserving functions (i ≤ j
implies fi ≤ fj).

Definition 24 (Set category). Set category is the category (denoted as simply
Set) where the objects are all sets and the set of arrows all functions between
them.

Let us note that, with this unrestricted definition, Set is not a small category,
and then it is not covered by Definition 20 but by Definition 19.

Definition 25 (Functor). Let C and D be categories. A functor F from C to
D is a morphism (or map) of categories that:

• associates to each object X ∈ ObC an object F (X) ∈ ObD;

• associates to each morphism f : X → Y ∈ ArC a morphism
F (f) : F (X)→ F (Y) ∈ ArD such that the following two conditions hold:

116

Section 6.2 Mathematics Involved

– F (IdX) = IdF (X) for every object X ∈ ObC ;

– F (g ◦f) = F (g)◦F (f) for all morphisms f : X → Y and g : Y → Z.

For each X ∈ ObC and f : X → Y ∈ ArC , we will write F (X) and F (f) if such
a notation does not cause confusion. If it does, we will explicitly state whether
the functor is applied to objects, Fo(X), or arrows, Fa(f).

Definition 26 (Natural Transformation). Given two functors F,G : C → D,
where C and D are two categories, a natural transformation (often called a
morphism of functors) is a function µ : ObC → ArD which assigns to each object
of C an arrow of D in such a way that every arrow f : X → Y in ArC yields a
diagram:

F (X)

µ(X)

��

F (f) // F (Y)

µ(Y)

��
G(X)

	

G(f)
// G(Y)

Equivalently, in another notation:

∀X,Y ∈ ObC . ∀f ∈ HomC X Y . G(f) ◦D µ(X) = µ(Y) ◦D F (f)

Definition 27 (Functor category). Given two categories C and D, it is possible
to construct the functor category of C and D whose objects are the functors
F : C → D and arrows the natural transformations between two such functors.

A particular, but important example of functor category is the case where
the objects are the functors F : ∆Op → Set. This functor category is often
called the simplicial set category, and denoted as sSet.

Definition 28 (Simplicial Set). A simplicial set K is a graded set indexed on
the naturals together with maps ∂i : Kq → Kq−1 and si : Kq → Kq+1, 0 ≤ i ≤ q,
which satisfy the following identities:

∂i∂j = ∂j−1∂i if i < j

sisj = sj+1si if i ≤ j
∂isj = sj−1∂i if i < j

∂jsj = identity = ∂j+1sj

∂isj = sj−1∂i−1 if i > j + 1

The elements of Kq are called q-simplices. The ∂i and si maps are called
face and degeneracy operators.

Definition 29 (Simplicial morphism). A simplicial morphism (also called sim-
plicial map or just morphism) f : K → L is a map of degree zero of graded sets
which commutes with the face and degeneracy operators, that is, f consists of
fq : Kq → Lq and

fq∂i = ∂ifq+1

fqsi = sifq−1

117

Chapter 6 Simplicial Model in Isabelle/HOL

Definition 30 (Simplicial set category: osSet). The simplicial set category is
the category (denoted as osSet) where the set of objects consists of all simplicial
sets and arrows are all morphisms between them.

Theorem 14 (Equivalence between sSet and osSet). There exist two functors
F : sSet→ osSet and F ′ : osSet→ sSet such that

F ◦sSet F ′ = IdosSet

F ′ ◦osSet F = IdsSet

Since the previous theorem states that osSet and sSet are isomorphic, both
are usually referred as simplicial set category. Even more, both are normally
denoted as sSet indistinctly, but it is worth noting that their definitions are
different and sometimes it is more convenient to use one of them than the other
one. This is the reason why we prefer to denote them in a different way, to
make it clear in each moment which definition we are working with.

Theorem 15 (Product of simplicial sets).

• Let Y and X be simplicial sets with the corresponding face and degener-
acy operators ∂Y , sY , ∂X and sX . Then, the following construction is a
simplicial set (also known as the cartesian product of simplicial sets):

Y ×X = {(y, x). y ∈ Y ∧ x ∈ X}

∂Y×X = (λ(y, x) ∈ Y ×X. (∂Y (y), ∂X(x))

SY×X = (λ(y, x) ∈ Y ×X. (sY (y), sX(x)))

• Let Y1, Y2 and X be simplicial sets together with ∂Y1
, sY1

, ∂Y2
, sY2

, ∂X and
sX as the corresponding face and degeneracy operators. Let t : Y1 → X
and f : Y2 → X be morphisms. Then the following construction is a
simplicial set (also known as the pullback of simplicial sets):

Y1 ×(t,f) Y2 = {(y1, y2). y1 ∈ Y1 ∧ y2 ∈ Y2 ∧ t(y1) = f(y2)}

∂Y1×(t,f)Y2
= (λ(y1, y2) ∈ Y1 ×(t,f) Y2. (∂Y1

(y1), ∂Y2
(y2))

sY1×(t,f)Y2
= (λ(y1, y2) ∈ Y1 ×(t,f) Y2. (sY1

(y1), sY2
(y2))

Definition 31 (Pullback on objects). Let Y1, Y2, X be simplicial sets,
t : Y1 → X and f : Y2 → X morphisms. Then, the pullback on objects is
defined by means of the following diagram:

Y1 ×(t,f) Y2

Π1

��

Π2 // Y2

f

��
Y1 t

// X

Following [96], we have only formalised a particular case of pullback between
arrows: that related to well-ordered morphisms.

118

Section 6.3 Formalising the Infrastructure

Definition 32 (Well-ordered morphism). Let X and Y be simplicial sets. A
well-ordered morphism f : X → Y is a pair consisting of a morphism into X
(also denoted by f) and a function assigning to each simplex x ∈ Xn a well-
ordering on the fiber Yx := f−1(x) ⊆ Yn.

Definition 33 (Isomorphism of well-ordered morphisms). If f1 : Y1 → X and
f2 : Y2 → X are well-ordered morphisms, an isomorphism of well-ordered mor-
phisms from f1 to f2 is an isomorphism Y1

∼= Y2 preserving the well-orderings
in the fibers. That is,

Y1

f1

g // Y2

f2
~~

X

	

where f2 ◦ g = f1.

Definition 34 (Pullback on morphisms). Let X ′, X, Y1, Y2 be simplicial sets,
f1 : Y1 → X and f2 : Y2 → X well-ordered morphisms, t : X ′ → X a morphism
and g : Y1 → Y2 an isomorphism between the well-ordered morphisms f1 and
f2. Then, the pullback on morphisms is defined as follows:

X ′ ×(t,f1) Y1

(Π1,g) //

Π1

X ′ ×(t,f2) Y2

Π1

~~

Y1
g //

f1

��

Y2

f2

��
X ′

t
// X

Theorem 16 (Yoneda embedding). There exists a functor
y : ∆→ (∆op → Set) (equivalently y : ∆ → sSet), called the Yoneda
embedding.

6.3 Formalising the Infrastructure

The previous section presents the mathematical definitions and results which are
fundamental for the simplicial model. Now we show how we have carried out
their formalisation. In order to formalise such an infrastructure in Isabelle/HOL,
we try to reuse some already-developed libraries. In our case, we make use of
an existing development about categories published in the Isabelle Archive of
Formal Proofs [122]. This library is based on HOL and includes relevant facts
such as the definition of (small) categories, functors and the Yoneda’s lemma.
O’Keefe [121] explains the formalisation of such results. This section explains
the formalisation of the results presented in the previous section, but there also
exist some other intermediate facts which are not explained here, although they
have been included in our library since they are basic results of Category Theory
(such as composition of morphisms is a morphism, composition of isomorphisms
between simplicial sets is an isomorphism and more). Throughout this section
we just present the main statements, omitting the proofs.

119

Chapter 6 Simplicial Model in Isabelle/HOL

Let us note that the simplicial model presented in [96] involves categories
(see Definition 19), but our formalisation is based on the more specific small
categories, where Ob and Ar are sets instead of being proper classes. The
definition of small categories presented in [122] has been named in Isabelle/HOL
as category and it is the following one:

record (’o, ’a) category =

ob :: "’o set" ("Obı" 70)

ar :: "’a set" ("Arı" 70)

dom :: "’a ⇒ ’o" ("Domı _" [81] 70)

cod :: "’a ⇒ ’o" ("Codı _" [81] 70)

id :: "’o ⇒ ’a" ("Idı _" [81] 80)

comp :: "’a ⇒ ’a ⇒ ’a" (infixl " ·ı" 60)

definition
hom :: "[(’o,’a,’m) category_scheme, ’o, ’o] ⇒ ’a set"

("Homı _ _" [81,81] 80) where
"hom CC A B = { f. f∈ar CC & dom CC f = A & cod CC f = B }"

locale category =

fixes CC (structure)
assumes dom_object [intro]:

"f ∈ Ar =⇒ Dom f ∈ Ob"

and cod_object [intro]:

"f ∈ Ar =⇒ Cod f ∈ Ob"

and id_left [simp]:

"f ∈ Ar =⇒ Id (Cod f) · f = f"

and id_right [simp]:

"f ∈ Ar =⇒ f · Id (Dom f) = f"

and id_hom [intro]:

"A ∈ Ob =⇒ Id A ∈ Hom A A"

and comp_types [intro]:

"
∧
A B C. (comp CC) : (Hom B C) → (Hom A B) → (Hom A C)"

and comp_associative [simp]:

"f ∈ Ar =⇒ g ∈ Ar =⇒ h ∈ Ar

=⇒ Cod h = Dom g =⇒ Cod g = Dom f

=⇒ f · (g · h) = (f · g) · h"

As it can be seen, the definition is based on a record, where the arity and
types of each operation are fixed, and a locale, where the properties about such
operations are formulated. Roughly speaking, this implementation does not
straightly follows Definition 20, since the elements of the set of objects (as well
as the elements in the set of arrows) must be of the same type. All the examples
of categories presented in Section 6.2 will be implemented in Isabelle/HOL based
on the definition of small category presented above. Since such a frame of small
categories has been chosen in the formalisation, from here on we will refer to
them simply as categories.

Although the definition of small category was present in the library, the
definition of opposite category was not. We have defined it in a quite direct way
and prove the corresponding interpretation as a category in Isabelle:

context category

begin

120

Section 6.3 Formalising the Infrastructure

definition
"op_cat =

(|
ob = ob CC,

ar = ar CC,

dom = cod CC,

cod = dom CC,

id = id CC,

comp = (λa b. comp CC b a)

|)"

interpretation op_cat: category op_cat

proof
...

qed

In addition, we have defined and proven the properties of the ∆−category.
As it is done in many references, we identify a natural number n with the cor-
responding set {0..n}. That is, when referring n ∈ Ob∆ we mean {0..n} ∈ Ob∆.
In our implementation, the elements of the set of arrows will be triples (f,m, n)
where f : m → n and it satisfies the conditions presented in Definition 23.
The use of triples is mandatory, otherwise, domain and codomain of an arrow f
would be unknown. The Isabelle predicate f ∈ extensional {0..m} just means
that f returns undefined outside {0..m} (the domain).

definition "delta_ob = {{0..n} | n. n ∈ (UNIV::nat set)}"

definition "delta_ar = {(f,m,n) |(f::nat⇒nat) m n. f ∈ {0..m} → {0..n}

∧ (∀ i j. j∈ {0..m} ∧ i≤j −→ f i ≤ f j) ∧ f ∈ extensional {0..m}}"

definition "delta_dom (f :: (nat⇒nat) × nat × nat) = {0..fst (snd f)}"

definition "delta_cod f = {0..snd (snd f)}"

definition "delta_id = (λs∈delta_ob.(λx∈s. x, card s - 1, card s - 1))"

definition "delta_comp G F = (let f = fst F; m=fst (snd F); g= fst G;

n’=snd (snd G) in ((compose (delta_dom F) g f), m ,n’))"

definition
"delta_cat=

(|
ob = delta_ob,

ar = delta_ar,

dom = delta_dom,

cod = delta_cod,

id = delta_id,

comp = delta_comp

|)"

interpretation delta: category delta_cat

proof
...

qed

The category of sets (Set) is an essential part in the simplicial model. It is

121

Chapter 6 Simplicial Model in Isabelle/HOL

already defined in the Isabelle/HOL development on which we are basing our
work:

record ’c set_arrow =

set_dom :: "’c set"

set_func :: "’c ⇒ ’c"

set_cod :: "’c set"

definition
set_arrow :: "[’c set, ’c set_arrow] ⇒ bool" where
"set_arrow U f ←→ set_dom f ⊆ U & set_cod f ⊆ U

& (set_func f): (set_dom f) → (set_cod f)

& set_func f ∈ extensional (set_dom f)"

definition
set_cat :: "’c set ⇒ (’c set, ’c set_arrow) category" where
"set_cat U =

(|
ob = Pow U,

ar = {f. set_arrow U f},

dom = set_dom,

cod = set_cod,

id = set_id U,

comp = set_comp

|)"

Let us note that a variable set U is used. This set fixes the objects and
arrows of the category: objects are the powerset of such a set U, arrows will
be functions between such objects. We will usually work fixing U = UNIV, that
is: the universe of all sets of a (fixed) type. However, that is not exactly the
definition of the Set-category, since it is more related to what in [109] is called
Ens: “category of all sets and functions within a (variable) set U”, which is a
small category.

It is worth noting that here we are limited by the type system: the variable
set U will fix the underlying type ’c of the category, since its objects will be
subsets of Pow U. That is, objects of the Set-category will be sets over a fixed
type ’c and thus it is not possible to consider objects over any other type
within the same category. Same occurs with the arrows: they are functions
of type ’c ⇒ ’c as arrows are maps between objects. To sum up, once U is
fixed, objects will have the same type ’c set (the type of the set of objects)
and we cannot mix them with other objects of a type non-unifiable with ’c set,
although the mathematical definition of Set allows it.

Let us show an example. Let A = {1, 2, 3} be a set of natural numbers
and B = {True, False} a boolean set. Both sets belong to the category Set,
but in the Isabelle/HOL library we are using do not because types are different
(in such a library they would belong to different categories). Moreover, the
following function belongs to the set of arrows of the Set-category using the
mathematical definition.

122

Section 6.3 Formalising the Infrastructure

f : A // B

1 // True
2 // True
3 // False

However, it does not belong to the set of arrows of any Set-category within
the presented Isabelle/HOL implementation. Our intention is to push the for-
malisation as far as possible in this constrained context.

The concepts of functor and natural transformation were already defined in
the library. We have included an interesting property: if F : AA → BB is a
functor, then we can define another functor F op : AAop → BBop. Indeed, such
a functor is F (the proof can be found in the file Yoneda Embedding.thy of the
development [48]):

lemma op_functor:

assumes "Functor F : AA −→ BB"

shows "Functor F : (AA.op_cat) −→ (BB.op_cat)"

We have also added the definition of functor category, see Definition 27. In
a similar way to what we did for the arrows in the ∆-category, we have defined
the arrows of the functor category as a triple (µ, F,G) where µ is the natural
transformation between the functors F and G.

definition "functor_cat_ob = {F | F. Functor F: AA −→ BB}"

definition "functor_cat_ar = {(u,F,G)| u F G. u : F ⇒ G in Func(AA,

BB)}"

definition "functor_cat_dom u = fst (snd u)"

definition "functor_cat_cod u = snd (snd u)"

definition "functor_cat_id = (λF ∈ functor_cat_ob. (λx∈ ob AA. id BB

(Fo x),F,F))"

definition "functor_cat_comp V U = (let

u = fst U; F = fst (snd U); G = snd (snd U);

v = fst V; H = fst (snd V); I = (snd (snd V))

in (λx∈ob AA. (v x) ·BB (u x),F,I))"

definition
"functor_cat=

(|
ob = functor_cat_ob,

ar = functor_cat_ar,

dom = functor_cat_dom,

cod = functor_cat_cod,

id = functor_cat_id,

comp = functor_cat_comp

|)"

interpretation functor_cat: category functor_cat

proof
...

qed

123

Chapter 6 Simplicial Model in Isabelle/HOL

As an instance of the functor category, we define the simplicial set category
(sSet) which is the category of functors between ∆op and Set:

interpretation sSet: two_cats delta.op_cat "set_cat (UNIV::’c set)"

proof
...

qed

Now we can move forward to simplicial sets according to Definition 28. There
was nothing developed in Isabelle/HOL about such a structure. We have im-
plemented it by means of a class as follows:

class simplicial_set =

fixes X::"nat ⇒ ’a set"

and d :: "nat ⇒ nat ⇒ ’a ⇒ ’a"

and s :: "nat ⇒ nat ⇒ ’a ⇒ ’a"

assumes d_pi: "i≤q+1 −→ d (q+1) i ∈ X (q+1) → X q"

and s_pi: "i≤q −→ s q i ∈ X q → X (q + 1)"

and condition1: "q 6=0 ∧ i<j ∧ j ≤ q + 1 ∧ x ∈ X (q + 1)

−→ (d q i ◦ d (q+1) j) x = (d q (j - 1) ◦ d (q+1) i) x"

and condition2: "i≤j ∧ j≤q ∧ x ∈ X q

−→ (s (q + 1) i ◦ s q j) x = (s (q+1) (j+1) ◦ s q i) x"

and condition3: "i<j ∧ j≤q ∧ x ∈ X q

−→ (d (q + 1) i ◦ s q j) x = (s (q - 1) (j - 1) ◦ d q i) x"

and condition4: "j≤q ∧ x ∈ X q −→ (d (q+1) (j+1) ◦ s q j) x = x"

and condition5: "j≤q ∧ x ∈ X q −→ (d (q+1) j ◦ s q j) x = x"

and condition6: "i>j+1 ∧ i≤q ∧ x ∈ X q

−→ (d (q + 1) i ◦ s q j) x = (s (q - 1) j ◦ d q (i - 1)) x"

HOL functions are total, but d and s are not. Hence, it has been necessary
to take care of the domain of the composition in all conditions, imposing that
x ∈ Xq (or Xq+1 depending on the formulated property).

The definition of a simplicial morphism (see Definition 29) is also straight-
forward. We have created a locale called two simplicial sets where two sim-
plicial sets Y and X are fixed, then a simplicial morphism is defined inside such
a locale. Once again, we have to explicitly introduce in the properties the do-
main and codomain of the morphism, specially when defining the properties.
Throughout our work, we have defined some locales where we fix several sim-
plicial sets with their corresponding involved morphisms to avoid cumbersome
notation. As we have already said, we are working in this case within a locale

where two simplicial sets are fixed (Y and X).

definition "morphism f = (∀ n. f n ∈ Func (Y n) (X n)

∧ (∀ i x. i≤n+1 ∧ x ∈ Y (n+1) −→ (f n ◦ dy (n + 1) i) x = (dx (n +

1) i ◦ f (n + 1)) x)

∧ (∀ i x. i≤n ∧ x ∈ Y n −→ (f (n + 1) ◦ sy n i) x = (sx n i ◦ f n)

x))"

Furthermore, we have had to require the morphism to return undefined out-
side the source simplicial set (the constant undefined::’a describes an arbitrary
element of a type ’a). Unfortunately, to require the morphisms to go from Y to

124

Section 6.3 Formalising the Infrastructure

X is not enough, since that will give room to problems about equality between
functions when working outside the domain. This is done thanks to the existing
definition Func :

Func A B = {f. (∀ a∈A. f a ∈ B) ∧ (∀ a. a /∈ A −→ f a = undefined)}

Well-ordered morphisms are the first notion that appears specifically in the
simplicial model article [96]. In order to implement them in Isabelle, previously
we have to define the concept of an isomorphism between simplicial sets.

definition "simplicial_set_iso f = (morphism f

∧ (∃ g. X_Y.morphism g ∧
(∀ n. compose (X n) (f n) (g n) = restrict id (X n)

∧ compose (Y n) (g n) (f n) = restrict id (Y n))))"

In the previous definition, morphism f represents a morphism
f : Y → X, X_Y.morphism g the inverse morphism g : X → Y and
compose (Y n) (g n) (f n) = restrict id (Y n) means that the composi-
tion of gn and fn restricted to Yn is equal to the identity restricted to
Yn.

Moreover, we have formalised that if f : Y → X is an isomorphism between
simplicial sets which respects the well-order in the fibers, then its inverse will
also respect the well-order in the fibers.

Well-ordered morphisms (see Definition 32) are then implemented inside the
locale two simplicial sets as follows:

definition "well_ordered_morphism F = (let f=fst F; g=snd F in morphism f

∧ (∀ n. g n ∈ Pi (X n::’a set) (%x. {r. well_order_on {y::’b. y ∈ Y n

∧ f n y = x} r})))"

Domain and codomain of gn have been determined thanks to the existing
definition Pi. In contrast to the use of Func, Pi does not state anything about
what happens outside the domain:

Pi A B = {f. ∀ x. x ∈ A −→ f x ∈ B x}

Making use of the definition of well-ordered morphism, we can implement
the concept of isomorphism of well-ordered morphisms (see Definition 33):

definition "iso_between_morphism f1 f2 g =

(

(*Both f1 and f2 are a well ordered morphism*)

Y1_X.well_ordered_morphism f1 ∧ Y2_X.well_ordered_morphism f2

(*Isomorphism between simplicial set*)

∧ Y1_Y2.simplicial_set_iso g

(*Commute*)

∧ (∀ n::nat. ∀ y ∈ Y1 n. (fst(f2) n) (g n y) = (fst(f1) n) y)

(*Isomorphism between fibers that respects the well-order on them*)

∧ (∀ n::nat. ∀ x ∈ X n. iso (snd f1 n x) (snd f2 n x) (g n))

)"

Now it is turn to define the osSet category. Again, we have a similar problem

125

Chapter 6 Simplicial Model in Isabelle/HOL

to the one presented in the Set-category: once we fix a type, each object (each
simplicial set) must be of such a type. We just show here the set of objects
and the set of arrows, the rest of operations of the category are defined in a
straightforward way according to these sets (see Definition 30):

definition "osSet_ob = {(X,d,s). class.simplicial_set X d s}"

definition "osSet_ar = {(f,(Y,dy,sy),(X,dx,sx))| f Y dy sy X dx sx.

class.simplicial_set Y dy sy ∧ class.simplicial_set X dx sx ∧
two_simplicial_sets.morphism Y dy sy X dx sx f}"

definition "osSet_dom f = fst (snd f)"

definition "osSet_cod f = snd (snd f)"

definition "osSet_id =

(λ(X,d,s)∈osSet_ob. ((λn. λx ∈(X n). x),(X,d,s),(X,d,s)))"

definition "osSet_comp g f = (let f’=fst f; X=fst (osSet_dom f); g’=fst g

in (λn::nat. compose (X n) (g’ n) (f’ n), osSet_dom f, osSet_cod g))"

definition "osSet =

(|
ob = osSet_ob,

ar = osSet_ar,

dom = osSet_dom,

cod = osSet_cod,

id = osSet_id,

comp = osSet_comp

|)"

interpretation osSet: category osSet

proof
...

qed

Again, arrows are defined by means of a triple (morphism, domain,
codomain). Here, domain and codomain are simplicial sets, which are again
a triple (simplicial set, faces, degeneracies).

A constant approach in our work is to try to prove the properties as general
as possible in Isabelle. For instance, in this case once we fix the category, the
simplicial sets (the objects of osSet) will be of the same type. Nevertheless,
we can prove the properties that a category requires without imposing both
simplicial sets to be of the same type, which is more similar to what is presented
in mathematical books. This way, we have demonstrated the properties in
general (involving simplicial sets of different types), but when working with
the Isabelle/HOL definition of category, types will be unified. Let us show an
example of our approach when working in the osSet category.

The following property states that the domain of an arrow in osSet belongs
to the objects. If we do not fix the category, that is, if we work with the general
definitions osSet ob, osSet ar, . . . , we have the following statement:

lemma osSet_dom_in_delta_ob:

126

Section 6.3 Formalising the Infrastructure

fixes f::"(nat ⇒ ’a ⇒ ’b) × ((nat ⇒ ’a set) ×
(nat ⇒ nat ⇒ ’a ⇒ ’a) × (nat ⇒ nat ⇒ ’a ⇒ ’a)) ×
(nat ⇒ ’b set) × (nat ⇒ nat ⇒ ’b ⇒ ’b) × (nat ⇒ nat ⇒ ’b

⇒ ’b)"

assumes "f ∈ osSet_ar"

shows "osSet_dom f ∈ osSet_ob"

If one takes a look at the type of the arrow f, it can be seen that two free
type variables appear: ’a and ’b (the type of the arrows is cumbersome because
the set of arrows is a triple). These two free type variables represent the type
of the source simplicial set and the final simplicial set, which can be now of
different type. Hence, we have proven the property in general, somehow more
related with the mathematical definition.

However, once we fix the category (that is, when working with ObosSet,
ArosSet,. . .), only one free type variable appears. It is just a particular case of
the previous result and we can prove it as a corollary.

corollary osSet_dom_in_delta_ob_cat:

fixes f::"(nat ⇒ ’a ⇒ ’a) × ((nat ⇒ ’a set) ×
(nat ⇒ nat ⇒ ’a ⇒ ’a) × (nat ⇒ nat ⇒ ’a ⇒ ’a)) ×
(nat ⇒ ’a set) × (nat ⇒ nat ⇒ ’a ⇒ ’a) × (nat ⇒ nat ⇒ ’a

⇒ ’a)"

assumes "f ∈ ArosSet"

shows "DomosSet f ∈ ObosSet"

using assms osSet_dom_in_delta_ob

by (simp add: osSet_def)

With this approach, we try to keep the statements as general as possible,
minimizing the limitations of the type system when working with categories.

Theorem 14 shows the equivalence between osSet and sSet. As we will
explain in Section 6.5, only the transformation from sSet to osSet is necessary
in our development. Let us show how we have defined such a functor, that we will
call from sSet. First of all, we have to define two morphisms δni : ∆n−1 → ∆n

and σni : ∆n+1 → ∆n which are arrows in ∆, and also in ∆op as long as the
corresponding change between domain and codomain is done. Both are defined
in [111]. We have implemented them in Isabelle/HOL by means of the following
definitions (outside the domain, both functions return undefined):

definition "δ n i = (if n=0 then undefined else (λj::nat. if j<i ∧ i≤n
then j else if j<n then j + 1 else undefined))"

definition "σ n i = (λj::nat. if j≤i ∧ i≤n then j else if j≤n+1 then

j - 1 else undefined)"

After that, we define the functor from sSet for objects. We base the defi-
nition on the previous functions δ and σ. Given an object in sSet (a functor
F : ∆op → Set), we have to get another object in osSet. That is, a triple
(Y, ∂, s) is sought. This is done by means of the following definition:

definition "from_sSet_ob = (λF ∈ sSet_ob.

(λn. Fo {0..n},

λn i. if n = 0 then undefined else set_func (Fa (δ n i, n - 1,n)),

127

Chapter 6 Simplicial Model in Isabelle/HOL

λn i. set_func (Fa (σ n i, n+1,n))))"

Some remarks:

• F is a functor from ∆op to Set. So, given an arrow in ∆op (such as δni
and σni) returns an arrow in Set: a triple (domain, function, codomain).
We have to use set func to get only the function and define faces and
degeneracies.

• As HOL functions are total, we have to deal with the case 0 when working
with faces, defining it as undefined, since it does not make sense.

Now we want to transform arrows of sSet (a triple (µ,F ,G) where µ is a
natural transformation between the functors F and G), to arrows in osSet (a
triple (f ,Y ,X) where f is a morphism between two simplicial sets Y and X).
In this case, the morphism is defined as (λn::nat. set_func (u {0..n})) and
the simplicial sets that are the domain and the codomain of the morphism will
be obtained from the function from sSet ob applied to the functors F and G.

definition "from_sSet_ar = (λ(u,F,G) ∈ sSet_ar.

((λn::nat. set_func (u {0..n})),(from_sSet_ob F),(from_sSet_ob G)))"

Finally, we can define from sSet and prove that it is really a functor between
the categories sSet and osSet :

definition "from_sSet = (|om = from_sSet_ob, am = from_sSet_ar |)"

lemma from_sSet_functor:

"Functor from_sSet : sSet −→ osSet"

Theorem 15 presents some examples of products of simplicial sets that are
simplicial sets. Both results are stated in Isabelle/HOL as follows:

sublocale simplicial_set_prod:

simplicial_set "(λn. (Y n × X n)) "

"(λi n x. (dy i n (fst x), dx i n (snd x))) "

"(λi n x. (sy i n (fst x), sx i n (snd x)))"

sublocale Y1_times_Y2_tf: simplicial_set

"(λn. {(y1,y2). y1 ∈ Y1 n ∧ y2 ∈ Y2 n ∧ t n y1 = f n y2})"

"(λi n x. (dy1 i n (fst x), dy2 i n (snd x)))"

"(λi n x. (sy1 i n (fst x), sy2 i n (snd x)))"

The last sublocale is essential for the pullback on objects presented in Defi-

nition 31. Essentially, we must prove that Y1 ×(t,f) Y2
Π1−−→ Y1 is a morphism to

complete such a diagram:

lemma Y1_times_Y2_tf_Y1_morphism_fst:

shows "Y1_times_Y2_tf_Y1.morphism (λn. λx∈{(y1,y2). y1 ∈ Y1 n ∧ y2

∈ Y2 n ∧ t n y1 = f n y2}. fst x)"

Indeed, we can prove Y1 ×(t,f) Y2
(Π1,wo)−−−−−→ Y2 is a well-ordered morphism

which is somehow more complicated. We want to prove that the following

128

Section 6.3 Formalising the Infrastructure

diagram commutes:

Y1 ×(t,f) Y2

(Π1,wo)

��

Π2 // Y2

(f,ord)

��
Y1 t

// X

where t is a morphism and (f, ord) is a well-ordered morphism. We have to
define the function wo which is the one that given an element x in Y1n returns
a well-order in the fiber (Y1 ×(t,f) Y2)

x
:= Π1

−1(x) ⊆ (Y1 ×(t,f) Y2)
n
. We have

named this function as X Y1 Y2 tf g and defined it in Isabelle/HOL as follows:

definition "X_Y1_Y2_tf_g

= (λn y1. {((a,b),(c,d)). a=y1 ∧ c=y1 ∧ y1 ∈ Y1 n ∧ b ∈ Y2 n ∧ d ∈
Y2 n ∧ t n y1 = f n b ∧ t n y1 = f n d ∧ (b,d) ∈ ord n (t n y1)})"

The first thing to do is to prove that it returns a well-order:

lemma Well_order_X_Y1_Y2_tf_g:

assumes x: "x ∈ Y1 n"

shows "Well_order (X_Y1_Y2_tf_g n x)"

Once that is done, we prove

Y1 ×(t,f) Y2
(Π1,wo)−−−−−→ Y1

to be a well-ordered morphism (where wo denotes our function X Y1 Y2 tf g):

lemma Y1_times_Y2_tf_Y1_well_ordered_morphism_fst:

shows "X_Y1_Y2_tf.Y1_times_Y2_tf_Y1.well_ordered_morphism

((λn. λx∈{(y1,y2). y1 ∈ Y1 n ∧ y2 ∈ Y2 n ∧ t n y1 = f n y2}.

fst x), X_Y1_Y2_tf_g)"

Finally, we can define the pullback completely:

definition "pullback_set = (λn. {(y1,y2). y1 ∈ Y1 n ∧ y2 ∈ Y2 n ∧ t n

y1 = f n y2})"

definition "pullback_d = (λi n x. (dy1 i n (fst x), dy2 i n (snd x)))"

definition "pullback_s = (λi n x. (sy1 i n (fst x), sy2 i n (snd x)))"

definition "pullback = ((λn. λx ∈ pullback_set n. fst x)::(nat ⇒ ’b ×
’c ⇒ ’b), X_Y1_Y2_tf_g)"

corollary well_ordered_morphism_pullback:

shows "X_Y1_Y2_tf.Y1_times_Y2_tf_Y1.well_ordered_morphism pullback"

To prove the pullback on morphisms, we have defined a locale where four
simplicial sets are fixed (Y1, Y2, X

′ and X), t : X ′ → X is a morphism, and f is
an isomorphism, following the diagram:

129

Chapter 6 Simplicial Model in Isabelle/HOL

Y1

(f1,ord1)

f // Y2

(f2,ord2)

��
X ′

t
// X

We have proven that X ′ ×(t,f1) Y1
(Π1,f)−−−−→ X ′ ×(t,f2) Y2 is an isomorphism.

The statement in Isabelle/HOL looks as follows:

lemma iso_between_morphism_pullback:

shows "X’_X’Y1_X’Y2.iso_between_morphism (X_X’_Y1_t_f1.pullback)

(X_X’_Y2_t_f2.pullback) (λn. λx∈X_X’_Y1_t_f1.pullback_set n. (fst x,

f n (snd x)))"

Finally, the Yoneda embedding is a functor between ∆ and sSet. Again, we
define the functor in two blocks: objects and arrows. But previously we define
a couple of auxiliary functions:

Definition 35. Let m and n be in Ob∆. Then, ∆m
n is the set of morphisms

between m and n.

Definition 36. A function F is defined as:

• Given an object n in ∆, F returns an object in sSet: a function that given
an object m in ∆op returns the set of morphisms between m and n, that
is ∆m

n .

• Given an object n in ∆ and a morphism in ∆op (a function f : m2 → m1),
then F returns the arrow belonging to Set which is a function that
given another function g : m1 → n, then it returns the composition
g ◦ f : m2 → n.

They have been implemented in Isabelle/HOL as follows:

definition "∆ = (λn ∈ ob delta_cat. λm ∈ ob delta_cat. {(f,card n -

1,card m - 1)|f. (f,card n - 1,card m - 1) ∈ delta_ar})"

definition "F = (λn ∈ ob delta_cat.

(|om= (λm ∈ ob delta.op_cat. ∆ m n),

am= (λf ∈ ar delta.op_cat.

let m1=delta_cod f; m2 = delta_dom f (*f ∈ ∆ m2 m1*)

in

(|set_dom = ∆ m1 n,

set_func = (λg ∈ ∆ m1 n. (delta_comp g f)),

set_cod = ∆ m2 n |)) |))"

We can prove that (F n) is a functor between ∆op and Set:

lemma Functor_F: "Functor F {0..n} : delta.op_cat −→ (set_cat UNIV)"

Taking advantage of the previous auxiliary definitions, we can implement the
Yoneda embedding. The Yoneda embedding is a functor y : ∆→ sSet which is
defined as follows:

130

Section 6.4 The Simplicial Model

• Given an object in ∆, returns an object in sSet (a functor). That is, given
n ∈ Ob∆ it returns F n.

• Given an arrow in ∆, f : n → m, then y has to return an arrow in sSet
(a natural transformation between two functors: that is, a function that
given an object in ∆op returns an arrow in Set). Fixed an element k
belonging to the objects in ∆op, then such a natural transformation will
be a function that given a g in F n k (which is equal to ∆k

n, the set of
functions from k to n), returns the composition f ◦ g : k → m. The
functors are F n and F m.

The corresponding Isabelle/HOL implementation is:

definition "yoneda_embedding =

(|om = F,

am = (λf∈ar delta_cat.

let n=delta_dom f; m=delta_cod f

in

((λk∈ ob delta.op_cat.

(|set_dom = (F n) o k,

set_func=(λg ∈ (F n) o k. delta_comp f g),

set_cod=(F m) o k |), (F n),(F m)))) |)"

We have always had to work with triples, since the arrows in both Set and
sSet are defined in that way. The final statement looks like this (its complete
proof is available from the file Yoneda Embedding.thy of the development [48]):

lemma Functor_Yoneda_Embedding:

"Functor yoneda_embedding : delta_cat −→ sSet"

6.4 The Simplicial Model

In this section we show the first definitions and results about representability of
fibrations, presented in [96]. In that paper the notions of regular cardinal and
α-small morphisms are also considered, in order to get that some collections of
fibrations are sets and not proper classes. But in our typed environment these
cautions are unnecessary.

Proposition 1. Given two well-ordered sets, there is at most one isomorphism
between them. Given two well-ordered morphisms over a common base, there is
at most one isomorphism between them.

Definition 37. Given a simplicial set X we define W(X) to be the set of
isomorphism classes of well-ordered morphisms f : Y → X. Given a morphism
t : X ′ → X we define W(t) : W(X) → W(X ′) by W(t) = t∗ (the pullback
functor). This provides a functor W : osSetop → Set.

This definition is the first milestone of the simplicial model:

Definition 38. Define the simplicial set W by

W := W ◦ yop : ∆op → Set

where y denotes the Yoneda embedding y : ∆→ sSet.

131

Chapter 6 Simplicial Model in Isabelle/HOL

6.5 Formalising the Simplicial Model

Now it is time to prove in Isabelle/HOL Proposition 1. The result consists of
two statements. The first one can be proven thanks to the existing properties
presented in the library:

lemma well_order_sets_iso_unique:

assumes "well_order_on A r" and "well_order_on B r’"

and "iso r r’ f" and "iso r r’ g " and "a ∈ A"

shows "f a = g a"

by (metis assms embed_embedS_iso embed_unique well_order_on_Field)

For the second one, we have proven something even more general. First of
all, we have defined what we have called weak isomorphism between morphisms:

definition "iso_between_morphism_weak f1 f2 g

= (Y1_X.well_ordered_morphism f1

∧ Y2_X.well_ordered_morphism f2 (*Both f1 and f2 are a well ordered

morphism*)

∧ Y1_Y2.morphism g (*Morphism between simplicial set*)

∧ (∀ n::nat. ∀ y ∈ Y1 n. (fst(f2) n) (g n y) = (fst(f1) n) y)

(*Commute*)

∧ (∀ n::nat. ∀ x ∈ X n. iso (snd f1 n x) (snd f2 n x) (g n))

(*Isomorphism between fibers that respects the well-order on them*)

)"

The main difference between the above definition and the definition of iso-
morphism of well-ordered morphisms, which is presented in Section 6.3 and
called there iso between morphism, is that here we have not required g to be
an isomorphism between simplicial sets, but just a morphism. Of course,
iso between morphism implies the weak version:

lemma iso_imp_iso_weak:

assumes "iso_between_morphism f1 f2 g"

shows "iso_between_morphism_weak f1 f2 g"

Now, we can prove the second part of Proposition 1 in a more general way,
using the definition presented above:

lemma iso_between_morphism_weak_unique:

assumes g: "iso_between_morphism_weak (f1,ord1) (f2,ord2) g"

and f: "iso_between_morphism_weak (f1,ord1) (f2,ord2) f"

shows "g = f"

Finally, the desired result is obtained from the previous lemmas as a corol-
lary:

corollary iso_between_morphism_unique:

assumes g: "iso_between_morphism (f1,ord1) (f2,ord2) g"

and f: "iso_between_morphism (f1,ord1) (f2,ord2) f"

shows "g = f"

Up to now, we have proven [96, Proposition 3]. Now, we want to implement

132

Section 6.5 Formalising the Simplicial Model

and prove the properties shown in Definition 37.
We have to start by defining W(X) as the set of isomorphism classes of

well-ordered morphisms f : Y → X. We will do it in three steps:

1. Let X be a simplicial set, we define W ′(X) as the set of well-ordered
morphisms f : Y → X.

2. We define the following equivalence relation rel: two well-ordered mor-
phisms f1 : Y1 → X and f2 : Y2 → X are related if there exists an
isomorphism of well-ordered morphisms between them.

3. W(X) will be the quotient set W ′(X)/rel.

When we define W ′(X) in Isabelle, we will have the same problem as when
we worked with the Set-category: the elements of the set must be of the same
type. Mathematically f : Y1 → X and g : Y2 → X where Y1::’a, Y2::’b, X::’c

would belong to the same set W ′(X), but in Isabelle/HOL that is not possible,
since once we say that f : Y1 → X ∈ W ′(X), then each element of that set
W ′(X) must be of type ’a ⇒ ’c. 1

We have implemented W ′(X) and the equivalence relation in Isabelle/HOL
as follows:

definition "W’ = {((f,ord),(Y,dy,sy)). class.simplicial_set Y dy sy

∧ two_simplicial_sets.well_ordered_morphism Y dy sy X d s (f,ord)}"

definition "rel = {(((f1,ord1),(Y1,dy1,sy1)),((f2,ord2),(Y2,dy2,sy2))).
class.simplicial_set Y1 dy1 sy1 ∧
class.simplicial_set Y2 dy2 sy2 ∧ (∃ g.
three_simplicial_sets.iso_between_morphism X d s Y1 dy1 sy1 Y2 dy2 sy2

(f1,ord1) (f2,ord2) g)}"

Both definitions have been done inside a locale where a simplicial set X is
fixed. This is the reason why the simplicial set X is not an argument for W .
However, when working with W involving different simplicial sets or just outside
the locale where W is defined, we will have to make use of interpretations. For
instance, outside such a locale we will have to write X.W and Y.W in Isabelle/HOL
to refer to W (X) and W (Y) respectively, once we have proven X and Y to
be simplicial sets. Same occurs with rel. In addition, let us remark that rel is
just a set that consists of related pairs. Here, the simplicial sets Y1 and Y2 do
have to be of the same type.

Now we demonstrate that rel is an equivalence relation (symmetric, reflex-
ive, transitive). Again, we prove the properties as general as possible. For
example, the following statement is the transitivity property of the relation rel:

lemma trans_extended:

assumes f: "X_Y1_Y2.iso_between_morphism (f1,ord1) (f2,ord2) f"

and g: "X_Y2_Y3.iso_between_morphism (f2,ord2) (f3,ord3) g"

shows "∃ h. X_Y1_Y3.iso_between_morphism (f1,ord1) (f3,ord3) h"

1We have simplified the notation to make more understandable the situation. Y1 cannot
be just of type ′a because of the definition of simplicial set. The real type of a simplicial set
is more cumbersome to manage: Y1::(nat ⇒ ’a set) × (nat ⇒ nat ⇒ ’a ⇒ ’a)
× (nat ⇒ nat ⇒ ’a ⇒ ’a)).

133

Chapter 6 Simplicial Model in Isabelle/HOL

In the previous statement, the types of the simplicial sets are different
(Y1::’a, Y2::’b, and Y3::’c), but the following corollary fixes the simplicial
sets to be of the same type ’a since we have “fixed” the set rel :

lemma trans_rel: "trans rel"

Same occurs with the symmetry: let f be of type ’a ⇒ ’b and g of type
’c ⇒ ’d (again we have simplified the notation), and (f,g) ∈ rel. If rel is
symmetric, then (g,f) ∈ rel and since rel is a set and both (f,g) ∈ rel and
(g,f) ∈ rel then the types of f and g must be equal. The reflexive property
always requires the simplicial sets to be of the same type. Now, we can prove
the relation to be an equivalence relation over W (X):

lemma equiv_W’_rel:

shows "equiv W’ rel"

Finally, we can define the quotient set:

definition "W = W’ // rel"

Up to now, we have shown how we have carried out the formalisation of
the first line of Definition 37. We have to define W for morphisms, that is,
the pullback functor. Let t : X ′ → X be a morphism. We have defined t∗ in
Isabelle/HOL as follows (we have called it t’ since t∗ is not an allowed notation
in Isabelle):

definition "t_aux A =

(let ((f,ord), (Y, dy, sy)) = A

in (three_simplicial_sets_t_wo_f.pullback X’ Y t f ord,

(three_simplicial_sets_t_wo_f.pullback_set X’ Y t f,

three_simplicial_sets_t_wo_f.pullback_d dx’ dy,
three_simplicial_sets_t_wo_f.pullback_s sx’ sy

))

)"

definition "t’ S = {b. ∃ a∈S. (b, t_aux a) ∈ simplicial_set.rel X’ dx’
sx’}"

Now, we have to prove that t∗ respects the equivalence relation. That is, if

((f1, ord1), (Y1, ∂y1 , sy1)) ∼ ((f2, ord2), (Y2, ∂y2 , sy2))

then

t∗((f1, ord1), (Y1, ∂y1 , sy1)) ∼ t∗((f2, ord2), (Y2, ∂y2 , sy2))

The statement of this result is presented in Isabelle/HOL as follows:

lemma pullback_preserves_rel:

"((X_X’_Y1_t_f1.pullback,(X_X’_Y1_t_f1.pullback_set,

X_X’_Y1_t_f1.pullback_d,X_X’_Y1_t_f1.pullback_s))
,(X_X’_Y2_t_f2.pullback, (X_X’_Y2_t_f2.pullback_set,

X_X’_Y2_t_f2.pullback_d,X_X’_Y2_t_f2.pullback_s))) ∈ X’.rel"

134

Section 6.5 Formalising the Simplicial Model

We must show that W : osSetop → Set is a functor in Isabelle/HOL. Among
other things, we have to prove that W(t) : W(X) → W(X ′) is an arrow in a
Set-category implemented in Isabelle/HOL.

The mathematical proof of W(t) being an arrow from W(X) to W(X ′)
involves the use of the pullback on morphisms. In Isabelle/HOL, this property
can be stated and proven, but only if W(X) and W(X ′) have different types,
which is a problem since W(t) must be an arrow in the Set-category. Let us
explain it. Again we simplify the types to make more understandable the point.

Let X and X ′ be two simplicial sets of types ’a and ’b respectively. Let
’c ⇒ ’a be the type of the elements that belong to the set W(X). In order
to show explicitly the types of the sets, we denote it as W′c⇒′a(X). Analo-
gously, we will denote rel′c⇒′a(X) the corresponding equivalence relation. Let
t : X ′ → X be a morphism. Let f1 : Y1 → X and f2 : Y2 → X (Y1 and Y2 are of
type ’c) be two well-ordered morphisms that are related (f1, f2) ∈ rel′c⇒′a(X).
This means that there exists an isomorphism g : Y1 → Y2 between the well-
ordered morphisms f1 and f2.

Y1

f1

g // Y2

f2
~~

X

	

Let f : Y → X be a well-ordered morphism. We know that W(t)(f) =

t∗(f) returns the well-ordered morphism X ′×(t,f) Y
(Π1,wo)−−−−−→ X ′ that makes the

following diagram commutative:

X ′ ×(t,f) Y

(Π1,wo)

��

Π2 // Y

f

��
X ′

t
// X

Thus, t∗(f1) and t∗(f2) are related in the following way:

X ′ ×(t,f1) Y1

(Π1,g) //

Π1

X ′ ×(t,f2) Y2

Π1

~~
X ′

That is, there exists an isomorphism (Π1, g) of well-ordered morphisms. The
simplicial sets X ′ ×(t,f1) Y1 and X ′ ×(t,f2) Y2 are of type ’b × ’c :

X ′ ×(t,f1) Y1
(Π1,g)−−−−→ X ′ ×(t,f2) Y2

This implies that (t∗(f1), t∗(f2)) ∈ rel(′b×′c)⇒′b(X
′). Thus, we can prove

W(t) : W′c⇒′a(X) → W(′b×′c)⇒′b(X
′). But as we see, W′c⇒′a(X) and

W(′b×′c)⇒′b(X
′) must be of different types.

135

Chapter 6 Simplicial Model in Isabelle/HOL

As we have said, W must be a functor in Isabelle/HOL and that demands
W(t) to be an arrow in the Set-category. This would mean that W′c⇒′a(X)
and W(′b×′c)⇒′b(X

′) must be of unifiable types, which is not possible. Thus,
we cannot prove W : osSetop → Set to be a functor in Isabelle/HOL.

The next step would be to define in Isabelle/HOL the functor W as a compo-
sition of three functors. Let us note that we would have to include the function
from sSet because yop is a functor between ∆op and sSetop, but W is a functor
between osSetop and Set (in the article [96] sSet is used to refer both sSet and
osSet since the categories are isomorphic). Thus, the composition would be the
following one:

W := W ◦ from sSetop ◦ yop : ∆op → Set

where y denotes the Yoneda embedding y : ∆→ sSet.
However, we cannot do it since we have not been able to prove

W : osSetop → Set as a functor in Isabelle/HOL. More concretely, we cannot
prove that W(t) is an arrow according to the definition of Set-category which
we are using in Isabelle/HOL.

6.5.1 Porting the Development to Isabelle/HOLZF

The previous section shows that the existing Isabelle/HOL library about Cat-
egory Theory does not allow us to go further in our development. Unfortu-
nately, to develop a new library about Category Theory in Isabelle/HOL is not
a workaround since the mathematical concept of general Set-category seems
difficult to formalise within Isabelle/HOL.

As it was presented in Section 6.1, there exist other logics which have been
implemented on top of Isabelle, although they have barely been used.

One of them is HOLZF, for which there exists a library about Category The-
ory, which is explained thoroughly in [98]. This library includes the definition of
category, locally small category, functors, natural transformations, and a proof
of Yoneda’s lemma. The Set-category is defined in such a library as follows:

definition
SET’ :: "(ZF, ZF) Category" where
"SET’ ≡ (|

Category.Obj = {x . True} ,

Category.Mor = {f . isZFfun f} ,

Category.Dom = ZFfunDom ,

Category.Cod = ZFfunCod ,

Category.Id = λx. ZFfun x x (λx . x) ,

Category.Comp = ZFfunComp

|)"

definition "SET ≡ MakeCat SET’"

Let us note that an extensive use of HOLZF is made, since now the objects
and arrows of the category of sets are both of type ZF which is the type that
supports ZF set theory in HOL. In contrast with the existing implementation
of the Set-category in Isabelle/HOL that we are using, this one models better
the mathematical concept of Set-category: there exists just one and it is not

136

Section 6.5 Formalising the Simplicial Model

dependent on the types. Furthermore, a function f : {1, 2, 3} → {True, False}
such that f(1) = f(2) = True and f(3) = False (as the one we presented in
Section 6.3) does belong to this Isabelle/HOLZF implementation of the Set-
category.

It seems to be a good approach to experiment with this library of Is-
abelle/HOLZF in order to know if the problem presented in Section 6.5 could
be avoidable. Strongly reusing the infrastructure developed in Isabelle/HOL
and thanks to the existing relation between HOL and HOLZF, we have suc-
cessfully ported to Isabelle/HOLZF several of the results presented in previous
sections. In order to do that, we have transformed almost each occurrence of
the types ’a set and ’a to ZF and adapted the code to the characteristics of
ZF, such as the use of the operators |⊆| and |∈| instead of ⊆ and ∈. This
formalisation in Isabelle/HOLZF is presented in [49] and it includes the main
definitions (simplicial sets, well-ordered morphisms, isomorphism between well-
ordered morphisms). We have also fully ported Proposition 1, which is the first
result of Voevodsky’s simplicial model, and Theorem 15, whose statement is
presented below:

sublocale simplicial_set_prod:

simplicial_set "(λn. (Y n) |×| (X n)) "

"(λi n x. Opair (dy i n (Fst x)) (dx i n (Snd x)))"

"(λi n x. Opair (sy i n (Fst x)) (sx i n (Snd x)))"

proof
...

qed

sublocale Y1_times_Y2_tf: simplicial_set

"(λn. Sep (Y1 n |×| Y2 n) (λx. t n (Fst x) = f n (Snd x)))"

"(λi n x. Opair (dy1 i n (Fst x)) (dy2 i n (Snd x)))"

"(λi n x. Opair (sy1 i n (Fst x)) (sy2 i n (Snd x)))"

proof
...

qed

The latter result is specially important: we have now proven that given
two simplicial sets (Y, ∂Y , sY) and (X, ∂X , sX) where the graded sets Y and X
are of type nat ⇒ ZF, then the corresponding graded set (Y × X) is again
of type nat ⇒ ZF , in contrast to our development in Isabelle/HOL, where
Y :: nat ⇒ ’a set , X :: nat ⇒ ’b set and hence (Y × X) :: nat ⇒ (’a

× ’b) set. This seems to mean that the W(t) could be defined and proved as
an arrow of the Set category, avoiding the limitation presented in Section 6.5.

Let us also remark that when defining the simplicial set
(Y1 ×(t,f) Y2, ∂Y1×(t,f)Y2

, sY1×(t,f)Y2
) in Isabelle/HOLZF we have had to

make use of the separation operator Sep, which corresponds to the ZF
separation axiom.

137

Chapter 6 Simplicial Model in Isabelle/HOL

6.6 Conclusions

In this chapter, we report on an experiment aimed at exploring how much of
Voevodsky’s simplicial model [96] could be formalised in Isabelle/HOL. Once
the experiment done the conclusion is: very few. In addition, once the main
limitation is understood, one realises that big parts of the formalisation were
unnecessary to enlighten the nature of the problem. Nevertheless, we consider
that the Isabelle/HOL code written, which takes up ca. 5000 lines, is interesting
and deserves to be disseminated, as it includes, in particular, a formalisation of
simplicial sets for the first time (up to our knowledge) in Isabelle/HOL.

The way in which the obstruction to the formalisation occurred can be con-
sidered a consequence of the methodology we followed: keep us inside HOL and
reuse code as much as possible. In particular, we collided with the definition
of category in the library [121], and even more concretely with its definition of
Set-category. Roughly speaking, the problem is that in a category of arrows, one
morphism and a pullback of it have non-unifiable types, and then they cannot
be considered objects of the same category in Isabelle/HOL.

From a conceptual perspective, the problem lies on the decision of defining
the category of sets in Isabelle/HOL by means of the type constructor set, as
it is clear that it does not reflect the essence of Zermelo-Fraenkel sets. But the
issue of representing a more expressive category of sets in Isabelle/HOL seems
far from trivial. The limitation of using the type constructor set was already
remarked in [98], where a definition of the Set-category is introduced based on
the Isabelle/HOLZF framework. In Isabelle/HOLZF [120], HOL is extended
with Zermelo-Fraenkel axioms. Some preliminary experiments show that port-
ing our development to Isabelle/HOLZF could avoid the obstruction encoun-
tered in Isabelle/HOL. In any case, to determine both if the found limitation
could be overcome in Isabelle/HOL and if Voevodsky’s model is representable
in Isabelle/HOLZF is still to be elucidated.

138

Chapter 7

Conclusions and Future
Work

7.1 Results

In a nutshell, this thesis covers the formalisation of theorems and algorithms in
Linear Algebra together with their well-known applications. Roughly speaking,
we have presented the formalisation of:

• Theorems: the Fundamental Theorem of Linear Algebra and relation-
ships between linear maps and matrices.

• Algorithms: Gauss-Jordan, QR decomposition, echelon form, and Her-
mite normal form.

The way to tackle it has been as follows: we have formalised a general
framework where we have achieved the execution of the matrix representation
presented in the HOL Multivariate Analysis library (something that had not
been explored before, either in Isabelle or in HOL Light). This framework
eases the definition and formalisation of Linear Algebra algorithms using the
matrix representation of the HOL Multivariate Analysis library. Algorithms
can be executed within Isabelle. Besides, the infrastructure developed also
allows us to refine algorithms to a more efficient matrix representation based
on immutable arrays and to generate from them code to functional languages
(SML and Haskell). Furthermore, the ties between matrix algorithmics and
linear maps are also formalised (this link is not usually present in Computer
Algebra systems). This infrastructure is not exclusive for our development and
it can be reused for other Linear Algebra developments [8].

We have also serialised some of the Isabelle datatypes (reals, rationals, . . .)
to the corresponding native structures in the target functional languages in order
to improve the performance of the generated code. We present some experiments
which show that the use of immutable arrays do not pose a limitation compared
to an imperative implementation. Additionally, many theorems and structures
presented in the HOL Multivariate Analysis library have been generalised from
concrete types (real matrices, real vector spaces, . . .) to more abstract struc-
tures (matrices over fields, vector spaces over an arbitrary field, . . .). By means

139

Chapter 7 Conclusions and Future Work

of the previous framework and generalisations, we have formalised four well-
known Linear Algebra algorithms: the Gauss-Jordan algorithm, QR decompo-
sition, echelon form and Hermite normal form. The first two ones involve the
use of matrices over fields, the latter two ones involve matrices over Bézout
domains. As far as we know, most of them had never been formalised in Is-
abelle or even in any theorem prover before. The straightforward applications
of the algorithms have been formalised as well: computation of ranks of ma-
trices, inverses, characteristic polynomials, bases of the fundamental subspaces,
orthogonal bases, . . .

In fact, thanks to these algorithms, two of the “central problems of Linear
Algebra” (a terminology used by Strang in [142]) can be formally computed. We
have explored both the precision (when working with reals serialised as floats
in the target languages) and performance of the algorithms. Although the ob-
tained performance is not comparable to unverified Computer Algebra systems,
empirical experiments showed that the exported verified code can be used in
real-world applications. For instance, our exported code from the formalisation
of the Gauss-Jordan algorithm can be used to compute the homology of matri-
ces representing digital images (a process that is useful in Neurobiology, where
2500× 2500 Z2 matrices are involved).

To sum up, we have developed a set of results and formalised programs
in Linear Algebra that correspond to various lessons of an undergraduate text
in Mathematics. For instance, many theorems and algorithms presented in this
thesis correspond to the first four chapters in the textbook by Strang [142], which
sums up about 250 pages. Computer Algebra systems are usually error prone
and black boxes which employ tricky performance optimisations. Nowadays,
code obtained from formalisations cannot compete against them in terms of
performance, but it pays off in reliability and confidence. This work tries to
reduce the existing gap between software formalisation and working software,
since we have tried to get a reasonable performance as well.

Apart from theorems and algorithms of Linear Algebra, we present a more
tentative chapter where a formalisation of simplicial sets for the first time (up to
our knowledge) in Isabelle/HOL is explained, together with an experiment for
its application to Voevodsky’s simplicial model for Homotopy Type Theory. In
this experiment, we collided with the definition of Set-category in Isabelle/HOL,
which prevented us to go further in the development. Nevertheless, we have also
presented the possibilities to port it to Isabelle/HOLZF which seems that could
avoid the obstruction encountered in Isabelle/HOL.

The formalisations are part of the Archive of Formal proofs so that other
users could reuse them (in fact, they have already been useful for other
users [106, 148]). The total number of lines of the formalisations presented
here is 36075 (see Table A.8). Tables A.1 to A.7 show the files and the number
of lines of each development.

7.2 Future Work

Although we have discussed the possible future work for each algorithm in their
corresponding chapters, here we suggest general projects that are interesting to
work on in the future.

140

Section 7.2 Future Work

• Formalisation of other Linear Algebra algorithms: Linear Alge-
bra is a big topic and there exist some other algorithms that could be
formalised following the same approach. For example, the formalisation
of the related Smith normal form and the Singular Value Decomposition
would be of wide interest because of their applications. In addition, it
would be desirable to explore other more efficient representations, such as
sparse matrices. To refine the algorithms presented in this thesis to more
efficient versions of them would also be useful.

• Exploration of the ties with other Linear Algebra developments:
During the last year while developing this thesis, another formalisation
about Linear Algebra in Isabelle/HOL was published. It was developed by
Thieman and Yamada and it includes, among other things, many results
about Jordan normal forms, eigenvalues and a formalisation of the Gauss-
Jordan elimination. They reused some parts of our work, such as the
serialisation to immutable arrays in Haskell. By means of the lifting and
transfer package [91] it would be nice to explore if it is possible to transfer
their results (both theorems and algorithms) to the library we based our
work on (the HOL Multivariate Analysis library). Furthermore, it would
be interesting to study the work by Kunčar and Popescu [101] in order to
connect both representations bidirectionally.

• Algebraic numbers: To study the possibilities of using of algebraic
numbers would be desirable. In the last few months, two developments
about this topic have been published: the first one by Thiemann and
Akihisa [147] and the second one by Li and Paulson [106]. Both of them
make use of oracles and certifiers to validate the results. These works could
be useful to explore the computation of eigenvalues and eigenvectors, and
in general for developments which require exact computations in structures
different from Q[

√
b].

• Homotopy Type Theory: the simplicial model for homotopy type the-
ory developed by Voevodsky has become in an influential and important
topic, not only for the interactive theorem proving community but for
many mathematicians. In Chapter 6 we have presented some results of
simplicial sets and an experiment of its application to Voevodsky’s sim-
plicial model. Unfortunately, we got stuck on going deeper on the for-
malisation due to the definition of the Set category in Isabelle/HOL, but
some experiments showed that such a limitation could be avoidable in Is-
abelle/HOLZF. To explore if Isabelle/HOLZF is actually able to formalise
such a simplicial model would be of interest by far.

141

Appendix A

Detailed List of Files and
Benchmarks

A.1 Detailed List of Files

In this section, lists with length and file names presented in each development
are given. The total amount of lines of this thesis is 36075. The exact number
of lines can vary along the time, since AFP is constantly being updated. These
lines just correspond to the developments presented in the AFP version for
Isabelle 2016. In addition, there are some other parts of our work that were
part of the AFP, but now they have already been included as part of the Isabelle
library by the Isabelle developers.

Rank-Nullity Theorem

File name Number of lines
Dim Formula 334
Dual Order 73
Fundamental Subspaces 193
Generalisations 2549
Miscellaneous 537
Mod Type 557

Total Isabelle code 4243

Table A.1: List of files in the formalisation of the Rank-Nullity theorem [52].

143

Appendix A Detailed List of Files and Benchmarks

Gauss-Jordan algorithm and its applications

File name Number of lines
Bases Of Fundamental Subspaces 214
Bases Of Fundamental Subspaces IArrays 164
Code Bit 62
Code Generation IArrays 115
Code Generation IArrays Haskell 59
Code Generation IArrays SML 127
Code Matrix 84
Code Rational 139
Code Real Approx By Float Haskell 66
Code Set 42
Determinants2 502
Determinants IArrays 246
Elementary Operations 1030
Examples Gauss Jordan Abstract 164
Examples Gauss Jordan IArrays 211
Gauss Jordan 2433
Gauss Jordan IArrays 402
Gauss Jordan PA 457
Gauss Jordan PA IArrays 319
IArray Addenda 87
IArray Haskell 118
Inverse 331
Inverse IArrays 70
Linear Maps 1127
Matrix To IArray 414
Rank 46
Rref 413
System Of Equations 640
System Of Equations IArrays 390

Total Isabelle code 10472

Table A.2: List of files in the formalisation of the Gauss-Jordan algorithm [54].

144

Section A.1 Detailed List of Files

QR decomposition

File name Number of lines
Examples QR Abstract Float 49
Examples QR Abstract Symbolic 99
Examples QR IArrays Float 87
Examples QR IArrays Symbolic 185
Generalizations2 624
Gram Schmidt 915
Gram Schmidt IArrays 465
IArray Addenda QR 192
Least Squares Approximation 458
Matrix To IArray QR 422
Miscellaneous QR 445
Projections 197
QR Decomposition 759
QR Decomposition IArrays 111
QR Efficient 698

Total Isabelle code 5706

Table A.3: List of files in the formalisation of the QR decomposition [51].

Echelon form

File name Number of lines
Cayley Hamilton Compatible a 115
Code Cayley Hamilton 108
Code Cayley Hamilton IArrays 85
Echelon Form 2918
Echelon Form Det 306
Echelon Form Det IArrays 368
Echelon Form IArrays 386
Echelon Form Inverse 56
Echelon Form Inverse IArrays 30
Euclidean Algorithm b 2067
Euclidean Algorithm Extension 245
Examples Echelon Form Abstract 52
Examples Echelon Form IArrays 150
Rings2 1046

Total Isabelle code 7932

Table A.4: List of files in the formalisation of the Echelon form [50].

aDeveloped by Hölzl
bBased on the Eberl’s work with slight modifications

145

Appendix A Detailed List of Files and Benchmarks

Hermite normal form

File name Number of lines
Hermite 2152
Hermite IArrays 155

Total Isabelle code 2307

Table A.5: List of files in the formalisation of the Hermite normal form [57].

Experiment about the simplicial model in Isabelle/HOL

File name Number of lines
Yoneda Embedding 1368
Simplicial Model HOL 2396
OsSet 1129

Total Isabelle code 4893

Table A.6: List of files in the formalisation of the experiment about the simplicial
model in Isabelle/HOL [48].

Experiment about the simplicial model Isabelle/HOLZF

File name Number of lines
Simplicial Model HOLZF 522

Total Isabelle code 522

Table A.7: List of files in the formalisation of the experiment about the simplicial
model in Isabelle/HOLZF [49].

Total number of lines of the development

Development name Number of lines
Rank-Nullity Theorem [52] 4243
Gauss-Jordan algorithm and its applications [54] 10472
QR decomposition [51] 5706
Echelon form [50] 7932
Hermite normal form [57] 2307
Experiment about the simplicial model in Isabelle/HOL [48] 4893
Experiment about the simplicial model in Isabelle/HOLZF [49] 522

Total Isabelle code 36075

Table A.8: Total number of lines of the development.

A.2 Benchmarks

We present here the performance tests that we have carried out for our programs
obtained from the formalisation of the Gauss-Jordan algorithm and the QR
decomposition [51] (both of them were introduced in Chapter 4). We present
the benchmarks for the refined versions to immutable arrays and making use of
the serialisations explained through the thesis. The same randomly generated

146

Section A.2 Benchmarks

matrices have been used across the different systems and they can be obtained
from [56]. Let us note that the underlying field of the matrix coefficients notably
affects the performance and can even affect the complexity bounds. The times
presented throughout the tables are expressed in seconds. The benchmarks have
been carried out in a laptop with an Intel Core i5-3360M processor, 4 GB of
RAM, Poly/ML 5.6, Ubuntu 14.04, GHCi 7.6.3, and Isabelle 2016.

Size (n) Poly/ML Haskell
100 0.04 0.36
200 0.25 2.25
300 0.85 9.09
400 2.01 17.17
500 3.90 32.56
600 6.16 56.39
800 15.96 131.73

1 000 32.08 255.84
1 200 62.33 453.57
1 400 97.16 715.87
1 600 139.70 1097.41
1 800 203.10 1609.72
2 000 284.28 2295.30

Table A.9: Time to compute the rref of randomly generated Z2 matrices.

Size (n) Poly/ML Haskell
10 0.01 0.01
20 0.02 0.03
30 0.07 0.09
40 0.21 0.24
50 0.57 0.57
60 1.16 1.09
70 2.20 2.12
80 3.77 3.53
90 6.22 5.75
100 9.75 9.03

Table A.10: Time to compute the rref of randomly generated Q matrices.

147

Appendix A Detailed List of Files and Benchmarks

Size (n) Poly/ML Haskell
100 0.03 0.38
200 0.25 2.62
300 0.81 8.47
400 1.85 19.51
500 3.51 37.13
600 6.03 64.13
700 9.57 100.59
800 13.99 148.20

Table A.11: Time to compute the rref of randomly generated R matrices.

Size (n) Poly/ML
100 0.748
120 1.558
140 2.779
160 4.621
180 7.251
200 10.869
220 18.941
240 22.188
260 30.198
280 42.100
300 84.310
320 94.223
340 97.360
360 123.266
380 157.426
400 183.754

Table A.12: Time to compute the QR decomposition of Hilbert matrices over
R.

148

Bibliography

[1] http://www.math4all.in/public_html/linearalgebra/chapter3.4.

html.

[2] http://homotopytypetheory.org/.

[3] Archive of Formal Proofs. http://afp.sourceforge.net/.

[4] Immutable Arrays in Haskell. https://downloads.haskell.org/~ghc/

6.12.1/docs/html/libraries/array-0.3.0.0/Data-Array-IArray.

html.

[5] Matlab documentation. Definition of Hermite Normal Form. http://es.
mathworks.com/help/symbolic/hermiteform.html#butzrp_-5.

[6] The Isabelle website. https://isabelle.in.tum.de/.

[7] ARIANE 5 Flight 501 Failure. Report by the Inquiry Board, 1996. https:
//www.ima.umn.edu/~arnold/disasters/ariane5rep.html.

[8] S. Adelsberger, S. Hetzl, and F. Pollak. The Cayley-Hamilton Theorem.
Archive of Formal Proofs, 2014. http://afp.sf.net/entries/Cayley_

Hamilton.shtml, Formal proof development.

[9] J. Aransay and J. Divasón. Formalizing an abstract algebra textbook in
Isabelle/HOL. In Juan Rafael Sendra Pons and Carlos Villarino Cabellos,
editors, Proceedings of the XIII Spanish Meeting on Computer Algebra and
Applications (EACA 2012), pages 47 – 50, 2012.

[10] J. Aransay and J. Divasón. Formalization and execution of Linear Al-
gebra: from theorems to algorithms. In G. Gupta and R. Peña, editor,
PreProceedings of the International Symposium on Logic-Based Program
Synthesis and Transformation: LOPSTR 2013, pages 49 – 66, 2013.

[11] J. Aransay and J. Divasón. Performance Analysis of a Verified Linear
Algebra Program in SML. In L. Fredlund and L. M. Castro, editors, V
Taller de Programación Funcional: TPF 2013, pages 28 – 35, 2013.

[12] J. Aransay and J. Divasón. Formalization and execution of Linear Al-
gebra: from theorems to algorithms. In G. Gupta and R. Peña, editors,
PostProceedings (Revised Selected Papers) of the International Symposium
on Logic-Based Program Synthesis and Transformation: LOPSTR 2013,
volume 8901 of LNCS, pages 01 – 19. Springer, 2014.

149

http://www.math4all.in/public_html/linear algebra/chapter3.4.html
http://www.math4all.in/public_html/linear algebra/chapter3.4.html
http://homotopytypetheory.org/
http://afp.sourceforge.net/
https://downloads.haskell.org/~ghc/6.12.1/docs/html/libraries/array-0.3.0.0/Data-Array-IArray.html
https://downloads.haskell.org/~ghc/6.12.1/docs/html/libraries/array-0.3.0.0/Data-Array-IArray.html
https://downloads.haskell.org/~ghc/6.12.1/docs/html/libraries/array-0.3.0.0/Data-Array-IArray.html
http://es.mathworks.com/help/symbolic/hermiteform.html#butzrp_-5
http://es.mathworks.com/help/symbolic/hermiteform.html#butzrp_-5
https://isabelle.in.tum.de/
https://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
https://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
http://afp.sf.net/entries/Cayley_Hamilton.shtml
http://afp.sf.net/entries/Cayley_Hamilton.shtml

Bibliography

[13] J. Aransay and J. Divasón. Formalisation in higher-order logic and code
generation to functional languages of the Gauss-Jordan algorithm. Journal
of Functional Programming, 25, 2015. doi:10.1017/S0956796815000155.

[14] J. Aransay and J. Divasón. Generalizing a Mathematical Analysis Library
in Isabelle/HOL. In K. Havelund, G. Holzmann, and R. Joshi, editors,
NASA Formal Methods, volume 9058 of LNCS, pages 415–421. Springer,
2015.

[15] J. Aransay and J. Divasón. Proof Pearl - A formalisation in HOL
of the Fundamental Theorem of Linear Algebra and its applica-
tion to the solution of the least squares problem. Draft paper,
2015. https://www.unirioja.es/cu/jodivaso/publications/2015/

Least_Squares_2015.pdf.

[16] J. Aransay and J. Divasón. Verified Computer Linear Algebra. In Ac-
cepted for presentation at the XV Spanish Meeting on Computer Algebra
and Applications (EACA 2016), 2016.

[17] J. Aransay and J. Divasón. Formalisation of the Computation of the
Echelon Form of a matrix in Isabelle/HOL. Accepted for publication
in Formal Aspects of Computing, 2016. http://www.unirioja.es/cu/

jodivaso/publications/2016/echelon_FAC_draft.pdf.

[18] J. Aransay, J. Divasón, and J. Rubio. Formalising in Isabelle/HOL
a simplicial model for Homotopy Type Theory: a naive approach.
2015. http://www.unirioja.es/cu/jodivaso/publications/2016/

hott_draft_2016.pdf, Draft paper.

[19] J. Aransay-Azofra, J. Divasón, J. Heras, L. Lambán, M. V. Pascual,
Á. L. Rubio, and J. Rubio. Obtaining an ACL2 specification from an
Isabelle/HOL theory. In Gonzalo A. Aranda-Corral, Jacques Calmet, and
Francisco J. Mart́ın-Mateos, editors, Artificial Intelligence and Symbolic
Computation - 12th International Conference, AISC 2014, Seville, Spain,
December 11-13, 2014. Proceedings, volume 8884 of Lecture Notes in Com-
puter Science, pages 49–63, 2014.

[20] J. Avigad and J. Harrison. Formally Verified Mathematics. Communica-
tions of the ACM, 57(4):66 – 75, 2014.

[21] J. Avigad, J. Hölzl, and L. Serafin. A formally verified proof of the Central
Limit Theorem. CoRR, abs/1405.7012, 2014.

[22] S. Axler. Linear Algebra Done Right. Undergraduate Texts in Mathemat-
ics. Springer-Verlag, 2nd edition, 1997.

[23] C. Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[24] C. Ballarin. Locales: A module system for mathematical theories. Journal
of Automated Reasoning, 52(2):123–153, 2014.

[25] K.J. Bathe. Computational Fluid and Solid Mechanics. Elsevier Science,
2003.

150

https://www.unirioja.es/cu/jodivaso/publications/2015/Least_Squares_2015.pdf
https://www.unirioja.es/cu/jodivaso/publications/2015/Least_Squares_2015.pdf
http://www.unirioja.es/cu/jodivaso/publications/2016/echelon_FAC_draft.pdf
http://www.unirioja.es/cu/jodivaso/publications/2016/echelon_FAC_draft.pdf
http://www.unirioja.es/cu/jodivaso/publications/2016/hott_draft_2016.pdf
http://www.unirioja.es/cu/jodivaso/publications/2016/hott_draft_2016.pdf

Bibliography

[26] BBC news. Airbus A400M plane crash linked to software fault. http:

//www.bbc.com/news/technology-32810273.

[27] L. W. Beineke and R. J. Wilson. Topics in Algebraic Graph Theory.
Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 2004.

[28] M. Bezem, T. Coquand, and S. Huber. A Model of Type Theory in Cubical
Sets. In Ralph Matthes and Aleksy Schubert, editors, 19th International
Conference on Types for Proofs and Programs (TYPES 2013), volume 26
of Leibniz International Proceedings in Informatics (LIPIcs), pages 107–
128, 2014.

[29] A. Björck. Numerical methods for least squares problems. SIAM, 1996.

[30] J. Blanchette, M. Haslbeck, D. Matichuk, and T. Nipkow. Mining the
Archive of Formal Proofs. In M. Kerber, editor, Conference on Intelligent
Computer Mathematics (CICM 2015), volume 9150, pages 3–17, 2015.
Invited paper.

[31] A. Borodin, J. von zur Gathen, and J. E. Hopcroft. Fast Parallel Matrix
and GCD Computations. Information and Control, 52(3):241–256, 1982.

[32] G. H. Bradley. Algorithms for Hermite and Smith normal matrices and
linear diophantine equations. Mathematics of Computation, 25(116):897–
907, 1971.

[33] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews. Imper-
ative Functional Programming with Isabelle/HOL. In C. Muñoz O. Mo-
hamed and S. Tahar, editors, TPHOLs ’08: Proceedings of the 21th Inter-
national Conference on Theorem Proving in Higher Order Logics, volume
5170 of Lecture Notes in Computer Science, pages 352–367. Springer, 2008.

[34] G. Cano, C. Cohen, M. Dénès, A. Mörtberg, and V. Siles. Formalized
Linear Algebra over Elementary Divisor Rings in Coq. Technical report,
2014.

[35] G. Cantor. Über eine Eigenschaft des Inbegriffes aller reellen algebraischen
Zahlen. Crelle’s Journal für Mathematik, 77:258–263, 1874.

[36] S.T. Chapman and S. Glaz. Non-Noetherian Commutative Ring Theory.
Mathematics and Its Applications. Springer US, 2013.

[37] D. Child. The Essentials of Factor Analysis. Bloomsbury Academic, 2006.

[38] A. Church. A Formulation of the Simple Theory of Types. J. Symbolic
Logic, 5(2):56–68, 06 1940.

[39] C. Cohen, M. Dénès, and A. Mörtberg. Refinements for Free! In
G. Gonthier and M. Norrish, editors, Certified Programs and Proofs, vol-
ume 8307 of Lecture Notes in Computer Science, pages 147–162. Springer,
2013.

[40] H. Cohen. A Course in Computational Algebraic Number Theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1993.

151

http://www.bbc.com/news/technology-32810273
http://www.bbc.com/news/technology-32810273

Bibliography

[41] T. Coquand, A. Mörtberg, and V. Siles. A formal proof of Sasaki-Murao
algorithm. J. Formalized Reasoning, 5(1):27–36, 2012.

[42] G. Dahlquist and A. Björck. Numerical methods in scientific computing.
SIAM, 2008.

[43] G. Dahlquist and J. Dongarra. Numerical Methods in Computer Science,
volume I. SIAM, 2008.

[44] M. Dénès, A. Mörtberg, and V. Siles. A refinement-based approach to
computational algebra in COQ. In L. Beringer and A. Felty, editors, ITP
- 3rd International Conference on Interactive Theorem Proving - 2012,
volume 7406, pages 83–98. Springer, 2012.

[45] The Coq development team. The Coq proof assistant reference manual.
LogiCal Project, 2015. Version 8.5. http://coq.inria.fr.

[46] J. Divasón. Benchmarks between Vec, IArray and Lists in Isabelle/HOL,
2015. http://www.unirioja.es/cu/jodivaso/Isabelle/Thesis/Vec_

vs_IArray_vs_List/Vec_vs_IArray_vs_List.zip.

[47] J. Divasón. Serialisation to Haskell’s UArrays, 2015. http:

//www.unirioja.es/cu/jodivaso/Isabelle/Thesis/UArrays/

UArray_Haskell.thy.

[48] J. Divasón. Simplicial model in Isabelle/HOL. Formal Proof Development,
2015. https://www.unirioja.es/cu/jodivaso/Isabelle/Simplicial_
Model_HOL/.

[49] J. Divasón. Simplicial model in Isabelle/HOLZF. Formal Proof De-
velopment, 2015. http://www.unirioja.es/cu/jodivaso/Isabelle/

Simplicial_Model_HOLZF/.

[50] J. Divasón and J. Aransay. Echelon Form. Archive of Formal Proofs,
2015. http://afp.sf.net/entries/Echelon_Form.shtml, Formal proof
development.

[51] J. Divasón and J. Aransay. QR Decomposition. Archive of Formal Proofs,
2015. http://afp.sf.net/entries/QR_Decomposition.shtml, Formal
proof development.

[52] J. Divasón and J. Aransay. Rank-nullity theorem in linear algebra. Archive
of Formal Proofs, January 2013. http://afp.sf.net/entries/Rank_

Nullity_Theorem.shtml, Formal proof development.

[53] J. Divasón and J. Aransay. Rank-nullity theorem in linear algebra.
Archive of Formal Proofs, January 2013. http://afp.sourceforge.

net/release/afp-Rank_Nullity_Theorem-2013-02-16.tar.gz, For-
mal proof development. Old Version with no generalisations.

[54] J. Divasón and J. Aransay. Gauss-Jordan Algorithm and Its Applica-
tions. Archive of Formal Proofs, September 2014. http://afp.sf.net/

entries/Gauss_Jordan.shtml, Formal proof development.

152

http://coq.inria.fr
http://www.unirioja.es/cu/jodivaso/Isabelle/Thesis/Vec_vs_IArray_vs_List/Vec_vs_IArray_vs_List.zip
http://www.unirioja.es/cu/jodivaso/Isabelle/Thesis/Vec_vs_IArray_vs_List/Vec_vs_IArray_vs_List.zip
http://www.unirioja.es/cu/jodivaso/Isabelle/Thesis/UArrays/UArray_Haskell.thy
http://www.unirioja.es/cu/jodivaso/Isabelle/Thesis/UArrays/UArray_Haskell.thy
http://www.unirioja.es/cu/jodivaso/Isabelle/Thesis/UArrays/UArray_Haskell.thy
https://www.unirioja.es/cu/jodivaso/Isabelle/Simplicial_Model_HOL/
https://www.unirioja.es/cu/jodivaso/Isabelle/Simplicial_Model_HOL/
http://www.unirioja.es/cu/jodivaso/Isabelle/Simplicial_Model_HOLZF/
http://www.unirioja.es/cu/jodivaso/Isabelle/Simplicial_Model_HOLZF/
http://afp.sf.net/entries/Echelon_Form.shtml
http://afp.sf.net/entries/QR_Decomposition.shtml
http://afp.sf.net/entries/Rank_Nullity_Theorem.shtml
http://afp.sf.net/entries/Rank_Nullity_Theorem.shtml
http://afp.sourceforge.net/release/afp-Rank_Nullity_Theorem-2013-02-16.tar.gz
http://afp.sourceforge.net/release/afp-Rank_Nullity_Theorem-2013-02-16.tar.gz
http://afp.sf.net/entries/Gauss_Jordan.shtml
http://afp.sf.net/entries/Gauss_Jordan.shtml

Bibliography

[55] J. Divasón and J. Aransay. Gauss-Jordan elimination in Is-
abelle/HOL. http://www.unirioja.es/cu/jodivaso/Isabelle/

Gauss-Jordan-2013-2/, 2014. Version without generalisations.

[56] J. Divasón and J. Aransay. Gauss-Jordan elimination in Is-
abelle/HOL. http://www.unirioja.es/cu/jodivaso/Isabelle/

Gauss-Jordan-2013-2-Generalized/, 2014.

[57] J. Divasón and J. Aransay. Hermite normal form. Archive of Formal
Proofs, July 2015. http://afp.sf.net/entries/Hermite.shtml, For-
mal proof development.

[58] J. Dongarra and F. Sullivan. The top 10 algorithms. Computer Science
Engineering, 2(1):22–23, 2000.

[59] A. J. Durán, M. Pérez, and J. L. Varona. Misfortunes of a mathematicians’
trio using Computer Algebra Systems: Can we trust? Notices of the AMS,
61(10):1249 – 1252, 2014.

[60] M. Dénès. Étude formelle d’algorithmes efficaces en algèbre linéaire. PhD
thesis, INRIA Sophia Antipolis, 2013.

[61] M. Eberl. A decision procedure for univariate real polynomials in Is-
abelle/HOL. In Proceedings of the 2015 Conference on Certified Programs
and Proofs, pages 75–83. ACM, 2015.

[62] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J. G.
Smaus. A Fully Verified Executable LTL Model Checker. In N. Sharygina
and H. Veith, editors, Computer Aided Verification: CAV 2013, volume
8044 of Lecture Notes in Computer Science, pages 463 – 478. Springer,
2013.

[63] J. G. F. Francis. The QR transformation, a unitary analogue to the LR
transformation. I, II. The Computer Journal, 4:265–271, 332 – 345, 1961.

[64] L. Fuchs and L. Salce. Modules Over Non-Noetherian Domains. Mathe-
matical surveys and monographs. American Mathematical Society, 2001.

[65] K. Fukunaga. Introduction to Statistical Pattern Recognition. Computer
science and scientific computing. Elsevier Science, 2013.

[66] R. Garfinkel and G.L. Nemhauser. Integer programming. Series in decision
and control. Wiley, 1972.

[67] E. Gasner and J. H. Reppy (eds.). The Standard ML Basis Library.
http://www.standardml.org/Basis/.

[68] M. S. Gockenbach. Finite-dimensional Linear Algebra. CRC Press, 2010.

[69] K. Gödel. On Formally Undecidable Propositions of Principia Mathe-
matica and Related Systems. Dover Publications, 1992. Translation B.
Meltzer.

[70] G. Gonthier. Formal proof – the four-color theorem. Notices of the AMS,
55(11):1382–1393, 2008.

153

http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2/
http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2/
http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2-Generalized/
http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2-Generalized/
http://afp.sf.net/entries/Hermite.shtml
http://www.standardml.org/Basis/

Bibliography

[71] G. Gonthier. Point-free, set-free concrete linear algebra. In M. van Eeke-
len, H. Geuvers, J. Schmaltz, and F. Wiedijk, editors, Interactive Theorem
Proving: ITP 2011, volume 6898 of Lecture Notes in Computer Science,
pages 103–118. Springer, 2011.

[72] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Le
Roux, A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca, L. Rideau,
A. Solovyev, E. Tassi, and L. Théry. A Machine-Checked Proof of the
Odd Order Theorem. In S. Blanzy, C. Paulin-Mohring, and D.Pichardie,
editors, Interactive Theorem Proving: ITP 2013, volume 7998 of Lecture
Notes in Computer Science, pages 163 – 179. Springer, 2013.

[73] G. Gonthier and A. Mahboubi. An introduction to small scale reflection
in coq. Journal of Formalized Reasoning, 3(2):95–152, 2010.

[74] M. J. C. Gordon. Set Theory, Higher Order Logic or Both? In
Theorem Proving in Higher Order Logics, 9th International Conference,
TPHOLs’96, Turku, Finland, August 26-30, 1996, Proceedings, pages
191–201, 1996.

[75] NASA Langley Formal Methods Groups. What is Formal Methods? http:

//shemesh.larc.nasa.gov/fm/fm-what.html.

[76] J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm
for computation of class groups. Journal of the American Mathematical
Society, 2(4):837–850, 1989.

[77] F. Haftmann. Haskell-style type classes with Isabelle/Isar. Tutorial doc-
umentation, 2015. https://isabelle.in.tum.de/doc/classes.pdf.

[78] F. Haftmann. Code generation from Isabelle/HOL theories. https://

isabelle.in.tum.de/dist/Isabelle2016/doc/codegen.pdf, 2016.

[79] F. Haftmann, A. Krauss, O. Kuncar, and T. Nipkow. Data Refinement in
Isabelle/HOL. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors,
Interactive Theorem Proving: ITP 2013, volume 7998 of Lecture Notes in
Computer Science, pages 100 – 115. Springer, 2013.

[80] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite
systems. In M. Blume and N. Kobayashi and G. Vidal, editor, Functional
and Logic Programming: 10th International Symposium: FLOPS 2010,
volume 6009 of Lecture Notes in Computer Science, pages 103 – 117.
Springer, 2010.

[81] T. C. Hales et al. A formal proof of the Kepler conjecture. CoRR,
abs/1501.02155, 2015.

[82] T. C. Hales and S. P. Ferguson. The Kepler Conjecture. The Hales-
Ferguson Proof. Springer New York, 2011.

[83] P. R. Halmos. Naive Set Theory. Van Nostrand, 1960.

[84] J. Harrison. A HOL Theory of Euclidean Space. In J. Hurd and T. Mel-
ham, editors, Theorem Proving in Higher Order Logics, volume 3603 of
Lecture Notes in Computer Science, pages 114 – 129. Springer, 2005.

154

http://shemesh.larc.nasa.gov/fm/fm-what.html
http://shemesh.larc.nasa.gov/fm/fm-what.html
https://isabelle.in.tum.de/doc/classes.pdf
https://isabelle.in.tum.de/dist/Isabelle2016/doc/codegen.pdf
https://isabelle.in.tum.de/dist/Isabelle2016/doc/codegen.pdf

Bibliography

[85] J. Harrison. The HOL Light Theory of Euclidean Space. Journal of
Automated Reasoning, 50(2):173 – 190, 2013.

[86] The Haskell Programming Language. http://www.haskell.org/, 2014.

[87] J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles. Towards
a certified computation of homology groups for digital images. In M. Ferri,
P. Frosini, C. Landi, A. Cerri, and B. Di Fabio, editors, Computational
Topology in Image Context: CTIC 2012, volume 7309 of Lecture Notes in
Computer Science, pages 49 – 57. Springer, 2012.

[88] HOL Multivariate Analysis Library. http://isabelle.in.tum.de/

library/HOL/HOL-Multivariate_Analysis/index.html, 2014.

[89] L. Hogben. Handbook of Linear Algebra. (Discrete Mathematics and Its
Applications). Chapman & Hall/CRC, 1 edition, 2006.

[90] J. Hölzl, F. Immler, and B. Huffman. Type Classes and Filters for Math-
ematical Analysis in Isabelle/HOL. 7998:279–294, 2013.

[91] B. Huffman and O. Kuncar. Lifting and Transfer: A Modular Design for
Quotients in Isabelle/HOL. In Certified Programs and Proofs - Third In-
ternational Conference, CPP 2013, Melbourne, VIC, Australia, December
11-13, 2013, Proceedings, pages 131–146, 2013.

[92] H. Hummel. Will Computers Redefine the Roots
of Math?, 2015. https://www.quantamagazine.org/

20150519-will-computers-redefine-the-roots-of-math/.

[93] M. S. Hung and W. O. Rom. An application of the Hermite normal form
in integer programming. Linear Algebra and its Applications, 140:163 –
179, 1990.

[94] N. Jacobson. Basic Algebra I: Second Edition. Dover Books on Mathe-
matics. Dover Publications, 2012.

[95] R. Kannan and A. Bachem. Polynomial algorithms for computing the
Smith and Hermite normal forms of an integer matrix. siam Journal on
Computing, 8(4):499–507, 1979.

[96] C. Kapulkin, P. LeFanu Lumsdaine, and V. Voevodsky. Univalence in
Simplicial Sets. ArXiv e-prints, March 2012.

[97] A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers
by Automatic Computers. Doklady Akad. Nauk SSSR, 145:293–294, 1962.
Translation in Physics-Doklady 7: 595-596, 1963.

[98] A. Katovsky. Category Theory in Isabelle/HOL. Technical report, 2010.
http://apk32.user.srcf.net/Isabelle/Category/Cat.pdf.

[99] G. Klein et al. seL4: formal verification of an OS kernel. In Proceedings of
the 22nd ACM Symposium on Operating Systems Principles, SOSP 2009,
Big Sky, Montana, USA, pages 207–220, 2009.

155

http://www.haskell.org/
http://isabelle.in.tum.de/library/HOL/HOL-Multivariate_Analysis/index.html
http://isabelle.in.tum.de/library/HOL/HOL-Multivariate_Analysis/index.html
https://www.quantamagazine.org/20150519-will-computers-redefine-the-roots-of-math/
https://www.quantamagazine.org/20150519-will-computers-redefine-the-roots-of-math/
http://apk32.user.srcf.net/Isabelle/Category/Cat.pdf

Bibliography

[100] V.N. Kublanovskaya. Certain algorithms for the solution of the complete
problem of eigenvalues. Soviet Mathematics. Doklady, 2:17–19, 1961.

[101] O. Kunčar and A. Popescu. From types to sets in isabelle/hol. In Isabelle
Workshop, 2014.

[102] A.N. Langville and C.D. Meyer. Google’s PageRank and Beyond: The
Science of Search Engine Rankings. Princeton University Press, 2011.

[103] M. Lecat. Erreurs de mathématiciens des origines à nos jours. Castaigne,
1935.

[104] S.J. Leon. Linear Algebra with Applications. Featured Titles for Linear
Algebra (Introductory) Series. Pearson Education, 2014.

[105] N. G. Leveson and C. S. Turner. An investigation of the therac-25 acci-
dents. Computer, 26(7):18–41, 1993.

[106] W. Li and L. C. Paulson. A modular, efficient formalisation of real al-
gebraic numbers. In Proceedings of the 5th ACM SIGPLAN Conference
on Certified Programs and Proofs, Saint Petersburg, FL, USA, January
20-22, 2016, pages 66–75, 2016.

[107] B. Liu and H.J. Lai. Matrices in Combinatorics and Graph Theory. Net-
work Theory and Applications. Springer, 2000.

[108] A. Lochbihler. Light-weight containers for Isabelle: efficient, extensible,
nestable. In Interactive Theorem Proving, volume 7998 of LNCS, pages
116–132. Springer, 2013.

[109] S. Mac Lane. Categories for the Working Mathematician. Graduate Texts
in Mathematics. Springer New York, 1998.

[110] G. Mackiw. A Note on the Equality of the Column and Row Rank of a
Matrix. Mathematics Magazine, 68-4:285–286, 1995.

[111] J.P. May. Simplicial Objects in Algebraic Topology. Chicago Lectures in
Mathematics. University of Chicago Press, 1993.

[112] R. Milner, R. Harper, D. MacQueen, and M. Tofte. The Definition of
Standard ML, revised edition. MIT Press, 1997.

[113] The MLton website. http://mlton.org/, 2015.

[114] J. V. Neumann. Mathematical Foundations of Quantum Mechanics. In-
vestigations in physics. Princeton University Press, 1955.

[115] M. Newman. Integral matrices. Pure and Applied Mathematics. Elsevier
Science, 1972.

[116] T. R. Nicely. Enumeration to 1014 of the twin primes and Brun’s constant.
Virginia Journal of Science, 46(3):195 – 204, 1995.

[117] T. Nipkow. Gauss-Jordan Elimination for Matrices Represented as Func-
tions. Archive of Formal Proofs, 2011. http://afp.sf.net/entries/

Gauss-Jordan-Elim-Fun.shtml, Formal proof development.

156

http://mlton.org/
http://afp.sf.net/entries/Gauss-Jordan-Elim-Fun.shtml
http://afp.sf.net/entries/Gauss-Jordan-Elim-Fun.shtml

Bibliography

[118] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[119] L. Noschinski. Graph theory. Archive of Formal Proofs, April 2013.
http://afp.sf.net/entries/Graph_Theory.shtml, Formal proof de-
velopment.

[120] S. Obua. Partizan Games in Isabelle/HOLZF. In Theoretical Aspects
of Computing - ICTAC 2006, Third International Colloquium, Tunis,
Tunisia, November 20-24, 2006, Proceedings, pages 272–286, 2006.

[121] G. O’Keefe. Towards a Readable Formalisation of Category Theory.
Electr. Notes Theor. Comput. Sci., 91:212–228, 2004.

[122] G. O’Keefe. Category Theory to Yoneda’s Lemma. Archive of Formal
Proofs, April 2005. http://afp.sf.net/entries/Category.shtml, For-
mal proof development.

[123] V. Y. Pan. Computation of approximate polynomial gcds and an exten-
sion. Information and Computation, 167(2):71–85, 2001.

[124] L. C. Paulson. Logic and Computer Science, chapter Isabelle: The next
700 theorem provers, pages 361 – 388. Academic Press, 1990.

[125] L. C. Paulson. Set Theory for Verification: I. From Foundations to Func-
tions. Journal of Automated Reasoning, 11(3):353–389, 1993.

[126] L. C. Paulson. Set Theory for Verification. II: Induction and Recursion.
Journal of Automated Reasoning, 15(2):167–215, 1995.

[127] L. C. Paulson. ML for the Working Programmer (2Nd Ed.). Cambridge
University Press, New York, NY, USA, 1996.

[128] L. C. Paulson. A Mechanised Proof of Gödel’s Incompleteness Theorems
Using Nominal Isabelle. Journal of Automated Reasoning, 55(1):1–37,
2015.

[129] L. C. Paulson. Isabelle’s Logics: FOL and ZF. Technical re-
port, 2015. https://isabelle.in.tum.de/dist/Isabelle2016/doc/

logics-ZF.pdf.

[130] The Poly/ML website. http://www.polyml.org/, 2015.

[131] J. Ramanujam. Beyond unimodular transformations. The Journal of
Supercomputing, 9(4):365–389, 1995.

[132] G. E. Reeves. What really happened on Mars?, 1997.
http://research.microsoft.com/en-us/um/people/mbj/mars_

pathfinder/authoritative_account.html.

[133] J. Rehmeyer. Voevodsky’s Mathematical Revolution,
2013. http://blogs.scientificamerican.com/guest-blog/

voevodskye28099s-mathematical-revolution/.

157

http://afp.sf.net/entries/Graph_Theory.shtml
http://afp.sf.net/entries/Category.shtml
https://isabelle.in.tum.de/dist/Isabelle2016/doc/logics-ZF.pdf
https://isabelle.in.tum.de/dist/Isabelle2016/doc/logics-ZF.pdf
http://www.polyml.org/
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/authoritative_account.html
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/authoritative_account.html
http://blogs.scientificamerican.com/guest-blog/voevodskye28099s-mathematical-revolution/
http://blogs.scientificamerican.com/guest-blog/voevodskye28099s-mathematical-revolution/

Bibliography

[134] S. Roman. Advanced Linear Algebra. Springer, 3rd edition, 2008.

[135] B. Russell. The Principles of Mathematics. W. W. Norton and Company,
2 edition, 1903.

[136] A. G. Stephenson, L. S. LaPiana, D. R. Mulville, P. J. Rutledge, F. H.
Bauer, D. Folta, G. A. Dukeman, R. Sackheim, and P. Norvig. Mars
Climate Orbiter Mishap Investigation Board Phase I Report, 1999.

[137] C. Sternagel. Proof Pearl - A Mechanized Proof of GHC’s Mergesort.
Journal of Automated Reasoning, 51(4):357 – 370, 2013.

[138] C. Sternagel and R. Thiemann. Abstract rewriting. Archive of Formal
Proofs, June 2010. http://afp.sf.net/entries/Abstract-Rewriting.
shtml, Formal proof development.

[139] C. Sternagel and R. Thiemann. Executable matrix operations on matrices
of arbitrary dimensions. Archive of Formal Proofs, June 2010. http:

//afp.sf.net/entries/Matrix.shtml, Formal proof development.

[140] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss
Federal Institute of Technology Zurich, 2000.

[141] G. Strang. The Fudamental Theorem of Linear Algebra. The American
Mathematical Monthly, 100(9):848–855, 1993.

[142] G. Strang. Introduction to Linear Algebra. 2003.

[143] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, 1969.

[144] P. Suppes. Axiomatic Set Theory. Dover Publications, 1960.

[145] R. Thiemann. Implementing field extensions of the form Q[
√
b]. Archive

of Formal Proofs, February 2014. http://afp.sf.net/entries/Real_

Impl.shtml, Formal proof development.

[146] R. Thiemann and C. Sternagel. Certification of termination proofs using
ceta. In Theorem Proving in Higher Order Logics, pages 452–468. Springer,
2009.

[147] R. Thiemann and A. Yamada. Algebraic Numbers in Isabelle/HOL.
Archive of Formal Proofs, December 2015. http://afp.sf.net/

entries/Algebraic_Numbers.shtml, Formal proof development.

[148] R. Thiemann and A. Yamada. Matrices, Jordan Normal Forms, and
Spectral Radius Theory. Archive of Formal Proofs, August 2015. http:

//afp.sf.net/entries/Jordan_Normal_Form.shtml, Formal proof de-
velopment.

[149] V. E. Tourloupis. Hermite normal forms and its cryptographic applica-
tions. Master’s thesis, University of Wollongong, 2013.

[150] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

158

http://afp.sf.net/entries/Abstract-Rewriting.shtml
http://afp.sf.net/entries/Abstract-Rewriting.shtml
http://afp.sf.net/entries/Matrix.shtml
http://afp.sf.net/entries/Matrix.shtml
http://afp.sf.net/entries/Real_Impl.shtml
http://afp.sf.net/entries/Real_Impl.shtml
http://afp.sf.net/entries/Algebraic_Numbers.shtml
http://afp.sf.net/entries/Algebraic_Numbers.shtml
http://afp.sf.net/entries/Jordan_Normal_Form.shtml
http://afp.sf.net/entries/Jordan_Normal_Form.shtml
http://homotopytypetheory.org/book

Bibliography

[151] M. Wenzel. Isar - A generic interpretative approach to readable formal
proof documents. In Theorem Proving in Higher Order Logics, 12th In-
ternational Conference, TPHOLs’99, Nice, France, September, 1999, Pro-
ceedings, pages 167–184, 1999.

[152] M. Wenzel. Isabelle/Isar - a versatile environment for human-readable
formal proof documents. PhD thesis, Technische Universität München,
2002.

[153] A.N. Whitehead and B. Russell. Principia Mathematica. Principia Math-
ematica. University Press, 1910.

[154] D. Zill. A First Course in Differential Equations with Modeling Applica-
tions. Cengage Learning, 2012.

159

	Introduction
	Motivation
	Contributions and Structure
	Publications
	Related Work

	Preliminaries
	Mathematical Definitions and Theorems
	Introduction to Linear Maps
	The Fundamental Theorem of Linear Algebra
	Matrix Transformations

	Isabelle
	Isabelle/HOL
	HOL Multivariate Analysis
	Code Generation
	Archive of Formal Proofs

	Framework to Formalise, Execute, and Refine Linear Algebra Algorithms
	Introduction
	Refining to Functions over Finite Types
	Code Generation from Finite Types
	From vec to Functions over Finite Types

	Refining to Immutable Arrays
	Serialisations to SML and Haskell Native Structures
	Functions vs. Immutable Arrays vs. Lists

	Algorithms involving Matrices over Fields
	Introduction
	The Rank-Nullity Theorem of Linear Algebra
	Gauss-Jordan Algorithm
	The Gauss-Jordan Algorithm and its Applications
	The Refinement to Immutable Arrays
	The Generated Programs and Related Work
	Conclusions and Future Work

	Generalisations
	Generalisation of the HMA library
	Conclusions

	The QR Decomposition
	Introduction
	The Fundamental Theorem of Linear Algebra
	A Formalisation of the Gram-Schmidt Algorithm
	A Formalisation of the QR Decomposition Algorithm
	Solution of the Least Squares Problem
	Code Generation from the Development
	Related Work
	Conclusions

	Algorithms involving Matrices over Rings
	Introduction
	Echelon Form
	Introduction
	Algebraic Structures, Formalisation, and Hierarchy
	Parametricity of Algorithms and Proofs
	Applications of the Echelon Form
	Related Work
	Conclusions and Future Work

	Hermite Normal Form
	Formalising the Hermite Normal Form
	Formalising the Uniqueness of the Hermite Normal Form
	Conclusions and Future Work

	Formalising in Isabelle/HOL a Simplicial Model for Homotopy Type Theory: a Naive Approach
	Introduction
	HOL, ZF, and HOLZF

	Mathematics Involved
	Formalising the Infrastructure
	The Simplicial Model
	Formalising the Simplicial Model
	Porting the Development to Isabelle/HOLZF

	Conclusions

	Conclusions and Future Work
	Results
	Future Work

	Detailed List of Files and Benchmarks
	Detailed List of Files
	Benchmarks

	Bibliography

