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ABSTRACT
We use a monomial ideal 𝐼 to model a discrete preference func-
tion on a set of 𝑛 factors. We can measure the sensitivity of each
point represented by a monomial𝑚 by calculating its formal partial
derivatives with respect to each variable. These derivatives can be
used to define the Koszul simplicial complex of the ideal 𝐼 at𝑚. We
refer to points at which the homology of their Koszul complex is
not null as sensitive corners. In the context of preference analysis,
the ranks of the homology groups are not precise enough to dis-
tinguish between sensitive corners that have the same homology
but correspond to different sensitivity behaviors. To address this
issue, we propose using a filtration on the Koszul complexes of
the sensitive corners based on the lcm-lattice of the ideal 𝐼 . This
filtration induces a persistent homology at each corner𝑚. We then
use unsupervised Machine Learning methods to classify the corners
based on the distance between their persistence diagrams.
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1 INTRODUCTION
Sensitivity analysis is a method for studying how uncertainty in
the output of a model can be attributed to different sources of
uncertainty in the model input [33]. This technique explores the
relationship between the input and output variables of a model.
There are two main categories of sensitivity analysis techniques:
local and global. Local sensitivity analysis is performed by vary-
ing model parameters around specific values to investigate how
small input perturbations affect the model’s performance. In con-
trast, global techniques vary the uncertain factors within the whole
space of variable model responses [30]. Sensitivity analysis is used
for various purposes, including exploratory modeling, model evalu-
ation, model simplification, and model refinement. Depending on
the goals, sensitivity analysis is used in three main modes: factor
prioritization, factor fixing, and factor mapping [30, 33, 36].

Our model is a multi-factor or multi-objective decision-making
system that takes several factors into account to make a binary
decision. Sensitivity analysis in this context focuses on identi-
fying which combinations of inputs are most important in de-
termining the decision and should be revised carefully. Applica-
tions of this type of system and sensitivity analysis range from
Energy Management [22] to Computer-Aided Design [14] and
Machine Learning [1]. There are various techniques for dealing
with multifactor decision-making systems, including Bayesian net-
works [18], weighting scoring rules [37], and maximum likelihood
estimates [29], among others. This is a wide research area in which
several different configurations and definitions of systems, factors
and preference functions have been described and applied.

In this paper, we introduce an algebraic-combinatorial approach
based on monomial ideals as a way to encode monotone preference
multi-factor systems. First, we use the homological properties of the
ideal associated with the system to sample the model’s variability
space. We choose those points (multi-degrees in this formulation)
at which the Betti numbers are nonzero. At each of those points,
which we call sensitive corners, we then perform a local analysis
to find out how small perturbations of the factors influence the
decision-making system. This local sensitivity analysis is a variation
of the derivative-based methods used in the literature (cf. [4]). A
contribution of this methodology is that the sampling of the relevant
points is based precisely on the local interaction between factors,

https://orcid.org/0000-0002-5173-128X
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ISSAC ’23, July 24–27, 2023, Tromsø, Norway Divasón, Mohammadi, Sáenz-de-Cabezón and Wynn

therefore taking advantage of a global and local approach. The
novelty of this proposed methodology lies in the combination of
mathematical and computer science techniques, including simplicial
complexes, monomial ideals, and machine learning, which have not
been used together before for this specific problem. This approach
has the potential to open new avenues of research in the field.

Our set-up is the following. We have a decision system that
uses 𝑛 factors to determine whether or not to accept a particular
asset. Each factor can have discrete and possibly finite levels, which
represent increasing levels of satisfaction with that factor. In a
binary system, there are multipleminimum acceptance points, which
are combinations of factor scores where any decrease in satisfaction
in any of the factors results in rejection of the asset. The acceptance
region of the system is defined as all points that are above at least
one of the minimum acceptance points. A multi-level preference
system has a certain number of preference levels, and each level
𝑙 has its own minimum acceptance points and acceptance region.
It’s important to note that if level 𝑙 has more preference levels than
level 𝑙 ′, then any acceptance point for level 𝑙 is also an acceptance
point for level 𝑙 ′. In other words, the acceptance region for level 𝑙
is always included in the acceptance region for level 𝑙 ′.

Example 1.1. As a simple example, consider a binary system that
decides whether to accept a hotel offer based on two factors: price
and distance to train station. Assuming that factor price has six
score levels ranging from 0, meaning the most expensive, to 5,
meaning the most affordable, and that factor distance-to-station has
three score levels, ranging from 0, meaning more than 3𝑘𝑚 to the
train station, to 2, meaning less than 500𝑚 to the train station, the
system has determined three minimal acceptance points: Point 1 is
(4, 0), i.e. a hotel is acceptable if its price score is at least 4 regardless
of the distance to the station, Point 2 is (2, 1) meaning that a hotel
is acceptable if the price score is at least 2 provided the score of the
distance-to-station factor is at least 1. Finally, Point 3 is (1, 2).

To study these types of systems, we use an algebraic modeling
approach via monomial ideals. The monomials in the monomial
ideal generated at the multi-degrees that correspond to the mini-
mal acceptance points represent the acceptance regions. There are
specific multi-degrees at the boundary between the ideal and its
complement that contain homological information about the ideal.
This information can be interpreted as the simplicial homology of
certain simplicial complexes located at these multi-degrees. In the
context of the decision system, these particular multi-degrees cor-
respond to corners or points where the relations among the scores
of the factors are most important in determining the output choice.
The word corner here emphasizes the fact that these particular
points correspond to the least common multiples of some subset of
the set of minimal acceptance points. The local sensitivity analysis
of the system is performed by carefully examining these corners.
This examination is done in algebraic terms using the persistent
homology of the simplicial complexes at the sensitive corners. To
define such persistent homology, we use a filtration based on the
least common multiples of the generators of the ideal that models
the system. This filtration reflects the structure of the interaction
between the factors. Finally, with this local analysis, we can use
unsupervised clustering algorithms to classify the relevant points
of the system based on their homology.

Throughout the paper, well-known results and standard mathe-
matical notions are used; hence, their proofs are omitted.

2 MAIN ALGEBRAIC CONCEPTS
In this section, we provide an overview of the main concepts and
results concerning monomial ideals and their homological structure,
which are relevant to the sensitivity analysis described in Section 3.

2.1 Monomial ideals and Betti numbers
Let 𝐼 be a monomial ideal 𝐼 ⊆ 𝑆 = k[𝑥1, . . . , 𝑥𝑛]. Since 𝐼 has a
graded module structure over 𝑆 , we can consider a free 𝑆-resolution
of 𝐼 , which we denote by F(𝐼 ):

F(𝐼 ) : 0 −→ 𝐹𝑙
𝜑𝑙−→ 𝐹𝑙−1 −→ · · · −→ 𝐹1

𝜑1−→ 𝐹0
𝜑0−→ 𝐼 −→ 0,

where each 𝐹𝑖 is a free 𝑆-module. Among these resolutions there is
a minimal one, that is unique up to isomorphism. In this case, the
rank of each of the 𝑖-th modules of F(𝐼 )is an invariant of 𝐼 known as
the 𝑖-th Betti number of 𝐼 , denoted by 𝛽𝑖 (𝐼 ). In the case of monomial
ideals, there are graded and multi-graded versions of the Betti num-
bers, 𝛽𝑖, 𝑗 (𝐼 ) and 𝛽𝑖,𝜇 (𝐼 ), for 𝑖, 𝑗 ∈ N and 𝜇 a multi-degree inN𝑛 . The
morphisms 𝜑𝑖 in F(𝐼 ) are given by matrices with monomial entries.
The resolution is minimal if none of those matrices has nonzero
scalar entries or equivalently, if im(𝜑𝑖 ) minimally generates the 𝑖-th
syzygy module of 𝐼 , cf. [9, 15]. Moreover, the (multi-)graded Betti
numbers of 𝐼 can be seen as the dimensions of the 𝑇𝑜𝑟 modules of
𝐼 with respect to k:

𝛽𝑖,𝜇 (𝐼 ) = dimk Tor𝑆𝑖,𝜇 (k, 𝐼 ).

2.2 Stanley-Reisner and Koszul simplicial
complexes

A remarkable result in combinatorial commutative algebra is the
equivalence between the Betti numbers of monomial ideals and
the dimensions of the homology groups of simplicial complexes.
Hochster’s formula, based on the Stanley-Reisner equivalence, es-
tablishes this correspondence and can be used for the efficient
computation of the homology of simplicial complexes [3]. Given an
abstract simplicial complex Δ, its Stanley-Reisner ideal is defined as
𝐼Δ = ⟨x𝜎 : 𝜎 ∉ Δ⟩, where the minimal generators of 𝐼Δ correspond
to the minimal non-faces of Δ. 𝐼Δ is a square-free monomial ideal
in the variables associated with the vertices of Δ. Conversely, for
every square-free monomial ideal 𝐼 , there exists a Stanley-Reisner
complex Δ𝐼 , whose faces are the square-free monomials not in 𝐼 .
We have that 𝐼Δ𝐼

= 𝐼 .
The Betti numbers of the ideal 𝐼Δ are equal to the dimensions of

the (co-)homology groups of all the subcomplexes Δ|𝜎 = {𝜏 ∈ Δ :
𝜏 ⊆ 𝜎} via Hochster’s formula:

Theorem 2.1 (Hochster [16]).

𝛽𝑖−1,𝜎 (𝐼Δ) = dim𝐻 |𝜎 |−𝑖−1 (Δ|𝜎 ; k)

The correspondence between square-free monomial ideals and
simplicial complexes is a fundamental concept in combinatorial
commutative algebra, known as Stanley-Reisner theory. However,
this theory only applies to square-free monomial ideals. To extend
this theory to general monomial ideals, we can use the polariza-
tion operation, as described in [15]. This operation transforms any
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monomial ideal 𝐼 into a square-free monomial ideal 𝑃 (𝐼 ), which
can be analyzed using the theory of simplicial complexes. Another
approach for analyzing general monomial ideals using simplicial
complexes is through the use of local simplicial complexes at each
multi-degree 𝜇 ∈ 𝑆 . This is achieved by constructing Koszul sim-
plicial complexes, as detailed in [23]. By studying the homology
groups of these simplicial complexes, we can gain insights into the
homological structure of the monomial ideal and its relationship to
the original decision system.

Definition 2.2. Let 𝐼 be a monomial ideal and 𝜇 ∈ N𝑛 . The upper
and lower Koszul simplicial complexes at 𝑥𝜇 with respect to 𝐼 are
respectively defined as

𝐾𝜇 (𝐼 ) = {𝜏 ⊂ supp(𝜇) : 𝑥𝜇−𝜏 ∈ 𝐼 }

𝐾𝜇 (𝐼 ) = {𝜏 ⊂ supp(𝜇) : 𝑥𝜇
′+𝜏 ∉ 𝐼 }

where 𝜇′ is defined by subtracting one from each nonzero coordi-
nate of 𝜇, i.e. 𝜇′ = 𝜇 − supp(𝜇).

Remark 2.3. Observe that if 𝐼 is a square-free monomial ideal,
then 𝐾(1,...,1) (𝐼 ) = Δ𝐼 . Hence these complexes generalize the Stanley-
Reisner correspondence.

Hochster’s formula can be stated in terms of Koszul complexes
at each multi-degree 𝜇 ∈ 𝑆 .

Theorem 2.4 (cf. [23], Theorem 1.34 and Theorem 5.11).

𝛽𝑖,𝜇 (𝐼 ) = dimk �̃�𝑖−1 (𝐾𝜇 (𝐼 ))

𝛽𝑖−1,𝜇 (𝐼 ) = dimk �̃� |𝜇 |−𝑖−1 (𝐾𝜇 (𝐼 ))

For ease of notations, in this paper we use mainly upper Koszul
complexes, but the analysis applies dually to lower complexes.

2.3 The lcm-lattice
Suppose we have a set of monomials𝑀 = {x𝜇1 , . . . , x𝜇𝑟 } in the poly-
nomial ring 𝑆 = k[𝑥1, . . . , 𝑥𝑛] over a field k. Let𝑚𝑖 be the largest ex-
ponent of variable 𝑥𝑖 among the monomials in𝑀 . We can compute
the least commonmultiple of the elements in𝑀 as lcm(𝑀) = ∏

𝑖𝑚𝑖 .

Definition 2.5. Let 𝐼 be a monomial ideal in 𝑆 and let 𝐺 (𝐼 ) =

⟨x𝜇1 , . . . , x𝜇𝑟 ⟩ be its minimal monomial generating set. Let 𝐿𝐼 =

{x𝜇 : 𝜇 = lcm(𝜎) for some 𝜎 ⊆ 𝐺 (𝐼 )}. The set 𝐿𝐼 , ordered by
divisibility, forms a finite atomic lattice, called the lcm-lattice of 𝐼 .

The lcm-lattice of 𝐼 containsmost of the homological information
about 𝐼 . Although there are infinitely many possible multi-degrees
to examine when applying Theorem 2.4, only a finite number of
them are nonzero. In fact, nonzero Betti numbers occur only at
multi-degrees that are the least commonmultiples of sets of minimal
generators of 𝐼 , as shown in [12]. The following theorem shows
that the Betti numbers of 𝐼 can be directly determined from the
homology of the lcm-lattice, making explicit the strong relation
between the homological structure of monomial ideals and their
𝑙𝑐𝑚-lattice.

Theorem 2.6 (Hochster’s formula for the lcm-lattice). Let 𝐼 be a
monomial ideal and let 𝐿𝐼 be its lcm-lattice. For any x𝜇 in 𝐿𝐼 the
multigraded Betti numbers of 𝐼 with multi-degree 𝜇 are given by the
reduced homology of the order complex of the open interval (0̂, x𝜇 ).

The lcm-lattice has been extensively studied in the context of
free resolutions of monomial ideals and their relations to atomic
lattices. See [20, 28] and references therein for details on this theory.

2.4 The lcm-filtration of a monomial ideal
Definition 2.7. Let 𝐼 be a monomial ideal. A chain of ideals 𝐼1 ⊆

𝐼2 ⊆ · · · ⊆ 𝐼𝑘 = 𝐼 is called a filtration of 𝐼 . Similarly, a chain of ideals
𝐼 = 𝐼1 ⊇ 𝐼2 ⊇ · · · ⊇ 𝐼𝑘 is called a reverse filtration of 𝐼 .

Definition 2.8. Let 𝐼 ⊆ 𝑆 = k[𝑥1, . . . , 𝑥𝑛] be a monomial ideal and
𝐺 (𝐼 ) = {𝑚1, . . . ,𝑚𝑟 } be a minimal monomial generating system of
𝐼 . Let 𝐼𝑘 be the ideal generated by the least common multiples of
all sets of 𝑘 distinct monomial generators of 𝐼 ,

𝐼𝑘 = ⟨lcm(𝜎) : 𝜎 ⊆ {1, . . . , 𝑟 }, |𝜎 | = 𝑘⟩
where lcm(𝜎) = lcm({𝑚𝑖 }𝑖∈𝜎 ). We call 𝐼𝑘 the 𝑘-fold lcm-ideal of 𝐼 .
The ideals 𝐼𝑘 form a descending filtration

𝐼 = 𝐼1 ⊇ 𝐼2 ⊇ · · · ⊇ 𝐼𝑟

which we call the lcm-filtration of 𝐼 .

The lcm-lattice-based filtration of a monomial ideal 𝐼 is a legit-
imate structural filtration of 𝐼 as it is based on the lcm-lattice of
𝐼 . The underlying concept of this filtration is to investigate the
changes in the features of the ideal when considering sets of gen-
erators instead of individual generators. For example, in [31, 32],
monomial ideals have been used to study failure events and reliabil-
ity of coherent systems, where each monomial generator represents
a basic working or failure event of the system. To investigate si-
multaneous events and the signature analysis of coherent systems,
ideals generated by consecutively taking least common multiples
of a monomial ideal have been utilized [24, 25].

Example 2.9. The corresponding ideal of the system in Exam-
ple 1.1 is 𝐼 = ⟨𝑥41 , 𝑥

2
1𝑥2, 𝑥1𝑥

2
2⟩ ⊆ k[𝑥1, 𝑥2]. The elements of the lcm-

lattice of 𝐼 are {𝑥41 , 𝑥
2
1𝑥2, 𝑥1𝑥

2
2 , 𝑥

4
1𝑥2, 𝑥

4
1𝑥

2
2 , 𝑥

2
1𝑥

2
2 }. The lcm-filtration

of 𝐼 is given by:

𝐼1 = 𝐼 = ⟨𝑥41 , 𝑥
2
1𝑥2, 𝑥1𝑥

2
2⟩, 𝐼2 = ⟨𝑥41𝑥2, 𝑥

2
1𝑥

2
2⟩, 𝐼3 = ⟨𝑥41𝑥

2
2⟩.

Figure 1 depicts the staircase diagram of the elements of the
lcm-filtration of 𝐼 and the elements of the lcm-lattice of 𝐼 . Observe
that at 𝜇 = 𝑥41𝑥

2
2 the corresponding Koszul complexes are:

𝐾𝜇 (𝐼1) = {∅, {1}, {2}, {1, 2}}, 𝐾𝜇 (𝐼2) = {∅, {1}, {2}}, 𝐾𝜇 (𝐼3) = {∅}
𝐾𝜇 (𝐼1) = {}, 𝐾𝜇 (𝐼2) = {∅}, 𝐾𝜇 (𝐼3) = {∅, {1}, {2}}.

Using Theorems 2.4 or 2.6, 𝛽1,𝑥4
1𝑥

2
2
(𝐼2) = 1, 𝛽0,𝑥4

1𝑥
2
2
(𝐼3) = 1. All other

Betti numbers at 𝑥41𝑥
2
2 are zero for all ideals in the filtration.

The lcm-filtration is a natural structural (reverse) filtration of
a monomial ideal. Let 𝐺 (𝐼 ) = {𝑚1, . . . ,𝑚𝑟 } be the set of minimal
generators of the monomial ideal 𝐼 ⊆ 𝑅 = k[𝑥1, . . . , 𝑥𝑛]. The lcm-
filtration has the form

𝐼 = 𝐼1 ⊇ 𝐼2 ⊇ · · · ⊇ 𝐼𝑟 ⊇ ⟨∅⟩,
where ⟨∅⟩ is the ideal generated by the empty set of monomials
in 𝑛 variables. Using the Stanley-Reisner correspondence, we have
that for each 𝑘 , Δ𝐼𝑘 ⊆ Δ𝐼𝑘+1 , also, Δ⟨∅⟩ is the full simplex on 𝑛
vertices, Δ𝑛 . Therefore, the lcm-filtration induces a filtration on the
full simplex Δ𝑛 which starts at Δ𝐼 . In the forthcoming paper [10],
we further investigate the properties of the induced lcm-filtrations.
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𝑥1𝑥22

𝑥41

𝑥21𝑥2

𝑥21𝑥
2
2

𝑥41𝑥2

𝑥41𝑥
2
2

Figure 1: Staircase diagrams of the lcm-filtration 𝐼 = 𝐼1, 𝐼2, 𝐼3
with the elements of the lcm-lattice of 𝐼 = 𝐼1.

3 SENSITIVE CORNERS OF MULTI-FACTOR
DECISION SYSTEMS

Consider a decision system S on 𝑛 factors with minimal accep-
tance points 𝑃1, . . . , 𝑃𝑟 , where each 𝑃𝑖 = (𝑝𝑖,1, . . . , 𝑝𝑖,𝑛) ∈ N𝑛 .
Let 𝐼S ⊆ 𝑆 = k[𝑥1, . . . , 𝑥𝑛] be the monomial ideal generated by
{x𝑃1 , . . . , x𝑃𝑟 }. Let 𝑀 be the set of monomials in the ring 𝑆 , and
𝑀 (𝐼 ) be the set of monomials in 𝐼 . We define 𝑓𝐼 : 𝑀 −→ {0, 1}
as the indicator function for 𝐼 on 𝑀 . For any a = (𝑎1, . . . , 𝑎𝑛) in
the acceptance region of S, we have xa ∈ 𝑀 (𝐼S), and 𝑓𝐼S (a) = 1.
We now consider the homology of sensitive corners. The upper
Koszul simplicial complex 𝐾a (𝐼S) is empty for monomials corre-
sponding to points outside the acceptance region of S. For corners
strictly inside the acceptance region, their upper Koszul complex is
a full simplex. Note that even if our formulation is based on upper
Koszul complexes, a dual formulation based on lower complexes is
analogous and might be more convenient in some problems.

Definition 3.1. Let a be a point in the acceptance region of the
decision systemS. We say that a is on the boundary of the acceptance
region of S if 𝐾a (𝐼S) ≠ ∅ and 𝐾a (𝐼S) ≠ Δ, where Δ is the full
simplex on the vertices given by the support of a.

We can characterize the boundary of the acceptance region of S
in terms of the indicator function of 𝐼S . Specifically, for each a ∈ N𝑛 ,
we consider the function from {0, 1}𝑛 to {0, 1} that maps each set
𝜎 to 𝑓𝐼 (xa/x𝜎 ), which is the indicator function evaluated at the
point given by the formal partial derivative of a with respect to the
variables in𝜎 . The points in the boundary region are those for which
this function is not constant. Observe that the only monomials that
have non-null homology in their Koszul complex correspond to
points in the boundary region. Therefore, we focus our attention on
these points in order to gain a better understanding of the homology
of the complex.

Definition 3.2. We say that a point a is sensitive at degree 𝑖 or
𝑖-sensitive for the system S if 𝛽𝑖,a (𝐼S) ≠ 0. If a is sensitive for at
least one degree, we say that it is a sensitive corner.

Our methodology is based on the sensitive corners of a multi-
factor decision system, which correspond to the sampling points
that capture the variability of the system’s output values as a func-
tion of the input factors. These sensitive corners are characterized
by their non-null homology values, which indicate local changes
in the behavior of the system around these points. It is important
to note that the number of sensitive corners is finite, while the
boundary region, where the homology values are not null, is not.

2

1

3
4 2

1

3
4

Figure 2: Two different simplicial complexes on 4 vertices for
which 𝛽1 (𝐼S) = 1

Example 3.3. Consider the system in Example 1.1. The 1-sensitive
points of this system are (4, 1) and (2, 2). The minimal acceptance
points are the only 0-sensitive points. The point (3, 1) is a boundary
point of the acceptance region that is not a sensitive corner. The
other points in the boundary region have the form (𝑥, 0) for 𝑥 > 4
or (1, 𝑦) for 𝑦 > 2.

Sensitive corners have a simplicial interpretation. The fact that
𝛽𝑖,a (𝐼S) ≠ 0 for some point a is equivalent, by Theorem 2.4, to the
non-null homology of the Koszul simplicial complex at a in dimen-
sion 𝑖′ = |a| − 𝑖 . This implies the existence of an 𝑖′-dimensional
hole, i.e., some 𝑖′-cycle of 𝐾a (𝐼S) that is not a boundary of any
(𝑖′ + 1)-face. In the context of the system, this indicates an in-
teraction among (𝑖′ + 1)-factors that takes the point outside the
acceptance zone, while all its 𝑖′-factor sub-iterations remain within
the acceptance zone. These corners are critical because they involve
combinations of inputs that play a particularly significant role in
determining the decision outcome and must be analyzed with great
care, which is precisely the objective of sensitivity analysis. Note
that the Koszul complex at a consists of those 𝜎 ∈ {0, 1}𝑛 such that
𝑓𝐼S (𝑥a/𝑥𝜎 ) = 1. The relationship between Betti numbers and the
complexity of hierarchical models was studied in [21].

Example 3.4. Consider the system in Example 1.1. Point (4, 1)
is in the acceptance zone. If we decrease the score of any of the
factors by 1, arriving at points (3, 1) or (4, 0), we are still in the
acceptance zone. However, if we decrease both scores simultane-
ously, we arrive at point (3, 0), which is outside the acceptance
zone. This behavior of the two-factor interaction is different from
both one-factor interactions and is detected by the 0-th simplicial
homology of 𝐾 (4,1) (𝐼S) or, equivalently, 𝛽1,(4,1) (𝐼S).

3.1 Persistent homology of sensitive corners
The second tool in our methodology is a close examination of
the local behavior of the decision function around our sampling
points, specifically around the sensitive corners. To carry out this
analysis, we require invariants that are more detailed than the
Betti numbers. To see why, consider the following two simplicial
complexes in four vertices represented by their sets of facets: Δ =

{{1, 2}, {2, 3}, {3, 4}, {1, 4}} and Δ′ = {{1, 2, 3}, {3, 4}, {1, 4}} (see
Figure 2). The vertices can be thought of as factors in a system
S, and an 𝑖-dimensional face represents 𝑖-fold interactions among
the factors. Both complexes have a non-null 1-st homology group
of rank 1, meaning that they both have a one-dimensional hole.
However, they correspond to different patterns of 3-fold interactions
with respect to 2-fold interactions.
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One of the main advantages of persistent homology is that it
can capture the topological features of a simplicial complex at dif-
ferent scales, which allows us to detect topological changes as we
move through the filtration. This can be useful in identifying im-
portant features of a system that may be missed by traditional
homology techniques. Additionally, persistent homology can be
used to construct a summary of the topological structure of a sim-
plicial complex in the form of a persistence diagram, which can be
easier to interpret than a set of Betti numbers. In the context of
sensitivity analysis, persistent homology can be used to identify
which interactions among the factors of a system are responsible
for the appearance of certain homological features. By analyzing
the persistence intervals associated with these features, we can
determine which interactions are important for maintaining cer-
tain properties of the system, such as being in the acceptance zone.
This information can be used to guide the design of experiments
aimed at further exploring the system’s behavior. Overall, persistent
homology provides a powerful tool for analyzing the topological
structure of simplicial complexes and can be particularly useful for
sensitivity analysis where we need to understand how the behavior
of a system changes in response to different inputs.

To study the homological features that persist in a filtration of a
simplicial complexΔ, we consider the sequence of homology groups
through the filtration. Let F : Δ0 ⊆ · · · ⊆ Δ𝑘 = Δ be a filtration of
Δ. Persistence homology is interested in the sequence of homology
groups through the filtration. For every 𝑖 ≤ 𝑗 , consider the inclusion

map Δ𝑖
𝔦𝑖,𝑗−→ Δ 𝑗 . These maps induce homomorphisms of homology

groups for each dimension 𝑝 , 𝑓 𝑖, 𝑗𝑝 : 𝐻𝑝 (Δ𝑖 ) −→ 𝐻𝑝 (Δ 𝑗 ). Hence,
for this filtration we have, for each dimension 𝑝 , a sequence of
homology groups connected by homomorphisms,

𝐻𝑝 (Δ0) −→ 𝐻𝑝 (Δ1) −→ · · · −→ 𝐻𝑝 (Δ𝑘−1) −→ 𝐻𝑝 (Δ𝑘 ) .
These modules provide a measure of the homological features that
persist in the filtration, and are used to study the underlying dataset
or simplicial complex at different scales.

Definition 3.5. The 𝑝-th persistent homology groups of Δ with
respect to F are defined as the images of the homomorphisms in-
duced by the inclusions inF , i.e.,𝐻 𝑖, 𝑗

𝑝 (Δ, F ) = im(𝑓 𝑖, 𝑗𝑝 ), where 𝑓 𝑖, 𝑗𝑝 :
𝐻𝑝 (Δ𝑖 ) → 𝐻𝑝 (Δ 𝑗 ) is the homomorphism induced by the inclusion
map Δ𝑖 ↩→ Δ 𝑗 . The rank of 𝐻 𝑖, 𝑗

𝑝 (Δ, F ), denoted by 𝛽𝑖, 𝑗𝑝 (Δ, F ), is
called the 𝑝-th persistent Betti number of Δ according to F .

The persistent homology groups consist of the classes

𝑍𝑝 (Δ𝑖 )/(𝐵𝑝 (Δ 𝑗 ) ∩ 𝑍𝑝 (Δ𝑖 )),
i.e. the homology classes of Δ𝑖 that are still alive at Δ 𝑗 . Here 𝑍𝑝 (Δ𝑖 )
is the 𝑝-cycle of Δ𝑖 and 𝐵𝑝 (Δ 𝑗 ) is the 𝑝-boundaries of Δ 𝑗 . If 𝜅 is a
class in 𝐻𝑝 (Δ𝑖 ), we say that it is born at step 𝑖 of the filtration, if
𝜅 ∉ 𝐻

𝑖−1,𝑖
𝑝 (Δ, F ), and that it dies at step 𝑗 if it merges with an older

class when going from Δ 𝑗−𝑒 to Δ 𝑗 , i.e. 𝑓
𝑖, 𝑗−1
𝑝 (𝜅) ∉ 𝐻 𝑖−1, 𝑗−1

𝑝 (Δ, F )
and 𝑓 𝑖−1, 𝑗𝑝 (𝜅) ∈ 𝐻 𝑖−1, 𝑗

𝑝 (Δ, F ).
One of themain applications of persistent homology is in the field

of Topological Data Analysis (TDA). The goal of TDA is to extract
topological features from a given set of data points or space. In order
to do so, the space is first represented as a simplicial complex. To

apply persistent homology, two key elements are required. First, a
notion of distance or a measure of dissimilarity between the points
or elements of the set is needed. Second, a parameter is selected
that drives the construction of a filtration on the simplicial complex.
Both the parameter and the underlying distance are chosen based
on some property of the initial set of points, such as Euclidean
distance, time, scale of resolution, etc.

The Vietoris-Rips filtration, based on the Vietoris complex [35],
is one of the most widely used filtrations in TDA. It can be used
alone or in combination with the Čech complex [6, 7]. These filtra-
tions, along with other constructions, allow persistent homology
to extract topological information from complex data sets, making
it a powerful tool in fields such as biology, neuroscience, computer
science, and more.

In some cases, there may not be a natural notion of distance or
time to build a meaningful filtration when studying a simplicial
complex itself, or phenomena that can be modeled by simplicial
complexes. In such situations, a structural or intrinsic filtration
based solely on the structure of the simplicial complex must be
considered. This is the case for the preference systems described in
this paper. In the following sections, we utilize the lcm-filtration
to examine the local behavior of the decision function near the
sensitive corners of the system. An advantage of this filtration in
this context is that at each step 𝑘 of the filtration, we obtain a new
region given by the combinations of any 𝑘 minimal acceptance
points of the system S. When 𝑘 = 1 this is the acceptance region
of S, when 𝑘 > 1 we speak of the 𝑘-fold acceptance region. The
𝑙𝑐𝑚-filtration allows the study of the behaviour of the sensitive
corners with respect to the 𝑘-fold acceptance regions for 𝑘 ≥ 1.
This provides a finer analysis of the sensitivity of the corner.

4 CLUSTERING OF SENSITIVE CORNERS BY
THEIR PERSISTENCE DIAGRAMS

This paper presents a methodology for conducting sensitivity anal-
ysis of multi-factor decision systems. To achieve this, we introduce
two tools: the first tool involves sampling based on the homolog-
ical properties of the ideal associated with the system, with the
resulting points referred to as sensitive corners. The second tool
involves a local analysis of these sensitive corners, which we per-
form through their algebraic and combinatorial properties, and in
particular, using persistent homology.

As demonstrated in Example 3.4, we use the Betti numbers of
the system ideal at multi-degrees that correspond to the sensitive
corners. These corners represent a subset of the lcm-lattice of 𝐼S .
For larger systems with a high number of factors, there may be
several 𝑖-sensitive corners for each 𝑖 . We can analyze these corners
by utilizing the local information surrounding them, which we
obtain through the persistent homology based on the lcm-filtration.
Consequently, we propose the following approach for classifying
sensitive corners:

(1) Compute the persistence homology of each 𝑖-sensitive corner
based on the induced lcm-filtration on 𝐼S .

(2) Compute the matrix of distances among the persistence dia-
grams obtained.

(3) Use a machine learning algorithm to cluster the persistence
diagrams into groups based on their distances.
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Step 1 is based on the definitions in the previous section, and
can be performed by several software packages like [26, 34].

Step 2 needs a concept of distance. Several distances have been
defined for persistence diagrams. The most used ones are bottleneck
and Wasserstein distances [8, 11]. Before explaining Step 3, we first
recall the definitions of 𝑝-Wasserstein and the bottleneck distances.

Definition 4.1. Let 𝐷1 and 𝐷2 be two persistence diagrams,𝑀 ⊆
𝐷1 ×𝐷2 an optimal matching, and𝑀𝑐 the set of unmatched points.
The 𝑝-Wasserstein distance between 𝐷1 and 𝐷2 is defined as

𝑊𝑝 (𝐷1, 𝐷2) := inf
𝑀

©«
∑︁

(𝑥,𝑦) ∈𝑀
∥𝑥 − 𝑦∥𝑝∞ +

∑︁
(𝑥,𝑦) ∈𝑀𝑐

|𝑥 − 𝑦 |𝑝ª®¬
1
𝑝

,

where ∥·∥∞ denotes the ∞-norm and𝑀 ranges over all matchings
between 𝐷1 and 𝐷2. Here, 𝑝 > 0.

Definition 4.2. The bottleneck distance is defined as the limit:

𝑊∞ (𝐷1, 𝐷2) := lim
𝑝→∞

𝑊𝑝 (𝐷1, 𝐷2).

Step 3 can be performed using a variety of methods. In general,
unsupervised machine learning (ML) involves dividing 𝑛 obser-
vations into 𝑘 clusters. In our approach, we emphasize that the
statistical units for the clustering analysis are persistence diagrams,
and the distance metric used is a distance between persistence
diagrams. There are many clustering algorithms available, but as
with other ML problems, there is no single technique that is uni-
versally best. The most popular unsupervised ML algorithm is the
𝑘-means algorithm, which minimizes within-cluster squared Eu-
clidean distances and calculates cluster centers as the mean of the
cluster points. However, 𝑘-means is not a suitable choice for our
purposes because we need to work directly with the distance matrix
since the statistical units are persistence diagrams. Therefore, we
have opted to use another well-known unsupervised ML algorithm:
the 𝑘-medoids algorithm. The 𝑘-medoids algorithm is similar to
𝑘-means but with two main differences. Firstly, the 𝑘-medoids al-
gorithm chooses actual data points as centers, and secondly, it can
be used with arbitrary distance measures (while 𝑘-means requires
Euclidean distance). As a result, it can be adapted to cluster obser-
vations into 𝑘 groups, using an initial distance matrix to find the
new medoids at each iterative step [17]. Other algorithms, such as
agglomerative clustering [27] and OPTICS clustering [2], are also
capable of working with a precomputed distance matrix and are
valid alternatives for Step 3.

5 A FULLY COMPUTED EXAMPLE
Let us consider a system S on eight factors 𝑥1, . . . , 𝑥8, some of
which are binary (factors 1, 2, 4, 6, 7), and some multi-level (factors
3 and 5 have three levels, factor 8 has five levels) . The output of
the system is binary. The system is described by the following set
of eleven minimal acceptance points:

{𝑥1, 𝑥2, 𝑥23 , 𝑥3𝑥5, 𝑥3𝑥
2
8 , 𝑥4, 𝑥

2
5 , 𝑥5𝑥8, 𝑥6, 𝑥7, 𝑥

4
8 }. (1)

The monomial ideal 𝐼S generated by the monomials corresponding
to these eleven points has the following Betti diagram (computed
using Macaulay2 [13]):

0 1 2 3 4 5 6 7
total: 11 48 113 160 141 76 23 3
1 : 5 10 10 5 1 . . .

2 : 4 24 61 85 70 34 9 1
3 : 1 7 21 35 35 21 7 1
4 : 1 7 21 35 35 21 7 1

The ideal 𝐼S of the system has an associated lcm-lattice with 895
corners. Among these corners, 575 exhibit homology at some dimen-
sion. Of the eleven multi-degrees with 0-dimensional homology,
five have degree 1, four have degree 2, and so on. The 48 corners
with 1-dimensional homology correspond to holes in two-factor
interaction. Although these corners have different degrees, we can
distinguish them using the procedure presented in this paper. Ad-
ditionally, there are 113 corners with 2-dimensional homology, 160
with 3-dimensional homology, and so on.

We computed the persistent homology of the sensitive corners
of the ideal using the lcm-filtration of 𝐼S and the software package
Dionysus [26]. To analyze the resulting persistence diagrams, we
computed a distance matrix using the bottleneck distance and em-
ployed the 𝑘-medoids algorithm [17] for clustering. This allowed us
to identify distinct clusters of persistent homology diagrams that
correspond to different features of the multi-factor decision system.

The 𝑘-medoids algorithm (as well as 𝑘-means) raises the main
question of how to determine the optimal number of clusters 𝑘 . Un-
fortunately, there is no definitive answer to this question, and the
optimal number of clusters is subjective. The goal is to determine an
appropriate number of clusters that satisfies two fundamental prop-
erties: compactness (how closely related the points in a cluster are)
and separation (how well-separated a cluster is from other clusters).
To evaluate the quality of a clustering and select the appropriate
number of clusters, internal clustering validation measures can be
used [19]. Concretely, two of the most commonly used techniques
for determining the optimal 𝑘 in both 𝑘-means and 𝑘-medoids are:

• Elbow method: a heuristic that attempts to choose the small-
est number of clusters that explain the greatest amount of
variation in the data. The method plots the inertia (the sum
of distances of samples to their closest cluster center) as a
function of the number of clusters and one has to pick the
elbow of the curve as the number of clusters to use. Such a
shift point is hard to determine and usually subjective.

• Silhouette index: an index validating the clustering perfor-
mance based on the pairwise difference of between-and
within-cluster distances. Its value ranges from −1 to 1, where
a high value indicates that the object is well matched to its
own cluster and poorly matched to neighboring clusters. The
computation of Silhouette values is based on distance and,
indeed, they can be calculated with any distance metric.

There exist well-known alternative clustering criteria [19], such as
the Calinski–Harabasz [5] indices. However, most of them cannot
deal with a precomputed distance matrix, since they usually need
the points of the space, or imply Euclidean distance in order to
have geometrically sensible meaning. For such reasons, we have
proceeded with the elbow method and the analysis of Silhouette
scores to choose the appropriate number of clusters 𝑘 for each
dimension.
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Figure 3: Elbow method for dim = 0 using 𝑘-medoids.

We applied these techniques to the eight dimensions (from 0 to
7), clustering from 2 groups up to 20. For example, let us consider
the 0-dimensional case. Figure 3 shows the elbow method plot for
this dimension. We analyzed the results of both the elbow method
and the Silhouette scores for each 𝑘 , and they suggest that cluster-
ing with 𝑘 = 10 and 𝑘 = 11 produces good results in this dimension
(Silhouette indices are 0.928 and 0.96, respectively). Handling infin-
ity values that arise when computing the bottleneck distances is
crucial since clustering algorithms cannot deal with infinity values.
We set them to 0, but we have also tried with other values (for
instance, with a number larger than the highest distance in each
dimension) and obtained very similar results. In dimension 1, we
found that 𝑘 = 9 and 𝑘 = 13 are good choices. However, from this
dimension on, the number of optimal clusters is greatly reduced
because of the high number of infinity distances. If 𝑘 is too high,
especially in high dimensions, the 𝑘-medoids algorithm may leave
clusters empty.

We briefly explain two examples of the application of these
techniques to the corners of the system S given by the minimal
acceptance points (1).

For the first example, we consider the 48 corners that have 1-
dimensional homology. Based on bottleneck distance, we have iden-
tified three groups of corners, each representing a different type of
simplicial complex that starts as two separate points but progresses
differently. Figure 4 shows representatives of these three groups,
where rows in the picture represent the clusters, and the columns
represent different stages of the lcm-filtration. As the figure illus-
trates, at the initial step of the filtration, all simplicial complexes
in these corners are the same. However, as the filtration proceeds,

Figure 4: Filtrations of the three types of simplicial com-
plexes for which 𝛽1 (𝐼S) ≠ 0

the simplicial complexes exhibit different patterns of interactions
among the factors surrounding these sensitive corners. This clas-
sification constitutes an initial step in the finer analysis of these
corners, which represent the few-fold interactions among factors.

As a second example of the use of these techniques, we focus on
the behavior of the 0-dimensional persistence homology modules
along the lcm-filtration, which provides an overview of how the
minimal acceptance points relate to each other at the sensitive
corners. In particular, we would like to take a first glance at how
the number of involved factors varies around these corners, by
establishing groups based on the 0-dimensional homology of the
Koszul simplicial complexes that correspond to the multi-degrees
at the lcm-lattice of 𝐼S . Table 1 shows, for the case dim = 0 and
𝑘 = 10, the number of persistence diagrams that belong to each
cluster. Most of them are grouped in cluster 1, whereas clusters
8 and 9 have significantly fewer instances. The table also shows
that the results are very similar if one chooses 𝑘 = 11, but the new
cluster contains 15 persistence diagrams, most of which previously
belonged to cluster 1 when 𝑘 = 10. Figure 5 shows the mean values
of basic size-related characteristics of the complexes at the corners
in each of the clusters when 𝑘 = 10. We can observe that the clusters
capture the difference in the number of vertices, but more clearly
the differences in the number of simplices. Hence, a first exploration
using this classification indicates that the complexes in clusters 7
and 8 are bigger complexes, and those in clusters 2 and 3 are smaller.
Although a first analysis of the 0-dimensional persistence diagrams
provides some information, a closer examination of the persistence
diagrams of these corners to see how the 0-dimensional homology
evolves within the filtration will provide further knowledge about
the interaction of factors around the choice problem modeled by
this system.

6 CONCLUSIONS
On an acceptance region defined for a decision problem whose
factor values lie on the non-negative integer lattice, and which is
compatible with the usual partial ordering, there exist what we
define as “sensitive points”. These are special boundary points
whose topologies are complex and therefore may require special
attention in decision making because of intricate interactions and
trade-offs between factors. The three main contributions are: (i)
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Table 1: Number of persistence diagrams that belong to each
cluster for dim = 0, with 𝑘 = 10 and 𝑘 = 11 using 𝑘-medoids.

k=10 k=11
Cluster Size Cluster Size

0 115 0 113
1 207 1 196
2 150 2 150
3 90 3 90
4 159 4 157
5 64 5 64
6 30 6 30
7 35 7 35
8 15 8 15
9 30 9 30

10 15

Figure 5: Basic size-related characteristics of the simplicial
complexes in the 0-dim clusters: number of vertices and num-
ber of simplices.

to investigate the local topology at each sensitive point, (ii) to
employ, at each such point, a new and solely algebraic version of
Topological Data Analysis based on the 𝑙𝑐𝑚-filtration, and (iii) to
set up distances between the points based on this local topological
"data" and thereby allow the use of Machine Learning clustering
methods to classify the sensitive points.
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