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Abstract. The varroa mite is a major problem for beekeeping today be-
cause it threatens the survival of hives. This paper develops deep learning
methods for detecting varroa in images to monitor the level of infesta-
tion of the hives in order to use treatments against varroa in time and
save the bees. The ultimate goal is its implementation by beekeepers.
Therefore, the deep learning models are trained on pictures taken by
smartphone cameras covering the entire board where both pupae and
varroas are placed. This makes the object detection task a challenge,
since it becomes a small object detection problem. This paper shows the
experiments that have been developed to solve this challenge, such as the
use of super resolution techniques, as well as the difficulties encountered.
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1 Introduction

Varroa destructor, commonly known as varroa mites, are a parasitic species
that feed on the bodily fluids of honey bees. These mites (see Figure 1) are
considered one of the most significant threats to honey bee health, as they

Fig. 1: A varroa destructor

weaken and damage the bees’ immune sys-
tems, making them more susceptible to dis-
ease and other stressors. In addition to caus-
ing direct harm to individual bees (both pupae
and adults), varroa mites also transmit vari-
ous viruses that can further weaken colonies
and lead to their collapse. In fact, varroosis is
currently the most damaging disease in bee-
keeping worldwide. In the European Union
it is endemic, being the only beekeeping dis-
ease that requires systematic treatment of bee
colonies in order to keep parasitization rates
below harmful thresholds.
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Given the crucial role that honey bees play in pollination and the global food
supply, the development of effective and efficient detection methods for varroa
mites is therefore critical to the survival of honey bees and the industries that
rely on their pollination services. One promising avenue for varroa detection is
through the use of deep learning techniques applied to images of honey bees.
By training neural networks to recognize the unique characteristics of varroa
mites, researchers and beekeepers could quickly and accurately identify infested
colonies and take appropriate action to treat and manage the infestation. The
development of such methods has the potential to improve the way beekeep-
ers monitor and protect their hives, ultimately helping to protect the future of
honey bees and the vital ecosystems they support. Different methods have been
proposed to count varroa mites in hives. Three of them are explained below,
which can be combined with artificial vision algorithms (see Figure 2).

(a) Sticky board method (b) Sugar shake method (c) Pupae method

Fig. 2: Cropped images of the three methods.

– Bottom board and sticky board: it consists of placing on the bottom of the
hive a board and a white card on it with a sticky substance to which the
mites that fall on it stick.

– Sugar shake or alcohol wash: invasive methods that require washing the bees
with powdered sugar, if they are to be kept alive, or with alcohol or liquid
soap, sacrificing them. Bees are collected and then they are washed; a large
part of the varroa mites are removed from them, which can be counted on
the container in which they remain.

– Bee breeding counting: a hive frame is extracted during the breeding period;
then, varroa mites and pupae are counted.

This work is mainly based on the last method. The main advantage of this
method is that, in addition to being very reliable, the varroa infestation rate
during the breeding season can be known and thus can be treated earlier. The
models will also be analyzed with a few images of the sticky board method.
Regarding the image analyses concerning the three approaches, all methods share
one fact: large images are captured, but very small objects have to be detected.
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2 Related work

2.1 Object detection and small object detection

Object detection is a fundamental problem in computer vision that deals with
identifying and localizing objects of interest in a digital image. Deep learning
techniques, particularly convolutional neural networks (CNNs), have revolution-
ized this field and achieved state-of-the-art results in recent years [21,16,31].
Small Object Detection (SOD) is a particular instance of object detection that
is focused on detecting small-size (or tiny) objects. This issue is particularly rel-
evant in fields such as biology (where small objects like cells are relatively small
compared to the input image), satellite images [18], drone scenes [10,28] and
more [12,27,29]. Many more challenges appear in small object detection tasks
compared to object detection [6].

Fig. 3: One image with a var-
roa mite on a adult bee, taken
from [3].

For instance, noisy feature problems could
appear since small objects usually have low
resolution, and this often causes neuronal net-
works to have problems learning good repre-
sentations from their blurred shapes. In ad-
dition, due to the typical structure of object
detectors (a backbone combined with a de-
tection head), there is usually an information
loss: the feature extractor component usu-
ally reduces the size of the feature maps and
tends to learn high-dimensional features. This
is particularly critical with small objects, because they are inevitably seen as
very few pixels within the network. In fact, the standard Faster R-CNN archi-
tecture has an effective stride of 16 i.e., a 16 × 16 object is seen as a single pixel
by the region proposal network (RPN).

Different approaches have been investigated to try to alleviate these prob-
lems [6,5]. For instance, one of the main techniques is the use of specific data-
augmentation strategies [30]; indeed, some authors copy instances of the small
objects and paste them in different positions of the image with one or several
random transformations [13,4]. Moreover, another powerful technique is the use
of super-resolution [25,7] to partly reconstruct the blurry appearance of small
objects and even the introduction of Generative Adversarial Networks (GANs)
to generate new visually similar data to feed the algorithms.

2.2 Varroa mite detection and deep learning

There are some works related to adult honey bees detection, monitorization [26,14],
tracking the movement of pollens [22] and others [2,1,19] with deep learning.
However, less research has been done for varroa mite detection and counting.
Probably, the most similar work to us is the one by Bilil et al. [3], in which
YOLOv5 and Single Shot Detector (SSD) are used to detect and distinguish
between the healthy and the infected bees. Concretely, the starting point is an
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existing dataset [23] that is modified by including other public images to define
six classes: healthy bee, the bee with pollen, drone, queen, varroa mite infected
bee and varroa mite. The images have a high resolution and are restricted to
adult bees, see [3, Figure 2] and Figure 3. In contrast, our interest relies on var-
roa mite detection on pupae and working with photos that can be taken easily
with a mobile device by the beekeeper. An initial attempt on pupae and varroa
mite detection was developed in a master thesis [11]. The results were not fully
satisfactory, mainly due to poorly adjusted bounding boxes.

In recent years there have also been mobile applications that use AI to count
varroa3. However, either the results are not good or they are commercial apps
where the models are not publicly available. In addition, none of them is suitable
for varroa mite detection on pupae.

(a) One of the 21 images. (b) One of the 5 images.

Fig. 4: Two images from the dataset.

3 Methods

3.1 Dataset creation

The dataset contained 21 images with a resolution of 4032 × 3024 pixels and
captured by a smartphone camera. The capture method was the third one pre-
sented in the introduction, during the months of February to June 2022, and
with different lighting conditions. The images contained both pupae and varroa
mites from different hives, being the number of varroa mites highly variable in
each image (ranging from 2 to 187). A total of 732 varroa mites were identified
by experts from these images. Figure 4a is one of such images and Figure 2c a
512× 512 pixels crop.

In addition, 5 images of the board method (first method described in intro-
duction) were also available, and obtained under the same conditions as above.
3 For instance, https://beemapping.com, www.beescanning.com and https://
apisfero.org.

https://beemapping.com
www.beescanning.com
https://apisfero.org
https://apisfero.org
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These images contained varroa mites (a total of 460), but no pupae appeared.
However, they also contained many other noisy artifacts like dust, dirt and soil.
Figure 4b is one of such images and Figure 2a a 512× 512 pixels crop.

3.2 Metrics

The Intersection over Union (IoU) is a measure of overlap between two bounding
boxes, defined as the ratio of the area of overlap between the two bounding boxes
to the area of their union. If the IoU between the predicted bounding box and the
ground truth bounding box is above a certain threshold, the predicted bounding
box is considered a true positive.

The Average Precision (AP) measures the quality of the detection output by
computing the area under the precision-recall curve. Obviously, AP is dependent
on the IoU threshold used to determine whether a predicted bounding box is a
true positive or a false positive. The mean average precision (mAP) is the average
of AP of all classes. The mAP score is usually calculated ranging different IoU,
i.e., mAP corresponds to mAP@[0.5,0.95,0.05] that is the average AP for IoU
from 0.5 to 0.95 with a step size of 0.05. Similarly, mAP50 represents the mAP
computed at a fixed IoU threshold of 0.5.

Analogously, the mean average recall (mAR) is the recall averaged over dif-
ferent IoU. This work used both metrics for evaluating the models, based on the
torchmetrics Python package.

3.3 Deep learning methods

Current state-of-the-art approaches are based on CNN object detectors. There
are two main families of detectors: one-stage methods (such as the YOLO fam-
ily [20], SSD [17] and EfficientDet [24]) and two-stage methods (the R-CNN
family [9,8,21]).

In two-stage detections, one part of the network (the RPN) generates candi-
date object proposals (the candidate bounding boxes), and the other part ana-
lyzes them, ranks their likelihood to be a true positive, and classifies and locates
the objects inside. One-stage detectors, on the other hand, directly predict the
class and location of objects without the need for a separate proposal generation
stage. It is kwown that one-stage detectors are generally faster and more flexible
but may sacrifice some accuracy. Two-stage detectors are more accurate, par-
ticularly for small objects. However, they are slower and require more training
data. Thus, since the varroa mites are a small object detection challenge (with
low resolution), it made more sense to use a Faster R-CNN approach.

We also tried several state-of-the-art neuronal networks as different back-
bones (the part of a neural network that is responsible for feature extraction) for
the Faster R-CNN, such as ResNet50 FPN, EfficientNet B0 to B7, MobileNetV3
Large FPN, and so on.

Due to the low resolution of the images, the small objects and the diffi-
culty to distinguish sometimes varroa mites from soil or other artifacts, we tried
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(a) A too broad bounding box. (b) A wrong varroa mite prediction.

Fig. 5: Training with wide bounding boxes.

super-resolution techniques to improve the quality of the images (see Figure 9).
Specifically, we used Enhanced Deep Residual Networks [15], to multiply by 2,
3 and 4 the resolution of the input images.

4 Experiments and Results

Experiments were performed on a computing server with two NVIDIA RTX 3090
GPUs.

As a metric we used mAP50, i.e., detection was considered successful when
the IoU was at least 50%. We chosen this metric over mAP, because beekeepers
are interested in the number of varroa mites, rather than in a perfect fit of the
bounding boxes.

A baseline approach with the default Faster R-CNN configuration and pa-
rameters achieved a mAP score of 0.1543. Thus, models did not learn well with
the initial experiments. Analyzing why this was happening, we detected that
the bounding boxes created by the experts were too large. We concluded that
the detection of small objects was very sensitive to the quality of the bounding
boxes, not only because a small variation of a few pixels greatly affected the
metric, but also because too large a bounding box caused the neural networks
to learn from the background and not from the desired object.

Thus, bounding boxes had to be manually tuned and adjusted properly. Fig-
ure 5a shows an example of a too broad bounding box, which makes neuronal
network to learn from the contour of the pupae and the shades, instead of learn-
ing from the varroa mite. Figure 5b shows precisely a wrong prediction caused
by underadjusted bounding boxes.
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Multiple tests were performed to find out the best model configuration. The
main decisions and parameters that showed the best performance are the follow-
ing:

1. As varroa mites tend to be reddish, We performed a preprocessing of the
images that proved to improve the quality of the detection, specifically we
decreased the intensity of the blue and green channels of each image to an
80%, with no modifications on the red channel. This improved the detection
results.

2. The learning rate was set to 0.01, but ReduceLRonPlateau technique was
used to reduce the value a factor of 0.75 when the metric stopped improv-
ing during 10 consecutive epochs, see Figure 6. Stochastic gradient descent
(SGD) was used for optimizing the objective function. The maximum num-
ber of epochs was 300.

3. We performed data augmentation in each batch. The techniques that worked
best were random 224×224 crop (ensuring a balance between the number of
crops with and without varroa mites), rotation, horizontal flip, vertical flip,
a soft random brightness (limited to 0.05) and random contrast (limited of
0.05).

4. The best backbone was Resnet50-FPN, where the anchor generator param-
eter was set to 35. Some pre-trained weights were tested (such as those ones
based on the COCO dataset), but the best results were obtained with no
pre-trained weights.

Fig. 6: Reduce Learning Rate on Plateau strategy for the best model.
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Figure 7 shows both the mAP and mAR evolution during the training of the
best model. The final mAP50 score was 0.7368 and mAR10 was 0.4452.

Fig. 7: mAP and mAR evolution during the training of the best model.

Although the metrics show a decent performance, a detailed analysis of the
predictions shows that the model makes some blatant errors. In fact, the valida-
tion images contains a total of 192 varroa mites, of which the model is able to
detect 163. The model fails with artifacts and pupae eyes, indeed there are 96
false positives. If one distinguish the validation images between those with and
without pupae, 91 of 95 varroa mites are detected when no pupae appears (with
18 false positives), and 72 of 97 varroa mites are detected when pupae appears,
but with 78 false positives. This means that recall is not good enough. Figure 8a
shows an example of errors in the prediction, where a pupae eye is mistaken for
a varroa mite. Figure 8b shows another error, where a ground stain is mistaken
for another varroa mite. These examples show that the problem is truly difficult.
In fact, depending on the positions of the pupae, the experts themselves find it
difficult to distinguish between eyes or varroa mites, being the main problem
the resolution of the images. Although the images have been taken with good
resolution smartphone cameras (12 Mpx), the level of detail of small objects
is rather low and this causes that there is not enough gradient for the neural
network to learn the features.

Trying to overcome this problem, some super-resolution techniques (explained
in Section 3.3) were performed. Figure 9 shows an example of a varroa mite be-
fore and after the application of the super-resolution method. As can be seen,
visually the image quality seems to have improved quite a bit. The varroa mite
has a much more defined contour, however it can be appreciated that the neu-
ronal network behind the super resolution has invented some parts of the varroa
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(a) An eye confused with a varroa mite. (b) A dark spot mistaken for a varroa mite.

Fig. 8: Errors in predictions. Red bounding boxes are the varroa mite predictions.
Blue boxes are the true bounding boxes.

mite. Similar behavior was observed in other elements: dark spots, dust, dirt and
soil.

None of the super-resolution techniques (×2, ×3, ×4) were able to improve
the results. Indeed, results were even slightly worse. Super resolution does not
improve images enough for the network to learn to distinguish correctly the
varroa mites. In fact, visually varroa mites are very similar to some spots and
pupae eyes (even if super resolution is applied), being also quite difficult for
humans to distinguish among them.

(a) Crop of an input image. (b) Crop after applying super-resolution.

Fig. 9: Before and after super-resolution techniques.
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5 Conclusions and further work

This paper presents an approach to varroa mite detection by means of artificial
intelligence techniques, from pictures captured with smartphones. The similarity
between the eyes of bee pupae and varroa mites, in addition to the low resolu-
tion of the input dataset, pose a challenge of small object detection. Different
techniques have been employed, including super resolution, to alleviate these
problems, obtaining decent results. As future work, to further improve the sys-
tem and avoid false positives (for instance, when varroa mites are mistaken for
dark spots), beekeeping experts are currentling compiling a new dataset by tak-
ing closer images, so that each board is divided into several photos (and thus,
the resolution is improved). A crop of these new images is shown in Figure 10b,
where it is much easier to distinguish the varroa mite from the spots than in
Figure 10a.

(a) Crop of an image of the original dataset.
It is difficult to distinguish the varroa mite
from the soil and spots.

(b) Crop of an image of the new dataset.
The resolution is much better and makes it
easier to distinguish varroa mites.

Fig. 10: Comparison between old and new images.
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