
FASTER KENZO COMPUTATIONS VIA SAGEMATH, AND VICE
VERSA

JOSE DIVASÓN, MIGUEL MARCO BUZUNÁRIZ, AND ANA ROMERO

Abstract. This work presents some improvements on the efficiency of both Kenzo and
SageMath, by means of parallelization techniques and an existing interface that connects
both systems.

Introduction

Kenzo [2] is a computer algebra system devoted to algebraic topology which, in particular,
implements several algorithms to compute homology groups of infinite structures using the
method of effective homology [4]. In addition, it also permits to compute algorithmically
homotopy groups combining the Whitehead tower method [5] and the effective homology
technique. As far as we know, Kenzo is the only program able to carry out this kind
of computations over infinite structures, which makes it a powerful software. In order to
spread and ease the use of Kenzo, we developed an interface and an optional package of
Kenzo within Sagemath [1]. That work permitted using Kenzo and some of its external
packages without any Common Lisp knowledge and enhanced the SageMath system with
new capabilities in algebraic topology (dealing in particular with simplicial objects of infinite
nature).

In this work, we improve the efficiency of our Kenzo–SageMath interface by combining
the power of both computer algebra systems, considering in particular the computation of
homology groups. On the one hand, we use parallel computations in SageMath (using mul-
tiprocessing in Python) to accelerate Kenzo computations. On the other hand, Kenzo can
improve SageMath capabilities beyond topological computations. One such example is the
Smith normal form of an integer matrix, for which Kenzo provides a faster implementation
than Pari (which is what SageMath uses).

1. Computation of homology groups in Kenzo

The computation of homology groups in Kenzo is done by means of the effective homology
method [4]. When an object (for instance, a simplicial set) X is built in Kenzo, a particular
case of homology equivalence C∗(X)⇐⇐⇒⇒E∗ is automatically constructed, where C∗(X)
is the chain complex associated with X and E∗ is a chain complex of finite type (called
effective) such that its homology groups are isomorphic to those of C∗, H∗(C) ∼= H∗(E).
Since E∗ is finitely generated in each degree, the homology groups of E∗ can be determined

The first and third author are supported by grant PID2020-116641GB-I00 funded by MCIN/ AEI/
10.13039/501100011033. The second author has been partially supported by PID2020-114750GB-C31 and
E22_20R: Álgebra y Geometría.

The talk at the meeting EACA 2022 has been given by the third author.
1



2 JOSE DIVASÓN, MIGUEL MARCO BUZUNÁRIZ, AND ANA ROMERO

by means of elementary operations on matrices. In this way, the homology groups of the
object X, which can be of infinite nature, can also be determined (thanks to the isomorphism
H∗(X) ∼= H∗(C∗(X)) ∼= H∗(E)). Given a chain complex C∗, its homology groups Hn(C∗)
are defined as Hn(C∗) = Ker dn/ Im dn+1, where d∗ denotes the differential map of the
complex. These groups are determined in Kenzo by means of the following algorithm.

Algorithm 1: Homology groups of a chain complex.
Input: A chain complex C∗ with effective homology and an integer n.
Output: The homology group Hn(C∗).

1 Consider the effective chain complex associated with C∗, denoted E∗.
2 Construct the differential matrix of E∗ of degree n, denoted Dn.
3 Construct the differential matrix of E∗ of degree n+ 1, denoted Dn+1.
4 Compute the kernel of Dn, denoted Kn, by diagonalization techniques [3].
5 Return the quotient of Kn by Dn+1, by using again diagonalization techniques.

Using profiling, we detected that 99% of the required time was devoted to instructions in
lines 2 and 3 of Algorithm 1, that is, determining the differential matrices of the effective
chain complex. This is due to the fact that these matrices are built by determining the
image of the differential map of each generator of the chain complex E∗ on the required
degrees, and the differential morphisms of the effective chain complex E∗ are constructed
by means of complicated maps describing the effective homology of the object [4].

2. Improving Kenzo and SageMath

The existing interface between SageMath and Kenzo [1] connects both programs via the
ECL library (a library interface to Embeddable Common Lisp), which is itself loaded as a
C-library. This permits the interface to be very fast, being the efficiency between native
Kenzo and Kenzo loaded in Sagemath rather similar. The idea of this work is to exploit
both systems to improve the efficiency of computations. All the code is publicly available
at https://github.com/jodivaso/EACA22.

2.1. Improving Kenzo via SageMath. We have applied parallelization techniques to
Kenzo thanks to the SageMath interface. That is, we use existing multiprocessing Python li-
braries to run parallel computations in Kenzo. Unlike other programming languages, Python
multithreading (via threading and asyncio Python packages) does not allow paralleliza-
tion, but only concurrency. The reason is the existence of a Global Interpreter Lock (GIL),
whose purpose is to allow only one thread to hold the control of the Python interpreter.
Thus, the standard way to run in parallel a task in Python is by means of independent
subprocesses, without sharing memory among them. However, programmers need to some-
how share objects between subprocesses (for example, to share the input matrix with the
subprocess that will compute something of it). This is solved thanks to serialization (or
pickle in Python jargon): the process whereby a Python object is converted into bytes.
Then, if the main process needs to send two different matrices to two subprocesses (like if
we parallelize lines 2 and 3 in Algorithm 1), then two serializations are done (one for each
matrix). The matrices are then unpickled in the subprocesses, computation is done in each
subprocess, results are also serialized and finally unpickled in the main process.

https://github.com/jodivaso/EACA22


FASTER KENZO COMPUTATIONS VIA SAGEMATH, AND VICE VERSA 3

The Kenzo interface defines the class KenzoObject, which is simply a wrapper in Sage
around a Kenzo object, i.e., it only contains an EclObject. However, pickling over an
EclObject is not supported, since ECL does not natively support serialization of its objects.
To overcome this limitation, we have added now an attribute named command, in which we
store how the object has been built. This variable stores the commands to reconstruct the
Kenzo object by means of Python code (which internally will run Lisp code thanks to the
interface). Then, KenzoObject has two attributes now: the EclObject already built and
the command to build it. We do this for each object that can be constructed in Kenzo via
the interface (Cartesian product, wedge, loop space, join, spheres, . . . ).

To serialize a KenzoObject (and also any of its inherited classes, like KenzoChainComplex)
the trick is to define our own method to serialize (pickle), which will only serialize the
command, but not the EclObject. We also defined the deserializing method (unpickle),
where the command is executed to reconstruct the EclObject. Therefore, we can input and
output KenzoObjects between processes. We parallelize Algorithm 1 in two ways:

(1) Computing Dn and Dn+1 in two different processes (parallelism by matrices).
(2) Computing separately the columns of Dn and Dn+1 in m processes, and then recon-

structing Dn and Dn+1 (parallelism by columns).

The former is done by means of multiprocessing.pool. Only Python code is necessary
to get parallelism. The latter requires to define new Lisp code that, given E∗, a degree k
and two indexes i and j, computes the columns from i to j of Dk. Additionally, we also have
an optional parameter to select the number of cores to use (to maximize the performance,
by default is set to the available number of logical cores). Finally, we reconstruct each one
of the matrices from their columns and continue with the process.

Our benchmarks show that execution times improve noticeably, although it depends on
the space. For instance, to compute the homology in dimension 13 of the cartesian product
of the Eilenberg–MacLane spaces K(Z, 3) and K(Z/5Z, 7) requires 6627.8s without doing
any parallelism, 6457.28s using the parallelism by matrices and 1734.5s using parallelism by
columns. Thus, the computing time is reduced by around 75% in such an example.

The figures presented above show the execution times (in a logarithmic scale) of the
computation of homology in different dimensions of:

(1) Cartesian product of the Eilenberg–MacLane spaces K(Z, 3) and K(Z/5Z, 7).
(2) Cartesian product of the loop space of the Eilenberg–MacLane space K(Z, 3) and

the 3-sphere.



4 JOSE DIVASÓN, MIGUEL MARCO BUZUNÁRIZ, AND ANA ROMERO

(3) Join product of S and the loop space of S, where S is the wedge of a 2-sphere and
a 3-sphere.

The figures show that computing times do not improve too much using parallelism by
matrices. This is due to the fact that the computation of Dn+1 is usually much harder than
Dn, consuming most of the time. Parallelization by columns improves computation times
with respect to the version with no parallelism, and in most cases in a notably manner. The
exception is in low dimensions, whose execution is almost immediate (less than one second).
In those cases it is slower due to the overhead of running subprocesses, serializations and
so on. The experiments have been performed on an Intel i7-4790, with 8 logical cores. In
principle, one could expect reducing the computing time by a factor of 8, but in this problem
is not possible since the computation of each column does not require the same time: some
of them are harder and produce the bottleneck. Even so, the improvement is important.

2.2. Improving SageMath via Kenzo. Kenzo
relies on the Smith form of integer matrices for
its computations. Because of that, it includes a
quite optimized implementation. With the ap-
propriate glue code, Kenzo implementation can
be used from SageMath. We compared the per-
formance of this approach with the native Sage-
Math implementation (provided by Pari).

It can be seen that Kenzo implementation is
clearly faster than native SageMath, both for
dense and sparse matrices. The difference for
matrices of size 100 is about one order of mag-
nitude. Kenzo has also much more predictable
timings.

References

1. Julián Cuevas-Rozo, Jose Divasón, Miguel Marco-Buzunáriz, and Ana Romero, Integration of the Kenzo
system within SageMath for new algebraic topology computations, Mathematics 9 (2021), no. 7.

2. X. Dousson, J. Rubio, F. Sergeraert, and Y. Siret, The Kenzo program, http://www-fourier.
ujf-grenoble.fr/~sergerar/Kenzo/, 1999.

3. T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational homology, Applied Mathematical Sciences,
vol. 157, Springer, 2004.

4. J. Rubio and F. Sergeraert, Constructive Homological Algebra and Applications, Lecture Notes Sum-
mer School on Mathematics, Algorithms, and Proofs, University of Genova, 2006, http://www-fourier.
ujf-grenoble.fr/~sergerar/Papers/Genova-MAP-2006-v3.pdf.

5. G. Whitehead, Fiber spaces and the Eilenberg homology groups, Proceedings of the National Academy of
Science of the United States of America 38 (1952), no. 5, 426–430.

University of La Rioja. c/Madre de Dios 53. 26006 Logroño, Spain.
Email address: jose.divason@unirioja.es

Universidad de Zaragoza/IUMA.
Email address: mmarco@unizar.es

University of La Rioja. c/Madre de Dios 53. 26006 Logroño, Spain.
Email address: ana.romero@unirioja.es

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-MAP-2006-v3.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-MAP-2006-v3.pdf

	Introduction
	1. Computation of homology groups in Kenzo
	2. Improving Kenzo and SageMath
	2.1. Improving Kenzo via SageMath
	2.2. Improving SageMath via Kenzo

	References

