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ABSTRACT

Topological image analysis is a powerful tool for understanding the structure and topol-
ogy of images, being persistent homology one of its most popular methods. However,
persistent homology requires a chain of inclusions of topological spaces, which can be
challenging for digital images. In this article, we explore the use of zigzag persistence,
a recent variant of traditional persistence, for digital image processing. To this end, new
algorithms are developed to build a simplicial complex associated to a digital image and
to compute the relationships between homology classes of a sequence of binary images
via zigzag persistence. Additionally, we provide a simple software to use them. We
demonstrate its effectiveness by applying it to a real-world problem of analyzing honey
bee sperm videos.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Topological image analysis has emerged as a powerful tool
for understanding the structure and topology of images. This
approach relies on the use of algebraic topology to analyze im-
ages and extract topological features that are invariant under
various image transformations. One of the most popular meth-
ods of topological image analysis is the use of persistent homol-
ogy [1], which provides a powerful tool for detecting and char-
acterizing topological features of images, such as connected
components (0-dimensional homological features), holes (1-
dimensional homological features), voids (2-dimensional ho-
mological features) and so on, which do not depend on spe-
cific measurements. These topological features are graphically
represented in an easy and intuitive way by means of a bar-
code, a complete invariant which provides explainable infor-
mation on the shape of the data. In the barcode, longer inter-
vals correspond to more robust features, whereas shorter inter-
vals are more likely to be noise in the data. The field of TDA
has proven useful in many applications such as medical biol-
ogy [2], physics [3], and atmospheric science [4]. Recently,
persistent homology has also been used in combination with
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convolutional neural networks (CNNs); given a dataset, persis-
tent homology is applied to produce some topological features
that can then be fed into machine learning models to improve
their results and provide explainable outputs [5]. Persistent ho-
mology has been already applied to a wide range of data and im-
age analysis tasks, such as edge detection [6], skin lesions [7],
cell trajectory inference [8], and many more.

Persistent homology requires a chain of inclusions of topo-
logical spaces. The idea is to construct a sequence of nested
subspaces of the original space, where each subspace includes
the previous one. The sequence of nested subspaces is defined
by an increasing filtration. By computing the homology groups
of each subspace, one can track the topological features, i.e.,
when each feature appears and disappears. The need for each
subspace to include the previous one is an important restriction.
In particular, if one has to work somehow with a sequence of
images, the foreground pixels of each previous image must be
maintained in each step (new ones may appear, though).

Zigzag persistence is a recent variant of the traditional per-
sistence algorithm in algebraic topology, which is also used to
extract topological features from datasets. It was introduced
by Carlsson and Silva [9] as a generalization of the original
persistence algorithm for the case of a sequence of topological
spaces that are not related by means of an increasing filtration.
In zigzag persistence, the chain of inclusions is defined by a
zigzag filtration, which allows homology classes to be trans-
ported between different subspaces in the filtration by zigzag
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paths. Zigzag paths are sequences of inclusion maps that can be
used to track the evolution of topological features, even when
the features undergo non-linear transformations or noise. Com-
pared to traditional persistence, zigzag filtration is also defined
by a sequence of subspaces, but the crucial difference is that
inclusion can go in any direction in each step. In practice, it
is not necessary to define explicitly the inclusion (and surjec-
tion) maps, but simply providing the topological subspaces (the
maps can be constructed automatically through unions or in-
tersections). In other words, one important advantage is that
there is no need to relate the images by means of an increasing
filtration when working with digital images. This way, zigzag
persistence is more flexible than persistent homology.

Zigzag persistence has been applied to topological data anal-
ysis [10], but there are barely any applications of zigzag persis-
tence to digital images. To the best of our knowledge, the only
application of zigzag persistence on digital images is a work
about analyzing stacks of neuronal images [11].

There are some reasons why zigzag persistence is not so
widely used for images: It is a relatively new and advanced
topic in topological data analysis and requires a deeper un-
derstanding of algebraic topology and computational geometry
than traditional persistence, which make it more challenging
for its use. Indeed, there are currently fewer software packages
available for computing zigzag persistence compared to tradi-
tional persistence, and none of them is specialized in digital
images. The contributions of this work are the following:

1. An algorithm to build a simplicial complex associated to
a binary digital image smaller than the ones used in the
literature, but with the same topological information. This
makes the zigzag computation more efficient.

2. An algorithm to compute the relationship between the
n-homology classes of a sequence of binary images (of
the same size, without any relationship among them) via
zigzag persistence, using the algorithm for zigzag persis-
tence of topological spaces introduced in [9].

3. An easy-to-use and open-source software (with GUI) to
compute the previous algorithm for a sequence of binary
images and plot the corresponding barcodes.

4. A dataset for experiments and also an example of zigzag
application to a real-world problem (that cannot be tackled
with persistent homology): analysis of videos of sperm of
honey bee drones, where we can use our software to track
motile spermatozoa and as a preprocessing step to detect
static spermatozoa in noisy images.

The rest of the paper is organized as follows: Section 2
presents the proposed algorithms to compute zigzag persistence
of digital images. The developed software is discussed in Sec-
tion 3. Section 4 shows a potential real-world application of
the new algorithms and a dataset for experiments. Finally, the
conclusions and further work are detailed in Section 5. The
following repository contains our programs:

https://github.com/jodivaso/ImageZigZag

2. New general algorithms for computing zigzag persis-
tence of digital images

The theory of zigzag persistence [9] is defined for diagrams
of topological spaces of the form:

X1 ↔ X2 ↔ · · · ↔ Xm

where the arrows can point either left or right.
Considering the induced morphisms on the homology groups

of each topological space, for each n ∈ N one obtains a se-
quence of vector spaces and linear maps:

V1 ≡ Hn(X1)↔ V2 ≡ Hn(X2)↔ · · · ↔ Vm ≡ Hn(Xm)

which is called a zigzag module. Zigzag modules can be de-
composed as a direct sum of submodules W i of the form

0↔ · · · ↔ 0↔ W i
ai
= F↔ · · · ↔ W i

bi
= F↔ 0↔ · · · ↔ 0

for some 1 ≤ ai ≤ bi ≤ m, where F is the base field and all
arrows are the identity map, see [9] for further details. In this
way, zigzag modules can be classified up to isomorphism by a
multi-set of intervals {[ai, bi]}with 1 ≤ ai ≤ bi ≤ m, which leads
to the graphical representation of zigzag modules by means of
barcode diagrams (see [9]).

As said in the introduction, although persistent homology has
been used in many different problems in image processing, up
to our knowledge there is only one application of zigzag persis-
tence to digital images [11], being implemented for a particu-
lar situation. In this work, we propose a general algorithm for
applying zigzag persistence to any sequence of binary images
(with the same size).

Zigzag persistence is implemented in the Dionysus 2 soft-
ware [12]. To use this program, we need to construct a simpli-
cial complex associated with a digital image. A simplicial com-
plex is a particular case of topological space defined by means
of points (called vertices), line segments (edges), triangles, and
their n-dimensional counterparts (see [13] for details). A binary
(2D) image will be given by a matrix of pixels having two pos-
sible values: black and white (usually coded as 0 and 255, re-
spectively). In this paper, we consider white as foreground and
black as background (one can also choose the opposite conven-
tion), and we use 8-adjacency between pixels, because it is the
most suitable one for our problems (see Section 4).

In a first step of our work we implemented directly the con-
struction of the simplicial complex corresponding to the trian-
gulation of the cubical complex of a binary image, but many
simplices were obtained and the zigzag persistence computa-
tion was slow. To design our new Algorithm 1, we have made
use of the Vietoris–Rips simplicial complex associated to a bi-
nary image, considering each white pixel as a point in a two-
dimensional Euclidean space (that is also a way to represent
the topological properties of the image, see [14]) and discrete
Morse theory [15] (in particular, the notion of discrete vector
field, which allows us to remove unnecessary edges and trian-
gles). Given a simplicial complex, a discrete vector field V is a
list of pairs of simplices V = {(σi, τi)}i∈J such that each σi is a
face of τi (with some additional hypotheses). The simplices that

https://github.com/jodivaso/ImageZigZag
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Fig. 1. On the left, a digital image; on the right, its simplicial complex
representation.

do not appear in the vector field are called critical. If the vector
field is admissible (see [15] for details), then the initial simpli-
cial complex can be reduced to a smaller one, with the same ho-
mology groups, where only the critical simplices appear. In our
case, for example, when three white pixels appear in the image
at positions (i, j), (i+ 1, j) and (i, j+ 1), the Vietoris–Rips com-
plex includes a triangle T with vertices at these three pixels and
an edge E between the vertices (i, j+1) and (i+1, j). However,
if the pixel at (i + 1, j + 1) is black, then a vector given by the
pair (σ = E, τ = T ) can be defined and then both simplices are
removed from the simplicial complex maintaining the homol-
ogy groups. With our new Algorithm 1, the number of vertices,
edges and triangles in the complex is smaller than in the trian-
gulation of the cubical complex of a binary image and in the
Vietoris–Rips complex and the computation of zigzag persis-
tence is faster, see the repository for the detailed comparison.
Figure 1 shows an example of application of Algorithm 1.

Algorithm 1. .
Input: a binary image I, with r rows and c columns.
Output: a simplicial complex K.

1. Start with K = ∅.
2. For each white pixel in I at position (i, j), add to K the

vertex i ∗ c + j.
3. For each pair of white pixels in I at positions (i, j) and

(i + 1, j) or (i, j) and (i, j + 1), add to K an edge between
the corresponding vertices.

4. For each pair of white pixels at (i, j) and (i+ 1, j+ 1) such
that the pixels at (i + 1, j) and (i, j + 1) are both black,
add to K an edge between the corresponding vertices. For
each pair of white pixels at (i, j) and (i+1, j−1) such that
the pixels at (i + 1, j) and (i, j − 1) are both black, add to
K an edge between the corresponding vertices.

5. For each pair of white pixels at (i, j) and (i+ 1, j+ 1) such
that the pixels at (i+ 1, j) and (i, j+ 1) are both white, add
to K an edge between the corresponding vertices to (i, j)
and (i + 1, j + 1) and add two triangles with the vertices
corresponding to the pixels at (i, j), (i+ 1, j) and (i+ 1, j+
1), and (i, j), (i, j + 1) and (i + 1, j + 1).

6. Return K.

Now, given a sequence of binary images, in Algorithm 2
we study the relationship between the homology classes of
each image by combining Algorithm 1 with the computation
of zigzag persistence (of a sequence of simplicial complexes).

To this aim, we follow the same idea as in [9, Example 1.1]:
given a sequence of simplicial sets K1, . . . ,Km, we consider the
union sequence:

K1 ↪→ K1∪K2 ←↩ K2 ↪→ K2∪K3 ←↩ · · · ↪→ Km−1∪Km ←↩ Km

This way, when computing the homology groups and the
corresponding barcode of the zigzag filtration, the relation be-
tween the homology classes of the initial simplicial complexes
Ki is obtained (each bar corresponds to a homology class that
appears in different simplicial complexes; different bars corre-
spond to different homology classes in the complexes). Given
two consecutive simplicial complexes Ki and Ki+1 (correspond-
ing, respectively, to the images Ii and Ii+1), the union is com-
puted without considering the vectors of the discrete vector field
which have been only applied in one of the images (these vec-
tors may not be compatible with the zigzag filtration).

Algorithm 2. .
Input: a sequence of binary images I1, . . . , Im of the same size
(that is, the same numbers of rows and columns) and an integer
n ≥ 0.
Output: The zigzag barcode describing the continuity of the
n-homology classes between the different images and a list of
generators associated with each of the bars in the barcode.

1. For each 0 ≤ i ≤ m, apply Algorithm 1 to the binary image
Ii and construct the associated simplicial complex Ki.

2. For each 0 ≤ i < m, compute the union of the simplicial
complexes Ki and Ki+1 and add the simplices correspond-
ing to vectors which appear only in one of the images. We
denote this union by K′i .

3. Consider the following sequence of maps:

K1 ↪→ K′1 ←↩ K2 ↪→ K′2 ←↩ · · · ↪→ K′m−1 ←↩ Km

4. Compute the zigzag persistence of the sequence of vector
spaces: Hn(K1)→ Hn(K′1)← Hn(K2)→ · · · ← Hn(Km)

5. Draw the barcode and return the generators.

Algorithm 2 can be used to study the relationship between the
n-homology classes of a sequence of binary images (of the same
size) without any relationship between them. For instance, let
us consider as a didactic example the three binary images of
Figure 2. In the first two images, three 1-dimensional classes
appear, whereas the last one only contains two. One of the holes
lives in the three images (top left corner; some pixels are differ-
ent, but the hole is essentially the same); another 1-dimensional
class appears in the first image (top right) and disappears in
the third one; there is a hole that is only shown in the first im-
age (bottom) and finally, another homology class appears in the
second image (bottom right corner) and is still alive in the third
image. We can obtain this information by computing the zigzag
barcode following our Algorithm 2, as shown in Figure 3.

As a remark, we would like to observe that, to apply Algo-
rithm 2, it is not necessary to relate the binary images by means
of a filtration (which is a necessary condition to apply persistent
homology). This allows us to apply our algorithm to problems
that have not been tackled before with topological data analysis,
as the applications presented in Section 4.
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Fig. 2. Sequence of three binary digital images.

Fig. 3. Zigzag barcode of images in Figure 2.

We have enhanced Algorithm 2 by allowing three op-
tional parameters: interval-length, an integer represent-
ing the minimum length necessary for a zigzag interval to
be considered in the barcode (to discard very short bars,
which correspond to homology classes that persist a very
short period of time), and generator-min-length and
generator-max-length, the minimum and maximum num-
ber respectively of simplices in a generator that are necessary
for a bar to be considered in the barcode (to discard, for in-
stance, small holes). This lead to the following algorithm.

Algorithm 3. .
Input: a sequence of binary images I1, . . . , Im of the same
size (that is, the same numbers of rows and columns)
and integers n, interval-length, generator-min-length,
generator-max-length ≥ 0.
Output: A subset of the zigzag barcode of the images of dimen-
sion n containing the bars with length greater than or equal
to interval-length and such that the corresponding gener-
ators are made of l simplices, with generator-min-length

≤ l ≤ generator-max-length.

1-4. Same steps as in Algorithm 2.
5. Select those intervals in the barcode with length

greater than or equal to interval-length and
such that the corresponding generators are made of
l simplices, with generator-min-length ≤ l ≤

generator-max-length.
6. Draw the barcode and return the generators of the selected

intervals.

3. Description of the new software

Algorithms 1, 2 and 3 have been implemented as Python
functions using the library Dionysus 2 [12] for computing the
zigzag modules. These algorithms are also implemented in a
Jupyter notebook, available in the repository. To allow users to

Fig. 4. Interface of the new application.

apply our programs in an easier way, we have also developed a
graphical interface. The new software inputs a set of binary im-
ages and it allows the user to decide the order of the images (to
compute the zigzag persistence). As parameters, as specified in
Algorithm 3, the user can choose the dimensions for which the
barcode will be determined (0 or/and 1), the minimum length of
a bar to be showed and the minimum and maximum number of
simplices (vertices or edges) in a generator that are needed to be
showed in the barcode. It is also possible to decide whether the
interval generators are shown in the barcode. The program then
applies Algorithm 3 to compute the associated zigzag barcode.
Figure 4 shows the interface of our application. The result is a
graphical representation of the barcode diagrams shown within
the application, see Figure 5.

4. Applications

In this section, we present two applications of our algorithms
for computing zigzag persistence of a sequence of binary im-
ages. Both applications are illustrated with images obtained
from videos of sperm of honey bee drones, which have been
acquired using an Olympus BX40 microscope (Olympus Opti-
cal Co., Tokyo, Japan). The aim of the analysis of these images
is to evaluate the sperm motility and concentration by identi-
fying two types of spermatozoa: motile ones, which show a
circular shape in most videos, and static ones, which show a
linear shape. In a previous work [16], an open-source software
called CASABee was developed in Python using libraries such
as OpenCV (for image processing). The program inputs one or
several videos and analyzes them in order to study sperm motil-
ity and concentration by identifying both the motile and static
sperm that appear in the videos. Figure 6 shows two examples
of CASABee analysis, showing the classification of spermato-
zoa in motile (circles) and static (red lines). Once the sper-
matozoa are identified in the videos, CASABee produces the



5

Fig. 5. Results of the new application.

Fig. 6. Examples of CASABee analysis. Phase contrast images from
two video sequences of different sperm motility (a, c), and the resulting
CASABee output (b, d), showing the classification of spermatozoa in motile
(circles) and static (red lines).

following numerical results: total number of sperms, number
of static spermatozoa, number of motile spermatozoa, motile
percentage, and concentration. Now, we consider our new soft-
ware for computing zigzag persistence of a sequence of binary
images and apply it for the computation of both static (in Sec-
tion 4.1) and motile spermatozoa (in Section 4.2). In addition,
Section 4.3 presents more experiments with an artificial dataset
of different basic shapes moving in the space.

4.1. Combining mathematical morphology operators

Mathematical morphology or simply morphology is a field
that provides several techniques for processing digital imagesIt
is based on the study of spatial structures on an image and it is
applied to a large number of imaging problems and applications
(see, for instance, the recent papers [17] and [18]). The main
mathematical morphology operators are dilation and erosion.
In a binary image, dilation enlarges the number of foreground

pixels (in our case, white pixels) by turning into white the black
pixels that are neighbors of white pixels (the notion of neigh-
borhood is defined by means of a structuring element, see [19]
for details), while erosion erases (turns into black) white pixels
that are neighbors of a black one.

Let I be a binary image and K its associated simplicial com-
plex (obtained, for instance, by applying Algorithm 1). Given
j ≥ 0, let us denote by D jI (resp. E jI) the binary images ob-
tained by applying j dilations (resp. j erosions) to I, and by
D jK (resp. E jK) the corresponding simplicial complexes. It is
easy to observe that the following relations are satisfied:

· · · ⊆ E jK ⊆ E j−1K ⊆ · · · ⊆ EK ⊆ K

K ⊆ DK ⊆ · · · ⊆ D j−1K ⊆ D jK ⊆ · · ·

In other words, a filtration is obtained, and this makes it pos-
sible to apply persistent homology. This approach has been
considered, for instance, in [20].

However, in other problems dilation and erosion are com-
bined in a way such that they do not provide a filtration. For
instance, one could be interested in applying i dilations fol-
lowed by j erosions, and one wants to know the most adequate
numbers i and j. In that situation, the corresponding images
and simplicial complexes do not provide a filtration and, there-
fore, one cannot apply persistent homology. To solve this prob-
lem, we propose to apply zigzag persistence by using our Al-
gorithms 2 and 3, which determine the relationship between the
n-homology classes of the different images.

As a particular case of this situation, we consider images ob-
tained from videos of sperm of honey bee drones. In order
to detect the static spermatozoa, the CASABee sofware pre-
sented in [16] works as follows. First, the enhanced frames
of the video (after smooth filter and normalization) are exam-
ined and binarized using an appropriate threshold. Then, di-
lation is applied and the intersection of all the binary images,
corresponding to white pixels appearing in all of them, is com-
puted. In the next step, the contours in the binary image are
determined. Those with an area greater than 20% of the aver-
age size of the spermatozoa (given by a parameter chosen by
the user) and those in which the proportion between the con-
tour area and the bounding box area is less than 0.3 (to discard
artifacts) are selected. Some fragments of circles appearing in
the image are removed by applying the Hough transform [21], a
feature extraction technique used in image analysis to detect ar-
bitrary shapes, most commonly circles or lines. To achieve this,
parameters for the minimum radius and maximum radius of the
detected circles are required, together with two other parame-
ters related with the threshold. Finally, some “broken” contours
are joined by drawing lines between closed pixels in the direc-
tion of the contour. The program was evaluated and showed
good results [16]. It is able to detect correctly static sperma-
tozoa in most situations. However, there are a few videos in
which it also detects as spermatozoa some areas that are not,
see for instance Figure 7. In that figure (which corresponds to a
frame of a video), there are many static spermatozoa (red lines)
that are detected incorrectly, mainly corresponding to noise in
the image. Indeed, experts only count 4 static spermatozoa in
that video, but CASABee detects (wrongly) many more.
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Fig. 7. Example of CASABee output with noise detected as static sperma-
tozoa.

In order to solve this problem, we propose to use zigzag per-
sistence combined with morphological operations. The idea
consists in considering the intersection of all frames (after bi-
narization and enhancement, as explained before) and then ap-
plying a different number of erosions and dilations. This pro-
duces a sequence of binary images, and the barcode obtained by
computing the zigzag persistence of degree 0 of this sequence
allows one to identify the static spermatozoa as the components
which survive at least 5 steps (a value obtained experimentally
for our problem, and related with the thickness of the sperma-
tozoa), and discard artifacts and noise. The proposed method
consists in applying the following steps:

1. We consider the intersection of the enhanced binary im-
ages of all frames (as explained in the previous paragraph,
before the step of computing the contours).

2. We dilate twice, in order to remove small holes in the dif-
ferent components.

3. For i = 1, 2, . . . , 10, we apply i erosions followed by i − 1
dilations. We obtain a list of binary images I1, I2, . . . , I10.

4. We erode each image Ii twice. We obtain binary images
I′1, I

′
2, . . . , I

′
10.

5. We do the difference between the image obtained in Step 1
and each image I′i of the previous step. We obtain different
binary images I′′1 , I

′′
2 , . . . , I

′′
10, with the same size, which do

not provide a filtration.
6. We apply to each image the same postprocessing as the

CASABee software (draw the contours, select those with
an adequate area, etc.). The result is a list of binary images,
again with the same size and without defining a filtration.

7. We apply Algorithm 3 to the images obtained in the
previous step, with n = 0, interval-length = 5,
generator-min-length = 10 (these have been obtained
experimentally for our problem, and they are considered to
be adequate; the parameter generator-max-length has
not any limitation in this case).

8. The barcode and the generators provide us the connected
components corresponding to static sperm, discarding ar-
tifacts and noise in this way.

This approach based on zigzag persistence improves the
CASABee results since noise is not selected anymore; see for
instance Figure 8 (only static spermatozoa are displayed). This
method can be applied for all videos and we obtain the graphical

Fig. 8. Results of the zigzag approach to detect static spermatozoa (without
noise).

interpretation of the different connected components behaviour
by means of the barcode.

4.2. 1-homology tracking

Zigzag persistence can also be used to track the 1-homology
components in a sequence of binary images. For instance, we
consider again our images obtained from videos of sperm of
honey bee drones, observing in this case the motile spermato-
zoa (circles in Figure 6). In order to detect the motile sper-
matozoa, the CASABee program extracts all the video frames
and enhances each image by means of a smooth filter and im-
age normalization. Then, the Hough transform is applied again
to select the circles. To detect spermatozoa that appear in the
borders of the video and that are not closed circles, CASABee
adds a border to each frame with a symmetry criterion. Further-
more, circles with a high density of white pixels, corresponding
to artifacts (and not to motile spermatozoa), were discarded.

The circles selected in the first frame were then tracked in
all the images in the following manner. Each circle in the first
frame was labeled with an integer number. In the next frame,
circles whose center was inside each circle detected in the first
frame were looked for. If there was only one circle in this situ-
ation, then this circle was labeled with the same number as the
previous one. If there were at least two circles satisfying the
condition, then we chose the one whose center was closest to
the center of the previous circle. We continued this process for
all frames of the image. Once all the circles of the first frame
had been tracked in all the frames, the circles which appeared in
at least half of the frames were selected. Those that ended with
the same label (which means that they corresponded to the same
motile spermatozoon) were combined, and the circles with the
correct numbers were relabeled. Although this method works
well for most motile spermatozoa, we propose the following
alternative method by using zigzag persistence:

1. For each frame in the video, we consider a binary image
and we draw on it the circles detected by the Hough trans-
form (as explained previously in this subsection).

2. We apply Algorithm 3, in this case with parameter n = 1,
and interval-length computed as the half of the num-
ber of frames of the video. The size of generators depend
on the values of some parameters of the CASABee soft-
ware, concretely on the minimum and maximum radius,
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Fig. 9. Results of the zigzag approach to detect motile spermatozoa (1-
homology tracking).

which restrict the size of the circles detected by the pro-
gram using Hough transform.

3. The barcode and the generators provide us now the track-
ing of the motile spermatozoa in the videos.

Figure 9 shows an example of the result of applying this
method. The video is the one already presented in Figure 7.
For the analysis, interval-length is set to 15 (to capture
holes that appear in, at least, half of the frames). In this case,
generator-min-length is set to 8 (to remove minor holes
that could appear if spermatozoa overlap)1. We do not im-
pose any limitation on generator-max-length. The video
has a total of 23 spermatozoa and the program detects 21.
Two of them are never detected, but for this video it is an ex-
pected result since they appear close to a border and only half
of the sperm is seen (one above and one below in Figure 7).
CASABee is able to detect them because it does border symme-
try. Some spermatozoa disappear in the zigzag tracking because
their intensity is reduced in the last frames.

Our method is an alternative to track 1-homology classes
that can be useful when other techniques (such as Hough trans-
form) cannot be applied or when we are interested in having the
graphical representation by means of the barcode.

4.3. More experiments with a new dataset

The repository also contains a new dataset (19 videos with
60 frames, 1 video with 160 frames) for testing and informa-
tion on how to reproduce the results. Some examples of frames
contained in the dataset are shown in Figure 10. Specifically,
the dataset contains:

1. Processed frames of several sample videos contained in the
CASABee software about detecting motile spermatozoa.

1In this potential example of application of honey bee sperm analysis, this
is usually avoidable, as scientists can dilute the sample to reduce the concentra-
tion. However, such a problematic video does contain overlapped spermatozoa.

Fig. 10. Initial and final frame of three videos presented in the dataset.

Table 1. Accuracy and time comparison among the different approaches.
For the baseline approaches we only show the best results. Parentheses
indicate the detector and the tracking algorithm used for the best result.

Method H0 H1 Time
(s)

Parameter
tuning?

ZigZag 97.54 98.95 9296 No
Baseline method 1

(findContours+MIL) 98.95 99.01 1031 Yes

Baseline method 2
(findContours+MIL) 98.95 99.01 1027 Yes

Baseline method 3
(findContours) 96.34 96.57 2.58 Yes

2. Artificially generated videos of objects of different shapes
(letters, squares, cars, etc.) that move around the space.

Experiments with this dataset show that the zigzag method
allows tracking the connected components (0-homology) and
holes (1-homology) with good results (about 99% and 98% ac-
curacy, respectively). The experiments also show that the to-
tal computation time (simplicial complex construction + zigzag
persistence) is much better when our Algorithm 1 is used, com-
pared to, for instance, cubical complexes (about 23% of reduc-
tion in that case). The repository also contains comparisons
to three object tracking approaches. The first two are based
on the OpenCV Tracker API [22; 23] using six tracking al-
gorithms (CSRT [24], MIL [25], KCF [26], Mosse [27], Me-
dianFlow [28] and Boosting [29]), combined to Hough circle
transform and findContours as detectors. The third is the
well-known basic method consisting of contour detection and
centroid matching based on the Euclidean distance (note that
false positives could easily arise from incorrect matchings).

Table 1 presents a summary of the results. Baseline meth-
ods always performed better using findContours as detector
(Hough transform achieves at most a 77.45% of accuracy in H1;
some false positives could be detected using this approach) and
MIL as the tracking algorithm (similar results also with Boost-
ing and CSRT). The parameters of the detectors in the baseline
approaches were manually fine-tuned to get this performance.
In view of the results, the three baseline approaches work well
and results are very similar to the zigzag ones in terms of accu-
racy (we refer to the repository for further details).

The main benefit of the zigzag method is that it allows one
to perform the three steps automatically, i.e., it allows tracking
objects in an automatic way (in the sense that the method indi-
cates in which frames each object appears and disappears). In
addition, as opposed to the Hough transform, this method also
allows one to track holes other than circles. The drawback is the
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time: as expected, the zigzag persistence computation is much
slower than the use of a specialized tracking algorithm or the
contour and centroid matching computation.

5. Conclusions and further work

In this work, we propose general algorithms to compute
zigzag persistence over digital images. Our algorithms have
demonstrated their effectiveness by helping in a real-world
problem that cannot be addressed with persistent homology.
Specifically, we have shown how our approach can be used to
analyze videos of sperm of honey bee drones, allowing us to
track motile sperm using 1-dimensional homology. We have
also developed a user-friendly graphical interface that makes it
easy to use our algorithms. Our code is open-source and freely
available, which means that it can be easily adapted for specific
purposes. As further work, we intend to study and integrate the
recent advances for faster zigzag persistence computation [30],
since potential real-world applications related to digital images
or videos (such as those ones presented in Section 4) usually
require much execution time. In fact, the inclusion of our mod-
ifications based on zigzag persistence in CASABee causes the
analysis time of a video to increase from a few seconds to a few
minutes. Furthermore, although our algorithms and programs
have been presented only for 2D-images, they can be easily ex-
tended for n-dimensional images. To this aim, it is only neces-
sary to implement or use an algorithm computing the associated
simplicial (or cubical) complex. A more difficult problem con-
sists in working with grayscale images, where the sublevel sets
filtration can be considered, and study how to combine this fil-
tration with the zigzag modules.
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[24] A. Lukežič, T. Vojı́ř, L. Čehovin, J. Matas, M. Kristan, Discriminative
correlation filter tracker with channel and spatial reliability, International
Journal of Computer Vision 126 (7) (2018) 671–688. doi:10.1007/

s11263-017-1061-3.
[25] B. Babenko, M.-H. Yang, S. Belongie, Visual tracking with online mul-

tiple instance learning, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 983–990.

[26] J. F. Henriques, R. Caseiro, P. Martins, J. Batista, High-speed tracking
with kernelized correlation filters, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 37 (03) (2015) 583–596. doi:10.1109/

TPAMI.2014.2345390.
[27] D. S. Bolme, J. R. Beveridge, B. A. Draper, Y. M. Lui, Visual object track-

ing using adaptive correlation filters, in: IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 2010, pp. 2544–2550.
doi:10.1109/CVPR.2010.5539960.

[28] Z. Kalal, K. Mikolajczyk, J. Matas, Forward-backward error: Automatic
detection of tracking failures, in: 20th International Conference on Pattern
Recognition, 2010, pp. 2756–2759. doi:10.1109/ICPR.2010.675.

[29] H. Grabner, M. Grabner, H. Bischof, Real-time tracking via on-line boost-
ing, in: Proceedings of the British Machine Vision Conference, Vol. 1,
2006, pp. 47–56.

[30] T. K. Dey, T. Hou, Fast computation of zigzag persistence (2022). arXiv:
2204.11080.

https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1126/scitranslmed.aaa9364
https://doi.org/10.1103/physreve.93.052138
https://doi.org/10.1016/j.patrec.2020.02.022
https://doi.org/10.1016/j.patrec.2020.02.022
https://doi.org/10.1016/j.patrec.2020.01.014
https://doi.org/10.1038/s41598-020-77933-y
https://doi.org/10.1016/j.patrec.2021.03.035
https://doi.org/10.1007/s10208-010-9066-0
https://doi.org/10.1007/s10208-010-9066-0
http://arxiv.org/abs/1108.3545
https://doi.org/10.1016/j.patrec.2015.05.010
mrzv.org/software/dionysus2
http://arxiv.org/abs/1910.08345
https://doi.org/10.1006/aima.1997.1650
https://doi.org/10.1080/00218839.2023.2231673
https://doi.org/10.1080/00218839.2023.2231673
https://doi.org/10.1016/j.patrec.2023.08.006
https://doi.org/10.1016/j.patrec.2023.08.006
https://doi.org/10.1016/j.patrec.2023.08.007
https://doi.org/10.1016/j.patrec.2023.08.007
https://doi.org/10.1038/s41598-022-09464-7
https://doi.org/10.1038/s41598-022-09464-7
https://doi.org/10.1109/TIP.2012.2206035
https://doi.org/10.1007/s11263-017-1061-3
https://doi.org/10.1007/s11263-017-1061-3
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1109/CVPR.2010.5539960
https://doi.org/10.1109/ICPR.2010.675
http://arxiv.org/abs/2204.11080
http://arxiv.org/abs/2204.11080

	Introduction
	New general algorithms for computing zigzag persistence of digital images
	Description of the new software
	Applications
	Combining mathematical morphology operators
	1-homology tracking
	More experiments with a new dataset

	Conclusions and further work
	Acknowledgements

