
New Hybrid Methodology Based on Particle
Swarm Optimization with Genetic Algorithms to
Improve the Search of Parsimonious Models in

High-Dimensional Databases

Jose Divasón , Alpha Pernia-Espinoza , and Francisco Javier
Martinez-de-Pison

University of La Rioja, Spain
{jose.divason,alpha.pernia,fjmartin}@unirioja.es

Abstract. Our previous PSO-PARSIMONY methodology (a heuristic
to search for accurate and low-complexity models with particle swarm
optimization) shows a good balance between accuracy and complexity
with small databases, but gets stuck in local minima in high-dimensional
databases. This work presents a new hybrid methodology to solve this
problem. First, we incorporated to PSO-PARSIMONY an aggressive mu-
tation strategy to encourage parsimony. Second, a hybrid method be-
tween PSO and genetic algorithms was also implemented. With these
changes, particularly with the second one, improvements were observed
in the search for more accurate and low-complexity models in high-
dimensional databases.

Keywords: PSO-PARSIMONY · Hybrid method · parsimonious mod-
eling · auto machine learning · GA-PARSIMONY

1 Introduction

The success of machine learning techniques in practically all fields of science
and industry has led to an increasing demand for optimization heuristics and
tools to facilitate some typical tasks such as hyperparameter optimization (HO)
and feature selection (FS). GA-PARSIMONY [13] is a well-established method-
ology to search for parsimonious solutions with genetic algorithms by perform-
ing HO and FS. It has been successfully applied in many fields, such as steel
industrial processes and hospital energy demand. Moreover, previous compar-
isons with other existing AutoML methodologies (such as Auto-sklearn, H2O
and MLJAR) demonstrated its effectiveness [13]. However, certain limitations of
GA-PARSIMONY are also well-known: it requires a high number of individuals
and also several repetitions of the method to guarantee an optimal solution (be-
cause it is unstable). It often converges to local minima instead of global minima.
In addition, it sometimes generates twin individuals that do not contribute new
information to the search process.

https://orcid.org/0000-0002-5173-128X
https://orcid.org/0000-0001-6227-075X
https://orcid.org/0000-0002-3063-7374


2 J. Divasón et al.

A first attempt to improve the results of GA-PARSIMONY was to de-
velop a new algorithm that combined the particle swarm optimization tech-
nique (PSO) and the parsimony criteria to obtain high-accuracy and low com-
plexity models. The algorithm was named PSO-PARSIMONY [1] and improved
GA-PARSIMONY on small databases, but was stuck in local minima on large
databases. To solve this problem, this paper describes new proposals to improve
PSO-PARSIMONY. On the one hand, PSO is combined with an aggressive muta-
tion strategy to foster parsimonious models. On the other hand, a hybrid model
between PSO and genetic algorithms is proposed, in which the particles with
worse fitness are replaced in each iteration by new ones generated from typical
genetic algorithm operations: selection, crossover and mutation. The accuracy
and complexity of the new proposals are tested with public databases of different
sizes and compared with GA-PARSIMONY.

2 Related work

The importance of HO and FS when solving a machine learning problem is well-
known: they permit improving the predictive accuracy of algorithms. However,
the right choice of hyperparameters and a subset of features is a difficult com-
binational problem for which efficient heuristic methods are usually required.
Currently approaches are usually inspired from nature, mainly from biological
systems such as animal herding, bacterial growth and so on. They usually con-
sist of a population of simple individuals interacting both locally and globally
with each other following some simple rules. For example, Mirjalili et al. [11] pro-
posed a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey
wolves and was successfully applied to several classical engineering design prob-
lems. Mirjalili et al. also proposed the Salp Swarm Algorithm [10], being inspired
by the swarming behavior of salps when navigating and foraging in oceans. Other
techniques related to animals include bat [15], glowworm [7] and bee colonies [5].
One of the most commonly used optimization techniques is the Particle Swarm
Optimization (PSO), originally proposed by Kennedy and Eberhart [6]. There
has been much research on this technique and numerous improvements have
been proposed [16,14], for instance, in terms of topology, parameter selection,
and other technical modifications, including quantum-behaved and chaotic PSO,
extensions to multiobjective optimization, cooperation and multi-swarm tech-
niques. Indeed, the study of PSO modifications is an active area of research due
to the success of the algorithm. Some hybridizations of PSO with other meta-
heuristic methods have been also proposed. For instance, for feature selection
Chuang et al. [2] proposed an improved binary particle swarm optimization using
the catfish effect, that is, new particles are introduced into the search space if the
best solution does not improve in some number of consecutive iterations. This
is done by replacing the 10% of original particles with the worst fitness values
by new ones at extreme positions. Some PSO hybridizations include operations
from genetic algorithms, for example, there are several modifications that include
the crossover [3] operator. In [4] the crossover is taken between each particle’s



New Hybrid Methodology to Search Parsimonious Models 3

individual best position. After the crossover, the fitness of the individual best
position is compared with two offspring produced after crossing. Then, the best
one is chosen as the new individual best position. In [12], the standard crossover
and mutation operations from GA are applied to PSO.

3 Previous PSO

In a previous work by the authors [1], the particle swarm optimization (PSO)
was combined with a parsimony criterion to find parsimonious and, at the same
time, accurate machine learning models. The PSO algorithm works by having a
population (called a swarm) of possible solutions (called particles). The position
of a particle is simply a vector X = (H,F ) where H corresponds to the values
of model’s hyperparameters and F is a vector with values between 0 and 1 for
selecting the input features. These particles are moved around in the search-space
of the combinational problem according to simple formulas:

V t+1
i = ωV t

i + r1φ1 ×
(
pbestti −Xt

i

)
+ r2φ2 ×

(
lbestti −Xt

i

)
(1)

Xt+1
i = Xt

i + V t+1
i (2)

where V t
i and Xt

i denote the velocity and position of the i-th particle in iter-
ation t, respectively. Such formulas just state that the movement of a particle
is influenced by three components: its previous velocity, its own experience (its
best position achieved so far, pbesti) and also by the experience of other par-
ticles (the best position within a neighborhood, lbesti). This permits particles
to explore the search space based on their current momentum, each individual
particle thinking (cognitive component) and the collaborative effect (cooperation
component). More concretely, ω is the inertia weight used to control the displace-
ment of the current velocity. φ1 and φ2 are positive constant parameters that
balance the global exploration and local exploitation. r1 and r2 are uniformly
distributed random variables used to maintain the diversity of the swarm.

Our modified PSO includes a strategy where the best position of each particle
(thus, also the best position of each neighborhood) is computed considering not
only the goodness-of-fit, but also the principle of parsimony, see [1] for further
details. Algorithm 1 presents a pseudo-code version of it.

Experiments were conducted with various databases. A subset of them is
shown in Table 1. PSO always improved accuracy with respect to GA. In databases
with a low number of features, the difference with respect to parsimony was usu-
ally small (GA found solutions about 10% simpler). However, datasets with a
larger number of features caused trouble for PSO, which found better solutions
than GA but with twice as many features. Moreover, GA required much less com-
putational effort: approximately, GA was three times faster and needed halving
the iterations. This showed that PSO-PARSIMONY is a good alternative to
GA-PARSIMONY if the number of features is relatively small, because it finds
better solutions with a good balance between accuracy and parsimony.



4 J. Divasón et al.

Algorithm 1 Pseudo-code of the modified PSO algorithm

1: Initialization of positions X0 using a random and uniformly distributed Latin hy-
percube within the ranges of feasible values for each input parameter

2: Initialization of velocities according to V0 = randomLHS(s, D)−X0

2

3: for t = 1 to T do
4: Train each particle Xi and validate with CV
5: Fitness evaluation and complexity evaluation of each particle
6: Update pbesti, pbestp,i and the gbest
7: if early stopping is satisfied then
8: return gbest
9: end if

10: Generation of new neighborhoods if gbest did not improve
11: Update each lbesti
12: Update positions and velocities according the formulas
13: Mutation of features
14: Limitation of velocities and out-of-range positions
15: end for
16: return gbest

4 New proposals

The previous section shows that PSO-PARSIMONY works well, but has room for
improvement in terms of parsimony (especially for datasets with a large number
of features) and computational time. The experiments also provided some insight
on the accuracy and the evolution of parsimony in both GA and PSO; see also
Figure 1 for further results with the crime database. Specifically, Figure 1a shows
an exponential-like decrease in the number of features selected by GA in the first
iterations, whereas PSO performs a more linear decrease. Figure 1b shows how
good PSO is in terms of precision.

Table 1: PSO-PARSIMONY vs GA-PARSIMONY with 10 databases (results
are the average of 5 runs with each methodology and tol = 10−3).
Database #rows #feats PSOJ GAJ PSONFS GANFS PSOtime GAtime PSOiters GAiters

strike 625 7 0.83856 0.86479 1.8 3.0 105.1 16.3 88.0 39.6
no2 500 8 0.65608 0.66007 6.0 6.0 59.8 17.5 102.8 46.4
concrete 1030 9 0.28943 0.29526 7.4 7.8 468.0 160.9 107.2 41.6
housing 506 14 0.31261 0.32559 11.0 10.0 215.8 74.6 104.0 61.0
bodyfat 252 15 0.10709 0.10806 3.4 2.0 97.3 40.2 128.2 69.2
cpu_act 8192 22 0.12405 0.12473 14.8 13.4 1241.7 788.3 84.6 50.0
bank 8192 33 0.63420 0.63792 23.6 19.8 1298.8 629.1 177.8 101.6
puma 8192 33 0.18049 0.18097 4.6 4.2 2188.6 1028.4 96.0 51.2
ailerons 13750 41 0.38228 0.38258 17.8 10.4 2663.2 1144.7 115.2 65.6
crime 2215 128 0.59336 0.59565 49.8 19.8 797.8 410.5 185.6 143.6



New Hybrid Methodology to Search Parsimonious Models 5

To increase parsimony in PSO, two new variants of the algorithm are pro-
posed in this section. The main goal is to promote the parsimonious behavior of
GA in PSO. The first is a straightforward variant in which the mutation phase
in PSO is performed exactly as in GA. The second is a hybrid approach be-
tween GA and PSO. They have been implemented in Python and are available
at https://github.com/jodivaso/Hybrid-PSOGAParsimony.

4.1 PSO with a new mutation

PSO-PARSIMONY already includes a mutation operator, for which the mu-
tation rate was set to 1/D by default, where D is the dimensionality of the
problem. In contrast, GA has a much more aggressive strategy; it also performs
uniform random mutation, but three parameters are involved: pmutation rep-
resents the percentage of parameters to be muted, feat_mut_thres represents
the probability of select a feature (include it in the selected features of the indi-
vidual) when muting it, and not_muted is the number of best individuals that
will not be muted. Note that not_muted prevents losing the best individuals
in the mutation step. The default values are set to 0.1, 0.1 and 3, respectively.
With these default values, GA approximately excludes 9% of the features in each
iteration. In contrast, only 1/2D of the features are excluded in each step with
PSO, which are very few if the dataset has many variables. This explains why
the PSO algorithm performs worse in terms of parsimony with high-dimensional
databases. To solve this problem, Algorithm 1 was modified in Line 13 to include
the mutation step as is done in GA.

0 25 50 75 100 125 150 175 200
Iteration

20

40

60

80

100

120

N
um

be
r o

f S
el

ec
te

d 
Fe

at
ur

es

NFs evolution for original PSO(red) vs GA(blue). Range=[min-max], mean=black line

(a) Features evolution in GA and PSO

0 25 50 75 100 125 150 175 200
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n 
of

 R
M

SE
va

l

RMSEval Evolution for Original PSO(red) vs GA(blue)

(b) Evolution of RMSE in GA and PSO

Fig. 1: PSO-PARSIMONY (red) vs. GA-PARSIMONY (blue) in terms of number
of selected features and accuracy with the crime dataset.

https://github.com/jodivaso/Hybrid-PSOGAParsimony


6 J. Divasón et al.

4.2 Hybrid method: PSO with crossover and mutation

To further encourage parsimony in PSO and make its behavior closer to GA,
especially in the first iterations, a hybrid model was developed. For this purpose,
Algorithm 1 was modified in several parts.

A crossover phase is added just after calculating the local bests of the neigh-
borhoods (i.e., after Line 11). The purpose of the crossover is to distribute good
parts of the genome among individuals. To perform this crossover, a selection
phase is also added at that point, which is based on a nonlinear-rank selection
following Michalewicz [8]. In this way, the selection of other individuals in ad-
dition to the best ones maintains the diversity of the population and prevents
premature convergence. Furthermore, the best individuals are more likely to be
selected for crossover. Thus, they are selected for breeding more times to fos-
ter good offspring. The crossover function was implemented by using heuristic
blending [9] for hyperparameters and random swapping for features. It was also
adapted to work properly with PSO: the positions are crossed with each other,
as well as the velocities according to the crossover performed at the positions.

In addition, the way of replacing the particles differs from the typical GA
crossover: In this case, the new particles created from the crossover replace the
worst particles (those with the worst fitness value) that appeared in the popu-
lation. For this purpose, a parameter pcrossover is incorporated, which fixes
the percentage of worst individuals to be substituted from crossover. This pa-
rameter can be either a constant (such a percentage of particles is substituted
in all iterations) or an array to indicate a different percentage for each iteration.
In this way, one can vary and encourage the crossover process in the first itera-
tions by setting high values of pcrossover (to obtain a behavior similar to GA)
and in further iterations decrease the percentage or even make it equal to 0 to
obtain a pure PSO algorithm. Once the crossover step is done, PSO algorithm
requires updating the positions and velocities according the formulas. In this
case, this step is only applied to the particles that have not been substituted
by the crossover. The mutation phase is also modified to include the changes
proposed in the previous subsection, i.e., a more aggressive mutation strategy to
encourage parsimony. The rest of steps of the algorithm are preserved.

5 Experiments

In order to test the capacity of the proposed methodologies to find accurate and
parsimonious models, databases with a high number of features were selected.
In particular, experiments compared the PSO-PARSIMONY method with the
new mutation (New-PSO) and the hybrid HYB-PARSIMONY (HYB) against
GA-PARSIMONY (GA) and the previous PSO method (Old-PSO).

All experiments were similar to previous works with a population size of
P = 40, tol = 0.001, a maximum number of generations of G = 200, and an
early stopping of 35. Experiments were implemented in 9 separately 24-core
servers from the Beronia Cluster at the University of La Rioja.



New Hybrid Methodology to Search Parsimonious Models 7

0 10 20 30 40 50
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
ta

ge
 o

f p
ar

tic
le

s 
fo

r c
ro

ss
ov

er
in

g

Crossover percentage curves for six Gamma values.

Gamma=0.020
Gamma=0.050
Gamma=0.100
Gamma=0.300
Gamma=0.500
Gamma=0.700

Fig. 2: Example of six curves created with different Γ values to establish the
percentage of individuals to be replaced by crossover in each iteration.

For the hybrid method, the following equation was defined to calculate the
percentage of particles to be substituted by crossover in each iteration iter:

%particles = max(0.80 · e(−Γ ·iter), 0.10) (3)

Figure 2 shows six curves obtained with different Γ values. In the first itera-
tions the hybrid method performs the substitution by crossing a high percentage
of particles. As the optimization process progresses, the number of substituted
particles is reduced exponentially until it ends up fixed at a percentage of 10%.
Thus, the hybrid method begins by facilitating the search for parsimonious mod-
els using GA-based mechanisms and ends up using more PSO optimization.

Table 2 presents the results with the crime database with 128 features. It
shows results for the GA, the Old-PSO, the New-PSO and 26 Γ values of the
hybrid method. The second and third columns indicate respectively the valida-
tion error (J) and the number of features (NFS) of the best model obtained.
The last four columns correspond to the mean of J , NFS , time and the number
of iterations (iters) of five runs for each algorithm. The hybrid method with
Γ = 0.10 obtained the best model reducing J to 0.57844 versus the previous
best model achieved with GA (J = 0.58070). However, the improvement in J
involved the selection of 24 features (5 more) versus 19 in GA. On the other
hand, the hybrid method with Γ = 0.04 obtained the most parsimonious model
with only 17 features and an error of J = 0.58142, slightly higher than the J
of GA. With respect to the mean values obtained from the five runs of each
algorithm, it is observed that the hybrid method with Γ = 0.32 obtained the
best mean values of J and NFS .

Figure 3 shows in blue the range (minimum and maximum) and in a solid
black line the mean value of NFS (left) and J (right) for five runs of the algorithm
with different values of Γ for the database crime. It also includes the range and



8 J. Divasón et al.

Table 2: Hybrid with different Γ vs previous methods for crime database.
Method Γ Jbest NFSbest J NFS iters time

GA 0.00 0.58070 19 0.58503 20.4 146.8 86.2
OLD PSO 0.00 0.58333 29 0.58773 33.0 200.0 121.0
NEW PSO 0.00 0.58155 26 0.58419 25.2 362.8 211.9
HYB 0.02 0.57981 22 0.58650 24.4 229.6 132.0
HYB 0.04 0.58142 17 0.58571 22.6 200.8 118.8
HYB 0.06 0.58397 23 0.58747 26.8 206.6 119.1
HYB 0.10 0.57844 24 0.58402 26.6 200.4 115.6
HYB 0.12 0.58106 24 0.58576 25.8 184.4 97.6
HYB 0.14 0.58143 24 0.58856 28.8 190.0 109.9
HYB 0.16 0.58151 19 0.58304 23.4 228.8 121.5
HYB 0.18 0.58603 26 0.58773 27.4 148.6 85.9
HYB 0.20 0.58251 23 0.58517 25.2 185.6 111.0
HYB 0.22 0.57964 23 0.58434 23.4 241.4 138.9
HYB 0.24 0.58229 25 0.58554 26.4 167.4 98.0
HYB 0.26 0.58368 23 0.58656 25.4 176.0 101.2
HYB 0.28 0.58054 24 0.58340 23.6 235.6 135.0
HYB 0.30 0.58343 29 0.58540 25.6 143.8 82.7
HYB 0.32 0.58050 22 0.58193 20.2 242.2 139.1
HYB 0.34 0.58247 17 0.58421 23.6 233.2 123.5
HYB 0.36 0.58001 23 0.58378 21.6 221.6 127.4
HYB 0.38 0.58119 20 0.58544 23.2 197.2 117.9
HYB 0.40 0.58117 27 0.58493 24.6 209.8 120.6
HYB 0.45 0.58304 22 0.58494 24.8 176.8 101.9
HYB 0.50 0.57938 24 0.58319 23.6 213.4 123.0
HYB 0.55 0.58314 24 0.58555 25.4 193.8 111.5
HYB 0.60 0.58158 22 0.58378 24.2 218.2 115.8
HYB 0.70 0.58080 24 0.58582 26.6 195.8 116.5
HYB 0.80 0.58065 19 0.58232 23.2 215.0 123.7
HYB 0.90 0.58101 25 0.58437 24.8 187.4 108.5

mean value for GA (red) and for New-PSO (green). Regarding NFS , the hybrid
method with Γ between 0.32 and 0.36 was more stable, since it obtained lower
ranges than the one obtained with GA and with minimum values similar to
the latter. On the other hand, it clearly outperformed the New-PSO method.
Figure 4 shows that the hybrid method reduced the number of features more
drastically and converged earlier than the New-PSO method, similar than GA
method. With respect to J , Figure 3b clearly shows that the new-PSO method
was more robust than GA as it had a much smaller range of J in the five runs
of the algorithm. However, the hybrid method obtained with Γ = 0.32 better J
values than PSO with a significantly lower range.

Finally, Figure 5 presents the mean values of NFS and J for the four methods
and with the crime database. In this case, the hybrid model with Γ = 0.32
(blue) improved the reduction of NFS and J in a balanced way, reducing the
convergence time and obtaining accurate but low-complexity solutions.



New Hybrid Methodology to Search Parsimonious Models 9

0.02 0.10 0.18 0.24 0.32 0.38 0.450.500.550.60 0.70 0.80 0.90
Gamma Values for Crossover Curve

20

25

30

35

40
N

um
be

r o
f S

el
ec

te
d 

Fe
at

ur
es

 (N
Fs

)

NFs evolution for hybrid method (blue) vs previous methods NEW_PSO (green) and GA (red)

(a) NFS evolution with different Γ values

0.02 0.10 0.18 0.24 0.32 0.38 0.45 0.50 0.55 0.60 0.70 0.80 0.90
Gamma Values for Crossover Curve

0.580

0.585

0.590

0.595

0.600

R
M

SE
va

l

RMSEval evolution for hybrid method (blue) vs previous methods NEW_PSO (green) and GA (red)

(b) J evolution with different Γ values

Fig. 3: Comparison between HYBRID-PARSIMONY (blue) vs. PSO-
PARSIMONY (green) and GA-PARSIMONY (red) in terms of the number of
selected features and accuracy with the crime dataset.

Table 3: NEW PSO-PARSIMONY vs HYBRID-PARSIMONY with a population
size of P = 40 and tol = 0.001 (results are the average of the 5 runs).
Dataset #rows #feats Γ PSOJ HY BJ PSONFS HY BNFS PSOtime HY Btime

slice 5000 379 0.34 0.0238 0.0231 146.8 132.2 819.4 609.0
blog 4999 277 0.70 0.4087 0.3983 127.6 113.8 1117.5 1051.6
crime 2215 128 0.32 0.5842 0.5819 25.2 20.2 211.9 139.1

tecator 240 125 0.50 0.0331 0.0331 55.0 48.6 11.9 8.7
ailerons 5000 41 0.70 0.3947 0.3934 10.6 10.2 473.4 466.1
bank 8192 33 0.50 0.6514 0.6511 21.4 21.4 2146.4 1536.6
puma 8192 33 0.50 0.1817 0.1817 4.0 4.0 1063.8 933.2

Similar results can be observed with other high-dimensional databases. Ta-
bles 3 and 4 show respectively the average results and the best model obtained
with the Hybrid Method and the New-PSO. In almost all databases, the hybrid
method obtained more accurate models with less complexity, although it was
necessary to find a suitable Γ value.

6 Conclusions

This paper presents two new proposals to improve our previous PSO-PARSIMONY
methodology for the simultaneous search of the best model hyperparameters and



10 J. Divasón et al.

0 100 200 300 400
Iteration

20

40

60

80

100

120

N
um

be
r o

f S
el

ec
te

d 
Fe

at
ur

es

NFs evolution for HYB with Gamma=0.32 (blue) vs New PSO (red)

Fig. 4: Comparison of NFS evolution between the Hybrid method (blue) (with
Γ = 0.32) and the new PSO-PARSIMONY (red).

0 100 200 300 400
Iteration

20

40

60

80

100

M
ea

n 
of

 N
Fs

NFs evolution of HYB with Gamma=0.32 (blue), New PSO (red), Old PSO (green) and GA (black)

(a) NFS evolution

0 100 200 300 400
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n 
of

 J

J evolution of HYB with Gamma=0.32 (blue), New PSO (red), Old PSO (green) and GA (black)

(b) J evolution

Fig. 5: Comparison with crime dataset of NFS and J between the four methods:
the Hybrid method (blue) (with Γ = 0.32), the new PSO-PARSIMONY (red),
the old PSO-PARSIMONY (green) and GA-PARSIMONY (black).



New Hybrid Methodology to Search Parsimonious Models 11

Table 4: Best individual obtained with PSO-PARSIMONY vs HYBRID-
PARSIMONY using a population size of P = 40 and tol = 0.001.
Dataset Γ PSOJ HY BJ PSOJTST HY BJTST PSONFS HY BNFS PSOtime HY Btime

slice 0.70 0.0228 0.0218 0.0012 0.0017 124 112 1050.1 627.5
blog 0.38 0.3948 0.3879 0.2523 0.2023 115 129 1304.0 1277.4
crime 0.10 0.5815 0.5784 0.5021 0.4780 26 24 263.5 138.5

tecator 0.38 0.0328 0.0327 0.0207 0.0206 48 51 16.3 10.7
ailerons 0.15 0.3935 0.3922 0.3675 0.3698 13 10 484.2 494.3
bank 0.70 0.6510 0.6507 0.5839 0.5865 22 21 2428.5 1675.0
puma 0.38 0.1817 0.1817 0.1776 0.1776 4 4 1191.8 712.9

input features, with a balance between accuracy and complexity. Concretely, a
PSO with an aggressive mutation strategy as well as a hybrid method have been
implemented. The main novelty relies on the hybrid model between GA and PSO,
where the optimization is based on the PSO formulas, but the common genetic
operations of selection, crossover and mutation are included to replace the worst
particles. The percentage of variables to be substituted in each iteration can be
customized. In this work, functions that depend on a Γ parameter have been
used to promote parsimony in the first iterations (a high percentage of particles
is substituted), but in further iterations the percentage is decreased. This differs
from other hybrid methods where the crossover is applied between each parti-
cle’s individual best position or other approaches where the worst particles are
also substituted by new ones, but at extreme positions. Experiments show that,
in general and once the appropriate gamma is fixed, this HYB-PARSIMONY
methodology allows one to obtain better, more parsimonious and more robust
models compared to our previous PSO-based methodology and the PSO with
mutation. The computational effort is also reduced, since it requires less time.

Although it is a promising method, further research is required to provide an
explicit formula that fixes the Γ value for each dataset, for instance, depending
on the number of instances and features or by means of adaptive strategies.

Acknowledgements We are greatly indebted to Banco Santander for the
REGI2020/41 fellowship. This study used the Beronia cluster (Universidad de
La Rioja), which is supported by FEDER-MINECO grant number UNLR-094E-
2C-225. The work is also supported by grant PID2020-116641GB-I00 funded by
MCIN/ AEI/ 10.13039/501100011033.

References

1. Ceniceros, J.F., Sanz-Garcia, A., Pernia-Espinoza, A., Martinez-de Pison, F.J.:
PSO-PARSIMONY: A new methodology for searching for accurate and parsi-
monious models with particle swarm optimization. application for predicting the
force-displacement curve in t-stub steel connections. In: Sanjurjo González, H.,



12 J. Divasón et al.

Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) Hybrid
Artificial Intelligent Systems. pp. 15–26. Springer, Cham (2021)

2. Chuang, L.Y., Tsai, S.W., Yang, C.H.: Improved binary particle swarm optimiza-
tion using catfish effect for feature selection. Expert Syst. Appl. 38(10), 12699–
12707 (2011). https://doi.org/10.1016/j.eswa.2011.04.057

3. Engelbrecht, A.P.: Particle swarm optimization with crossover: A review and em-
pirical analysis. Artif. Intell. Rev. 45(2), 131–165 (2016). https://doi.org/10.1007/
s10462-015-9445-7

4. Hao, Z.F., Wang, Z.G., Huang, H.: A particle swarm optimization algorithm with
crossover operator. In: 2007 International Conference on Machine Learning and
Cybernetics. vol. 2, pp. 1036–1040 (2007)

5. Karaboga, D., Basturk, B.: Artificial bee colony (abc) optimization algorithm for
solving constrained optimization problems. In: Melin, P., Castillo, O., Aguilar,
L.T., Kacprzyk, J., Pedrycz, W. (eds.) Foundations of Fuzzy Logic and Soft Com-
puting. pp. 789–798. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95 - International Conference on Neural Networks. vol. 4, pp. 1942–1948
vol.4 (1995). https://doi.org/10.1109/ICNN.1995.488968

7. Marinaki, M., Marinakis, Y.: A glowworm swarm optimization algorithm for the
vehicle routing problem with stochastic demands. Expert Systems with Applica-
tions 46, 145–163 (2016). https://doi.org/10.1016/j.eswa.2015.10.012

8. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
Third Revised and Extended Edition. Springer (1996)

9. Michalewicz, Z., Janikow, C.Z.: Handling constraints in genetic algorithms. In:
Icga. pp. 151–157 (1991)

10. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.:
Salp swarm algorithm: A bio-inspired optimizer for engineering design problems.
Advances in Engineering Software 114, 163–191 (2017). https://doi.org/10.1016/
j.advengsoft.2017.07.002

11. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Advances in Engineer-
ing Software 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

12. Nazir, M., Majid-Mirza, A., Ali-Khan, S.: PSO-GA based optimized feature se-
lection using facial and clothing information for gender classification. Journal of
Applied Research and Technology 12(1), 145–152 (2014). https://doi.org/10.1016/
S1665-6423(14)71614-1

13. Martinez-de Pison, F.J., Ferreiro, J., Fraile, E., Pernia-Espinoza, A.: A comparative
study of six model complexity metrics to search for parsimonious models with
GAparsimony R Package. Neurocomputing 452, 317–332 (2021). https://doi.org/
10.1016/j.neucom.2020.02.135

14. Shami, T.M., El-Saleh, A.A., Alswaitti, M., Al-Tashi, Q., Summakieh, M.A., Mir-
jalili, S.: Particle swarm optimization: A comprehensive survey. IEEE Access 10,
10031–10061 (2022). https://doi.org/10.1109/ACCESS.2022.3142859

15. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature inspired coop-
erative strategies for optimization (NICSO 2010), pp. 65–74. Springer (2010)

16. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimiza-
tion algorithm and its applications. Mathematical Problems in Engineering pp.
1–38 (2015). https://doi.org/10.1155/2015/931256

https://doi.org/10.1016/j.eswa.2011.04.057
https://doi.org/10.1016/j.eswa.2011.04.057
https://doi.org/10.1007/s10462-015-9445-7
https://doi.org/10.1007/s10462-015-9445-7
https://doi.org/10.1007/s10462-015-9445-7
https://doi.org/10.1007/s10462-015-9445-7
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.eswa.2015.10.012
https://doi.org/10.1016/j.eswa.2015.10.012
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/S1665-6423(14)71614-1
https://doi.org/10.1016/S1665-6423(14)71614-1
https://doi.org/10.1016/S1665-6423(14)71614-1
https://doi.org/10.1016/S1665-6423(14)71614-1
https://doi.org/10.1016/j.neucom.2020.02.135
https://doi.org/10.1016/j.neucom.2020.02.135
https://doi.org/10.1016/j.neucom.2020.02.135
https://doi.org/10.1016/j.neucom.2020.02.135
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/10.1155/2015/931256
https://doi.org/10.1155/2015/931256

	New Hybrid Methodology Based on Particle Swarm Optimization with Genetic Algorithms to Improve the Search of Parsimonious Models in High-Dimensional Databases

