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Abstract. The search for machine learning models that generalize well
with small high-dimensional datasets is a current challenge. This paper
shows a specific hybrid methodology for this kind of problems combining
HYB-PARSIMONY and Bayesian Optimization. The methodology pro-
poses to use HYB-PARSIMONY with different random seeds and select
those features that had the highest mean probability. Subsequently, with
these features, a hyperparameter adjustment is performed with Bayesian
Optimization. The results show that the methodology substantially im-
proves the degree of generalization and parsimony of the obtained models
compared to previous methods.

Keywords: HYB-PARSIMONY · small high-dimensional datasets · par-
simonious modeling · auto machine learning · PSO-PARSIMONY · GA-
PARSIMONY

1 Introduction

Obtaining models that generalize well with small high-dimensional datasets
(SHDD) is not an easy task. The curse of dimensionality coupled with the low
number of instances causes many machine learning algorithms to have trouble
describing the underlying structure of the data. A common way to deal with
such problems is to use robust validation methods and algorithms that perform
well with high-dimensional datasets, such as trees and neural networks. One
of the AutoML libraries that gives the best results in this kind of problems is
Autogluon on tabular data which constructs an ensemble with artificial neu-
ral networks and tree-based algorithms such LightGBM, XGBoost, CatBoost,
RandomForest, and so on.

However, complex ensemble models that make use of advanced methods may
contain biases that are difficult to detect. This is why companies are increasingly
demanding explainable models with a small number of input variables, even if
their accuracy is not as good as with ensemble models. Thus, a linear model
or a decision tree with a few rules can be more useful in many decision-making
processes. Even a black box model that has been created with a reduced selection
of the original features can be more easily analyzed with current techniques such
as ELI5 and SHAP.
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This paper presents a new hybrid methodology that combines HYB-PARSIMONY
(presented at HAIS 2022) and Bayesian Optimization (BO) for the search of ac-
curate low complexity (parsimonious) models on datasets of small size (hundreds
or few thousands of instances) and high dimensionality (tens or hundreds of fea-
tures).

2 Related work

Hyperparameter optimization (HO) and feature selection (FS) are important
techniques in machine learning because they can improve the accuracy of pre-
dictive models. However, determining the right hyperparameters and the most
relevant subset of features can be a complex problem, especially when dealing
with high-dimensional datasets.

Current approaches to solving combinatorial problems in machine learning
often draw inspiration from nature, particularly from biological systems such as
animal herding, bacterial growth, and other natural phenomena. These methods
usually involve a population of simple individuals that interact both locally and
globally with each other according to simple rules. For example, one such meta-
heuristic approach is the Grey Wolf Optimizer (GWO), which was proposed
by Mirjalili et al. [10] and was inspired by the behavior of grey wolves. The
Salp Swarm Algorithm, also proposed by Mirjalili et al. in [9], was inspired by
the swarming behavior of salps when navigating and foraging in oceans. Other
techniques inspired by animals include bats [13], glowworm [8], and bee colony [6]
optimization.

Particle Swarm Optimization (PSO) is one of the most commonly used op-
timization technique. Originally proposed by Kennedy and Eberhart [7], PSO
has been the subject of much research, with numerous improvements proposed
in terms of topology, parameter selection, and other technical modifications. For
example, there are hybridizations of PSO with other meta-heuristic methods,
such as the improved binary particle swarm optimization proposed by Chuang
et al. [3], which uses the ‘catfish effect’ to introduce new particles into the search
space if the best solution does not improve in a certain number of consecutive
iterations.

Despite the success of these approaches, there are challenges associated with
using meta-heuristic methods to solve combinatorial problems in machine learn-
ing. For example, GA-PARSIMONY was proposed in [12,11] to search for parsi-
monious solutions with genetic algorithms (GA) by performing HO and FS, and
was successfully applied in many fields [1,5]. However, in this kind of problems
where each solution has a high computational cost, it is not possible to evaluate
a large number of individuals in each iteration. This makes GA not as efficient
as other optimization techniques where hundreds or thousands of individuals
are evaluated. As a continuation of this methodology, the authors used PSO
combined with a parsimony criterion to find parsimonious and accurate machine
learning models. The main novelty in the PSO-PARSIMONY methodology [2]
was that it included a strategy in which the best position of each particle was



Hybrid Search in Small High-dimensional Datasets 3

Algorithm 1 Pseudo-code of the HYB-PARSIMONY algorithm [4]

1: Initialization of positions X0 using a random and uniformly distributed Latin hy-
percube within the ranges of feasible values for each input parameter

2: Initialization of velocities according to V0 = randomLHS(s, D)−X0

2

3: for t = 1 to T do
4: Train each particle Xt

i and validate with cross-validation
5: Fitness evaluation and complexity evaluation of each particle
6: Update individual best X̂i, individual parsimonious best X̂p

i and global best ˆ̂
X

7: if early stopping is satisfied then
8: return ˆ̂

X
9: end if

10: Generation of new neighborhoods if ˆ̂
X did not improve

11: Update each neighborhoods best L̂i

12: Select elitist population Pe from for reproduction
13: Obtain a pcrossover % of worst individuals Pw to be substituted with crossover
14: Crossover Pe to substitute Pw with new individuals
15: Update positions and velocities of Pe following the PSO formulas
16: Mutation of % of hyperparameters
17: Mutation of % of features
18: Limitation of velocities and out-of-range positions
19: end for
20: return global best ˆ̂

X

computed considering not only the goodness-of-fit but also the principle of par-
simony. The comparison between both methods was performed on 13 public
datasets, and the results showed that PSO always improved accuracy over GA,
but GA found solutions approximately 10% less complex on datasets with a low
number of features.

3 The HYB-PARSIMONY method

To combine the strengths of GA-PARSIMONY and PSO-PARSIMONY, the
algorithm HYB-PARSIMONY was proposed in [4] by Divasón et al. as a hybrid
combination that incorporates GA operations (selection, crossover and mutation)
and PSO optimization1 (see Algorithm 1). The methodology improved the search
of parsimonious ML models against the other methodologies.

In HYB-PARSIMONY, the following equation was proposed to calculate the
percentage of particles to be substituted by GA crossover in each iteration t:

pcrossover = max(0.80 · e(−Γ ·t), 0.10) (1)

1 HYB-PARSIMONY is available for Python at https://github.com/jodivaso/
HYBparsimony

https://github.com/jodivaso/HYBparsimony
https://github.com/jodivaso/HYBparsimony
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Crossover percentage curves for six Gamma values.
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Fig. 1: Example of thirteen curves created with different Γ values to establish
the percentage of individuals to be replaced by crossover in each iteration.

Figure 1 shows thirteen curves obtained with different Γ values. In the first
iterations, the hybrid method performs the substitution by crossing a high per-
centage of particles. As the optimization process progresses, the number of sub-
stituted particles is reduced exponentially until it ends up fixed at a percentage of
10%. Thus, the hybrid method begins by facilitating the search for parsimonious
models using GA-based mechanisms and ends up using more PSO optimization.

3.1 Performance of feature selection in high-dimensional datasets

To analyze the behavior of the hybrid method in high-dimensional datasets as
a function of Γ , and with different dimensions and populations, a methodology
was implemented with the following experiment’s parameters:

– method: HYB vs previous methods (PSO or GA).
– nruns: number of runs with different random seeds. Value: 10.
– Γ (only for the hybrid method). Values: 0.005, 0.007, 0.010, 0.015, 0.020,

0.030, 0.050, 0.080, 0.130, 0.210, 0.350, 0.560, 1.100, 1.170.
– P : population size. Values: [5, 5 + 1 · 5, 5 + 2 · 5, ..., 40].
– #feats: dimension of the hypothetical data set. Values: 50, 150, 250, 350.
– idim: intrinsic dimension that refers to the features, Fselec, with relevant

information present in a dataset. That is, the number of input features of the
hypothetical model that explains an hypothetical target. Values: 5, 5+1 ·20,
5 + 2 · 20, ..., ⌊0.90 ·#feats⌋.

– β: value which balances the weight between recall and precision in the Fbeta

score used to evaluate each individual (see below). Values: [0.20, 0.20+1·0.06,
0.20 + 2 · 0.06, ..., 1.68].
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For each combination of experiment’s parameters, Fselec were randomly se-
lected according to idim. In particular, Fselec corresponded to idim random fea-
ture positions selected within the range [0,#feats− 1].

To evaluate each solution, Fbeta score was used. Based on the F1 score, Fbeta

is the weighted harmonic mean of precision and recall where β determines the
weight between recall and precision in the combined score. β < 1 gives more
weight to precision, while β > 1 favors recall. Fbeta is equal to F1 score with
β = 1.0 and to precision with β = 0.0.

It is defined as:

Fbeta =
(1 + β2)(precision · recall)

β2 · precision+ recall
(2)

and:
precision =

TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

where TP are the correctly chosen features belonging to Fselec, TN the features
not chosen and not belonging to Fselec, FP the features chosen but not belonging
to Fselec, and FN the features not chosen but belonging to Fselec.
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Fig. 2: Distribution of the best β that successfully met the objectives of overcom-
ing a minimum precision and recall defined by thrpr (values=0.80, 0.85, 0.90,
0.95).

Each combination of [method with Γ , P , #feats, idim and β] was run 10
times with different randoms seeds, a maximum number of iterations of T = 300,
tol = 10−9, and an early stopping of 35.
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All experiments2 were implemented in 2 separately 40-core composed, re-
spectively, of Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz with 128 GB of
RAM memory, and Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz with 192 GB
of RAM memory.
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Fig. 3: Mean of the Fbeta (left) and last iteration (lastiter) (right) achieved with
β = 1.34 and for each method and P .

Figure 2 shows the number of experiments that successfully met the objec-
tives of overcoming a minimum precision and recall defined by a threshold, thrpr,
and by each β and P values. The distribution of the best β is presented for each
experiment and thrpr. At low thrpr values, the median of the best β for each
combination of [method, Γ , P , #feats, idim] is about 1.3. This indicates that
precision tends to be prioritized over recall. Only at thrpr = 0.95 it is observed
that the median of the best β is close to 1.0, so the relationship between precision
and recall is balanced when the level of demand is very high.

Figure 3 shows respectively the mean of the last iteration (lastiter) and the
average of Fbeta with β = 1.34 and for each method and P . GA and HYB with
low Γ converge, on average, faster than PSO and HYB with high Γ values, as
they reach twice the number of final iterations. With respect to Fbeta, the highest
averages are obtained with PSO and HYB with Γ values greater than 0.08, but
GA has similar performance to HYB_0.08.

However, these results are average values that may be different, for each
method, depending on #feats and idim. Figure 4 shows the distribution of

2 The total number of experiments was 115170, resulting from all combinations.
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Fig. 4: Violin plot of Fbeta with β = 1.34, #feats = 150 and for each method
and four different idim values.

Fbeta for each method with #feats = 150, β = 1.34 and four different idim
values: 5, 45, 85 and 125. At very low values of idim, GA is competitive with the
hybrid and PSO methods. However, as the intrinsic dimension is closer to the
real dimension of the dataset, PSO and hybrid models with high Γ obtain better
accuracy. The problem is that for a particular dataset the intrinsic dimension of
the data will be unknown, so it will be necessary to realize an estimation of idim
in order to select an appropriate method.

In order to have a quick estimate of the hybrid model for Fbeta and lastiter,
linear Ridge models were trained with the previously obtained dataset but elim-
inating instances corresponding to GA and PSO, and selecting only those cases
with a β within the range [0.92, 1.64] where the methodology was most suc-
cessful. Equations 5 and 6 correspond to the best Ridge models selected with a
10-fold cross-validation RMSE error of 0.0815 and 57.36 with values of the alpha
Ridge’s hyperparameter equal to 4.0 and 2.0, respectively.

ˆFbeta = −0.0462·Γ−0.0027·P+0.0012·#feats−0.0011·idim−0.0108·β−0.88 (5)

ˆlastiter = 28.391·Γ−0.8883·P+0.2963·#feats−0.38·idim+36.517·β+72.71 (6)
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Fig. 5: Box plots of Fbeta (left) and lastiter (right) for Γ ∈ [0.0, 0.0 + 0.1, ..., 1.1]
and four #feats values obtained by simulation with P = 15, and different idim
and β values.

Using these two models, it was possible to approximately predict the val-
ues of Fbeta and lastiter for a data set dimension, #feats, and a fixed value of
P . Figure 5 shows the box plots for Fbeta and lastiter obtained from a simu-
lation performed with multiple combinations of the input values for four high-
dimensional data sets: ailerons (#feats = 40), crime (#feats = 127), blog
(#feats = 276) and slice (#feats = 378). Each simulation was performed by
fixing P = 15 and for each #ncols, with Γ ∈ [0.0, 0.0 + 0.1, ..., 1.1], idim ∈
[0.10 ·#feats, 0.10 ·#feats + 5, ...,#feats], and β ∈ [0.92, 0.92 + 0.1, ..., 1.64].
The graphs show the expected reduction that can be obtained in lastiter vs.
Fbeta depending on the Γ used. However, estimates will be approximate and
may vary greatly depending on the dataset (type and size3) and the machine
learning algorithm used for modeling the problem.

4 Strategy for working with SHDD

Creating accurate models with SHDD is a current challenge. If the dataset has
hundreds or a few thousand instances, and the dimension is high (several tens or
hundreds of features), the search for models that correctly generalize the problem
will face two fundamental problems: the curse of dimensionality and an excessive
over-fitting in the optimization process.

Although there are algorithms, such as trees and neural networks, that may
be less affected by the curse of dimensionality, in these cases it is highly rec-
ommended to use feature selection or dimensional reduction. In addition, the
regularization included in machine learning algorithms helps penalize models
that are too complex and with high probability of overfitting. The proposed
3 As can be seen in Figure 5.
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Table 1: Results for 7 datasets obtained with BO (J) versus HYB-PARSIMONY
with thrfs = 0.50 followed by BO.

Dataset BO HYB-PARSIMONY and BO
name trainsize testsize #feats JBO lastiter J0.5 Fs0.5

slice 2000 23000 378 .1414 165.8 (42.4) .1449 (.0022) 148.0 (3.74)
blog 2000 50397 276 .8216 178.6 (45.6) .8154 (.0170) 67.0 (17.42)
crime 1107 1108 127 .6373 199.0 (0.0) .6379 (.0076) 28.8 (4.32)
ailerons 2000 11750 40 .3984 131.2 (17.9) .3982 (.0016) 13.2 (2.05)
bank 2000 6192 32 .6745 160.0 (32.1) .6726 (.0023) 15.6 (1.52)
puma 2000 6192 32 .8762 106.2 (16.3) .2006 (.0250) 3.6 (0.89)
pol 2000 13000 26 .3165 148.0 (32.2) .2413 (.0034) 7.2 (0.45)

hybrid methodology greatly facilitates both aspects since it seeks to reduce as
much as possible the number of features of the selected model, as well as its
internal complexity.

However, HYB-PARSIMONY is such an intensive search method that when
working with SHDD the method may find parsimonious solutions that are too
specific to that set of instances. Thus, the chosen hyperparameters and the se-
lected features may be the most appropriate for that sample but not be sufficient
to create a model that will generalize correctly in the future. To reduce this over-
fitting and to find a feature selection that can be used to create a robust model
that generalizes correctly in this kind of problems, we propose the following
methodology:

1. Repeat n runs with different random seeds the search for the best model with
HYB-PARSIMONY and hold-out validation. In each repetition, extract the
feature probability vector of the best individual.

2. Average the probabilities for each feature and select those that have a value
greater than a given threshold, thrfs.

3. Performs hyperparameter tuning with BO and the features selected in the
previous point.

4. Repeat points 2 and 3 with different thrfs.
5. Select the model that obtains the best error J with another test dataset.

Table 1 shows the results with 7 high-dimensional datasets of using the de-
scribed methodology versus using BO with all features (#feats). In these ex-
periments, 2000 rows were selected for training/validation (except crime where
half of them were used) and the rest were utilized as a test dataset to ver-
ify the degree of generalization of the models. JBO corresponds to the testing
RMSE error obtained from a model that used all the input features and whose
hyperparameters were adjusted by BO. The last three columns corresponds to
the new proposal. First, 25 runs of HYB-PARSIMONY were performed with
Γ = 0.50, nruns = 200, P = 15, early_stopping = 35, hold-out validation with
a 20%, and KernelRidge as ML algorithm. Finally, ReRank was set to 0.001
which corresponds to the maximum difference between the J of two models to
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be considered equal. A high value of this parameter facilitates the search for par-
simony in HYB-PARSIMONY because between two models with a similar J the
less complex model is selected. Next, hyperparameter tuning with BO was done
of a KernelRidge algorithm with the features whose probabilities were greater
o equal than 0.50 (thrfs = 0.50). Columns in table indicate: the last iteration
(lastiter) of HYB-PARSIMONY, RMSE (J0.5) and the number of features used
(Fs0.5) in the final model. The results correspond to the average values and the
standard deviation (in parentheses) of 5 runs of the whole methodology with
different random seeds.

Table 2: Proposed methodology with different thrfs vs. BO with all features
(JBO).
dataset JBO J0.1 Fs0.1 J0.2 Fs0.2 J0.3 Fs0.3 J0.4 Fs0.4 J0.5 Fs0.5 J0.6 Fs0.6 J0.7 Fs0.7

slice .1414 .1413 369.2 .1392 346.4 .1374 294.2 .1370 228.2 .1449 148.0 .1583 85.8 .2267 40.2
blog .8216 .8222 270.0 .8265 247.0 .8288 196.8 .8234 128.8 .8154 67.0 1.014 29.4 .9462 10.8
crime .6373 .6373 123.2 .6367 108.8 .6371 85.0 .6386 56.4 .6379 28.8 .6461 12.8 .7867 3.8
ailerons .3984 .3983 36.6 .3986 33.2 .3994 25.4 .3993 17.8 .3982 13.2 .4338 9.8 .5043 5.6
bank .6745 .6746 31.6 .6729 29.4 .6756 24.6 .6744 20.4 .6726 15.6 .6791 11.4 .6889 9.0
puma .8762 .8383 24.8 .3030 12.2 .2308 7.6 .2096 4.6 .2006 3.6 .2007 3.6 .2230 2.8
pol .3165 .3066 20.6 .2736 13.2 .2584 10.4 .2461 8.2 .2413 7.2 .2413 7.2 .2387 6.4

As can be observed in Table 1, the proposed methodology obtained more
accurate models in 5 of the 7 databases, in addition to the fact that in the re-
maining ones the differences between JBO and J0.5 were not excessive. However,
the most outstanding results were observed in the significant reduction of the
number of average features. For example, in slice the number of features was
reduced to 39.1%, in blog to 24.2%, in crime to 22.7%, in ailerons to 33%,
in puma to 11.3%, or in pol to 27.7%. In conclusion, the methodology helped
to find more accurate models with a significant reduction of features. However,
these results could be improved by using different thrfs as shown in Table 2.

Finally, Table 3 shows a comparative analysis of the HYB-PARSIMONY
methodology versus the previous method, PSO-PARSIMONY. The results show
that the new methodology improved J in the four higher dimensionality datasets
in conjunction with a considerable reduction in the number of features. However,
PSO-PARSIMONY obtained better J in bank, puma and pol, but with worse
parsimony in the first two.

5 Conclusions

GA-PARSIMONY, PSO-PARSIMONY and HYB-PARSIMONY are methodolo-
gies that have been developed for the search of accurate but low complexity ML
models. However, an intensive search with these methods in SHDD can lead to
overfitted models.
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Table 3: HYB-PARSIMONY vs. PSO-PARSIMONY.
HYB-PARSIMONY PSO-PARSIMONY

dataset lastiter thrfs J Fs lastiter thrfs J Fs

slice 165.8(42.4) .4 .1370(.003) 228.2(6.0) 182.8(21.73) .5 .1372(.002) 239.0(6.9)
blog 178.6(45.6) .5 .8154(.017) 67.0(17.4) 191.6(16.55) .0 .8215(.000) 276.0(0.0)
crime 199.0(0.0) .2 .6367(.002) 108.8(1.3) 175.4(32.94) .1 .6371(.000) 124.8(1.3)
ailerons 131.2(17.9) .5 .3982(.002) 13.2(2.1) 154.8(34.15) .5 .3984(.002) 16.0(3.5)
bank 160.0(32.1) .5 .6725(.002) 15.6(1.5) 149.8(48.84) .5 .6724(.002) 16.8(1.6)
puma 106.2(16.27) .5 .2006(.025) 3.6(0.9) 104.4(13.81) .4 .1894(.000) 4.0(0.0)
pol 148.0(32.2) .7 .2387(.004) 6.4(0.6) 127.2(15.50) .7 .2374(.003) 6.2(0.5)

The proposed methodology is based on repeating HYB-PARSIMONY with
different random seeds and by using hold-out validation. In this way, at each run
the search for the best model is validated with a different part of the dataset.
Averaging the feature probability vectors allows one to make a more robust
selection of the final features. Once these are selected, with different thresholds,
BO is used to fit the hyperparameters of the model.

Results demonstrated that it is possible to obtain more accurate models with
a significant reduction in the number of features.
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