
Using Krakatoa for teaching formal verification
of Java programs

Jose Divasón and Ana Romero

University of La Rioja, Spain
{jose.divason,ana.romero}@unirioja.es

Abstract. In this work, we present a study of different support tools
to teach formal verification of Java programs and show our experience
with Krakatoa, an automatic theorem prover based on Hoare logic which
allows students to interactively visualize the different steps required to
prove the correctness of a program, to think about the used reasoning and
to understand the importance of verification of algorithms to improve the
reliability of our programs.

Keywords: Formal methods, Hoare logic, automated theorem provers,
JML, Krakatoa.

1 Introduction

Formal verification of algorithms is a technique to ensure that a program is
correct even before being implemented in some programming language, verifying
that the program does what it is supposed to do for all the possible input data
without the necessity of applying testing. Although formal verification is not
(yet) a mandatory subject in most computer science studies, it is included in the
Common Criteria for Information Technology Security Evaluation [1].

In the University of La Rioja, formal verification is taught as part of a compul-
sory course called “Specification and Development of Software Systems” (SDSS).
In the first years of existence of this course (the degree in computer science is
taught in our University since 2002), formal verification was considered only in
a “theoretical” way, explaining the Hoare logic axioms [12] and presenting the
inference rules that make it possible to prove that a program satisfies a spec-
ification (given by means of a precondition and a postcondition). Six courses
ago we decided to complement this teaching by means of some support tool to
formally verify Java programs in a semi-automatic way. To this aim, we did a
study of the available software for this task (some of them used only in compa-
nies or research) and the chosen support tool was Krakatoa [8]. In the first year
of use of this theorem prover, we only used it as support tool during theoretical
lessons, showing to students some basic examples. Then, we tried to improve the
experience and since 2014 we decided to include in the course some practical
lectures in a computer classroom where students could use the tool themselves.

The paper is organized as follows. In Section 2 we present the context of the
course SDSS and the teaching of formal verification in our university. Next, in

2 J. Divasón and A. Romero

Section 3 we study several alternatives for teaching formal verification of Java
programs, considering different criteria which are interesting for our lectures, and
we explain why Krakatoa is the most adequate for our purposes. Some examples
of formal verification with this tool are shown in Section 4 as well as the set of
exercises that the students must solve and the question on verification in the final
exam. We present the results of our experience in Section 5. Finally, conclusions
and further work are detailed in Section 6.

2 Context of our experience

At the computer science studies at the University of La Rioja, formal verification
is taught as part of the course “Specification and Development of Software Sys-
tems” (SDSS). SDSS is a compulsory course that is taught in the fourth semester
of the degree in computer science, and corresponds to the fourth course of Pro-
gramming. The course has 6 ECTS, divided into 30 hours of theoretical lectures,
28 hours of practical exercises in a computer laboratory, 2 hours for the final
exam and 90 hours of the student individual work. As it is claimed in the guide
of the course, one of the aims of SDSS is to provide a formal perspective about
different aspects of programming (syntax, semantics, correctness and efficiency),
trying to improve the programming skills of students. After considering some
subjects such as specification and implementation of abstract data types and
their relation with object-oriented programming and specification of algorithms,
the final part of the course (about 15 hours) is devoted to formal verification
of algorithms. The course SDSS is also part of the degree in mathematics; the
students of both degrees attend together the lectures and the contents and the
evaluation system for all of them are the same. The students are supposed to
have followed the three previous courses on Programming. Moreover, they are
supposed to have acquired the fundamental concepts of first order logic which
are taught in the second semester of the degrees (as part of the course “Logic”).
Each year there are around 70 students, of which about two thirds are students
of computer science the rest of mathematics. With respect to the evaluation,
70% of the mark corresponds to the final exam and 30% to laboratory exercises.

One of the goals of SDSS is to consolidate the acquired knowledge in the
third semester of both degrees, where it is introduced the concept of object-
oriented programming in Java. For this reason, Java is the chosen programming
language for the SDSS course. It is worth noting that at the beginning of the
course, the students lack a strong experience in programming languages. This,
in conjunction with the few hours available to the formal verification part, cause
that the introduction from scratch of another different programming language
could be a counter-productive decision.

Until 2013, formal verification was taught in SDSS only in a “theoretical”
way by means of the Hoare logic axioms [12]. Given a precondition Q and a
postcondition R, a program “s” (consisting of a sequence of elementary in-
structions s ≡ {s1, . . . , sn}) satisfies the specification {Q}s{R} if: whenever
the program s is executed starting in a state which satisfies Q, the program

Using Krakatoa for teaching formal verification of Java programs 3

terminates and the final state satisfies R. In order to verify the correctness of
{Q}s{R}, one must consider predicates which determine the states which are
satisfied at the intermediate points of the program, called assertions, such that
{Q}s1{P1}s2{P2} . . . {Pn−1}sn{R}. If the initial assertion Q (precondition) is
satisfied, and each elementary “program” sk, consisting of one simple instruc-
tion, satisfies the specification {Pk−1}sk{Pk}, then when the program stops the
postcondition R is satisfied and therefore the program is correct. In our course,
we do not deal with partial correctness but with total correctness, i.e., a program
is correct when it returns the expected result and the algorithm terminates.

Hoare logic provides rules to verify the correctness of the elementary instruc-
tions of a programming language (assignments, sequential composition, condi-
tional clauses and iterative composition). These rules allow one to compute in
a straightforward way correct preconditions, from a given postcondition, for the
cases of assignments, sequential compositions and conditional clauses. However,
in the case of the iterative composition the process is not direct and it is neces-
sary to construct first an invariant predicate P and a variant V . Then, Hoare
logic requires that the loop body decreases the variant (to ensure termination)
while maintaining the invariant. In addition, the invariant must be strong enough
so that at the end of the loop we could deduce the postcondition. Usually, the
students find it difficult to figure out the invariant.

In SDSS we present (in a theoretical way) the Hoare rules for the basic
instructions of an iterative language and we do small examples of application
of each one of the rules. Once all the rules have been introduced, we do some
exercises of formal verification proofs of some small programs with an iterative
scheme. The proofs of correctness considered in the course SDSS are restricted
to programs corresponding to the following sketch:

{Q}

<init>

while B do {

<body>

}

<end>

return <var>

{R}

where the blocks <init>, <body> and <end> consist of a sequence of elementary
instructions, usually assignments and conditional structures. In fact this is not
a restriction, because if there are several “sibling” loops it can be thought that
all but the last one are inside <init>, and if there are nested loops one can think
that the internal loops are inside <body>.

Taking into account Hoare’s axioms, in order to verify the correctness of a
program with the previous sketch it is necessary to:

1. Find an invariant P for the loop.
2. Verify the specification {Q}<init>{P}.
3. Verify that P is an invariant, that is to say, the specification {P and B}

<body> {P} is satisfied.

4 J. Divasón and A. Romero

4. Verify the specification {P and not(B)}<end>{R}.
5. Find a variant.

Following these steps, in SDSS we consider proofs of correctness of some easy
algorithms such as the (iterative) computation of the power of a real number
raised to a natural number, the computation of the factorial of an integer, the
integer square root, the sequential search of an element in an array and the sum
of all components of an array. After explaining some of these exercises on the
blackboard, we do also some exercise classes where the students must apply their
knowledge in a practical way and make some correctness proofs on their own.
The difficult part of the exercises is the determination of the invariant P , and
it is very frequent that students propose invariants that are not strong enough
and they have to make different attempts (and repeat steps 2, 3 and 4 for all of
them) in order to find the correct one.

This “traditional” way of teaching formal verification was the chosen one
at our University until 2013. At that moment, we decided to complement the
theoretical lectures with the help of some support automatic tool for formal
verification of Java programs based on Hoare logic. A study of the different
alternatives was done, and the chosen tool was Krakatoa, an automatic theorem
prover which allows students to interactively visualize the various steps required
to prove the correctness of a Java program, to think about the used reasoning
and to understand the importance of verification of algorithms to improve the
reliability of our programs. In the first year of use of this theorem prover, we
only used it as support tool during theoretical lessons, showing to students some
basic examples of formal proofs with Krakatoa. After the positive results of that
initial attempt (the marks in the final exam of the formal verification part were
higher than previous years and students showed interest in Krakatoa), we tried
to improve the experience and since 2014 we decided to include in the course
some practical lectures in a computer classroom where students could use the
tool themselves, providing the correct specification and the necessary code to
verify the proposed programs as explained in Section 4.

3 Study of different alternatives

Our study of different alternatives for teaching formal verification of Java pro-
grams started in 2013, when we decided to complement our theoretical lessons
with some support tool. At that moment we found some documentation of uni-
versities where formal verification was taught in a practical way (see for exam-
ple [7, 14, 15]), but most of them did not correspond to Java programs or did not
seem to be based on Hoare logic.

There are several approaches and levels to carry out formal verification of
programs. Essentially, tools for this task are classified in three groups. Interactive
theorem provers, such as Isabelle [18] and Coq [6], belong to this kind of tools.
They allow a mathematical modeling and verification of programs at the highest
level of confidence (Common Criteria certification at level EAL7). They have

Using Krakatoa for teaching formal verification of Java programs 5

been used in industrial applications, such as the verification of seL4, an operating
system kernel [13]. Nevertheless, these tools need a steep learning curve to gain
enough expertise to be able to prove formally specifications of programs, so
they seemed not to be a good choice for a first introduction course on formal
verification. Secondly, there are tools based on model checking, such as Java
Pathfinder [11]. This kind of tools are supposed to be a rigorous method to find
a violation of a given specification, not only by means of tests but with abstract
interpretations. Finally, there exist tools based on Hoare logic or similar logics,
which are the ones we were mainly interested in due to their relation with the
theoretical part of the course. In addition, some such tools are indeed focused
on teaching (but not in Java), such as Dafny [14] and HAHA [17]. Due to the
context of SDSS, we aim to use a tool devoted to verify Java programs. Then,
we selected the following tools for evaluation.

– Krakatoa [8] (version 2.41, May 2018)
– KeY [2] (version 2.6.3, October 2017)
– OpenJML [5] (version 0.8.40, October 2018)

Those ones seem to be the most important ones, although there exist more
alternatives that could also have been considered for this study such as Jahob [4]
and Jack [3]. However, most of them are no longer developed.

In the concrete context of our SDSS laboratory lessons, we evaluated the
following features of the tools: ease of use (taking into account that the program
will be used by students with no previous knowledge on it), feedback (the infor-
mation about the proof attempts and proof failures should be understandable
for students with no expertise in the tool), documentation (the evaluated tool
should have enough examples of different levels of difficulty), relation between
the tool and the contents that are taught in the theoretical lessons (this is the
most important feature for us: we want to check if the tool clearly follows the
steps from Hoare logic), ease of installation and if there exist plugins for Eclipse
(the IDE used in our laboratories) or an online tool. Table 1 shows a summary
of this evaluation. Apart from that, we also checked the tools against seven
exercises that we teach in SDSS in a theoretical way:

1. Minimum of two integers
2. Swap two elements of an integer array
3. Square root (linear version)
4. Square root (binary version)
5. Check if an integer array is sorted in ascending order
6. Exponentiation
7. Linear search of an element in an integer array

We checked if the language of each tool is expressive enough to specify the
algorithms, and also whether the evaluated tools are able to prove them strictly
by means of just the specification (precondition and postcondition), together
with the corresponding invariants and a measure that decreases in each step if
necessary. The result is shown in Table 2. It is worth remarking that most of

6 J. Divasón and A. Romero

the programs are able to verify automatically the exercises once the user has
provided some hints (or working a bit with the corresponding goals), but we
wanted to test them exactly with the same reasoning that we would make in the
theoretical lessons: that is, just making use of the specification, invariants and
variants (something that decreases in each step).

KeY is the most powerful tool, from the ones that we have studied, and it
is also the most used one. It is worth noting that there are several universities
where KeY is used as a tool for teaching formal verification of Java programs
such as Chalmers University1 or the Karlsruhe Institute of Technology 2, but
within the computer science master’s programme. In our opinion, KeY requires
a longer learning step than Krakatoa and it is to be used by experts, or at
least, it is not designed to be used by degree students in the forth semester.
In addition, KeY was not able to automatically prove the correctness of our
examples (just from the specifications, invariants and variants), but Krakatoa
had a higher success rate. To sum up, despite of the fact that Krakatoa is not
the most powerful one, it fits our requirements. Thus, we decided to put it into
practice in our laboratory lessons. The Krakatoa program was then available in
the computer laboratories of our university as an Eclipse plugin. Indeed, it is a
virtualized application, i.e., the students can use it at home easily. This solves
the two main drawbacks which Krakatoa presents in our study: the lack of an
online tool and the difficulty of its installation. The confusing feedback provided
by Krakatoa is solved with the help of the teachers in the laboratory lessons.

It is worth noting that the study of these tools was repeated every year from
2013 (we present here the one that we did in January 2019). The performance
of KeY with some exercises has improved in the last years but the results of all
studies were similar.

Table 1: Main features of the evaluated tools

Tool
Krakatoa KeY OpenJML

Ease of use 3 7 3

Feedback
Lack of

information
Need a deep
knowledge

3

Related to theory 3 3 7

Documentation
Few

examples
3

Under
development

Ease installation 7 3 3

Plugin Eclipse 3 3 3

Online tool 7 3 3

1 http://www.cse.chalmers.se/edu/year/2018/course/TDA294_Formal_Methods_

for_Software_Development/
2 https://formal.iti.kit.edu/teaching/FormSys2SoSe2017/

Using Krakatoa for teaching formal verification of Java programs 7

Table 2: Expressiveness and solvable problems by the tools

Tool
Krakatoa KeY OpenJML

Specif. Solv. Specif. Solv. Specif. Solv.

Minimum 3 3 3 3 3 3

Swap two
elements

3 3 3 3 3 3

Linear sqrt 3 3 3 7 7 7

Binary sqrt 3 7 3 7 7 7

Sorted array 3 3 3 3 3 3

Exponential 3 3 3 7 7 7

Linear search 3 3 3 7 3 3

4 Some examples of formal verification with Krakatoa

Trying to complement the theoretical teaching of formal verification by means
of some software, and after the study of alternatives explained in Section 3,
the chosen support tool has been Krakatoa. As already said in Section 2, in an
initial experience we used it only as a support tool during theoretical lessons
but since 2014 we decided to include in the course some practical lectures in
a computer classroom where students could use the tool. More concretely, we
have now 3 practical lectures (each of them of 2 hours) for 3 different levels of
exercises. The first lecture is devoted to the specification and verification of Java
methods where only assignments and conditional clauses are used; in this case, if
the specification given by the student is valid, Krakatoa should be able to verify
directly that the program is correct. On the contrary, if iterative structures are
included, Krakatoa needs some help and the student must write the invariant
predicate for the loops; the second lecture is devoted to this kind of exercises.
Finally, it is also sometimes necessary to introduce auxiliary predicates, axiomatic
definitions or assertions, which are explained in the third lecture. Since formal
verification is only part of the course contents, we teach it in an introductory way
and we do not have time to teach formal verification of object oriented aspects
such as classes, inheritance or dynamic types.

In this section, we present some examples that we show in the lectures, the
mandatory exercises that the students must solve in the computer laboratory
and the verification exercises of the final exam.

4.1 Lectures in the computer classroom

As we have already said, we have now 3 practical lectures for 3 different levels of
exercises. We present here one example of the exercises explained in each one of
the lectures. Other examples of exercises of formal verification of Java programs
explained in SDSS can be found in [16].

In order to verify the correctness of a Java program, Krakatoa inputs the
specification (precondition and postcondition) written in the Java Modeling Lan-
guage [10] (JML). Then, making use of a tool called Why [9], it generates a series

8 J. Divasón and A. Romero

Fig. 1: Obligations generated by Krakatoa for the method min.

of lemmas (called proof obligations) that correspond to the different steps, follow-
ing Hoare logic, to verify the correctness of the program. These lemmas must be
verified by some automatic theorem provers which are included in the Krakatoa
tool; if these theorem provers do not reach some of the proofs, it is also possible
to send the lemmas to Isabelle and Coq, two interactive theorem provers where
the user can help the prover to construct the proofs.

Minimum of 2 elements One of the simplest examples explained in the first
Krakatoa practical lesson is the following Java method for computing the mini-
mum of two integers x and y:

/*@ ensures \result <= x && \result <= y &&

@ ((\result == x) || (\result == y));

@*/

public static int min(int x, int y) {

if (x<y) return x; else return y;

}

The specification of the method, in JML, is written as a comment between
/*@ and @*/. The clause ensures is used to introduce the postcondition, which
is a logical predicate which must be satisfied when the method stops for any
possible value of the inputs. Inside the postcondition, result is used to denote
the returned value. In this case, the postcondition means: the result is smaller
than or equal to x, the result is smaller than or equal to y, and the result is
equal to x or equal to y.

The goal of Krakatoa consists of verifying that the method min is implemented
in a correct way, that is to say, it satisfies the given specification. As shown
in Figure 1, Krakatoa generates 6 lemmas (proof obligations) that express the
correctness of the program. The 6 obligations correspond to each one of the 3
components of the postcondition, which must be satisfied by each one of the
two branches of the conditional clause. These obligations are the steps that the
students should do to formally verify (in a theoretical way) that the program
is correct. The first lemma, which is detailed on the right side of Figure 1,
says that, the result is less than or equal to x. In this example the lemmas are

Using Krakatoa for teaching formal verification of Java programs 9

very easy and the automatic theorem provers Alt-Ergo3 and CVC34, which are
integrated in Krakatoa, are able to verify them in a direct way. The proof of
the 6 obligations imply that the program is correct with respect to the given
specification, which ensures that in any possible situation, that is to say, for any
of the infinite possible input data, the method returns the desired result.

Deciding if an array is sorted The correctness proof of a program is more
complicated when it includes iterative instructions. Let us consider now the
following method to decide if the elements of an array of integers are sorted (in
ascending order):

/*@ requires v != null && 1 <= v.length ;

@ ensures \result <==> (\forall integer j; (0 <=j < v.length-1) ==>

@ v[j]<=v[j+1]);

@*/

static boolean isSorted(int v[]) {

int i=0; boolean b=true;

while (i<v.length-1 && b) {

if (v[i] > v[i+1]) b=false;

i=i+1;

}

return b;

}

The clause requires introduces the precondition, which is a logic predicate
that must be satisfied when the method is called. In this case, the argument
v must be a non-null array with positive length. Krakatoa generates now 2
obligations corresponding to the postcondition but, as one can observe in Figure
2, it is not able to prove them. From the 8 obligations which ensure that the
method is safe, it only proves 5 of them.

In order to verify the correctness of a Java program with iterative instructions
following the axioms of Hoare logic, as we have explained in Section 2, it is
necessary to define an invariant P which is a predicate that is satisfied at the
beginning and end of each execution of the loop. This invariant must be strong
enough so that when the loop finalizes the postcondition is satisfied. In general
it is a difficult problem to find the adequate invariant.

In order to introduce the invariant predicate in the JML specification of a
program in Krakatoa one uses the clause loop invariant. Moreover, to be able
to verify that the loop stops (and therefore the method is safe), very frequently
we must define in Krakatoa the variant, which must be an integer expression
such that it is non negative and it decreases after each execution, denoted by
loop variant. For the iterative structure inside the method isSorted we can use
the following specification:

static boolean isSorted(int v[]) {

int i=0; boolean b=true;

3 Alt-Ergo. http://alt-ergo.lri.fr/
4 CVC3. http://www.cs.nyu.edu/acsys/cvc3/

10 J. Divasón and A. Romero

Fig. 2: Obligations generated by Krakatoa for the method isSorted without specifying
the invariant predicate.

/*@ loop_invariant 0<=i && i<v.length && (b == true <==>

@ (\forall integer j; (0 <=j < i) ==> v[j]<=v[j+1]));

@ loop_variant v.length-i;

@*/

while (i<v.length-1 && b) {

if (v[i] > v[i+1]) b=false;

i=i+1;

}

return b;

}

Krakatoa generates now 21 obligations, some of them have appeared when
the invariant has been introduced. The proof of such obligations will show the
soundness of the algorithm. We can also observe than the generated obligations
correspond to steps of the theoretical proof of the correctness of the program
explained in Section 2. With the help of this invariant the Alt-Ergo and CVC3
theorem provers are able to verify the correctness of the program, as shown in
Figure 3.

Exponential function In some situations, the definition of the invariant pred-
icate and the variant is not enough to prove the correctness of a program with
iterative structures and it is also necessary to include auxiliary predicates, ax-
iomatic definitions and assertions which help the theorem provers to verify the
lemmas generated by Krakatoa.

The following method implements the exponential function raising a float to
an integer:

public static float exponential (float x, int n) {

int i=0; float r=1;

while (i<n) {

i++;

r=r*x;

Using Krakatoa for teaching formal verification of Java programs 11

Fig. 3: Obligations generated by Krakatoa for the method isSorted after specifying the
invariant predicate.

}

return r;

}

After introducing the idea of the method, the students must think of a possi-
ble specification written in JML. Since the JML version supported by Krakatoa
does not allow to use the exponential function, in order to specify the method
it is necessary to include the following axiomatic definition:

/*@ axiomatic Exponential {

@ logic float exp(float x, integer n);

@ axiom exp_zero : \forall float x; exp(x,0) ==1;

@ axiom exp_sum: \forall integer n; \forall float x;

@ exp(x,n+1) == exp(x,n)*x;

@}

@*/

Using this axiomatic definition, the students should write, using the JML
syntax, the specification of the method exponential:

/*@ requires n >=0;

@ ensures \result == exp(x,n);

@*/

With this specification, Krakatoa generates 3 obligations but it is able to
prove only 1 of them. As we have already said, it is necessary to define the
invariant predicate P for the iterative structure. The students should propose
an invariant, run Krakatoa and see if the obligations are proved. A possible
solution for the invariant (and variant) of the program is:

12 J. Divasón and A. Romero

/*@ loop_invariant 0 <= i && i <= n && r == exp(x,i);

@ loop_variant n-i;

@*/

4.2 Exercises in the computer classroom

Once Hoare logic, the steps for verifying programs and the previous examples are
explained in the lectures, the students must practice and complete by themselves
some exercises with Krakatoa. To this aim, the students work in pairs. They have
6 hours at the computer laboratories with the help of the teacher and 2 days of
work at home before the deadline to send their solutions via GitHub classroom.
This set of exercises consists of two parts and corresponds to a 5% in the final
mark of the course. The first part is mandatory and has 8 exercises devoted to
design and verify the following Java programs:

1. A method to compute the absolute value of an integer
2. Check if the arithmetic mean of three non-negative real numbers is higher

or equal to 5
3. A method to compute the maximum of three integer numbers
4. Given an array with 4 real numbers, modify it by dividing each component

by the sum of all components (with no loops)
5. Decide if a number is prime
6. Check if all elements in an integer array are non-negative
7. Compute the highest factor of a positive integer number (excluding itself)
8. A method to compute the factorial of a non-negative integer number

The second part comprises three voluntary exercises: modification of each
component of an integer array by its absolute value, find the frequency of a
number in an array and finally design and verify other algorithms with loops or
that use some of the previous exercises.

In the course 2019, 61 students (from 68) did the set of Krakatoa exercises.
As in previous years, they had very good marks: the mean was 0.457 (over
0.5). Concretely, the students of computer science had a mean of 0.447 and the
ones of mathematics 0.467. Table 3 shows the number of students with wrong
answers in each mandatory exercise (all students did all of them). As it can be
seen, the students have problems with exercise 7, which corresponds to the one
with the most difficult invariant. With respect to the optional exercises, 80%
of the students did the first one (from which, 90% did it well). Only 26.9% of
the students sent the second voluntary exercise (all of the received answers were
correct). One student did the third one.

4.3 The exam

The final exam consists of three written exercises of the different aspects covered
by the course. The exercises are solved without the help of the computer. One of
them is about formal verification. It is the most important one: approximately
45% of the mark in the final exam corresponds to this exercise.

In the last course (2019), this exercise consists of two parts:

Using Krakatoa for teaching formal verification of Java programs 13

Table 3: Results of mandatory exercises in the computer classroom. Number of
students who did the exercises N = 61.

Exercise 1 2 3 4 5 6 7 8

Wrong

answers
2 1 4 3 2 2 10 4

1. Prove that the predicate P = (1 ≤ i ≤ n) and (n%m = 0) and (∀α ∈
{m+ 1, . . . , i− 1}.(n%α 6= 0)) is an invariant for the following loop:

while (i < n) {

if (n % i == 0) m=i;

i++;

}

2. Verify the correctness of an algorithm computing the mean of the values of
the elements of an array.

In general, the marks in this exercise were high (7.35 over 10 last year, the
higher the better). During these years, we noticed a better understanding of the
concepts among the students of the degree in mathematics, since they are more
used to abstract reasoning and formal proofs. Indeed, the students of that degree
outperform the students of the degree in computer science. This can be shown,
for instance, in the marks of the verification exercise of the last exam: the mean
of the marks of the students of computer science was 6.29, whereas the mean
increased to 8.19 for the students of the degree in mathematics.

5 Results of the experience

The results of using Krakatoa as a support tool for teaching formal verification
of Java programs have been very positive. First of all, we have observed that
after using Krakatoa the students understand the different steps of the (theo-
retical) formal proofs in a better way; more concretely, when Krakatoa was not
used as a support tool many of the students memorized the exercises of formal
verification (and very frequently they did not really understand them). This bet-
ter understanding of students has been shown in the marks on average of the
formal verification exercises in the final exam that have increased significantly
(see Table 4, exercises are marked with a number between 0 and 10, the higher
the better). The first year of use of Krakatoa just as a support tool (2013),
the average of the marks in the final exam of the formal verification part was
higher than previous years. The difficulty was very similar. During the following
courses the marks remained higher than in 2012, although deeper contents and
higher difficulty of the exercises were demanded in the exams. Moreover, many
students claim now that this is the most interesting part of the course. Indeed,
two students decided to carry out their final-degree project on this subject. Our
experience as teachers is also positive and we plan to continue using Krakatoa
in the following courses.

14 J. Divasón and A. Romero

Table 4: Marks on average of formal verification exercises in the final exam.

Year Students Marks

2012 46 6.14

2013 50 7.50

2014 37 7.06

2015 38 7.17

2016 54 6.81

2017 54 7.23

2018 73 7.86

2019 66 7.35

6 Conclusions and further work

In this work we have presented our experience with the tool Krakatoa to teach
formal verification of Java programs, improving in this way the theoretical lessons
on Hoare logic and helping students to understand the different steps of formal
verification. With this experience, the average marks of formal verification exer-
cises in the final exam has been increased; moreover, students show interest in
this part of the course.

After these positive results, we plan to continue using Krakatoa in the fol-
lowing courses in laboratory sessions, considering other exercises with similar
difficulty to the ones presented in this work. We will also repeat the study of
other possible tools presented in Section 3, and we think that KeY could be also
a good candidate in the future.

Acknowledgments

Partially supported by the Spanish Ministry of Science, Innovation and Univer-
sities, project MTM2017-88804-P.

References

1. Common Criteria for Information Technology Security Evaluation. Tech. rep.
(2012)

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice, Lec-
ture Notes in Computer Science, vol. 10001. Springer (2016)

3. Barthe, G., Burdy, L., Charles, J., Grégoire, B., Huisman, M., Lanet, J.L., Pavlova,
M., Requet, A.: JACK—A Tool for Validation of Security and Behaviour of Java
Applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.)
Formal Methods for Components and Objects. pp. 152–174. Springer (2007)

4. Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.: Using First-Order
Theorem Provers in the Jahob Data Structure Verification System. In: Cook, B.,
Podelski, A. (eds.) Verification, Model Checking, and Abstract Interpretation. pp.
74–88. Springer (2007)

Using Krakatoa for teaching formal verification of Java programs 15

5. Cok, D.R.: OpenJML: JML for Java 7 by Extending OpenJDK. In: Proceedings
of the Third International Conference on NASA Formal Methods. pp. 472–479.
NFM’11 (2011)

6. Coq development team: The Coq Proof Assistant, version 8.9.1. Tech. rep. (2019),
https://coq.inria.fr/

7. Feinerer, I., Salzer, G.: Automated tools for teaching formal software verification.
In: Proceedings of the 2006 Conference on Teaching Formal Methods: Practice and
Experience. pp. 4–4 (2006)

8. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Proceedings of the 19th International Conference on
Computer Aided Verification. pp. 173–177. CAV’07 (2007)

9. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Pro-
ceedings of the 22nd European Symposium on Programming. Lecture Notes in
Computer Science, vol. 7792, pp. 125–128. Springer (2013)

10. Gary T. Leavens, A.L.B., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Tech. rep. (2000), iowa State University

11. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer 2(4),
366–381 (2000)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM pp. 576–580 (1969)

13. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: Formal verifica-
tion of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. pp. 207–220. ACM (2009)

14. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: Proceedings of the 16th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning. pp. 348–370. LPAR’10, Springer (2010)

15. Poll, E.: Teaching Program Specification and Verification Using JML and
ESC/Java2, pp. 92–104. Springer (2009)

16. Romero, A.: El uso de los demostradores automáticos de teoremas para la
enseñanza de la programación. In: Proceedings of Jornadas de Enseñanza Uni-
versitaria de la Informática (JENUI 2013) (2013)

17. Sznuk, T., Schubert, A.: Tool support for teaching Hoare logic. In: International
Conference on Software Engineering and Formal Methods. pp. 332–346. Springer
(2014)

18. T. Nipkow, M. Wenzel, L.C.P.: Isabelle 2019 (2019), https://isabelle.in.tum.
de/

