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1 Introduction

Matrix interpretations [4] are widely used in automated complexity analysis of term rewrite
systems. We consider the approach where from a matrix interpretation one extracts a
nonnegative square matrix A ∈ Rn×n≥0 such that O(max1≤i,j≤n(Ak)ij · k) is a bound for the
interpretation of a (specific) term of size k [8]. Hence, the growth rate of the entries of Ak
can be used to determine an upper bound on the complexity of the rewrite system.

In this paper we concentrate on algebraic means to investigate the growth rate of Ak. We
use the following notions: χA denotes the characteristic polynomial of matrix A, eigenvalues
are the roots of χA, maximal eigenvalues are those of the maximum norm, and the maximum
norm is the spectral radius ρA. A Jordan block for some eigenvalue λ is a square matrix
B with Bii = λ, Bi(i+1) = 1, and Bij = 0 otherwise. We write B(s, λ) to indicate that a
Jordan block has size s and eigenvalue λ. A diagonal composition J of Jordan blocks is a
Jordan normal form of A if A = PJP−1 for some invertible matrix P ; J is unique up to
permutation of the Jordan blocks, so we call them the Jordan blocks of A.

Jordan blocks are an important utility to characterize matrix growth, cf. Theorem 1. This
theorem was formalized in Isabelle/HOL [10, 12] when formalizing the complexity criteria
provided by Neurauter et al. [7, 9]. It was used in CeTA [13] until year 2017 in order to check
matrix growth rates.

I Theorem 1 (Matrix Growth via Algebraic Methods). Let A ∈ Cn×n.

The entries in Ak are polynomially bounded in k iff ρA ≤ 1.
The entries in Ak are bounded by O(kd) iff ρA ≤ 1 and for all eigenvalues λ of A with
|λ| = 1 and for all Jordan blocks B(s, λ) of A, s ≤ d+ 1.

Using Theorem 1 it seems easy to decide the asymptotic growth rate of a matrix: one can
compute all eigenvalues, compute their maximal norms to test ρA ≤ 1, and then compute all
Jordan blocks of A for eigenvalues with norm 1 and determine their maximal size.

The problem is that in general the eigenvalues of a matrix are quite complex to compute.
Even if all matrix entries are integers or rational numbers, the eigenvalues are complex
algebraic numbers. Hence, applying Theorem 1 directly requires expensive algebraic number
arithmetic.

The aim of this work is to reduce the complexity of applying Theorem 1 for an important
class of matrices: non-negative real square matrices Rn×n≥0 .

Several properties of non-negative real matrices are studied by Perron and Frobenius
[5, 11]. We already formalized several of them in developing an efficient certifier for checking
matrix growth, for instance Theorem 2 [2].
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I Theorem 2. The characteristic polynomial χA of A ∈ Rn×n≥0 can be factored into

χA(x) = f(x) ·
∏
k∈K

(xk − ρkA)

where K is a non-empty multiset of positive integers, and f is a polynomial whose complex
roots have a norm strictly less than ρA.

Note that Theorem 2 has at least three implications. First, ρA itself is an eigenvalue,
so ρA ≤ 1 is the same as demanding that χA has no real eigenvalue above 1—a criterion
which can be efficiently decided by Sturm’s method. Second, it permits us to replace the
computation of all eigenvalues in Theorem 1 by a computation which only involves roots
of unity of degree at most n. Third, ρA has the maximum algebraic multiplicity among all
maximal eigenvalues.

For a precise and efficient growth rate analysis, in this paper we further prove a conjecture
in [2, Section 7]: ρA also has the largest Jordan blocks among all maximal eigenvalues.
Previously we only had a partial result for matrices of dimension up to 4.

We also derive some consequences in Section 3.

2 Largest Jordan Blocks for Non-Negative Real Matrices

The following Theorem 3 is the key new result of this paper. It has been formalized in
Isabelle/HOL and will be available in the archive of formal proofs [3, for Isabelle 2018].

I Theorem 3. Let A ∈ Rn×n≥0 and λ be a maximal eigenvalue of A. For every Jordan block
B(s, λ) of A, there exists a Jordan block B(t, ρA) of A with t ≥ s.

Proof. W.l.o.g. we assume ρA = 1, since otherwise we can just perform a scalar multiplication
of A by 1

ρ
A

(The case ρA = 0 is trivial).
Let A = PJP−1 be the Jordan decomposition of A. Let ei denote the i-th unit-vector.

Let E be the set of maximal eigenvalues of A, i.e., eigenvalues λ with |λ| = 1. Let m be the
size of a largest Jordan block among all blocks with eigenvalues in E. By Theorem 2 all
eigenvalues λ with |λ| = 1 are roots of unity, i.e., we have a positive integer dλ such that
λdλ = 1.

Define

c =
∏

0≤i<m−1
(m− 1− i) D =

∏
λ∈E

dλ K` k = D · k + `+m− 1

It is easy to prove c > 0. Moreover, if λ ∈ E, then λK` k does not depend on k.

λK` k = (λD)k · λ` · λm−1 = 1k · λ` · λm−1 = λ` · λm−1.

Moreover for any Jordan Block B of size s with eigenvalue λ of A and any valid position of
B we get the following limit:

c(BK` k)ij
(K` k)m−1 =

c
(
K` k
j−i
)
λK` k+i−j

(K` k)m−1
k→∞−→

{
λ` if m = s = j, i = 1, and λ ∈ E
0 otherwise

(1)

The equality in (1) is just the closed form for powers of Jordan blocks, and we shortly
illustrate by a case analysis why the limit is correct.
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If λ /∈ E then there is an exponential decrease in the λ...k... expression whereas the
remaining expression grows at most polynomial. So the limit will be 0.
If λ ∈ E, but m = j ∧ i = 1 does not hold, then the norm of the numerator will be a
polynomial of smaller degree than the polynomial in the denominator. So, again the limit
will be 0.
Finally, if m = j, i = 1, and λ ∈ E, then both the numerator and the denominator will
be polynomials of the same degree, and c has been defined in a way that the limit will be
precisely λ`.

The next step is to lift (1) from single Jordan blocks to the complete Jordan normal form
J . Let us define I as the set of last-row indices of those Jordan blocks of J which have size m
and a maximal eigenvalue. So, in particular I is non-empty. Then from (1) we immediately
get the following consequence where λi = Jii is the eigenvalue corresponding to row i.

c(JK` k)ij
(K` k)m−1

k→∞−→

{
λ`j if j ∈ I ∧ i = j − (m− 1)
0 otherwise

(2)

Define

i = some element of I
j = some index j such that Pj(i−(m−1)) 6= 0
v = |Pei|

Then

c(AK` kv)j
(K` k)m−1 = c(|AK` k| · |v|)j

(K` k)m−1 = c(|AK` k| · |Pei|)j
(K` k)m−1

≥ c|AK` kPei|j
(K` k)m−1 = c|PJK` kei|j

(K` k)m−1

k→∞−→ |Pj(i−(m−1)) · λ`i | = |Pj(i−(m−1))| > 0

Thus, there exists some b > 0 and such that for all ` and all sufficiently large k:

c(AK` kv)j
(K` k)m−1 ≥ b (3)

Define

u = P−1v

ai = Pj,i−(m−1) · ui for j as above and arbitrary i

Then by using (2) conclude

c(AK` kv)j
(K` k)m−1 = Re

(
c(AK` kv)j
(K` k)m−1

)
= Re

(
c(AK` kPu)j
(K` k)m−1

)
= Re

(
c(PJK` ku)j
(K` k)m−1

)
k→∞−→ Re

(∑
i∈I

aiλ
`
i

)
(4)

By combining (4) with (3) we arrive at

Re

(∑
i∈I

aiλ
`
i

)
> 0 (5)
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The theorem is equivalent to the statement λi = 1 for some i ∈ I, so let us assume to the
contrary that λi 6= 1 for all i ∈ I. From (5) we conclude

0 < Re

(
D−1∑
`=0

∑
i∈I

aiλ
`
i

)

and hence

0 6=
D−1∑
`=0

∑
i∈I

aiλ
`
i =

∑
i∈I

ai

D−1∑
`=0

λ`i =
∑
i∈I

ai
D

dλi
·
dλi−1∑
`=0

λ`i

=
∑
i∈I

ai
D

dλi
· λ

dλi
i − 1
λi − 1 =

∑
i∈I

ai
D

dλi
· 0 = 0

where the formula for the geometric sum can only be applied since λi 6= 1. By this
contradiction we have finished the proof. J

3 Consequences of Theorem 3

We can immediately connect Theorem 3 with Theorem 1 in order to get an improved
complexity criterion in the form of Algorithm 1. Here, I is the identity matrix.

The big advantage of this algorithm is that it only employs arithmetic operations, i.e., in
particular if A is a matrix with rational entries, then it only involves rational arithmetic.

Algorithm 1: Efficient Certification of max1≤i,j≤n(Ak)ij ∈ O(kd).
Input: A ∈ Rn×n≥0 and degree d.
Output: Accept or assertion failure.

1 Assert {x ∈ R.χA(x) = 0, x > 1} = ∅ via Sturm’s method
2 Compute m as the multiplicity of root 1 of χA
3 if m ≤ d+ 1 then Accept
4 Assert that all Jordan blocks B(s, 1) of A have a size s ≤ d+ 1. This can be decided by

checking that the kernel dimension of (A− I)d+1 is m
5 Accept

To measure improvements in practice, we extracted all matrix interpretations from
complexity proofs of the international termination and complexity competition [6] in the last
three years, which amounts to the validation of the growth rate of 6,690 matrices, whose
largest dimension was only 5. This low dimension keeps the overhead of algebraic number
computations at a reasonable level. Still, processing all 6,690 matrices became five times
faster when using Algorithm 1 instead of Theorem 1 and algebraic number computations.

Since the algorithm runs in polynomial time, it also seems to be possible to use our
algorithm for synthesizing matrix interpretations; one can write a polynomial-sized SAT or
SMT encoding of whether a symbolic matrix has an a priori fixed growth rate by a symbolic
execution of Algorithm 1. The required algorithms are

computation of characteristic polynomial χA
polynomial division and polynomial GCD for applying Sturm’s method
Gauss-Jordan elimination for computing the kernel dimension, and matrix multiplication
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Developers of the complexity tool TCT [1] are currently investigating this possibility.
Although our results facilitate precise estimation of the asymptotic growth rate of matrix

powers, the reduction of complexity analysis to matrix powers remains approximative.
Therefore, it is an important future work to generalize our formalization to joint spectral
radius, in order to facilitate precise complexity analysis [7].
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