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Abstract

Both spectral sequences and persistent homology are tools in algebraic topology defined from
filtrations of objects (e.g. topological spaces or simplicial complexes) indexed over the set Z of
integer numbers. A recent work has shown the details of the relation between both concepts.
Moreover, generalizations of both concepts have been proposed which originate from a different
choice of the set of indices of the filtration, producing the new notions of multipersistence and
spectral system. In this paper, we show that these notions are also related, generalizing results
valid in the case of filtrations over Z. By using this relation and some previous programs for
computing spectral systems, we have developed a new module for the Kenzo system computing
multipersistence. We also present a birth-death descriptor and a new invariant providing infor-
mation on multifiltrations. This new invariant, in some cases, is able to provide more information
than the rank invariant. We show some applications of our algorithms to spaces of infinite type
via the effective homology technique, where the performance has also been improved by means
of discrete vector fields.

Keywords: Symbolic Computation, Constructive Algebraic Topology, Multipersistence,
Spectral systems, Effective homology.

1. Introduction

Persistent homology (Edelsbrunner et al.| (2002)); /Zomorodian and Carlsson|(2005)) is a tech-
nique in computational algebraic topology conceived to summarize the information of a filtration
(usually of simplicial complexes) in the form of topological invariants. Homology is used to
study the topological features at each point of the filtration and to track their evolution across
the whole filtration. Since simplicial complexes are in many situations convenient objects to be
associated with data of different type (e.g. point clouds, networks, digital images), persistent
homology represents a versatile method for the analysis of data, which significantly contributed
to the development of topological data analysis.

Spectral sequences (McCleary| (2001))) are a tool in algebraic topology which provides in-
formation on the homology of a complex by means of successive approximations and are also
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defined by means of filtrations. The notions of persistent homology and spectral sequence are
related, as explained in [Basu and Parida (2017) using exact couples, a classical construction in
algebraic topology, complementing a previous approach (Romero et al.[(2014)).

In their original setting, both spectral sequences and persistent homology are defined from
filtrations with indices in Z. Nevertheless, generalizations of both concepts have been proposed
which originate from a different choice of the index set of the filtration. Multipersistence (Carls-
son and Zomorodian|(2009)) is a generalization of persistent homology for filtrations with indices
in Z™. On the other hand, spectral sequences have been generalized in Matschke| (2013) to the
case of filtrations over any partially ordered set, producing the notion of spectral system.

As said, the goal of persistent homology is to provide an invariant which summarizes the
topological properties of a filtration. Persistence diagrams and the barcode are used in persis-
tent homology to capture the birth and death of homology classes across the filtration, and are
complete invariants: they completely characterize (up to isomorphism) an algebraic structure as-
sociated with the filtration, called persistence module. Since there is no complete invariant in
the multiparameter case (Carlsson and Zomorodian| (2009)), incomplete invariants are defined
for multipersistence. The most common one is the rank invariant, which provides useful in-
formation, but it sometimes cannot distinguish between non-isomorphic persistence modules.
Moreover, detecting births and deaths of homology classes is much more complicated in the
multiparameter case.

The main contributions of this work are as follow. We first show the relation between gen-
eralized persistent homology and spectral systems in a general scenario. Then, we propose a
new implementation of programs for multipersistence as a new module for the computer algebra
system Kenzo (Dousson et al.|(1999)), based on our programs for spectral systems (Guidolin and
Romero| (2018))). In addition to computing well-studied invariants of multipersistence in a new
way, which differentiates in some key aspects from all the available implementations, we propose
and compute both a new descriptor and a new invariant for multipersistence. Our programs make
use of the effective homology technique (Rubio and Sergeraert| (2002)), which allows to compu-
tationally handle infinitely generated objects, extending in this way the domain of applicability
of our algorithms. As far as we know, this feature has never been exploited in any other multi-
persistence software. Furthermore, we use discrete vector fields (Forman|(1998)) to improve the
programs and we provide examples of applications.

The programs have been implemented as a new module for the computer algebra system
Kenzo and are available at:

https://github.com/ana-romero/Kenzo-external-modules

This work presents a revised and extended version of our previous conference paper (Guidolin
et al.|(2019)). All the sections include more details, explanations and proofs. Major changes and
extensions are present in the following sections:

e Section [3|has been entirely rewritten to provide more details and results which clarify the
relation between spectral systems and multipersistence.

e Section[5]has been reworked to clarify the intuitive idea behind the descriptor we proposed
in |Guidolin et al.| (2019), confusingly termed invariant therein. The descriptor has been
conceived to extract birth-death information from multiparameter filtrations. We extend
the work by defining a new invariant by means of the spectral system associated with a
filtration, and we show its similarities with the birth-death descriptor, including examples
of computations in Kenzo for both notions.
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e We have added a new section, cf. Section [§] where we present some detailed examples of
applications of our algorithms implemented in the Kenzo system.

The paper is structured as follows. In the next section we present preliminary results about
multipersistence and spectral systems that we need for our constructions. Section [3] shows the
relationship between both concepts. The generalization of the rank invariant and its computa-
tion in the case of finitely generated modules are presented in Sectiond The descriptor, which
provides information about the births and deaths, and the new invariant defined from spectral
system are introduced in Section [5] Section [6] shows how the effective homology technique is
used in our programs to deal with computations involving infinitely generated spaces. We de-
scribe how discrete vector fields are used to improve the algorithms in Section[7} Then, we show
some examples of applications and computations in Section 8] Finally, we present a summary
and possible further work in Section[9]

2. Preliminaries

2.1. Multipersistence

In order to introduce multipersistence, also called multiparameter or multidimensional per-
sistence by some authors, let us first illustrate some fundamental concepts of persistent homology
theory over a fixed field IF. For more details and examples of applications we refer the reader to
the surveys Kerber| (2016); [Edelsbrunner and Morozov|(2012).

A finite Z-filtration of a simplicial complex K is a sequence of subcomplexes

0=..=K 1 =KoC...CK,CKps1 C...CKy=Kns1=...= K.

Geometrical intuition is helpful to understand how the homology groups H,(K), and in par-
ticular the Betti numbers 8, := dimp H,,(K), describe the topological properties of K. Intuitively,
we can say that 8, counts n-dimensional holes of K: 3 is the number of connected components,
1 the number of “tunnels”, 8, the number of “voids”, and so on. The general idea of persistent
homology is then to detect, using homology, the topological features which “persist” across the
filtration. In order to do this, for every pair of indices s < t in the filtration consider the map
5 Hy(K,) — H,(K,) induced in homology by the inclusion of simplicial complexes K, = K;.

Definition 1. For every pair of indices s < t we define a persistent n-homology group H,'(K) as
the subspace of H,(K,) given by the image of the map f,":

H,'(K) = Im(f," : Hy(Ky) > Ha(K)).

We denote its dimension (as F-vector space) B := dimp H,"(K), called a persistent Betti num-
ber.

One says that a homology class is born attime i € Z if it is an element of H,(K;) not belonging
to the image Im f,i_"’. A homology class in H,(K;_) is then said to die at time j € Z if its image
under f,{ 17 is zero, otherwise it is said to persist; the homology classes which persist until the
last step N € Z of the filtration are said to live forever. Note that for this intuition to be rigorous
one has to fix bases of the vector spaces H,(K;) in accordance with the Fundamental Theorem
of Persistent Homology (Zomorodian and Carlsson| (2005))): see (Otter et al., 2017, Remark 5).
Using this terminology, it is easy to see that for all i < j the non-negative integer

il = B =g = BT =B (D
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is the number of distinct n-homology classes that are born at time i and die at time j. As first
observed in|Zomorodian and Carlsson| (2005), the collection {8’} of persistent Betti number is a
complete topological invariant, intuitively meaning that it captures all the topological information
of a filtration. This notion can be made precise by introducing persistence modules (see{Zomoro-
dian and Carlsson| (2005)): considering their decomposition as F[x]-modules, it can be proven
that two persistence modules are isomorphic if and only if they are described by the same collec-
tion of persistent Betti numbers. This invariant is sometimes represented in the equivalent form
of a persistence diagram or a barcode for more effective visualization.

In some applications a setting in which simplicial complexes vary according to two or more
parameters may be more interesting, for example because the interplay of the parameters can re-
veal information on the data. Combining the different parameters, one can build a filtration along
m axes, which potentially encodes much more information than m linear filtrations considered
one at a time.

Definition 2. Consider 7", endowed with the usual coordinate-wise partial order <. A collection
of simplicial complexes (K,)yezn such that K, C K,, if v < w is called a 7" -filtration of simplicial
complexes.

Definition 3. A Z"-filtration (K,)yezn of simplicial complexes is finite if there exists an element
w=Wi,...,Wp) € Z" such that, for each i = 1,...,m, each Z-filtration obtained fixing m — 1
parameters except the i-th, here denoted (K‘f,’))pez, is finite, with

— — g _ O ~ O R — O _
0=...=KR" =RPckc..cRV=R" =. .

Multipersistence (Carlsson and Zomorodian| (2009)) is a generalization of persistent homol-
ogy which deals with Z™-filtrations instead of usual Z-filtrations. The purpose is (again) to use
homology to describe the evolution of topological features across a Z™-filtration of simplicial
complexes. As we have seen, the ultimate goal of persistent homology is to provide an invariant,
an object associated with a filtration which summarizes its topological properties. Unlike the 1-
parameter case, there is no discrete complete invariant for multiparameter persistence. To support
this claim, relying again on the concept of persistence module, one can endow the homology of a
Z"-filtration with the structure of a F[xy, ..., x,,]-module, and consider that the classification of
F[xi,..., x;]-modules is known to be very hard for m > 1. The impossibility to produce a com-
plete invariant in the multiparameter case has been proved in (Carlsson and Zomorodian| (2009)
through algebraic geometry arguments, but more recently also arguments from quiver represen-
tation theory have been proposed (see for instance |(Oudot (2015))). Nevertheless, invariants can
be defined for multipersistence which are informative and relatively easy to compute. One of
the most relevant in applications is the rank invariant, an immediate generalization of persistent
Betti numbers proposed in|Carlsson and Zomorodian| (2009).

Definition 4. Let (K,),czn be a Z™-filtration of simplicial complexes and let v < w in Z". We
denote f," : H,(K,) — H,(K,) the map induced in homology by the inclusion K, — K,, and
define

Y = dimp Im(f,)" : Hy(K,) = Hy(K,)).
The collection of all B,", for every pair of indices v < w and for every n, is called rank invariant

of the Z"-filtration.

Even if in the present work we will focus mainly on the rank invariant, we want to recall
that other invariants have been proposed for multipersistence (Carlsson et al.| (2010); |Chacholski
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et al.| (2017);|Cerri et al.| (2013)); Lesnick and Wright|(2015)); Vaccarino et al.|(2017); Scolamiero
et al.|(2017);|Harrington et al.|(2019); Dey and Xin| (2018)); Miller| (2017)).

It is worth recalling the definition one-critical filtrations, introduced in|Carlsson et al.|(2009),
which are very commonly used in multipersistence since they yield “better-behaved” persistence
modules. A finite Z™-filtration of simplicial complexes (K, ),ezn is called one-critical if, for every
simplex o, there exists exactly one filtration degree v = v(o-) € Z™ such that o € K, — ,«, K,,.
Given a finite set of points X := {XD,...,X®} c 7", where X = (x(lj), o X9 for each
je{l,...,k}, we denote by glb the greatest lower bound, that can be explicitly expressed as

glb(X) = (minx\’, ..., min x).
J J

One-critical filtrations have the following property:

Fact 5. Let (K,) be a one-critical Z"-filtration of simplicial complexes, let X = {X1, ..., X®}
Z" and Y = glb(X). It holds

k

ﬂ Kxi = Ky.

j=1

Let us remark that clearly every Z™"-filtration of simplicial complexes (K,) determines a Z"-
filtration of chain complexes (F,), where F, denotes C.(K,). Although we have chosen to in-
troduce persistence theory and multipersistence using filtrations of simplicial complexes, in the
following sections we will consider the more general framework of filtered chain complexes.
Moreover, besides Z™-filtration, in this work we will consider filtrations indexed over any par-
tially ordered set (poset):

Definition 6. A filtration of a chain complex C. = (C,,d,) over a poset (I, <), briefly called an
I-filtration, is a collection of chain subcomplexes F' = (F;C.);e; such that F;C, C F;C, whenever
i < jin 1. We will often denote the chain subcomplexes simply as F;, forgetting about the grading
of homology, when we are only interested in the filtration index i.

We now briefly review some key definitions of persistence theory in the general framework
of the present paper, namely assuming that indices are elements of a poset (I, <). A persistence
module V is a collection of vector spaces {V;}; and linear maps {f{ : Vi = Vj}icj such that

{’f = 1Id, forall i € I, and {”J‘.Kf = t’f.‘, for all i < j < k. A morphism between the persistence
modules V = {V,-,t’{ :Vi—> Vijand U = {Ui,h{ : Uiy — Uj} is a collection of linear maps
¢ ={g; : Vi = U,}ies such that h{tp,- = tpjf{, for all i < j. If each ¢; is an isomorphism, ¢ is called
an isomorphism of persistence modules. An invariant is a property preserved by isomorphism of
persistence modules. Notice that we are always thinking of a persistence module V as obtained
by applying n-homology to a filtration (F;),e; of chain complexes (or simplicial complexes), so
that V; = H,(F;) and the maps f{ : H,(F;) — H,(F;) are induced by inclusions F; = F;. When
the poset of indices is Z these definitions give us the (single-parameter) persistent homology
case; when the poset of indices is Z™ for m > 2 these definitions describe the multipersistence
case.

2.2. Spectral systems

Spectral systems are a construction that extends the classical definition of spectral sequence (Mc-
Cleary| (2001)) to the case of filtrations indexed over a partially ordered set (poset). Firstly, recall
5



that for classical spectral sequences, which arise from a Z-filtration (F,) ez, we have the formula
(see MacLanel(1963)):
B Z;’q + Fp_1Cp+q

pa = 1 )
d(Z[Hr—l,q—rJrZ) + F/’_l C/’+q

where Z), . = {a € F,Cp4y : d(a) € F_,Cp14-1} and the usual convention is to denote n := p + q.
This formula can be therefore rewritten as

o= F,CoNd ™ (Fy_;Cpo1) + F o1 Cy
P4 Fan n d(Fp+r—1Cn+1) + Fp—lcn ’

where we can see more clearly the interplay of 4 filtration indices: p—r,p—1, pand p+r — 1.
In Matschke| (2013), this formula was imitated and generalized to the case of /-filtrations by
defining, for every 4-tuple of indices z < s < p < b in I, the term

F,C,Nd™ (F.Co 1) + FsC,
Fan N d(FanH) + Fscn )

Snlz, s, p, bl = 2
The collection of all such terms is called a generalized spectral sequence or a spectral system for
the I-filtration (F;);c;. To gain familiarity with the definition, let us remark that the homology
H,(F)) of a chain subcomplex F, = F,C, can be expressed as §,[—o0, —0o0, p, p], for each
p € I, with the convention that F_,, = 0. Similarly, for each s < p in I, the relative homology
H,(F,/F) can be expressed as S ,[s, s, p, p]. In the case of a Z-filtration (F,),cz, the term E;,q
of the associated spectral sequence can be expressed as S,[p—r,p—1,p,p+r—1].

In the rest of this section we include some results and definitions about spectral systems
present in Matschke| (2013)) that we will use in our work. It is worth noting that Matschke’s
results are stated in a more general situation than the one presented above (his work is based on
spectral systems which are not necessarily associated to a generalized filtration, but are defined
in a more general structure named exact couples systems, see Section [3). Thus, with the aim of
making this work self-contained, we have incorporated our own proofs of such results, which
are more direct than the ones present in the original paper, since we can restrict ourselves to the
particular case of spectral systems associated with a generalized filtration.

First of all, let us recall some well-known results on modules which will be used repeatedly
in the proofs. In the next statements we suppose we have fixed a commutative ring R (in the
present work, R is Z or a field IF), and we use the term module to mean R-module.

Fact 7. The following holds:

1. (The modular law). Let N, S, T be submodules of a module M. If T C N, then NN(S +T) =
NNS +T.

2. Let f : M — M’ be a morphism of modules and let N be a submodule of M such that
N C Ker f. Then there exists a unique morphism of modules ¢ : M/{N — M’ such that
@q = f, where q denotes the canonical projection M — M/N. Furthermore, Im¢ = Im f
and Ker ¢ = Ker f/N.

3. Let M be a module, and let S, T be submodules of M. Then (S + T)/T = S/(S N T).
4. LetT €S C M be modules. Then (M/T)/(S/T) = M/S.
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The modular law is stated for example in (MacLane, |1963| p. 318), the other statements are
proven in (Atiyah and Macdonald, 1969, Ch. 2). Using I. and 3. of Fact[7] we can express the
generic term (2)) of a spectral system as

chn N d_l(FzCn—l)
F,Cy Nd(FpCpi1) + F,C, N d~ (F.C\1)’

which will be sometimes convenient in what follows. Notice that the submodule F,C,Nd(FCp1)
at the denominator can be written also as d(F,C,1 Nd~'(F »Cn)).

To simplify notations, in the remainder of this section we denote F;C, simply by F; (the
appropriate degree n is always clear from the context), and denote canonical isomorphisms by
the equal sign.

Sz, s, p,b] = 3)

Lemma 8 (Matschke| (2013)). Letz; < s1 < p1 < by and 25 < s, < py < by be two 4-tuples of
indices in I with 71 < 25, 51 < 82, p1 < p2 and by < by. Then the inclusion of chain subcomplexes
induces a well-defined map

C:Sulz1, 51, p1, b1l = Sulz, 52, p2, bo]
for all n.

Proof. Express both S ,[z1, 1, p1,b1] and S, [22, 52, p2, b2] as in and consider their numera-
tors. Since z; < 72 and p; < p,, we have an inclusion j : F, Nd~'(F,) < F,, nd '(F,,).
Now, consider the canonical projections g; : Fp, N d’l(FZI) — Sulzi, 81, p1,b1] and ¢
F, N d‘l(Fzz) — S,[22, $2, 2, b2] and the composition f = g, j. We have

Ker f = F,, Nd" ' (F,) N (Fy, Nd(Fy,) + Fs, N d"'(F_,)).

Since z; < 22, 1 < 82, p1 < pp and by < by, the denominator Ny := F,, Nd(Fp,) + Fy, ﬂd‘l(le)
of S,lz1, 81, p1,b1] is a submodule of Ker f, so ¢ is well-defined as the unique morphism such
that £q, = f. O

For the sake of readability, we avoid decorating the maps ¢ with indices denoting the domain,
the codomain and the degree n. Observe that, with the notations of the previous proof, Ker ¢ =
Ker f/N, and
Fp,Nd™ ' (F,)+ N,

N, ’

Imé=Imf= 4)

with Ny := F, Nd(Fp,) + Fs, Nd™'(F,).
Lemma 9 (Matschke|(2013)). Foranyz < p; < p» < p3 < bin I, the maps induced by inclusions
produce a short exact sequence
¢ ¢
0— Sn[Z, P1, D2, b] - Sn[Z»pl,pS, b] - Sn[Z, P2, P3, b] - 0’ (5)
for all n.

Proof. We prove exactness at the middle term. Using the explicit formulas for Ker ¢’ and Im ¢
stated above, we see that
Ker ! _ Fp,Nd ' (F)N(F, Nd(Fp)+Fp,Nnd"'(F.))

=~ = ().
Im¢ Fyp,NdY(F)+F, Nnd\(F,)

Similarly, using the explicit formulas for Ker ¢ and Im ¢’ one can easily check that ¢ is injective
and ¢’ is surjective. O
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Lemma 10 (Matschke| (2013)). Given an I-filtration (F;)ic; for a chain complex C, and three
4-tuples of indices satisfying the condition

IA

23 53 < p3 < Db;
I I
7 < s < pp £ b
I [
71 < 851 £ p1 £ b

the differential of the chain complex C, induces differentials ds, d, between the terms

d- d:
S we1l23, 83, P3, 03] = S [z, 52, p2, b2l = S, 1lz1, 515 p1, b1l

and by taking homology we obtain

Ker dz
Im d3

= S,[s1, 82, p2, p3l.

Proof. We adapt the arguments of (Weibel, |1994, Construction 5.4.6) for classical spectral se-
quences to our current choice of indices in /. To show that the induced differentials are well-
defined, let us focus on d, : S,[22, 52, p2,b2] — S,-1lz1, 51, p1,b1]. Similarly to the proof of
Lemma express both S ,[z2, $2, p2, b2] and S ,_1[z1, 51, p1,b1] as in (3)) and consider their nu-
merators. Since 75 = pj, the image d(F,, ﬂd’l(Fzz)) = F,,Nd(F,,) is contained in ', ﬂd’l(Fz] ).
Let g be the morphism

_ d _ q
Fpo Nd™\(Fy) > Foy Nd(Fy) = Fp 0 d ™ (F) = Syl st prbil,
where ¢, is the canonical projection. We have

Kerg = {x € F,,Nnd '(F,) | d(x) € F,, Nd(Fy)+ Fs, nd""(F,))
=Fp, Nd "(Fp)+F,,nd(Fy).

p2
Since zo = p; and s = by, the denominator N = Fp, Nd(Fp,)+F, Nd~\(F,,) of S ,[z2, 52, P2, b2]
is contained in Ker g. As a result, the map d, is well-defined on the quotient.
Let us prove now the last part of the claim. Clearly, Kerd, = Kerg/N and Imd; = (F,, N
d(F,,)+ N)/N, so

Kerdy, _ Fp,Nd\(Fy)+Fp nd"'(Fp) _ Fp, nd'(Fy)

Imd;  F,Nd(F,)+F,Nd(F,)  F,NdF,)+F,nd(Fy)

= Sn[S1, 52, p23p3]

O

Notice that generalized spectral sequences are in many aspects similar to classical ones. For
example, Lemma |10| extends what in the classical case is the process of obtaining terms of the
page r + 1 by taking homology at page .

The paper Matschke| (2013) includes some explicit examples of spectral systems which gen-
eralize for instance the classical spectral sequences of Serre, Eilenberg—Moore and Adams—
Novikov. However, as in the case of spectral sequences associated with a linear filtration, no
algorithm is provided to compute the different components when the initial chain complexes

8



are not finitely generated. Thanks to the method of effective homology (Rubio and Sergeraert
(2002)), in |Guidolin and Romero| (2018)) an algorithm is developed for computing spectral sys-
tems of spaces (possibly) of infinite type; the special case of the Serre spectral system is treated
in|Guidolin and Romero|(2020). The corresponding programs were implemented as a new mod-
ule for the system Kenzo (Dousson et al.| (1999)), a symbolic computation software written in
Common Lisp and devoted to algebraic topology, solving in this way also the classical problems
of spectral sequences: determining differential maps and extensions. The effective homology
method was also used by the third author in [Romero et al.| (2006) for computing spectral se-
quences in the case of Z-filtrations.

3. Relation between spectral systems and multipersistence

In Basu and Paridal (2017), a relation between spectral sequences and persistent homology
(both defined for Z-filtrations and taking homology over a fixed field F) is proved by means of
the classical notion of exact couples introduced in Massey| (1952). Exact couples are collections
of long exact sequences, with an additional hypothesis on the involved modules, which can be
derived to obtain new exact sequences.

More precisely, each exact couple is a S-tuple (D", E",i", j', k"), where D", E" are [F-vector
spaces and i", j", k" are linear maps such that the triangular diagram

s
\ / 6)
is exact at each vertex: Ker(j") = Im(i"), Ker(k") = Im(;") and Ker(i") = Im(k").

Associated with a Z-filtration (F,) there are exact couples (D', E",i", j', k") where, for each
r>1,D" = EB Hf,’f:rr "and E" = EB o Ep.q» with the linear maps i”, j” induced by inclusions
and the linear map k" induced by the dlfferentlal Each exact couple (D", E",i", j*, k") consists of
a collection of long exact sequences

k

Lp+r=2 ¥ =1 J 17 +1
RN S ANy 5 S Er Hf,rp Logrrtle L 7)

1 n-1

Using the simple fact that in an exact sequence of finite dimensional F-vector spaces

Lusviwd o )

it holds dimp V = (dimp U — dimp Im f) + (dimp W — dimy Im /), in|Basu and Paridal (2017) the
following relation is obtained:

. +r—=1 —1,p+r—1 rp=1 _ -,
dimp E; =phP P +ﬁp . Z,lp, )

for all integers p, q,r with r > 1 and n := p + g. This relation can be inverted, to express every
persistent Betti number 3" as a combination of the dimensions dimg E}, .- The existence of these
relations intuitively means that the collections of integers {35’} and {dimp E}, )} carry the same
amount of topological information about the filtration.
In this section we show how the relation (9) can be generalized for the case of filtrations over a
poset I (with some additional hypotheses), a result contained in the PhD thesis |Guidolin| (2018)).
9



A relevant part of the work consists in rephrasing in our generalized setting the arguments of
Basu and Paridal (2017). First of all, let us denote by —oo the minimum of the poset /, which can
be added “artificially” to the poset if needed, and let us suppose that F_,, = 0. This assumption
is consistent with the fact that we are ultimately interested in finite filtrations, having zero chain
groups for small enough filtration indices.

The notion of exact and derived couples is generalized for /-filtrations in (Matschke| 2013,
Definition 4.1) and referred to by the expression exact couple system. An exact couple system is
again a collection of particular long exact sequences, where now the involved spaces are indexed
over the poset /. Incidentally, exact couple systems can be seen as a way to define spectral
systems that is even more general than the one we presented in Section For the scope of
the present work, however, we only need a specific property that exact couple systems share with
classical exact couples (Proposition[TT|below), which intuitively consists in a method to produce,
from a collection of long exact sequences, a new collection of long exact sequences.

Before employing some long exact sequences of terms of the spectral system to deduce the
sought relation, we introduce some relevant definitions. Firstly, let us state the natural general-
ization of the rank invariant (Definition[d)) that we will use in what follows. Given an /-filtration
(F))ie; and v < win I, we define

ﬁn(v’ w) = dimp Im(f : Hn(Fv) — H,(F,)),

where ¢ is the map induced by the inclusion F, — F\,; we call rank invariant the collection of
all B,(v,w), for any n and any v < w. The map ¢ : H,(F,) — H,(F,) has been denoted by f,""
in Section [2]in the case of Z"-filtration. In the general case of a spectral system associated with
an [-filtered chain complex, however, we prefer to use the notation £ for all the maps induced by
inclusion, which are well-defined whenever the assumptions of Lemma@] hold.

Let us now introduce the class of posets of interest for the present section. A partially ordered
abelian group (I, +, <) is an abelian group (/, +) endowed with a partial order < that is translation
invariant: for all p,t,¢ e [,ift <t thenp+t<p+7¢.

We now state a property of exact couples which we will apply to spectral systems associated
with 7-filtrations, with I a partially ordered abelian group.

Proposition 11 (Massey| (1952); McCleary| (2001)). Let (D, E, i, j, k) be an exact couple. The
map 0 = jk is a differential 0 : E — E and there is an exact couple (D', E’,1', j’, k'), called the
derived couple, such that D’ = Imi and E’ = Kerd/Im 0.

Remark 12. The maps i’, j', k' of Proposition |l I| are respectively induced by i, j, k. For more
details, we address the reader to (McCleary, 2001, § 2.2). As we show below, our application to
spectral systems over a partially ordered abelian group I consists in fixing p,u € I, withu > 0,
and considering, for some integer r > 1,

D = (P Sal-o00,~c0, p + hut, p + (o + r = Dyul,
n,heZ

E:= D Sup+h-rup+h=1up+hup+h+r-1ul
n,heZ.

Given an [-filtration with [ a partially ordered abelian group, consider at first a collection of
“simple” long exact sequences of relative homology defined from the filtration, like in the case
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of exact couples:

1 8, [=00,=00,5,5] 5> S, [~00, =09, p, p > S,[5,5, p, p]

5 §1[-00, 00, 5,51 § -1 [ =09, 00, p, pl = -
for each s < p in I. Denoting v := p — s and imitating the classical construction of the derived
couple (Proposition[TT|and Remark[T2), we obtain long exact sequences

£ §,[=09,200, p = ¥, p] > S,[=00, =00, p, p + V] 5 $,[p = 20, p = v, p, p + V]
5 8al=00, =00, p = 20, p =] 5§, 4[=00,~00, p = v, p] > -

where the involved vector spaces are determined as images Im ¢ or applying Lemma The
maps denoted by £ are again induced by inclusion, and k is induced by the differential. This
construction clearly can be iterated, yielding for each integer r > 1 long exact sequences of the
form

oo > §y[—00, —00, p—v, p+(r-2)v] 5 Sul-oo, —oo, p, p+(r—1)v] 5 Sulp=rv, p=v, p, p+(r=1)v]
5 8100, =00, p = 1V, p = V] 5 S, [ =00, ~00, p — (r = v, pl = -+

With a slight modification of this argument, for any element w > 0 of I we can obtain long exact
sequences of the form

¢ ¢

i Sn[_oo’_OO,p_V,p_v"‘W]_) Sn[_oo9_oo9p3p+w]_> Sn[p_v_w9p_v,p7p+w]
k ¢

= Spi[-00,—c0,p—=v-w,p-v] > §,_1[-00,~0c0,p—w,p] = --- . (10)

Exactness can be proven either directly or considering the filtrations with indices ... < p—v—w <

p—v<p<p+w<...Recalling equation (@), observe that if p < u and b < tin I then

Sn[—OO, -0, p, [] = Im(€ : Sn[—OO, —00, p7 b] - Sn[_oo’ —oo, U, t])' (11)

Since in particular S ,[—oco, 00, p,f] = Im(¢ : H,(F,) — H,(F;)), which yields by definition
dimp S ,[—00, —00, p, ] = Bu(p, 1), from and using the simple fact stated after we can
obtain the generalization we sought for.

Theorem 13. Let (S,[z, s, p, b]) be the spectral system associated with an I-filtration, with I a
partially ordered abelian group. For all p,v,w € I such that v,w > 0, the dimension dimp S ,[p —
V—w,p—v,p,p+wlisequal to

ﬂn(p’p + W) _Bn(p -v,p+ W) +ﬁn71(p —vV=w,p _V) _ﬁn—l(p —vV- W,P) (12)

Remark 14. Even if the choice of p,v,w € I in Theorem|[I3|allows to independently select only
three out of the four indices of a term S [z, s, p, b, for example z, p, b, we can intervene on the
fourth index using Lemma[9} if z < pi < p» < p3 < b are indices in I, then

dimg S [z, p1, p3, b] = dimp S [z, p1, p2, b] + dimg S [z, p2, p3, b].
11



Consider now a finite Z™-filtration of simplicial complexes (K,),cz» and the induced Z"-
filtration of chain complexes (F)),ezn. Theorem@ together with Remark[]zfl, allows to express
the dimension of each term S ,[z, s, p, b] of the associated spectral system as a combination of
some 3;". Notice that, using a recursive argument, the relation can be inverted, allowing to
express every 3, as a combination of the dimensions of some terms S, [z, s, p, b]. This allows
to conclude that the spectral system over Z™ carries the same amount of topological information
on the filtration as the rank invariant of Definition El, as the collections {dimp S [z, s, p, b]} and

"1 can be determined one from the other.

In Section [5.2] we present a second application of the previous argument, considering a dif-

ferent poset related to multipersistence.

4. Generalizing the rank invariant in the finite case

As we mentioned in Section |2} a number of invariants for multipersistence have been pro-
posed, and a few implementations are available. Let us name some of them, addressing the
interested reader to recent works like|Dey and Xin| (2019)) for a more complete list of references.
In|Carlsson et al.[(2010) the authors propose for the first time an efficient algorithm to compute
invariants associated with resolutions of modules constructed from Z™-filtrations, although some
restrictive assumptions are made on the type of filtrations; a more general framework is studied
in |Chacholski et al.| (2017); efficient algorithms for 2-parameter persistence are presented in
Lesnick and Wright| (2019)). In|Cerri et al.|(2013)) the study of a Z"-filtration is reduced to a fam-
ily of Z-filtrations corresponding to linear sections with different slopes. This idea has been fur-
ther developed in|Lesnick and Wright| (2015), together with the theoretical bases of the software
RIVET for visualizing 2-parameter persistence. The paper [Harrington et al.|(2019) presents an
interesting approach via commutative algebra. Efficient methods to deal with a particular class of
2-parameter persistence modules are introduced in|Dey and Xin|(2018). A different special class
of 2-parameter persistence modules that admits a decomposition with “simple” indecomposables
is studied in |(Cochoy and Oudot| (2020). In |Scolamiero et al.| (2017) an algebraic definition of
noise (negligible topological features) for multipersistence is introduced and some related in-
variants are studied. Real multipersistence modules are studied in Miller| (2017); to this aim,
downsets (see below) in R” play a key role. Generalized persistent homology and its relation
with filtrations of weighted graphs is studied in|Vaccarino et al.| (2017).

Trying to generalize the existing programs, each of which was developed to deal with partic-
ular situations, we propose a new implementation of multipersistence as a new module for the
system Kenzo, making use of our previous programs for computing spectral systems presented
in |Guidolin and Romero| (2018). Our new programs are in several respects more general than
the existing ones, since they compute multipersistence over integer coefficients and they can be
applied to filtrations over any poset. Moreover, as we will show in Section[6] thanks to the effec-
tive homology technique our algorithms can be used to determine multipersistence of spaces of
infinite type, a unique feature among the available software for multipersistence. Our programs
are written in the Common Lisp programming language, making use of functional programming
to deal with infinitely generated spaces and general posets. The implementation of the effective
homology technique makes our programs less efficient than available implementations for com-
putations in multipersistence; however, this is a necessary trade-off for extending the domain of
applicability of our algorithms to infinitely generated chain complexes and filtrations over gen-
eral posets. For this reason, we do not include in the present work a computational efficiency

12
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Figure 1: Small simplicial complex filtered over Z2.

comparison with other software, since our aim is to complement the available implementations
with new and unique features rather than improve their computational speed.

Since we start from persistent homology groups and the rank invariant, we first extend the
computation of these notions to the case of I-filtrations. Let (F;);c; be an [-filtration of a chain
complex C, and v < w in I. We consider the quotient group

o F,C,NKerd,
H s ——

= , 13
" Fan N d(Fan+l) ( )

called a (generalized) persistent homology group, which clearly represents the homology classes
in H,(F,) which are still present in H,(F,,), that is, it corresponds to Im(¢ : H,(F,) — H,(F)).
When computing this group with coefficients in a field, its rank corresponds to the rank invariant.
In our case, we have developed a Kenzo function computing the group with integer coeflicients,
producing not only the rank but also the generators and the torsion coefficients. Our programs use
some previous functions computing spectral systems developed in|Guidolin and Romero| (2018)),
since some of the subgroups appearing in the quotient (I3) are similar to the subgroups appear-
ing in the spectral system terms (2). Once these subgroups are determined, the corresponding
quotient can be computed by means of diagonalization algorithms of matrices in a similar way to
the algorithm used to compute homology groups by means of the Smith Normal Form technique
(see|Kaczynski et al.| (2004)).

As a didactic example, let us consider the chain complex endowed with a (finite) Z>-filtration
associated with the filtered simplicial complex of Figure[I] which shows, corresponding to each
of the points (1, 1), (1,2), (1,3),...,(3,3) 7% a simplicial complex constituted by 0-simplices
(points a, b, c,...), 1-simplices (edges ab, ac, ...) and 2-simplices (the triangles bcd and cde).
For example, in degree 1, there are two homology classes (1-dimensional holes) which live in
F() and still live in F(57), so that Hil’z)’(z’z) = 72, with generators given by the combinations
lxab—1xac+1xbcand —1*ab+1xac—1%bd+ 1*cd. However, there is only one class
which lives in F(; 7y and still lives in F(33), so that Hﬁl’l)’(m) = Z, generated in this case by the
combination 1 xab — 1 xac + 1 = bc. The second class has died because the triangle bcd has been
filled.

> (multiprst-group K ’(1 2) (2 2) 1)
Multipersistence group H[(1 2),(2 2)]_{1}
Component Z
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Figure 2: Second filtration for the small simplicial complex filtered over Z2.

Component Z

> (multiprst-gnrts K ’(1 2) (2 2) 1)

({CMBN 1}<1 * AB><-1 * AC><1 * BC>

{CMBN 1}<-1 * AB><1 * AC><-1 % BD><1 * CD>)
> (multiprst-group K ’(1 2) (3 3) 1)
Multipersistence group H[(1 2),(3 3)]_{1}
Component Z
> (multiprst-gnrts K ’(1 2) ’(3 3) 1)

({CMBN 1}<1 * AB><-1 * AC><1 * BC>)

In this case, we can observe that all the persistent homology groups are free; in Section [ we
will present meaningful examples of results with non-null torsion coefficients.

Let us finish this section by observing with a simple example that the rank invariant is not
complete, in the sense that sometimes it is unable to discriminate between different filtrations
(yielding non-isomorphic persistence modules). To this aim, let us consider a second filtration for
the example of Figure[I] given by Figure[2] The persistence modules in 1-homology associated
with the two filtrations are not isomorphic, but the rank invariant of both filtrations is the same,
as one can easily verify.

5. A descriptor for birth-death of homology classes and a new invariant

Consider the case of 1-parameter persistent homology, defined from Z-filtrations. We recall
the definition

ij . FiCand(F;Cpi) + FiiCy F,.C,Nnd(F;Cy1)
" FiCyNd(Fjo1Cpit) + FioiCy — FiCy NA(Fj-1Cry1) + d(FjCrs1) N Fioy Cy

(14)

of birth-death modules given in Romero et al. (2014), therein denoted BDi;j . When homology is
computed over a field, the rank of M,’ is given by the quantity u,’ of equation , representing
the number of homology classes which are born at step i (meaning that these classes are present
at step i but they are not present at the previous step i — 1) and die at step j of the filtration
(meaning that they are present at the previous step j— 1 but they are not present at step j because
they are boundaries or they merge with another class).
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For multipersistence, the concepts of birth and death of a homology class cannot be imme-
diately generalized from the 1-parameter case. For example, in Figure [I| we cannot say that the
1-homology class (1-hole) corresponding to the generator 1 = bc — 1 % bd + 1 * cd is born at a
unique particular position of Z? (because it is present at both positions (1,2) and (2, 1) and for
both of them it is not present at a previous step). As we have seen, this issue can be solved by
considering one-critical filtrations (Section [2), which arise quite naturally in some applications.
A more serious problem is that, because of the lack of a decomposition theorem for multiper-
sistence modules like the one for single-parameter persistence, which is a consequence of the
complexity of indecomposables for multipersistence modules (see Section [2.1] Buchet and Es-
colar| (2018), |[Dey and Xin|(2019)), the definition of birth and death can depend on the choice of
bases for each H,(F).

Interesting approaches to extend the ideas of birth and death of homology classes to multi-
persistence are proposed in the papers [Harrington et al.|(2019) and [Miller; (2017). For the scope
of this work, the most relevant approach is described in the PhD thesis Thomas|(2019): through
the notion of multirank invariant, the author establishes a rigorous way for counting births and
deaths across a generalized filtration. Nonetheless, an additional hypothesis on the positions to
compare in the filtration is needed in order for the count of births and deaths to agree with the
intuitive idea, like in the case of 1-parameter persistence. In what follows we choose a more
“empirical” apporach, mimicking the formula (T4) to define a descriptor which, as we will see in
some examples, is able to extract birth-death information from a given multiparameter filtration
that agrees with the intuition of birth and death of homology classes. The computation of the
descriptor is obtained via a modification of our Kenzo programs computing spectral systems. In
this section, we also introduce a new invariant, defined using the spectral system associated with
a filtration, and observe that it has some similarities with the birth-death descriptor. In order to
define these new notions we consider, along with Z™, the poset of downsets of Z, which is used
in [Matschke| (2013)) to gain more options in the construction of generalized spectral sequences
and which will allow us to say that a homology class is born or dead at different positions in Z™.

Definition 15. A downset of Z" is a subset A C Z™ such that if Q < P in Z" and P € A, then
Q € A; the poset D(Z™) is the collection of all downsets of Z"', endowed with the partial order
given by inclusion C.

Filtering data with respect to m parameters produces in a natural way, in addition to the
Z™-filtration (Fp)pez» we used in the previous sections, also a D(Z™)-filtration (F,) defined, for
each p € D(Z™), as F), = 3 pe, I'p. Moreover, we will observe in Section@that computing the
terms of the spectral system over D(Z™) produces more topological information than the rank
invariant. In particular, (some terms of) the spectral system of the filtrations defined in Figures ]
and are different; the spectral system of the filtration over D(Z™) can therefore be considered
as an invariant associated with a filtration which allows to discriminate between a larger number
of topological features.

At this point, it seems natural to investigate possible relations between the rank invariant and
the spectral system over D(Z™), as we did in Sectionfor Z"-filtrations. In this case, since there
is no natural additive structure on D(Z™) that turns it into a partially ordered abelian group, we
have to be more subtle. The easiest way to construct a partially ordered abelian group starting
from D(Z™) is to consider the translation of a fixed downset p € D(Z™). Denoting T, the family
of all downsets of D(Z™) obtained translating p by any v € Z™, we see that (T, translation, C)
is a partially ordered abelian group. We can now apply the results in Section [3] including (I0),
using the poset (T, translation, C), and combining this with results on isomorphic terms within
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a spectral system (Matschke, 2013| Lemma 3.8) one can obtain interesting relations, the study of
which is outside the scope of this work.

For the sake of exposition, we organize the rest of this section in two parts, respectively
devoted to the descriptor for birth and death of homology classes and to the new invariant defined
from the spectral system. Both subsections contain examples of computations with our programs
in Kenzo.

5.1. The birth-death descriptor

We introduce the descriptor in the most general framework, starting from a general Z™-
filtration (Fp) and considering F), := X pe, Fp for any p € D(Z™), even if the most interest-
ing uses are arguably in some particular situations, for example restricting the “shape” of the
downsets p or assuming that the Z"-filtration (Fp) is induced by a one-critical (see Section [2))
Z"iltration (Kp) of simplicial complexes.

Consider a downset p € D(Z™). We are interested in D(Z™)-filtrations canonically associated
with finite Z"-filtrations, so we are actually working with the poset of downsets D(ZY). A
collection {Py, ..., Pi} of points of Z™ is the minimal set of generators of p if it is the minimal
set such that, for each point of P € p, it holds P < P; for some j € {1,...,k}. In this case,
we denote F pCp = ﬂ’j‘.:lF P,Cn. Analogously, consider a downset b € D(Z™) and its minimal
set of generators {By, ..., B,}. We now give our definition of a descriptor for birth and death of
homology classes.

Definition 16. Let (Fp) be a Z™-filtration and consider the canonically associated D(Z™)-
filtration (F, '= Y. pe, Fp). For each p < b in D(Z™) we define

[p:b
Mp,b — Fn
T 4pb o ppb
A, + By,

where the numerator is
A ’b . A A
Frzz) = Fan N d(Fan+l)

and the denominator has summands
pb . _ b (Db
An '_ZQFn mFQCn"'Z)(Fn nFXCn’

with the sums respectively ranging over Q € L™ not comparable with the points P; and X €
p\{P1,..., P}, and

B = S FPY N d(FRCrit) + Sy FP? N d(FyCry),

with the sums respectively ranging over R € Z™ not comparable with the points B; and Y €
b\{Bi,...,B}.

Intuitively, the groups M~ b try to capture the homology classes being born in F,, and dying
in F;, where now the downsets p and b may be generated by several points in Z™ to deal with
the complexity of a filtration with m parameters and the fact that a homology class can appear
and disappear at different non-comparable positions. As we said before, the notions of birth
and death are not rigorous as in the (single-parameter) persistent homology framework because
they depend on the choice of bases for each H,(F,). To understand the idea behind Defini-
tion let us focus at first on the numerator £/ = F 2Cn N d(FyCpy1) of MY * The fact that
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F pCn = ﬂ’;.:lF ijn tells that we want to consider n-cycles that have a common representative
at all positions {Py, ..., Px}, which bound an (n + 1)-chain of FyCpiy = n;ZIFBjC,,H. Notice

that, depending on the application, the dependence of M7 * on a common representative may be
a relevant issue. At the denominator of M7 *_ the term A,’{‘b is given by the elements of £ " that
appear also in positions non comparable with Py, ..., P; or “before” these points, while the term
Bﬁ’h is given by the elements of F 5’}’ that become boundaries also in positions non comparable
with By, ..., B, or “before” these points.

As we mentioned, Definition [I6]becomes particularly interesting in some simpler situations.
First of all, observe that if m = 1 the descriptor coincides with the module of (I4), foralli < j. To
better understand the definition for m = 2, let us consider downsets generated by just one point
in Z2, which is equivalent to considering a 7Z2-filtration (Fp). Moreover, let us assume that the
filtration is finite: recalling Definition[3] this means that the relevant spaces of the filtration have
indices in the finite grid with lower-left corner (0, 0) and upper-right corner w = (w, w,) € 72,
In this case for each P = (py, p2) < B = (b}, b») in Z? we have

where
FPP =FpC, N d(FpCps1),
APB =FPE 0 Fip 10 Con + FEB 0 Flyy po-1yChs
BPP =FP% N d(F -1, Cr1) + FFP 0 d(F 0, py-1)Cris1)-

If the filtration (Fp) is induced by a one-critical Z>-filtration (Kp) of simplicial complexes, the
terms A2? and BY® in the above formula can be further simplified by virtue of Fact

PB ._ pPB P.B
AT =T O F 1) Con + F7 0 F iy py-1)Cs
BYP =FPP 0V d(Fp,-10,)Cri1) + FP 0 d(F 5,1y Cirt).

Notice that, again by Fact 5] for one-critical filtrations the case of downsets generated by just
one point in Z? covers all possibilities. The example we just presented for Z> can be easily
genera;ized to Z"-filtrations. In Section[5.2] we introduce an invariant that inspired the definition
of MY,

Using again our previous programs for computing spectral systems, we have implemented in
Kenzo functions for computing the groups M~ * which, as before, produce not only the groups
but also the generators. For example, let us consider again the filtered complex in Figure [T] and
the downsets p = ((1,2),(2, 1)) (meaning generated by {(1,2),(2,1)}) and b = ((1,3),(3,2)).
The group Mf b is equal to Z, with generator 1 * bc — 1 * bd + 1 * cd. This means intuitively that
the homology class corresponding to the boundary of the triangle bcd is born at positions (1, 2)
and (2, 1) and dies at positions (1, 3) and (3, 2).

> (multiprst-m-group K (list °(1 2) ’(2 1))

(1ist (1 3) ’(3 2)) 1)
Multipersistence group M[((1 2) (2 1)),((1 3) (3 2))]_{1}
Component Z
> (multiprst-m-gnrts K (list ’(1 2) °(2 1))

(list (1 3) (3 2)) 1)
({CMBN 1}<1 * BC><-1 *x BD><1 *x CD>)
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One of the advantages of the use of the poset D(Z™) and the definition of this new descriptor
is that it makes it possible to distinguish filtrations which, as we have seen in Section 4] some-
times have the same rank invariant. Let us consider again the generalized filtrations described in
Figures [T]and 2] (with the same rank invariant) and the downsets p = ((1,3),(2,2),(3,1)) and b =
((2,3),(3,2)); the group Mf’b is equal to Z in the first filtration, with generator 1 xcd—1xce+1xde
and the 0-group (NIL) in the second one (because in that filtration these homology class is born
at a smaller downset, ((1, 3), (2, 1))).

> (multiprst-m-group K (list ’(1 3) ’(2 2) (3 1))
(list (2 3) (3 2)) 1)
Multipersistence group M[((1 3) (2 2) (3 1)),((2 3) (3 2))]1_{1}
Component Z
> (multiprst-m-gnrts K (list ’(1 3) ’(2 2) ’(3 1))
(1list (2 3) (3 2)) 1)
({CMBN 1}<1 * CD><-1 * CE><1 x DE>)
> (multiprst-m-group K2 (list (1 3) ’(2 2) ’(3 1))
(1ist (2 3) (3 2)) 1)
Multipersistence group M[((1 3) (2 2) (3 1)),((2 3) (3 2))1_{1}
NIL

5.2. A new invariant defined from the spectral system

In this subsection we focus on the behavior of the differential in a spectral system and use it
to define an invariant for persistence over a poset I. We start by studying the case of classical
spectral sequences (associated with Z-filtrations), a situation where our new invariant defined
as the image of differentials coincides with Definition [I6]and (T4). We then extend our defini-
tion to filtrations indexed over general posets, proving that it yields an invariant for generalized
persistence.

Given a Z-filtration (F,), consider two 4-tuples of indices as follows:

p £ p+r—=1 < p+r £ p+2r-1
I I
p-r < p-1 < p < p+r-1

The differential (d],,)n+1 = d’, D ET — Ej, , of the rth page of the spectral sequence

) A U ptrg-rtl p+rg-r+1
can be written in the following equivalent way (see Lemma [T0):

(dpedns1 2 Suntlpp+r=Lp+rp+2r—11-S,p-rp-1Lpp+r-1].
Let us consider the image of this differential:

Fan N d(Fp+rCn+l)

I8P = Im(d, Y1 = :
e S N d(F ey 1Cre) + FpiCo 1 d(F s o)

5)

Working over a fixed field F we have the following result:

Proposition 17. Given a Z-filtration (F ,), knowledge of {dimg 17" "\ and the dimensions of the
0-page of the spectral sequence {dimp Equ} is equivalent to knowledge of the dimensions of all
the terms of the spectral sequence {dimg E), }.
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Proof. For r = 0, consider the chain complexes

0 dg-q*rl 0 dqu 0
o E T By Ep o
and observe that, for example, dimp Eg’q . = dimg Kerdgyqul + dimp Im d?;,q ., and, since the
1-page is obtained by taking homology, dimy E 11,)(] = dimy Ker dggq + dimy Im dg’q .1+ Therefore,
knowing dimy Im dg’ g and dimp E?,,q for all p and ¢ allows to determine dimy Ker dg,q and thus
dimp E[l,,q, for all p and ¢. The result is obtained by iterating this argument. O

As explained inBasu and Parida/(2017) and Section for Z-filtrations the collection {dimp E ;’ q}
is an invariant equivalent to persistent Betti numbers {3}'}. Propositiontells therefore that also
{dimp 77P™"}, together with {dimp Ezo,)q}, is an invariant equivalent to persistent Betti numbers.
Notice that, since Elo,’q = F,C,/F,_1C,, the collection {dimg Eg’q} contains information equiva-
lent to {dimp F,C,}.

We introduce now the natural generalization of 77”"" for filtrations indexed over a general
poset I. Let (F;) be an I-filtration, and consider two 4-tuples of indices as follows:

7 £ s < pp £ by
I I
71 < 851 £ p1 £ b

As before, by Lemmathere is a differential

dny1 = Snr1lz2, 82, P2, b2l = Sulz1, 51, p1. b1l
We imitate and define

Fp1C11 N d(szan)
Fplcn N d(FSZCVl+1) + Fslcn N d(szCnJrl).

Iyls1, p1ss2, p2]l = Imdyyy = (16)
Notice that the indices z; and b, do not influence the expression (I6), which depends only on the
indices 51 < p; < 57 < pr.

In order to show that {Z,[s|, p1, 52, p2]} is an invariant, let us review some facts on morphisms
of I-filtered chain complexes, which are defined generalizing in the natural way the notion of
morphisms of Z-filtered chain complexes:

Definition 18. Ler (C., F) and (C., F’) be two I-filtered chain complexes, respectively endowed
with filtrations F = (Fy)ie; and F' = (F})ie;. A morphism of [-filtered chain complexes f :
(C.,F) > (C.,F")isachainmap f : C. — C., compatible with the filtrations, that is satisfying

f(FiC,) C F/C,
foralliel

Denote by (S [z, s, p, b]) and (S,[z, s, p, b]) the spectral systems associated respectively with
the I-filtered chain complexes (C., F)) and (C’, F’). A morphism of [-filtered chain complexes
f:(C.,F) — (C., F') induces, for any 4-tuple of indices z < s < p < b in I, morphisms

£ Sz, 5, p,b] = S}z, 5, p, b
19



that commute with the differentials of the spectral systems. The construction of the spectral sys-
tem associated with an /-filtered chain complex is functorial, meaning that for each 4-tuple of in-
dices z < s < p < bitholds Id**”* = Idg|, ; ) and, for each pair of morphisms f, g of I-filtered
chain complexes such that the composition gf is defined, it holds (g f)>*P* = g&*PP fos:rb Re-
calling Fact[7] the last equality appears evident from the following commutative diagram:

Fpnd™\(F) —I F nd\(F)) — FJnd\(F))

Js ls lr
2,8,p.b z,5,p.b

S ’ n ’”
Sulz.s.p.b] = S}lz.5.p.b] ——— S}/[z.5.p.bl.
We now prove that {7 ,[s], p1, 52, p21} is an invariant for generalized persistence over a poset
I. Notice that we use a stronger hypothesis than just isomorphism of persistence modules.

Proposition 19. If a morphism of I-filtered chain complexes f : (C., F) — (C., F’) induces
isomorphisms of persistence modules, then for each 7 < s < p < b in I it induces isomorphisms

S Salz. 5. p.b] > Sz, 5. p. bl.

Proof. We use here the spectral system notation S ,[—o0, —c0, p, p] = H,(F,) for homology, for
each p € I (see Section[2). By equation in Section[3] if p < wand b < rin I then

Sp[=00, =00, p,t] =Im( : §,[~00, —00, p, b] = § ,[~00, —00, u,1]),
where ¢ denotes every map induced by inclusion, and in particular S ,[—c0, —oco, p,f] = Im({ :

H,(F,)— H,(F})). Since by hypothesis f : (C., F) — (C,, F’) induces isomorphisms of persis-
tence modules, for each p < f the map induced by f

[T S0, =00, p, 1] — S [~00, 00, p, 1] (17)
is an isomorphism. Considering long exact sequences like (I0) of Section [3] we have a commu-
tative diagram

e % Sn[_oo7_°°7p,b] % Sn[z,S,p’b] # Sn_][—OO’—OO’Z,S] 4 e

lf lf lf;;”‘“"b lf ) \Lf

Ly §1[—00,—00, p,b] —5 S!lz, 5, p,b] — §7_ [~00,—00,7,5] — -+

for each 7 < s < p < b, where the vertical maps denoted by f (for simplicity) are isomorphisms
like 1j and f,f’s’p’b :Sulz, s, p, bl = Sz, s, p, b] is the map induced by f : (C., F) — (C;, F').

By the Five Lemma (MacLanel [1963, Lemma 3.3), we can conclude that ,f’s””b is an isomor-

phism. O

Corollary 20. In the situation ofPropositionit holds that 1 ,[s1, p1, 52, p2l = I, [s1, p1, $2, p2]
forall sy < p1 < s < prand all n.

Proof. The claim follows from the commutativity of

dyy
S nr1l22, 82, P2, bl —=% S,lz1, 51, p1, b1l

22:52:02:02 21511101
n+l \L \Lﬁ;
&

87 (22,52, p2, byl —> S/ lz1, 51, p1,b1]
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where by Proposition[I9]the vertical maps are isomorphisms. O

As done for the descriptor M7 * we have also implemented the construction of the new in-
variant 7 ,[s, p1, 2, p2] using our previous programs for computing spectral systems, producing
not only the groups but also the generators. We consider again the examples of filtered complexes
in Figures [T)and 2] and show that the new invariant is able to distinguish between both filtrations.

> (multiprst-i-group K (list ’(1 1) ) (list ’(1 2) ’(2 1))
(list (1 2) (2 1)) (list ’(1 3) (3 2)) 1)

Multipersistence group I[((1 1)),((1 2) (2 1)),((1 2) (2 1)),
(1 3) (3 2))]_{1}

Component Z

> (multiprst-i-group K2 (list (1 1) ) (list ’(1 2) ’(2 1))
(list (1 2) (2 1)) (list ’(1 3) (3 2)) 1)

Multipersistence group I[((1 1)) ,((1 2) (2 1)),((1 2) (2 1)),
((1 3) (3 2))1_{1}

Component Z

Component Z

It is clear that, for D(Z™)-filtrations, computing 7 ,[sy, p1, $2, p2] for any choice of elements
51 £ p1 £ 55 < py in D(Z™) determines a combinatorial explosion and is usually unfeasible
in practice. We think that a good choice consists in considering p; and p, as generated (respec-
tively) by single points P and B in Z™, with P < B, and setting s, := p; \{P} and s, := p,\{B}. In-
cidentally, this choice is also meaningful in terms of connections within the spectral system (see
(Matschke| [2013| Sect. 3)). In this setting, we can notice that the definition of 7,[sy, p1, 52, p2]
is similar to the descriptor M7 * introduced above, especially in the case of downsets generated
by single points.

6. Effective homology for infinitely generated spaces

Effective homology (Rubio and Sergeraert| (2002, [2000)) is a technique developed to com-
putationally determine the homology of complicated spaces. We briefly introduce the notions
necessary to understand the method, before showing how it can be used in the context of persis-
tent homology.

Definition 21. A reduction p = (D, = C,) between two chain complexes D, and C., is a triple
(f, g, h) where: (a) The components f and g are chain complex morphisms f : D, — C, and
g : C. = D.; (b) The component h is a morphism of graded modules h : D, — D, of degree
+1; (c) The following relations must be satisfied: (1) fg = idc.; (2) gf + dp,h + hdp, = idp,;
(3) fh=0;(4)hg=0;(5) hh =0.

Since f is a chain equivalence between D, and C.,, in particular the homology groups H,(D.)
and H,(C.) are canonically isomorphic, for each n.

Definition 22. An effective chain complex C. is a free chain complex (i.e., a chain complex
consisting of free Z-modules) where each group C,, is finitely generated, and there is an algorithm
that returns a Z-base in each degree n.

Intuitively, an effective chain complex C., is a chain complex whose homology can be easily
determined via standard diagonalization algorithms (see Kaczynski et al.[(2004)).
21



Definition 23. A chain complex C, has effective homology if there exist a chain complex D, an
effective chain complex EC. and two reductions C. < D, = EC..

The technique of effective homology has been implemented in the system Kenzo, which is
able to automatically construct the reductions C.. < D, = EC, in several situations arising in al-
gebraic topology and homological algebra. In the scenario of the previous definition, the method
of effective homology allows to determine the homology groups of the original chain complex
C. by using EC, to perform the computations. In this way, Kenzo is able to determine homology
and homotopy groups of complicated spaces, even when the chain complex C., is not finitely
generated (resulting thus untreatable by standard algorithms), and has shown its potentiality suc-
cessfully computing previously unknown results (Rubio and Sergeraert| (20006)).

Now, we want to show how the effective homology technique can be applied to compute
persistent homology groups. First, let us study the behavior of reductions when we introduce /-
filtrations on the involved chain complexes. Let F' (resp. F’) be an [-filtration of a chain complex
D, (resp. C.), and let S (resp. S’) denote the terms of the associated spectral system. In|Guidolin
and Romero| (2018) we stated the following result.

Theorem 24. (Guidolin| (2018)) Let p = (f,g,h) : D. = C. be a reduction between the I-
filtered chain complexes (D.., F) and (C., F"), and suppose that f and g are compatible with the
filtrations, that is, f(F;) C F! and g(F}) C F; for alli € I. Then, given four indicesz < s < p < b
in I, the map f induces for each n an isomorphism

[0 Sl 5, p,b] = S)lz,s, p, b
whenever the homotopy h : D, — D, satisfies the conditions (F;) C Fy and h(F,) C Fy.
Proof. Remember the following properties of a reduction:
* fg=Idc.,
e gf +dp h+hdp, =1dp,.

The first property implies that, for any 4-tuple of indices z < s < p < bin I, we have the induced

maps (f9)5""” = (I1d¢,)%*"* between terms of the spectral system. Then, by functoriality,

fz,s,p,b gz,s,P,b
n

n = Ids;zs5.p.01 -

The second property means that / is a chain homotopy between gf and Idp,. Then, a gen-
eralization of (MacLane] (1963, Prop. 3.5) whose details are worked out in |Guidolin| (2018])
yields induced maps (gf)5"7" = (Idp,)""” whenever h satisfies the conditions i(F,) C F,
and h(F,) C F. Therefore, again by functoriality,

2,5,p.b £z,5,p,b
n

gn = Ids, (2,5, p.01

whenever h satisfies h(F;) € F; and h(F,) C F), . O

This result is very useful, and is used also in |Guidolin and Romero| (2020) to study how the
effective homology technique can be leveraged to compute the Serre spectral system, a general-
ization of the classical Serre spectral sequence.

Now, taking into account the relations between multipersistence and spectral systems studied
in Section [3} we obtain the following corollary.
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Corollary 25. In the situation of Theorem we have in particular that the map f induces
isomorphisms

HY'(D,) = S ,[—c0,—e0, p,b] — H}"(C.) = S [—c0, —e0, p, b]
whenever the homotopy h : D, — D, satisfies the condition h(F ) C Fy,.

Clearly, if in Corollary [25] the map A is also compatible with the filtrations, we can con-
clude that H?*(D,) = H'(C.) for all p < bin I. This new result provides us a method for
computing persistent homology groups of chain complexes of infinite type when the effective
homology (Definition 23) of the chain complex is known. This method has been implemented in
Kenzo and can be applied to complicated spaces filtered over general posets. As we mentioned
before, it represents a unique feature among the available programs for computing invariants for
(generalized) persistent homology.

We prove a result similar to Theoremalso for the descriptor M2 introduced in Section

Theorem 26. Letp = (f,g,h) : D. = C. be a reduction between the I-filtered chain complexes
(D, F) and (C,,F"), let p < b in I and let us suppose that f and g are compatible with the
filtrations and h satisfies the condition h(FP?) C Yr Fg + Yy Fy with R € 7" not comparable
with the points B; defining the downset b and Y € b\ {By, ..., B,}. Then, the map f induces for
each n an isomorphism

0 MEND) - MY (C,).

Proof. Remember the formula

)
Mp-b — F’I;
noTpb p,b
A, + By,
in Definition[T16]and the following properties of a reduction:

b fg=IdC«7
e gf +dp h+ hdp, =1dp,.

The first property implies that, for any pair of indices p < b in I , we have the induced maps
(/@ = (dc))”. Then,

PP = 1d
The second property implies that, given o € 24 ’h, we have Id(o) = gf (o) + hd(o) + dh(o).
On the one hand, hd(o) = 0 (since o € I:”,’,”b and dd = 0); on the other hand, we know that
WEP?Y C Y p Fr+ Yy Fy and d is compatible with the filtration, so dh(c) € B2 which is part of
the quotient defining M7 b Considering now the induced maps on the corresponding quotients,
we have the desired expression

I, = gh’ £

O

Observe that, if the map / is compatible with the filtrations, then we can deduce M? ’b(D,.F) =
M,f’b(C*) for every p < b. We conclude this section with a result describing the behavior of
reductions (and effective homology) on the invariant 7 we introduced in Section
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Theorem 27. Let p = (f,g,h) : D, = C. be a reduction between the I-filtered chain complexes
(D, F) and (C., F'), and suppose that f and g are compatible with the filtrations. Then, given
Sfour indices s; < py < 53 < py in I, the map f induces for each n an isomorphism

LT sy, pasy 2, pal = Tls1, pis s2, 2l

whenever the homotopy h : D, — D, satisfies the condition h(Fp,) C F,.

Proof. We can apply a similar argument to the proof of Corollary In that proof the indices
were elements in / such that

2 £ 8§ < pp £ by
[ 1
71 £ 851 £ pp £ b

but now we can disregard z; and b,, since they do not intervene in the definition of 7,[s1, p1, 52, p21.

In other words, we can set “artificially” z; = —co and by = oo, with F_, := 0 and F := D., and
similarly with F” and C.. Then, the vertical maps in the proof of Corollary 20| are isomorphisms
by Theorem 24} for which we only need to assume A(F,,) C Fy,. O

Ifin Theorem also the map 4 is compatible with the filtrations, we clearly have 7 ,[sy, p1, 52, p2] =
I [s1, p1, 52, p2] for every choice of indices s; < p; < s < pyinl.

7. Improving the algorithms via discrete vector fields

The ability of the system Kenzo to exploit the relationship between different chain complexes
is brought one step further by the use of discrete vector fields, a notion introduced by Robin For-
man (Forman|(1998))) which proved itself incredibly useful in computational algebraic topology.
For example, in Mischaikow and Nandal (2013)) discrete vector fields are applied to the compu-
tation of persistent homology. In what follows we briefly describe how discrete vector fields
can simplify the computation of generalized persistent homology in our setting, which possi-
bly involves chain complexes of infinite type. For other applications of discrete vector fields to
multipersistence we refer the reader to [Scaramuccia et al.| (2020) and |[Landi and Scaramuccia
(2019).

Let C. = (C,,d,) be a free chain complex with distinguished Z-bases B, C C,, whose
elements we call n-cells. We will use the notation C,, = (C,, d,, B,) when we want to stress that
the chain complex C. is equipped with distinguished bases.

Definition 28. A discrete vector field V on C, is a collection of pairs of cells V. = {(ok; Ti) kex
satisfying specific conditions (see (Romero and Sergeraert, |2010, Definition 5)):

e Every component oy € B, is a regular face of the corresponding 1, € B, (that is, the
coefficient of oy in dty is +1 or —1).

e FEach generator (cell) of C. appears at most one time in'V.

Let us point out that we do not require the distinguished bases B,, or the vector field V to be
finite. Observe that our definition is quite general, and does not require the chain complex C, to
be canonically associated with a topological or combinatorial object such as a simplicial complex
or a simplicial set; on the other hand, starting from a simplicial complex or a simplicial set K,
there are “obvious” distinguished bases B, for C.. = C.(K), given by the sets of n-simplices of K.

24



Definition 29. A pair (oj;7;) of V is called a vector; we use the notations t; = V(o ;) or
o= vl(r ) to express the fact that o ; and T; are the components of a vector of V. The cells
o j and t; are called respectively a source cell and a target cell. A cell o € B, which does not
appear in the discrete vector field V is called a critical cell.

Definition 30. Given a discrete vector field V, a V-path i of degree n and length m is a sequence
7w ={(0j,; Tj ) osk<m such that:

e Lvery pair (0j,;7},) is a vector of V and 7 _is an n-cell.

e For every 0 < k < m, the component o j, is a face of vj,_, (meaning that the coefficient of
o, indtj_, is non-null), non necessarily regular but different from o j,_,.

Definition 31. A discrete vector field V is called admissible if, for every n € Z, a function
A, @ By, — Nis provided such that the length of every V-path starting from o € B,, is bounded by
A, (o).

The following result, due to Forman (Forman, [1998| § 8), has been generalized in Romero
and Sergeraert| (2010) to the case of chain complexes not necessarily of finite type.

Theorem 32. (Forman|(1998); \Romero and Sergeraert| (2010)) Let C.. = (Cp,d,, B,) be a free
chain complex and V = {(0k; T1) }kex be an admissible discrete vector field on C.. Then the vector
field V defines a canonical reduction p = (f,g,h) : (Cy,d,) = (CS,d,) where C is the free Z-
module generated by critical n-cells and d), is an appropriate differential canonically defined
from C, and V.

Theorem together with Kenzo’s algorithms for automatically constructing admissible
discrete vector fields (Romero and Sergeraert| (2010)), allows to compute the homology groups
H,(C.) = H,(CS) working with the chain complex C¢ of reduced size. We sketch the proof given
in|Romero and Sergeraert| (2010), as we will refer to it for proving Theorem

Proof. For each basis B, consider the partition B, U BS U B¢, into target, source and critical cells,
which induces a decomposition (as Z-modules) of the chain groups: C, = C, & C: & CS. By
virtue of this decomposition, each differential d,, can be represented as a 3 X 3 matrix

dpig dpi2 dpi3
dy, = \|dnp1 dppp dups|.
du3t dn3z2  dn33

It can be proven that d,» 1 : C;, — C?_, is an isomorphism, and that its inverse d;lz G > G
can be made explicit via the recursive formula

&}, (@) = 8@ VeD| Vi) - Y ed, VieNd,}, @], (18)

o’eB;_\{o}

where &(o, T) denotes the coefficient of o in the differential dr. Then, the differential 4’ and the
maps f, g, h of the reduction can be explicitly defined as follows:

dy=dy33 — dy31dyb dn23 Jn-1 = [0 —dp31d} | 1]
=d,} 1dn23 0 dj, 0 (19)
8n = 0 hnfl =10 0 0
1 0 0 0
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O

We now want to add I-filtrations to the picture, in order to show the relevance of discrete
vector fields in the computation of persistent homology groups for generalized persistence. We
have to require that an additional compatibility condition is satisfied:

Definition 33. An I-filtration F = (F))ic; of C. = (Cy,dy, By) is an I-filtration F of the chain
complex (C,, d,) that is compatible with faces: if o is a face of a cell T, then (t € F; = o € F)),
foralliel.

Remark 34. Since we are considering the general framework of chain complexes (Cy,d,, B;,)
equipped with distinguished bases for the chain groups, compatibility with faces (Definition
is not automatically satisfied for every I-filtration of chain subcomplexes of (C,, d,). As a coun-
terexample, let C| be generated by an element x and let Cy be generated by two elements a, b,
with d(x) = b — a. Given the poset I = {0 < 1}, let F' be the full chain complex (with generators
X,a,b) and let Fy be generated by x and b — a. Then x € Fy but (in general) a & F.

Notice that in a canonical reduction p : (C,,d,) = (C¢,d)), an [-filtration defined on the

n°>*'n

chain complex C, canonically induces an /-filtration on C¢.

Definition 35. Let C. = (C,,d,, B,) be a free chain complex with an I-filtration F = (F;)ic; and
let V = {(o; Ti)lkek be a discrete vector field on C,. If (o € F; < 711 € F;) foralli e I and
for all k € K we say that V is compatible with the I-filtration F.

Remark 36. Let F = (F;)ic; be an I-filtration of C. = (C,,d,, B,). By Definition @ ifoisa
face of a cell T, then (1 € F; = o € Fy), foralli € I. Then, if V = {(0j;7j)}jes is a discrete
vector field compatible with the filtration, for each V-path n = {(0;,; Tj)}o<k<m We can conclude
that

oj, € F, = Tj, € F;,

foreachie l

Theorem 37. (Guidolin|(2018)) If C.. = (C,,d,, B,) is endowed with an I-filtration F = (F})cs
and V = {(ok; Tr) ke Is an admissible discrete vector field on C, which is compatible with F,
then the three maps of the the canonical reduction p = (f, g, h) : (Cyn,d,) = (C,,, d,) described in
Theorem[32]are compatible with the filtrations.

Proof. We refer to the proof of Theorem Recall the decomposition C, = C., & C; & C¢ of
the chain groups; on the groups C?, C3 and C¢ consider the “obvious” I-filtrations (of abelian
groups) induced by F. Clearly, each component d,,x» (with k, £ = 1,2, 3) of the differential d is
compatible with the filtrations. As the differential &’ of C¢ and the maps f, g, i of the reduction
are given by 1) we only need to prove that d;fz,] is compatible with the filtrations in order to
conclude that d’, f, g, h are compatible with the filtrations. For each o~ € C;_ |, using the recursive
formula Wwe can express d_lz’l(O') as a finite sum

n,

d},(0) = ) 4Ty,

where the A; are coefficients in Z and each 7, is at the end of a V-path starting from . Then
from Remark 36| follows that &} | is compatible with the filtrations. O
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Since in particular the map i of p = (f,g,h) : (Cy,d,) = (C,,d;) is compatible with the
I-filtrations defined on C, and C¢, Corollary@ Theorem@and Theoremtell us that discrete
vector fields can be used to improve the computations, with a %uarantee that the returned results
are correct for all persistent homology groups, descriptors M2 and invariants 7 ,[s{, p1, 52, p2]:

Corollary 38. In the situation of Theorem the map f of the reduction p = (f,g,h) :
(Cy,dy) = (Cs, dy) induces isomorphisms:

o Hy(C.)= H}"(CY) forall p<binl,
o« MP"(C = MPP(C) forall p <binl,
o 1,(CIls1,p1, 82, p2] = 1,(COs1, pi, 82, p2] forall sy < py < sp < psinl.

Making use of this result and of Kenzo algorithms for computing admissible discrete vector
fields (Romero and Sergeraert (2010)) we have enhanced our programs for the computation of
multipersistence.

8. Examples and computations

The algorithms presented in the previous sections have been implemented as a new module
for the Kenzo system available athttps://github. com/ana-romero/Kenzo-external-modules.
In this section we present three different examples of application of our programs.

8.1. Effective example

As a first example showing the functionality of our algorithms, let us consider the following
chain complex C,, which is effective (Definition 22)):

C=7"50=1'% =2
with differential maps d, and d; given respectively by the matrices

D, =

0
(2) and 1)1:[1 0 0 o].
1

SO O

00
0 0
0 1
2 0

Its homology groups are: Hy(C.) = 0, H|(C.) = Z/4Z and H,(C.) = Z. In particular, observe
that H; is not free.

Let us suppose now that the free groups Cy, C; and C, are generated respectively by elements
Co = (a), C; = (b1,by,b3,bs) and C, = {cy,c2,c3,c4). Then, we consider the generalized
filtration over Z? given by F(]y]) = {(a), F(lqg) ={a,by,by,b3,by,cy1,c2,C3), F(2,1) ={a, b3, by, c3)
and Fpy) = C,.. We focus on degree of homology n = 1 (where the most interesting groups
appear) and compute the multipersistence groups, together with their generators, for different
indices of the filtration.
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https://github.com/ana-romero/Kenzo-external-modules

> (multiprst-group C ’(2 2) ’(2 2) 1)
Multipersistence group H[(2 2),(2 2)]_{1}
NIL

> (multiprst-group C ’(1 2) (1 2) 1)
Multipersistence group H[(1 2),(1 2)]1_{1}
Component Z/2Z

Component Z/4Z

> (multiprst-gnrts C ’(1 2) (1 2) 1)
({CMBN 1}<1 * B3>

{CMBN 1}<-1 % B2>)

> (multiprst-group C ’(2 1) (2 1) 1)
Multipersistence group H[(2 1),(2 1)]_{1}
Component Z/2Z

Component Z

> (multiprst-gnrts C ’(2 1) (2 1) 1)
({CMBN 1}<1 * B4>

{CMBN 1}<1 * B3>)

> (multiprst-group C ’(2 2) (2 2) 1)
Multipersistence group H[(2 2),(2 2)]_{1}
Component Z/4Z

> (multiprst-gnrts C ’(2 2) (2 2) 1)
({CMBN 1}<-1 * B2>)

> (multiprst-group C ’(1 2) (2 2) 1)
Multipersistence group H[(1 2),(2 2)]1_{1}
Component Z/47Z

> (multiprst-gnrts C ’(1 2) (2 2) 1)
({CMBN 1}<-1 * B2>)

> (multiprst-group C ’(2 1) (2 2) 1)
Multipersistence group H[(2 1),(2 2)]1_{1}
Component Z/2Z

> (multiprst-gnrts C ’(2 1) (2 2) 1)
({CMBN 1}<1 * B4>)

From these computations, we can construct the persistence module (for n = 1) which can be
summarized by the following modules and morphisms:

Vao = 222 ® ZJAZ —225 Vi, = /47

1 o

Van=0 ——— Vo =Z/2Z 0 Z

We can also compute our new descriptor of Section[5]and see that the homology class gener-
ated by the element b3 is born at positions (1,2) and (2, 1) and dies at (2, 2):

> (multiprst-m-group C (list ’(1 2)) (list (2 2)) 1)
NIL
> (multiprst-m-group C (list ’(2 1)) (list ’(2 2)) 1)
NIL
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> (multiprst-m-group C (list ’(1 2) °(2 1)) (list ’(2 2)) 1)
Component Z/2Z

> (multiprst-m-gnrts C (list °(1 2) °(2 1)) (list ’(2 2)) 1)
({CMBN 1}<1 * B3>)

Moreover, the new invariant 7 ,[sy, p1, $2, p2] can provide useful information on the general-
ized filtration.

> (multiprst-i-group C (list ’(1 1)) (list (1 2)) (list ’(1 2))
(list (2 2)) 1)

Multipersistence group I[((1 1)),((1 2)),((1 2)),((2 2))]_{1}
Component Z/27Z

> (multiprst-i-group C (list ’(1 1)) (list (2 1)) (list ’(2 1))
(list (2 2)) 1)

Multipersistence group I[((1 1)),((2 1)),((2 1)),((2 2))]1_{1}
Component Z

8.2. Using effective homology

An example of situation where the computation of multipersistence of infinitely generated
chain complexes can be relevant involves twisted Cartesian products (May|(1967)) of simplicial
sets where at least one space is of infinite type. Twisted Cartesian products are obtained as total
spaces of towers of fibrations (successive fibrations where the total space of each one coincides
with the base of the previous one), and multipersistence provides information on the interaction
of the homology groups of the different components in the product.

For example, let us consider the first stages of the Whitehead tower for computing the homo-
topy groups of the sphere S3, given by the following tower of fibrations:

X > Xs > X4 > B=S3

1 T T

G4 =K(Z2,4)  G3=K(Z2,3)  G2=K(Z,2)

The first total space X4 can be seen as a twisted Cartesian product X4 = K(Z,2) X, S 3 where
K(Z,?2) is an Eilenberg—MacLane space (May|(1967)). The total space X5 of the second fibration
is given by X5 = K(Zy,3) X, Xa = K(Z2,3) X, (K(Z,2) X, $3). Finally, the total space Xg of
the third fibration is equal to Xs = K(Z7,4) X, X5 = K(Z2,4) X1, (K(Z3,3) X, (K(Z,2) X7, S ).
See|May|(1967) for the construction of this tower, which satisfies H,,(X,,) = m,(S?>).

Eilenberg—MacLane spaces K(rm,n)’s are represented in Kenzo by means of the classifying
space constructor (see [May| (1967) for details). In particular, if the group =z is not finite (for
instance Z), then the set of m-simplices of K(sr, n) for every m > n is infinite and hence K(x, n)
is of infinite type.

The total space Xg can be filtered over D(Z*) (where m = 3 coincides with the number of fi-
brations) by using the degeneracy degrees of the simplices (May|(1967)), so that multipersistence
can be studied. Let us observe that one of the factors, namely K(Z, 2), is not of finite type, so the
rank invariant can not be directly determined via standard algorithms based on matrix reduction.
However, the effective homology method implemented in Kenzo combined with the theoretical
guarantee of Corollary 25 make it possible to determine the multipersistence groups (and their
rank).
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Figure 3: Digital image filtered over Z?.

In this example, our results allow us to reproduce the result m¢(S 3 = Hy(Xe) = Z/12Z given
bv th ((7,7,7).((1.7.1)).
y the group H, :

> (multiprst-group X6 (list (7 7 7)) (list °(7 7 7)) 6)
Multipersistence group HI((7 7 7)) ,((7 7 7))1_{6%
Component Z/12Z

In a context like this, the computation of multipersistence can reveal interesting information
not only on the homology of individual spaces, but also on the role played by the filtration, as we
see for example for the group Hé(6’6’6))’((7’6’6» =Z[AZ ® 7.

> (multiprst-group X6 (list ’(6 6 6)) (list °(7 6 6)) 6)
Multipersistence group H[((6 6 6)),((7 6 6))]1_{6}
Component Z/4Z

Component Z

We want to stress the important role of Corollary [25| and Theorem [26] in this situation, as
they characterize the persistent homology groups that can be computed correctly using effective
homology in terms of the behavior of the homotopy operators  of the involved reductions, which
can be determined explicitly.

Notice also that the system Kenzo is able to handle simplicial sets, which are more general
and versatile than simplicial complexes; this allows it to deal with a broader variety of situations.
The method of effective homology further enlarges the range of objects in algebraic topology it
can compute and manipulate. To our knowledge, Kenzo is the only available software to make
computations on filtrations of infinitely generated chain complexes like the one we considered in
this example.

8.3. Using discrete vector fields

As a last example of application of our programs, let us show how discrete vector fields can
be used to improve the efficiency when working with chain complexes (or simplicial sets) with a
large number of generators. Consider the chain complex associated with the digital image shown
in Figure filtered over Z? (more precisely: a 4 x4 grid in Z?). For details and examples on how
a digital image yields a simplicial complex and a chain complex we refer the reader to |Romero
et al.| (2016).

In this case the simplicial complex has 203 vertices, 408 edges and 208 triangles. Even if the
associated chain complex is not very big, it is convenient to use discrete vector fields to reduce it
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to a smaller one. The paper|Guidolin and Romero|(2018) includes an algorithm to determine an
admissible discrete vector field which is compatible with a given generalized filtration defined
on a chain complex of finite type. This discrete vector field can be computed in Kenzo and,
when applied to the chain complex of this example, returns an effective chain complex as in
Theorem [32] (stored in a slot called efhm) with 21 vertices, 23 edges and 5 triangles.

> (efhm K3)

[K155 Homotopy-Equivalence K123 <= K123 => K141]
> (setf efK3 (rbcc (efhm K3)))

[K141 Generalized-Filtered-Chain-Complex]

> (length (basis efK3 0))

21

> (length (basis efK3 1))

23

> (length (basis efkK3 2))

5

In this way, we can significantly improve the computation of the multipersistence groups and our
new descriptor MP* and the invariant with their corresponding generators.

9. Conclusions and further work

We presented a set of programs for performing computations on chain complexes with filtra-
tions defined over posets. The programs allow to compute generalized persistent homology, and
in particular some relevant invariants in the context of multipersistence. Although, due to the
necessary adjustments to deal with infinite spaces, our programs are not as efficient as previous
existing implementations with polynomial complexity, we provide algorithms which are valid in
general situations, some of which cannot be tackled by any other method. One fundamental as-
pect of our implementation consists in the use of the effective homology technique, which makes
it possible to handle infinitely generated chain complexes. Another important feature concerns
the possibility of defining and using for computation filtrations over general posets. Our pro-
grams, improved using discrete vector fields, have been implemented as a new module for the
Kenzo system.

We focused our study on filtrations indexed over the posets Z™ and D(Z™), for their rele-
vance in relation with multipersistence. In this respect, a theoretical contribution of our work
is the description of the relation between persistent homology and spectral systems in a general
scenario, which extends a result valid for persistent homology and spectral sequences arising
from Z-filtrations. Furthermore, we introduce a descriptor, which is able to extract birth-death
information from multiparameter filtrations, and a new invariant. Both of them have also been
implemented in the Kenzo system. We show the connection between both definitions and their
discriminative power in the context of multipersistence.

Two fundamental requirements in persistent homology theory are computability and robust-
ness. As a future research direction, we intend to reduce the computational cost for our invariants
and to further investigate their behavior with respect to small changes in the multiparameter filtra-
tion. As we reviewed in Section[d] several approaches have been proposed to tackle the problems
arising with multiparameter filtrations. Since effective homology displays a good behavior with
respect to the invariants we considered in this work, studying its applicability to other construc-
tions represents an interesting scope for further research.
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