Experiences and New Alternatives for Teaching Formal
Verification of Java Programs’

Ana Romero
University of La Rioja
Spain
ana.romero@unirioja.es

ABSTRACT

Formal verification of algorithms is traditionally taught in Com-
puter Science studies in a theoretical way by means of the Hoare
logic axioms and doing (by hand) exercises of verification of small
programs. This work shows our experience with Krakatoa, an au-
tomatic theorem prover which allows students to interactively vi-
sualize the steps required to prove the correctness of a program.

CCS CONCEPTS

» Theory of computation — Automated reasoning; Proof the-
ory; « Software and its engineering — Formal software veri-
fication;

KEYWORDS
Formal verification of algorithms, Hoare logic, Java, Krakatoa.

ACM Reference Format:

Ana Romero and Jose Divason. 2018. Experiences and New Alternatives
for Teaching Formal Verification of Java Programs. In Proceedings of 23rd
Annual ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE’18). ACM, New York, NY, USA, 1 page. https://doi.org/10.
1145/3197091.3205811

1 INTRODUCTION

In the University of La Rioja, formal verification is part of a manda-
tory course and was traditionally taught only in a theoretical way,
explaining the Hoare logic axioms [1] and presenting the inference
rules that make it possible to prove that a program satisfies a speci-
fication (given by means of a precondition Q and a postcondition R).
The proofs of correctness considered in such a course are restricted
to programs corresponding to the following sketch:

<init> while B do {<body>} <end> return <var>

where the blocks <init>, <body> and <end> consist of a sequence of
elementary instructions, usually assignments and conditional struc-
tures. This is not a restriction: if there are several sibling loops it can
be thought that all but the last one are inside <init>, and if there are
nested loops one can think that the internal loops are inside <body>.
Following Hoare axioms, five steps are necessary to verify the cor-
rectness of a program with the previous sketch: 1) find and invariant

“Work partially funded by the Vicerrectorado de Profesorado of the University of La
Rioja, Spain, by means of an educational innovation project.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE’18, July 2-4, 2018, Larnaca, Cyprus

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5707-4/18/07...$15.00

https://doi.org/10.1145/3197091.3205811

Jose Divasén
University of La Rioja
Spain
jose.divason@unirioja.es

P for the loop, 2) verify the specification {Q}<init>{P}, 3) verify
that P is an invariant, i.e., the specification {P and B} <body> {P} is
satisfied, 4) verify the specification {P and not(B)}<end>{R} and 5)
ensure that the loop always stops. The difficult part of the exercises
is the determination of the invariant P. It is very frequent that stu-
dents propose invariants that are not strong enough and they usu-
ally carry out different attempts (repeating steps 2-5 for all of them)
to find the correct one. This traditional way of teaching formal
verification was the chosen one at our University until 2013. At that
moment, we decided to complement this teaching by means of some
support tool to formally verify Java programs in a semi-automatic
way. We did a study of the different approaches (interactive theo-
rem provers, model checking, automatic tools based on Hoare logic)
and the available software for this task (Isabelle, Pathfinder, KeY,
OpenJML, etc). The chosen support tool was Krakatoa, since it is
easy to use for beginners, powerful enough for our examples, pro-
vides understandable feedback for students and closely follows
Hoare logic, i.e., the steps presented in the theoretical lessons.

In 2013 we only used Krakatoa as sup- Table 1: Results
port tool during theoretical lessons, show-
ing to students some basic examples. Since

)) ‘ Year | Marks
2014 we decided to include in the course 2012 614
some practical lectures in a computer class- 2013 750
room where students could use the tool 2014 7'0 3
themselves to prove the correctness of 2015 7' 7
some Java programs, such as checking if 5016 6'81
an array is sorted, exponentiation, linear :
2017 7.23

search in an array and computation of
square roots. These years, we have observed that after using Kraka-
toa the students understand the different steps of the (theoretical)
formal proofs in a better way; more concretely, when Krakatoa was
not used as a support tool many of the students memorized the
exercises of formal verification (and very frequently they did not
really understand them). This better understanding of students has
been shown in the marks of the formal verification exercises in the
final exam that have increased significantly (see Table 1, exercises
are marked with a number between 0 and 10, the higher the better).
The first year of use of Krakatoa just as a support tool (2013), the
average of the marks in the final exam of the formal verification
part was higher than previous years. The difficulty was very similar.
During the following courses the marks remained higher than in
2012, although deeper contents and higher difficulty of the exercises
were demanded in the exams.

REFERENCES

[1] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer program-
ming. Commun. ACM (1969), 576-580.

https://doi.org/10.1145/3197091.3205811
https://doi.org/10.1145/3197091.3205811
https://doi.org/10.1145/3197091.3205811

	Abstract
	1 Introduction
	References

