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Abstract

Achieving effective generalization in machine learning models is particularly challenging
with small datasets that have high dimensionality. The combination of numerous fea-
tures and few training instances often results in overfitting and poor performance on un-
seen data. This study conducts an in-depth analysis of HYB-PARSIMONY’s performance
on high-dimensional datasets and introduces a novel methodology that integrates HYB-
PARSIMONY with Bayesian Optimization to address this issue through iterative feature
and hyperparameter selection. The methodology employs HYB-PARSIMONY with multiple
random seeds to identify features with the highest mean probability, followed by hyperpa-
rameter tuning using Bayesian Optimization to further enhance model performance. The
experimental results demonstrate that this combined approach leads to models that are not
only parsimonious but also capable of generalizing better compared to previous methods. By
iteratively refining feature selection and hyperparameters, the proposed approach provides a
more robust framework for building accurate machine learning models, even in challenging
problems with a large number of features.

In conclusion, the integration of HYB-PARSIMONY and Bayesian Optimization signifi-
cantly improves model generalization and reduces feature complexity, making it a promising
methodology for small and high-dimensional datasets.

Keywords: HYB-PARSIMONY, small high-dimensional datasets, parsimonious modeling, auto machine
learning, PSO-PARSIMONY, GA-PARSIMONY

1. Introduction

In many machine learning problems involving small and high-dimensionality datasets
(SHDD), achieving models that can generalize effectively is a significant challenge. The
combination of a high number of features with limited training instances often leads to
overfitting, which hinders the model’s ability to perform well on unseen data. Therefore,
obtaining models that generalize well with SHDD is not an easy task. The curse of dimen-
sionality coupled with the low number of instances cause many machine learning algorithms
to have trouble describing the underlying structure of the data.
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In this context, AutoML (Automated Machine Learning) frameworks have emerged as a
promising solution to streamline the process of model selection, feature selection, and hyper-
parameter optimization. AutoML aims to automate these processes, allowing practitioners
with limited machine learning expertise to develop competitive models. One such library,
AutoGluon [1], has demonstrated success in building high-performing ensembles using robust
validation methods and algorithms that perform well with high-dimensional datasets, such
as tree-based models and neural networks (e.g., XGBoost [2], LightGBM [3], CatBoost [4],
and deep neural networks). These models are capable of capturing complex relationships
in data and mitigating the risks associated with overfitting to some extent. However, these
approaches often lead to complex ensemble models, which can be challenging to interpret.
Nowadays, explainability is crucial, particularly in fields such as healthcare, finance, and
legal systems, where understanding the reasoning behind a model’s predictions is as impor-
tant as the predictions themselves [5]. This has led to an increasing demand from industries
and decision-makers for simpler, more explainable models, even at the cost of a slight reduc-
tion in accuracy. For example, linear models or decision trees with a few well-defined rules
are often preferred as they can provide more transparent insights into the decision-making
process [6, 7].

The motivation behind our work is to address these challenges by developing a methodol-
ogy that focuses on reducing model complexity while preserving, or even enhancing, predic-
tive accuracy. Our proposed hybrid approach combining HYB-PARSIMONY with Bayesian
Optimization (BO) aims to find a balance between parsimony and performance. HYB-
PARSIMONY [8], a hybrid algorithm that integrates Particle Swarm Optimization (PSO)
and Genetic Algorithms (GA), is particularly well-suited for this purpose, as it combines
the strengths of both optimization methods to effectively navigate the search space for fea-
ture selection and hyperparameter tuning. By iteratively refining the set of features and
optimizing hyperparameters through Bayesian Optimization, our approach aims to produce
simpler, more interpretable models that retain competitive performance.

This paper is organized as follows: Section 2 reviews related work in feature selection and
hyperparameter optimization, highlighting recent advances and their limitations. Section 3
analyzes the performance of HYB-PARSIMONY on high-dimensional datasets to assess its
ability to balance parsimony and accuracy. The performance is evaluated using synthetic
datasets with an intrinsic dimension lower than the real dimension of the dataset, and in-
volves analyzing optimal hyperparameters based on both real and intrinsic dimensions. Ad-
ditionally, HYB-PARSIMONY’s performance is compared against a classical method based
on Genetic Algorithms (GA) and another using Bayesian Optimization (BO) with all fea-
tures, using 100 datasets. Section 4 outlines the strategy for working with SHDD, detailing
the experimental setup, including dataset descriptions, evaluation metrics, and the results
of the experiments. Finally, Section 5 concludes the paper with a summary of key findings
and potential directions for future work.

2. Related works

Hyperparameter optimization (HO) and feature selection (FS) are important techniques
in machine learning, because they can improve the accuracy of predictive models. However,
determining the right hyperparameters and the most relevant subset of features can be a
complex problem, especially when dealing with high-dimensional datasets.

Current approaches to solving combinatorial problems in machine learning often draw
inspiration from nature, particularly from biological systems such as animal herding, bac-
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terial growth, and other natural phenomena. These methods usually involve a population
of simple individuals that interact both locally and globally with each other according to
simple rules. For example, one such meta-heuristic approach is the Grey Wolf Optimizer
(GWO), which was proposed by Mirjalili et al. [9] and was inspired by the behavior of grey
wolves. The Salp Swarm Algorithm, also proposed by Mirjalili et al. in [10], was inspired by
the swarming behavior of salps when navigating and foraging in oceans. Other techniques
inspired by animals include bats [11], glowworm [12], and bee colony [13] optimization.

Particle Swarm Optimization (PSO) is one of the most commonly used optimization
technique. Originally proposed by Kennedy and Eberhart [14], PSO has been the subject
of much research, with numerous improvements proposed in terms of topology, parameter
selection, and other technical modifications. For example, there are hybridizations of PSO
with other meta-heuristic methods, such as the improved binary particle swarm optimization
proposed by Chuang et al. [15], which uses the ‘catfish effect’ to introduce new particles into
the search space if the best solution does not improve in a certain number of consecutive
iterations.

Despite the success of these approaches, there are challenges associated with using meta-
heuristic methods to solve combinatorial problems in machine learning. For example, GA-
PARSIMONY was proposed in [16, 17] to search for parsimonious solutions with genetic
algorithms (GA) by performing HO and FS, and was successfully applied in many fields [18,
19, 20]. However, in this kind of problems where each solution has a high computational cost,
it is not possible to evaluate a large number of individuals in each iteration. This makes GA
not as efficient as other optimization techniques where hundreds or thousands of individuals
are evaluated. As a continuation of this methodology, the authors used PSO combined with
a parsimony criterion to find parsimonious and accurate machine learning models. The main
novelty in the PSO-PARSIMONY methodology [21] was that it included a strategy in which
the best position of each particle was computed considering not only the goodness-of-fit but
also the principle of parsimony. The comparison between both methods was performed on
13 public datasets, and the results showed that PSO always improved accuracy over GA,
but GA found solutions approximately 10% less complex on datasets with a low number of
features.

3. The HYB-PARSIMONY method with high-dimensional datasets

The HYB-PARSIMONY approach was proposed in [22, 8] by Divasón et al. and is a
hybrid methodology that combines Particle Swarm Optimization (PSO) with Genetic Algo-
rithm (GA) operations to produce parsimonious models in high-dimensional datasets.1 By
integrating selection, crossover, and mutation mechanisms from GA in the early stages, HYB-
PARSIMONY accelerates the search of parsimony in models. As the iterations progress, PSO
takes precedence, refining the model’s accuracy. This synergy allows HYB-PARSIMONY
to achieve a balance between accuracy and model simplicity, which is particularly advanta-
geous for computationally intensive contexts, where both precision and interpretability are
essential.

Pseudocode in Algorithm 1 details the iterative selection and crossover process, thus
improving the integration between PSO and GA phases. This ensures that each iteration

1HYB-PARSIMONY is available for Python at https://github.com/jodivaso/HYBparsimony
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Algorithm 1 Pseudo-code of the HYB-PARSIMONY algorithm [22]

1: Set initial positions X0 using a random and uniformly distributed Latin hypercube
within the ranges of feasible values for each input parameter

2: Initialization of velocities according to V0 = randomLHS(s, D)−X0

2
3: for t = 1 to T do
4: Train each particle Xt

i and validate with cross-validation (CV)
5: Evaluate fitness (J) and complexity (Mc) for each particle
6: Update individual best X̂i, individual parsimonious best X̂p

i and global best ˆ̂
X

7: if early stopping criterion is met then
8: return ˆ̂

X
9: end if

10: Generate new neighborhoods if ˆ̂
X has not improved

11: Update each neighborhood’s best L̂i

12: Select elitist population Pe for reproduction
13: Obtain a pcrossover % of worst individuals Pw to be substituted with crossover
14: Crossover Pe to substitute Pw with new individuals
15: Update positions and velocities of Pe following the PSO formulas
16: Mutation of % of hyperparameters
17: Mutation of % of features
18: Limitation of velocities and out-of-range positions
19: end for
20: return global best ˆ̂

X

advances both the parsimony and accuracy of the model, providing a robust framework for
balancing complexity and predictive performance in high-impact applications.

Although HYB-PARSIMONY demonstrated strong performance in previous experiments,
a deeper investigation into its effectiveness on high-dimensional datasets with a low number
of instances was essential. This section delves into this by analyzing HYB-PARSIMONY’s
capability to balance parsimony and accuracy under these challenging conditions. The eval-
uation employs synthetic datasets with an intrinsic dimension lower than the actual di-
mension, allowing for an assessment of optimal hyperparameters based on both real and
intrinsic dimensions. Moreover, HYB-PARSIMONY’s performance is rigorously compared
with a traditional Genetic Algorithm (GA) approach and a Bayesian Optimization (BO)
method utilizing all features, across 100 datasets. This study provides a comprehensive
view of HYB-PARSIMONY’s adaptability and robustness in handling the complexities of
high-dimensional, low-instance data.

3.1. Performance of feature selection in high-dimensional datasets
In HYB-PARSIMONY, the following equation was proposed to calculate the percentage

of particles to be substituted by GA crossover in each iteration t:

pcrossover = max(0.80 · e(−Γ·t), 0.10) (1)

Figure 1 shows thirteen curves obtained with different Γ values. In the first iterations, the
hybrid method performs the substitution by crossing a high percentage of particles. As the
optimization process progresses, the number of substituted particles is reduced exponentially
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Figure 1: Example of thirteen curves created with different Γ values to establish the percentage of individuals
to be replaced by crossover in each iteration.

until it ends up fixed at a percentage of 10%. Thus, the hybrid method begins by facilitating
the search for parsimonious models using GA-based mechanisms and ends up using more
PSO optimization.

To analyze the behavior of the hybrid method in high-dimensional datasets as a function
of Γ, and with different dimensions and populations, a methodology was implemented with
the following experiment’s parameters:

• method: HYB vs previous methods (PSO or GA).

• nruns: number of runs with different random seeds. Value: 10.

• Γ (only for the hybrid method). Values: 0.005, 0.007, 0.010, 0.015, 0.020, 0.030, 0.050,
0.080, 0.130, 0.210, 0.350, 0.560, 1.100, 1.170.

• P : population size. Values: [5, 5 + 1 · 5, 5 + 2 · 5, ..., 40].

• #feats: dimension of the synthetic dataset. Values: 50, 150, 250, 350.

• idim: intrinsic dimension that refers to the features, Fselec, with relevant information
present in a dataset. That is, the number of input features of the hypothetical model
that explains an hypothetical target. Values: 5, 5+1 ·20, 5+2 ·20, ..., ⌊0.90 ·#feats⌋.

• β: value which balances the weight between recall and precision in the Fbeta score used
to evaluate each individual (see below). Values: [0.20, 0.20 + 1 · 0.06, 0.20 + 2 · 0.06,
..., 1.68].

For each combination of experiment’s parameters, Fselec were randomly selected accord-
ing to idim. In particular, Fselec corresponded to idim random feature positions selected
within the range [0,#feats− 1].

To evaluate each solution, Fbeta score was used. Based on the F1 score, Fbeta is the
weighted harmonic mean of precision and recall where β determines the weight between
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Figure 2: Distribution of the best β that successfully met the objectives of overcoming a minimum precision
and recall defined by thrpr (values = 0.80, 0.85, 0.90, 0.95).

recall and precision in the combined score. β < 1 gives more weight to precision, while
β > 1 favors recall. Fbeta is equal to F1 score with β = 1.0 and to precision with β = 0.0.

It is defined as:

Fbeta =
(1 + β2)(precision · recall)

β2 · precision+ recall
(2)

and:
precision =

TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

where TP are the correctly chosen features belonging to Fselec, TN the features not chosen
and not belonging to Fselec, FP the features chosen but not belonging to Fselec, and FN
the features not chosen but belonging to Fselec.

Each combination of [method with Γ, P , #feats, idim and β] was run 10 times with
different randoms seeds, a maximum number of iterations of T = 300, tol = 10−9, and an
early stopping of 35.

All experiments2 were implemented in 2 separately 40-core composed, respectively, of
Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz with 128 GB of RAM memory, and Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20GHz with 192 GB of RAM memory.

Figure 2 shows the number of experiments that successfully met the objectives of over-
coming a minimum precision and recall defined by a threshold, thrpr, and by each β and
P values. The distribution of the best β is presented for each experiment and thrpr. At
low thrpr values, the median of the best β for each combination of [method, Γ, P , #feats,
idim] is about 1.3. This indicates that precision tends to be prioritized over recall. Only at
thrpr = 0.95 it is observed that the median of the best β is close to 1.0, so the relationship
between precision and recall is balanced when the level of demand is very high.

2The total number of experiments was 115170, resulting from all combinations.
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Figure 3: Mean of the Fbeta (left) and last iteration (lastiter) (right) achieved with β = 1.34 and for each
method and P .

Figure 3 shows respectively the mean of the last iteration (lastiter) and the average of
Fbeta with β = 1.34 and for each method and P . GA and HYB with low Γ converge, on
average, faster than PSO and HYB with high Γ values, as they reach twice the number of
final iterations. With respect to Fbeta, the highest averages are obtained with PSO and HYB
with Γ values greater than 0.08, but GA has similar performance to HYB_0.08.

However, these results are average values that may be different for each method, de-
pending on #feats and idim. Figure 4 shows the distribution of Fbeta for each method with
#feats = 150, β = 1.34 and four different idim values: 5, 45, 85 and 125. At very low values
of idim, GA is competitive with the hybrid and PSO methods. However, since the intrinsic
dimension is closer to the real dimension of the dataset, PSO and hybrid models with high Γ
achieve better accuracy. The problem is that for a particular dataset the intrinsic dimension
of the data will be unknown, so it will be necessary to realize an estimation of idim in order
to select an appropriate method.

In order to have a quick estimate of the hybrid model for Fbeta and lastiter, linear
Ridge models were trained with the previously obtained dataset but eliminating instances
corresponding to GA and PSO, and selecting only those cases with a β within the range
[0.92, 1.64] where the methodology was most successful. Equations 5 and 6 correspond to
the best Ridge models selected with a 10-fold cross-validation RMSE error of 0.0815 and
57.36 with values of the alpha Ridge’s hyperparameter equal to 4.0 and 2.0, respectively.

ˆFbeta = −0.0462 · Γ− 0.0027 · P + 0.0012 ·#feats− 0.0011 · idim − 0.0108 · β − 0.88 (5)

ˆlastiter = 28.391 · Γ− 0.8883 · P + 0.2963 ·#feats− 0.38 · idim + 36.517 · β + 72.71 (6)
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Figure 4: Violin plot of Fbeta with β = 1.34, #feats = 150 and for each method and four different idim
values. The order of the violin plots in the legend (from top to bottom) corresponds to their position when
viewed from left to right.

Using these two models, it was possible to approximately predict the values of Fbeta

and lastiter for a data set dimension, #feats, and a fixed value of P . Figure 5 shows
the box plots for Fbeta and lastiter obtained from a simulation performed with multiple
combinations of the input values for four high-dimensional data sets: ailerons (#feats = 40),
crime (#feats = 127), blog (#feats = 276) and slice (#feats = 378). Each simulation
was performed by fixing P = 15 and for each #ncols, with Γ ∈ [0.0, 0.0 + 0.1, ..., 1.1],
idim ∈ [0.10 ·#feats, 0.10 ·#feats+ 5, ...,#feats], and β ∈ [0.92, 0.92 + 0.1, ..., 1.64]. The
graphs show the expected reduction that can be obtained in lastiter vs. Fbeta depending on
the Γ used. However, estimates will be approximate and may vary greatly depending on the
dataset (type and size3) and the machine learning algorithm used for modeling the problem.

3.2. Comparative of HYB-PARSIMONY vs Bayesian Optimization and a three-step method
based on Genetic Algorithms

Figures 6 to 9 and Table 1 present a comparison of HYB-PARSIMONY with other two
methods:

• Bayesian Optimization with all features (BO): boFINAL_SCORE_TST represents the
testing fitness value (Jtst) obtained using all input features (boNFS = num_cols) and
250 iterations.

3As can be seen in Figure 5.

8



40 127 276 378
nfeats

60

70

80

90

100
be

st
_f

1b
et

a
Boxplots of 'best_f1beta'

40 127 276 378
nfeats

75

100

125

150

175

200

225

250

la
st

_it
er

Boxplots of 'last_iter'
gamma

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
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legend (from top to bottom) corresponds to their position when viewed from left to right for each #feats.

• HYB-PARSIMONY: hybNFS and hybFINAL_SCORE_TST correspond to the number
of features (NFS) and the fitness value (Jtst) obtained with each test dataset using
HYB-PARSIMONY. HYB-PARSIMONY was executed with the following parameters:
Γ = 0.50, nruns = 250, time_limit = 120min, P = 15 and early_stopping = 35.
Additionally, ReRank was set to 0.001, representing the maximum allowable difference
between the J values of two models to be considered equal.

• SKLEARN-GENETIC-OPT with a three-step methodology: first, performing hyper-
parameter optimization with BO using all features (nruns = 250); second, employing
Genetic Algorithms (GA) from the sklearn-genetic-opt package for feature selection
with the hyperparameters obtained in the first step and the following GA hyperpa-
rameters: nruns = 250 and P = 15; and finally, repeating the hyperparameter tuning
with BO but using only the selected variables (nruns = 250). The columns gaNFS

and gaFINAL_SCORE_TST display the results obtained using sklearn− genetic− opt
with the three steps described above.

Results were obtained of 100 datasets from openml.org composed of 44 binary, 22 regres-
sion and 34 multiclass problems. Base ML algorithms were scikit-learn’s KernelRidge for
regression datasets, and scikit-learn’s LogisticRegression for binary and multiclass datasets.

Table 1 shows the results for datasets with more than 100 features. As can be seen
in both figures and tables, HYB-PARSIMONY obtains, in most cases, models with similar
scores but with a significant reduction in the number of the selected features. However,
HYB-PARSIMONY results with these datasets could be improved by adjusting parameters
such as Gamma, npart, and others.

In these experiments4, half of the instances from each dataset were used for train-
ing/validation, and the remaining half constituted the test dataset to assess model gen-
eralization. The results represent averages from five runs (with different random seeds) of

4All results and the code to replicate the experiments can be found at: https://github.com/jodivaso/
hybparsimony/tree/master/examples/analysis

9

https://github.com/jodivaso/hybparsimony/tree/master/examples/analysis
https://github.com/jodivaso/hybparsimony/tree/master/examples/analysis


Table 1: Results with datasets with more than 100 columns.

name_db trn− valsize score boNFS hybNFS gaNFS botst hybtst gatst
dna 1593 f1_macro 360 156.2 181.4 .942 .944 .943

ames_housing 1465 RMSE 354 178.8 187 .442 .520 .525
philippine 2916 logloss 308 62.6 151.6 .557 .542 .552

scene 1203 logloss 304 49.2 142.6 .200 .061 .108
splice 1595 f1_macro 287 146.6 157.4 .941 .943 .933

jasmine 1492 logloss 280 71.4 141 .445 .448 .446
topo_2_1 4442 RMSE 266 68.8 138.6 .925 .924 .923
madeline 1570 logloss 259 54 126.8 .670 .680 .672

USPS 4649 f1_macro 256 135.8 136.6 .940 .938 .937
yprop_4_1 4442 RMSE 251 84.6 121.4 .916 .925 .918

autoUniv-au4-2500 1250 f1_macro 226 93 109.8 .397 .402 .397
Indian_pines 4572 f1_macro 220 105.2 108.4 .838 .832 .826

mtp 2225 RMSE 202 70.2 110.4 .694 .688 .687
clean2 3299 logloss 168 36 73.8 .000 .000 .000

COIL2000-train 2911 logloss 150 35.6 77.2 .210 .213 .211
ECG5000 2499 logloss 140 29.4 68.6 .044 .050 .044

kings_county 10806 RMSE 132 97 79.8 .357 .374 .370
SAT11-HAN-rr 2220 RMSE 130 48.4 77 .518 .514 .511

yeast_ml8 1208 logloss 129 38 66.5 .067 .114 .072
gas-drift 6955 f1_macro 128 56.8 67.4 .988 .989 .989

mushroom 4062 logloss 125 59.4 70.4 .000 .000 .000
sylva_prior 7197 logloss 108 55.8 61.2 .018 .020 .019

BachChoralH. 2832 f1_macro 104 81.4 61.8 .405 .388 .371
ada_prior 2281 logloss 102 43.4 56.6 .353 .356 .353

each methodology and dataset. All methods utilized 5-fold cross-validation.
The left sides of figs. 6 to 8 show, for the three groups of problems: binary (Figure 6),

regression (Figure 7) and multiclass (Figure 8), the number of features selected by HYB-
PARSIMONY (hyb_NFS) and the classical method (ga_NFS) versus the total number
of variables used by BO (bo_NFS). The right sides show the score with the test dataset
(logloss, RMSE and F1-Macro) of the best model obtained with each method and dataset.

Finally, the Figure 9 below shows that the computation time with HYB-PARSIMONY
was considerably reduced compared to the feature selection method with GA and close to
BO (although, to be fair, in the GA method no early stopping was implemented).

4. Strategy for working with SHDD

Creating accurate models with SHDD is a current challenge. If the dataset has hundreds
or a few thousand instances, and the dimension is high (several tens or hundreds of features),
the search for models that correctly generalize the problem will face two fundamental prob-
lems: the curse of dimensionality and an excessive over-fitting in the optimization process.

Although there are algorithms, such as trees and neural networks, that may be less
affected by the curse of dimensionality, in these cases it is highly recommended to use feature
selection or dimensional reduction. In addition, the regularization included in machine
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Figure 6: Selected Features (NFS) and LogLoss with 44 Binary Datasets.

Figure 7: Selected Features (NFS) and RMSE with 22 Regression Datasets.
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Figure 8: Selected Features (NFS) and F1-Macro with 34 Multiclass Datasets

learning algorithms helps penalize models that are too complex and with high probability of
overfitting. The proposed hybrid methodology greatly facilitates both aspects since it seeks
to reduce as much as possible the number of features of the selected model, as well as its
internal complexity.

However, HYB-PARSIMONY is such an intensive search method that when working
with SHDD the method may find parsimonious solutions that are too specific to that set
of instances. Thus, the chosen hyperparameters and the selected features may be the most
appropriate for that sample but not be sufficient to create a model that will generalize
correctly in the future. To reduce this over-fitting and to find a feature selection that can be
used to create a robust model that generalizes correctly in this kind of problems, we propose
the following methodology:

1. Repeat n runs with different random seeds the search for the best model with HYB-
PARSIMONY and hold-out validation. In each repetition, extract the feature prob-
ability vector of the best individual. The use of hold-out validation increases the
diversity of validation samples employed in feature selection. By repeating the process
multiple times with different random seeds, we ensure that the features selected most
frequently are those that consistently contribute valuable information across a broader
and more varied set of samples. This approach enhances the robustness of the selected
features, as they are more likely to generalize well when faced with diverse data.

2. Average the probabilities for each feature and select those that have a value greater
than a given threshold, thrfs.

3. Use BO to perform hyperparameter tuning with the features selected in the previous
point.

4. Repeat points 2 and 3 with different thrfs.
5. Select the model that obtains the best error J with another test dataset.

Table 2 shows the results with 13 high-dimensional datasets of using the described
methodology versus using BO with all features (#feats). In these experiments, 2000 rows
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Figure 9: Elapsed times with all datasets and for each kind of problem (binary, regressión and multiclass).
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Table 2: Results for 13 datasets with BO (J) versus HYB-PARSIMONY with thrfs = 0.50 followed by BO.

Dataset BO HYB-PARSIMONY and BO
name trainsize testsize #feats JBO lastiter J0.5 Fs0.5

slice 2000 23000 378 .1414 165.8 (42.4) .1449 (.0022) 148.0 (3.74)
blog 2000 50397 276 .8216 178.6 (45.6) .8154 (.0170) 67.0 (17.42)
crime 1107 1108 127 .6373 199.0 (0.0) .6379 (.0076) 28.8 (4.32)
ailerons 2000 11750 40 .3984 131.2 (17.9) .3982 (.0016) 13.2 (2.05)
bank 2000 6192 32 .6745 160.0 (32.1) .6726 (.0023) 15.6 (1.52)
puma 2000 6192 32 .8762 106.2 (16.3) .2006 (.0250) 3.6 (0.89)
pol 2000 13000 26 .3165 148.0 (32.2) .2413 (.0034) 7.2 (0.45)
sat11 2000 2440 130 .5329 191.6 (10.9) .5444 (.0070) 46.6 (3.44)
ames 1465 1465 354 .3939 192.2 (13.6) .4997 (.0334) 174.2 (13.50)
kings 2000 19614 132 .3883 176.6 (37.7) .3874 (.0046) 93.8 (8.53)
mtp 2000 2450 202 .6874 197.4 (3.6) .7045 (.0059) 49 (10.17)
topo 2000 6885 266 .9202 192.6 (14.3) .9265 (.0031) 42.6 (3.21)
yprop 2000 6885 251 .9207 199.0 (0.0) .9231 (.0035) 62.6 (11.26)

were selected for training/validation (except crime where half of them were used) and the
rest were utilized as a test dataset to verify the degree of generalization of the models.
JBO corresponds to the testing RMSE error obtained from a model that used all the input
features and whose hyperparameters were adjusted by BO. The last three columns corre-
sponds to the new proposal. First, 25 runs of HYB-PARSIMONY were performed with
Γ = 0.50, nruns = 200, P = 15, early_stopping = 35, hold-out validation with a 20%, and
KernelRidge as ML algorithm. Finally, ReRank was set to 0.001 which corresponds to the
maximum difference between the J of two models to be considered equal. A high value of
this parameter facilitates the search for parsimony in HYB-PARSIMONY because between
two models with a similar J the less complex model is selected. Next, hyperparameter tun-
ing with BO was done of a KernelRidge algorithm with the features whose probabilities
were greater o equal than 0.50 (thrfs = 0.50). Columns in table indicate: the last iteration
(lastiter) of HYB-PARSIMONY, RMSE (J0.5) and the number of features used (Fs0.5) in
the final model. The results correspond to the average values and the standard deviation
(in parentheses) of 5 runs of the whole methodology with different random seeds.

As can be seen in Table 2, the proposed methodology obtained a significant reduction in
the average number of final selected features, being the differences between JBO and J0.5
not too high. The average reduction of features was considerable, reducing the number of
selected features by more than 50% in 12 of the 13 datasets. In some cases, the reduction was
over 75%. For example, in blog the average number of features was reduced to 24.3% (from
276 to 67, a 75.7% reduction), in crime to 22.6%, in mtp to 24.3% and in yprop to 25.0%.
However, BO obtained more accurate models in 7 of the 13 datasets, although these results
could be improved by using different thrfs as shown in Table 3. By using other thresholds,
we can seek a compromise between the complexity of the model (number of features) and
the final accuracy of the model. As can be seen in Table, more parsimonious and accurate
models were obtained in all datasets except mtp.

Table 4 shows a comparative analysis of the proposed methodology using HYB-PARSIMONY
versus the previous method, PSO-PARSIMONY. The best results are shown in bold where
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Table 3: Proposed methodology with different thrfs vs. BO with all features (JBO).

dataset JBO J0.2 Fs0.2 J0.3 Fs0.3 J0.4 Fs0.4 J0.5 Fs0.5 J0.6 Fs0.6 J0.7 Fs0.7

slice .1414 .1392 346.4 .1374 294.2 .1370228.2 .1449 148.0 .1583 85.8 .2267 40.2
blog .8216 .8265 247.0 .8288 196.8 .8234 128.8 .8154 67.0 1.014 29.4 .9462 10.8
crime .6373 .6367 108.8 .6371 85.0 .6386 56.4 .6379 28.8 .6461 12.8 .7867 3.8
ailerons .3984 .3986 33.2 .3994 25.4 .3993 17.8 .3982 13.2 .4338 9.8 .5043 5.6
bank .6745 .6729 29.4 .6756 24.6 .6744 20.4 .6726 15.6 .6791 11.4 .6889 9.0
puma .8762 .3030 12.2 .2308 7.6 .2096 4.6 .2006 3.6 .2007 3.6 .2230 2.8
pol .3165 .2736 13.2 .2584 10.4 .2461 8.2 .2413 7.2 .2413 7.2 .2387 6.4
sat11 .5329 .5328 127.2 .5363 102 .5383 79.6 .5444 46.6 .5781 28.6 .6193 14.2
ames .3939 .3917 351.4 .4177 308 .4483 252.8 .4997 174.2 .4982 103.8 .5601 53.2
kings .3883 .3878 130.6 .3877 126.8 .3856114.4 .3874 93.8 .3928 71 .4091 45.8
mtp .6874 .6880 178 .6899 137.2 .6930 90.4 .7045 49 .7318 25 .8181 9.2
topo .9202 .9200 222.4 .9208 165 .9226 95.8 .9265 42.6 .9286 18.4 .9350 6.2
yprop .9207 .9198 217.8 .9198 172.4 .9214 115.4 .9231 62.6 .9283 28.2 .9346 8.8

Table 4: Comparison of HYB-PARSIMONY and PSO-PARSIMONY with the best thrfs. Best results of J
and Fs are highlighted in bold where statistically significant differences are observed at a 95% confidence
level.

HYB-PARSIMONY PSO-PARSIMONY
dataset lastiter thrfs J Fs lastiter thrfs J Fs

slice 165.8 .4 .1370(.003) 228.2(6.0) 182.8 .5 .1372(.002) 239.0(6.9)
blog 178.6 .5 .8154(.017) 67.0(17.4) 191.6 .0 .8215(.000) 276.0(0.0)
crime 199.0 .2 .6367(.002) 108.8(1.3) 175.4 .1 .6371(.000) 124.8(1.3)
ailerons 131.2 .5 .3982(.002) 13.2(2.1) 154.8 .5 .3984(.002) 16.0(3.5)
bank 160.0 .5 .6725(.002) 15.6(1.5) 149.8 .5 .6724(.002) 16.8(1.6)
puma 106.2 .5 .2006(.025) 3.6(0.9) 104.4 .4 .1894(.000) 4.0(0.0)
pol 148.0 .7 .2387(.004) 6.4(0.6) 127.2 .7 .2374(.003) 6.2(0.5)
sat11 191.6 .2 .5328(.001) 127.2(2.3) 198.0 .3 .5328(.003) 103.0(4.7)
ames 192.2 .2 .3917(.005) 351.4(4.0) 197.4 .2 .3920(.007) 352.2(2.7)
kings 176.6 .4 .3856(.002) 114.4(6.2) 188.8 .3 .3879(.003) 126.0(4.6)
mtp 197.4 .0 .6874(.000) 202.0(0.0) 145.6 .2 .6873(.002) 187.8(6.5)
topo 192.6 .2 .9200(.000) 222.4(7.8) 197.6 .2 .9199(.001) 217.8(4.8)
yprop 199.0 .3 .9189(.001) 172.4(6.8) 190.4 .3 .9195(.001) 184.4(8.0)
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there are statistically significant differences with a confidence factor of 95%.
The results show that the new methodology improved J in 7 high dimensionality datasets

and in a statistically significant way. Likewise, it obtained an improvement in the reduction
of the number of features in 9 of the 13 datasets. The most significant reduction was
observed in blog, although there were substantial improvements in slice, crime, ailerons,
kings and yprop. However, PSO-PARSIMONY obtained better J in puma and pol, but
with worse parsimony in the first one. On the other hand, in models where J was similar,
PSO-PARSIMONY obtained more parsimonious models, although in these three cases the
number of final iterations (lastiter) was close to the 200 limit, which may indicate that with
these datasets the optimization would have needed more iterations.

Finally, Table 5 shows a comparison of the proposed methodology versus the use of
the sklearn-genetic-opt library for feature selection and hyperparameter tuning. The
datasets have been sorted according to the number of features. To use sklearn-genetic-opt
for feature selection and hyperparameter fitting (similar to that performed by HYB-PARSIMONY),
three steps were performed: perform the hyperparameter fitting with GA, select with GA
the best features and finally perform again the hyperparameter fitting with GA but using
only the selected variables. The results correspond to the average of 10 runs of the proposed
methodology with different random seeds and selecting the best thrfs. Only those with
statistical significance (p < 0.05 value in the Wilcoxon–Mann–Whitney test) are shown in
bold.

HYB-PARSIMONY obtained J improvements in 6 of the 12 databases, mainly in the
lower dimensionality datasets. When analyzing the last three columns related to the reduc-
tion of the number of features and, fundamentally in those datasets with #feats > 100, it
can be observed that the methodology for working with SHDD avoided a drastic reduction
of the features that would lead to an overfitting of the models. For example, the complexity
of the ames, topo or kings models was not reduced much. However, in other cases such as
slice, yprop, blog and crime, the feature reduction was significant.

Finally, it is important to note that all HYB-PARSIMONY tests have been performed
with Γ = 0.50, although other values of this hyperparameter can be used to find better
results. Likewise, the results in the Table 5 correspond to the thrfs value that obtained
lower J with a new test database. However, the methodology allows the use of any other
value of thrfs that improves parsimony at the expense of slightly reducing the accuracy of
the models.

5. Conclusions

GA-PARSIMONY, PSO-PARSIMONY, and HYB-PARSIMONY are methodologies that
have been developed for the search of accurate yet low complexity machine learning mod-
els. However, an intensive search with these methods in Small High-Dimensional Datasets
(SHDD) can lead to overfitted models. Specifically, HYB-PARSIMONY is such an intensive
search method that, when working with SHDD, it may find parsimonious solutions that are
overly specific to the training data. As a result, the selected hyperparameters and features
may be optimal for that sample but not sufficient to create a model that generalizes well
to new data. To reduce this overfitting and to find a feature selection that can be used to
create a robust model that generalizes correctly in this kind of problem, we proposed a new
methodology in this paper.

The proposed methodology is based on repeating HYB-PARSIMONY with different ran-
dom seeds and using hold-out validation. In this way, the search for the best model is
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Table 5: Comparison of HYB-PARSIMONY and sklearn-genetic-opt for feature selection and hyperparam-
eter tuning across datasets ordered by feature count. Results show the average of 10 runs, with statistically
significant differences (p < 0.05, Wilcoxon–Mann–Whitney test) highlighted in bold.

dataset #feats Jhyb Jgen p-value Fshyb Fsgen p-value

slice 378 0.131430 0.142033 0.000330 183.3 202.4 0.000489
ames 354 0.444826 0.432153 1.000000 328.2 344.2 0.011667
blog 276 0.823028 0.841876 0.002827 69.8 143.6 0.000085
topo 266 0.918339 0.918139 0.690476 257.6 251.4 0.057008
yprop 251 0.917062 0.917360 0.420635 116.4 121.0 0.547619
mtp 202 0.687080 0.686763 0.690476 172.0 168.8 0.399075
kings 132 0.370370 0.369793 0.690476 129.2 126.4 0.033895
sat11 130 0.519502 0.520955 0.222222 110.0 124.2 0.011667
crime 127 0.630145 0.633698 0.011330 70.7 67.7 0.148308
ailerons 40 0.398032 0.398548 0.025748 40.0 22.9 0.000062
bank 32 0.672656 0.676080 0.021134 24.7 19.8 0.000143
puma 32 0.189436 0.258673 0.000183 4.0 11.0 0.000048
pol 26 0.236990 0.276652 0.000183 6.0 15.7 0.000058

validated with different parts of the dataset at each run. Averaging the feature probability
vectors from multiple runs allows for a more robust selection of the final features, reducing
the risk of overfitting while improving model generalization. Once these features are selected,
using different thresholds, Bayesian Optimization is used to tune the hyperparameters of the
model. Although the same methodology can be applied using other feature selection and/or
hyperparameter optimization methods, the use of HYB-PARSIMONY significantly facili-
tates feature reduction (the search for parsimony), which is a critical factor in obtaining
low-complexity, interpretable models.

Results have demonstrated that it is possible to obtain more accurate models with a
significant reduction in the number of features compared to other methodologies. This
allows the development of models that not only generalize well but also maintain lower
complexity, making them suitable for practical, interpretable use in SHDD.

One limitation of the proposed methodology is that it must be tested with various thresh-
olds (thrfs), as results can vary considerably depending on the threshold chosen. Moreover,
altering other hyperparameters of HYB-PARSIMONY increases the likelihood of finding
suitable solutions, but at the cost of significantly increasing the computational time re-
quired for the search. Therefore, there is a trade-off between computational efficiency and
model performance.

Future research will focus on developing methods to accurately estimate hyperparameters
such as the threshold for feature selection (thrfs), Γ (which affects the crossover rate),
and other HYB-PARSIMONY hyperparameters according to the specific characteristics of
each dataset. Additionally, further studies will investigate alternative validation processes
to accelerate the search for the most robust features for SHDD. Such approaches aim to
enhance computational efficiency while preserving the reliability of feature selection and the
accuracy of the resulting models.

GA-PARSIMONY, PSO-PARSIMONY and HYB-PARSIMONY are methodologies that
have been developed for the search of accurate but low complexity ML models. However,
an intensive search with these methods in SHDD can lead to overfitted models.
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The proposed methodology is based on repeating HYB-PARSIMONY with different ran-
dom seeds and by using hold-out validation. In this way, at each run the search for the best
model is validated with a different part of the dataset. Averaging the feature probability
vectors allows one to make a more robust selection of the final features. Once these are
selected, with different thresholds, BO is used to fit the hyperparameters of the model.

Results demonstrated that it is possible to obtain more accurate models with a significant
reduction in the number of features against other methodologies.
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