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Abstract. In this work, we present a formal proof of an algorithm to compute the
Hermite normal form of a matrix based on our existing framework for the formal-
isation, execution, and refinement of linear algebra algorithms in Isabelle/HOL.
The Hermite normal form is a well-known canonical matrix analogue of reduced
echelon form of matrices over fields, but involving matrices over more general
rings, such as Bézout domains. We prove the correctness of this algorithm and
formalise the uniqueness of the Hermite normal form of a matrix. The succinct-
ness and clarity of the formalisation validate the usability of the framework.
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1 Introduction

Computer algebra systems are neither perfect nor error-free, and sometimes they return
erroneous calculations [18]. Proof assistants, such as Isabelle [36] and Coq [15] allow
users to formalise mathematical results, that is, to give a formal proof which is me-
chanically checked by a computer. Two examples of the success of proof assistants are
the formalisation of the four colour theorem by Gonthier [20] and the formal proof of
Gödel’s incompleteness theorems by Paulson [39]. They are also used in software [33]
and hardware verification [28]. Normally, there exists a gap between the performance
of a verified program obtained from a proof assistant and a non-verified one. However,
research in this area is filling this gap to obtain efficient and verified programs which
can be used for real applications and not just restricted to toy examples [6]. Linear al-
gebra algorithms are widely used in mathematics and computer software due to their
numerous applications in various fields, such as modern 3D graphics, search engines
and modern compression algorithms. In this paper, we present a formalisation of an
algorithm to compute the Hermite normal form of a matrix.

The Hermite normal form is a well-known canonical matrix that plays an important
role in different fields. It can be used to solve algorithmic problems in lattices [21],
cryptography [45], loop optimisation techniques [40], solution of systems of linear dio-
phantine equations [10], and integer programming [25], among other applications.
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The paper is structured as follows. We present a brief introduction to the Isabelle
interactive theorem prover in Section 2. In Section 3 we describe the main features of
our existing framework, where algorithms over matrices can be formalised, executed,
refined, and coupled with their mathematical meaning as well as we introduce some
benchmarks and improvements that we have carried out in this work. As a use case,
we present in Section 4 the main contribution of this paper, i.e., a formal proof of an
algorithm to compute the Hermite normal form of a matrix in a general setting and the
uniqueness of Hermite normal forms. A study of related and further work is given in
Section 5. Finally, we show the conclusions in Section 6.

2 A brief introduction to Isabelle/HOL

Isabelle is a generic interactive proof assistant in which several logics are implemented.
The most used of them is HOL (Isabelle/HOL), a version of classical higher-order logic
similar to the one of the HOL System [5]. The Isabelle/HOL type system resembles that
of functional programming languages such as Haskell [23]. There are base types (such
as bool), function types representing total functions (i.e. ⇒), type constructors (such
as list), and type variables (such as ’a and ’b).

For instance, f :: ’a ⇒ ’b set indicates that f is a function that maps an el-
ement of type ’a to a set of elements of type ’b. Isabelle/HOL also introduces type
classes in a Haskell-like manner. A type class is just a group of types with a com-
mon interface: all types in that class must provide the functions in the interface. A type
class not only provides an interface, but also allows to encode properties of the types.
A type ’a being in a class B is written ’a :: B. Since our formalisation is based on
Isabelle/HOL, throughout the paper we present the theorems and definitions following
its syntax. Isabelle’s keywords are written in bold. For a complete introduction on this
proof assistant we refer the reader to [37]. All our quoted developments are publicly
available in the Archive of Formal Proofs (AFP) [1, 17], which is a refereed repository
of formal proof libraries developed in Isabelle.

3 Framework

In the last few years, we have completed several linear algebra developments in Is-
abelle/HOL [6–8]. They are based on the HOL Analysis (HA) library where a vector
(type vec) is encoded as a function over a finite type (following the seminal work
by Harrison [22]) and, consequently, a matrix is represented as a vector of vectors.
More concretely, we developed a framework where linear algebra algorithms can be for-
malised, executed, refined, and coupled with their mathematical meaning. This frame-
work includes, for instance, connection between linear maps and matrices, necessary
generalisations of the HA library, formalisation of elementary operations of matrices,
formalisation of the fundamental theorem of linear algebra, symbolic execution, a full
library of algebraic structures (Bézout domains, principal ideal domains, GCD rings,
etc.), connection with the Cayley-Hamilton theorem and so on.

As use cases, we implemented the Gauss-Jordan algorithm, the QR decomposition
and the echelon form algorithm. All of them are available in the AFP [1]. Thiemann



and Yamada used the framework in their formalisation of Jordan normal forms [44] (it
is worth noting that they use a different representation of vectors from the one we use,
by means of functions over the natural numbers with explicit dimensions associated
to them). Also Li and Paulson reused our generalisations of the HA library in their
work on real algebraic numbers [32]. Some parts have also been moved to the standard
Isabelle/HOL library.

3.1 Main parts

The main parts of this framework are as follows:

1. Formalisation of elementary operations of matrices. We have defined them in Is-
abelle/HOL using the vec representation. For instance, we show here the definition
of interchanging two rows of a matrix:

definition interchange_rows A a b = (χ i j. if i = a then A $ b
$ j else if i = b then A $ a $ j else A $ i $ j)

In the above definition, χ denotes the morphism from functions to type vec and $

is the access operator for vec.
2. Refinements from vec to executable representations (details can be found in [6]).

We developed a natural refinement, from vec to functions over a finite type. We
also developed a refinement to immutable arrays, or iarray to improve perfor-
mance. An example of code lemma to transform from vec to iarray follows:

lemma [code-unfold]: matrix to iarray (interchange rows A i j)
= interchange rows iarray (matrix to iarray A) (to nat i)
(to nat j)

3. Serialisations to obtain better performance when generating code to functional pro-
gramming languages (SML and Haskell). We have used two kinds of serialisations:

– Immutable arrays (the efficient type used to represent vectors and matrices).
– Z2, Q, and R numbers (the types of the coefficients of the matrices).

The latter ones are trivial. The first one in SML [4] was a part of the library. Re-
garding the serialisation of arrays in Haskell [2], we have serialised the iarray

Isabelle/HOL datatype to the Data.Array.IArray.array (or shorter, IArray.array)
constructor present in the standard Haskell library. Let us note that arrays are a
natural way to represent dense matrices, which are the ones we are focusing in (we
compute normal forms of matrices by means of elementary row operations). There
exist also sparse representations of matrices in Isabelle/HOL by means of lists (see
for instance the work by Obua and Nipkow [38]).

In the next subsection, we present some computational experiments that we com-
pleted and that justify our choice of immutable arrays for generating code of linear
algebra algorithms from Isabelle/HOL specifications.



3.2 Performance

There exist different implementations of immutable arrays in Haskell, such as IArrays
(Data.Array.IArray.array) or UArrays (Data.Array.Unboxed.array). In the case of the
code generated from our Isabelle/HOL developments, we have empirically tested that
IArray.array performs slightly better than Unboxed.array. As an example, the compu-
tation of the determinant of a 1500 × 1500 Z2 matrix by means of the code generated
to Haskell from our verified Gauss-Jordan algorithm took 6.09s using IArray.array
and 6.37s using Unboxed.array.1 A more specific Haskell module for immutable ar-
rays is Data.Array (where the Data.Array.array constructor is involved). As in the
case of unboxed immutable arrays, the use of Data.Array.array does not imply an
empirical advantage in terms of performance in our particular setup with respect to
Data.Array.IArray.array.

We also perform some benchmarks in order to compare the performance of vec
implemented as functions over finite domains, as immutable arrays, and also as lists
(using an existing AFP entry about an implementation of matrices as lists of lists [42]).
To do that, we define recursive functions (one for each representation: function over
finite domains, immutable arrays, and lists) which take a rational matrix A as their
input, and in each iteration interchange two rows of A+A.

Benchmarks are carried out for 10n × 10n identity matrices, n being the number
of iterations. Concretely, we execute the previous functions in two cases: applied to a
50× 50 identity matrix with n = 5 and to the 100× 100 identity matrix with n = 10.
The algorithm is applied to identity matrices to minimize arithmetic time consumption.
Table 1 shows the performance obtained when executing them within Isabelle/HOL (by
means of the simplifier, with fully symbolic evaluation and highest confidence), and
exporting code to SML by means of the command code to obtain better performance
(in the second case, part of the code generation process is not verified, and needs to be
trusted). Results show that the case n = 5 is usable in practice with any of the three
representations. However, for bigger matrices, functions over finite domains become
too slow. Immutable arrays outperform functions and lists in any case when exporting
code, as expected. It is worth noting that inside Isabelle/HOL (but not when code is ex-
ported), iarray is just a wrapper of the type list. Thus, in the quest for performance,
immutable arrays yield reasonable performance.

functions iarray list

n = 5
simp 241.158s - 20.860s
code 0.639s 0.159s 0.971s

n = 10 code 827.673s 0.881s 1.824s

Table 1. Comparative among matrix representa-
tions.

Focusing on our linear algebra algo-
rithms, the performance obtained using
functions over finite domains makes al-
gorithms based on this representation un-
usable in practice. For instance, the com-
putation of the Gauss-Jordan algorithm
over 15×15 matrices is rather slow (sev-
eral minutes). Using immutable arrays
the computation is done immediately.

The benchmarks and the execution examples presented throughout the paper have
been carried out in a laptop with an Intel R© CoreTM i7-4810MQ processor with 16GiB

1 The Isabelle file that serialises iarray to UArrays is available from our website [16].



of RAM and Ubuntu GNU/Linux 16.04. The code developed to carry out the bench-
marks can be obtained online [16] and works for Isabelle 2017.

Mutable arrays (and imperative programming) should also be a good choice. Nev-
ertheless, we compared the performance of using immutable arrays and mutable arrays
in our formalisation of the Gauss-Jordan algorithm and obtained similar results [6].

4 A Formalisation of the Hermite Normal Form of a matrix

The Hermite normal form is commonly defined for integer matrices, but it also exists for
more general matrices. Following a similar approach as the one that we followed in the
formalisation of an algorithm to compute the echelon form of a matrix [8], we imple-
mented an algorithm to compute the Hermite normal form for matrices whose elements
belong to a Bézout domain. Execution is guaranteed for matrices over any Euclidean
domain, since there always exists an executable operation for computing Bézout coef-
ficients. This executable operation over Euclidean domains is already implemented in
the Isabelle/HOL standard library by Eberl. One could also execute the algorithm with
matrices over a Bézout domain, as long as an executable operation to compute Bézout
coefficients is provided.

4.1 Definition of Hermite normal form

Our formalisation of the Hermite normal form is built from many pieces. Essentially
we need matrices and polynomials from the standard library and from our framework:

– Generalisations of the HA library.
– Elementary operations over matrices, executability of the vec representation, seri-

alisations to obtain efficient code.
– An algorithm to compute the echelon form of a matrix.
– Ring theory (some fragments were already present in the standard library).

Let us stress that there is no unique definition of Hermite normal form in the lit-
erature. For instance, some authors, like Newman [35], restrict their definitions to the
case of square nonsingular matrices (that is, invertible matrices). Other authors, like
Cohen [13], just work with integer matrices. Furthermore, given a matrix A its Hermite
normal form H can be defined to be upper triangular [43] or lower triangular [35]. In
addition, the transformation from A to H can be made by means of elementary row
operations [35] or elementary column operations [13]. In this formalisation, we work
as generally as possible, so we do not impose restrictions in the input matrix (coeffi-
cients must belong to a Bézout domain and both square and non-square matrices are
accepted).

In our algorithm the transformation to the Hermite normal form is carried out by
means of elementary row operations, obtaining H as an upper triangular matrix. This
design decision will allow us to reuse our previous work. Moreover, any algorithm
or theorem using an alternative definition of Hermite normal form (for example, in
terms of column operations and/or lower triangularity) can be moulded into the form of
Definition 4.



Firstly, we have to define the concepts of complete set of nonassociates and com-
plete set of residues modulo µ. LetR be a commutative ring with unit.

Definition 1 (Complete set of nonassociates). An element a ∈ R is said to be an
associate of an element b ∈ R if there exists an invertible element u ∈ R such that
a = ub. This is an equivalence relation overR . A set of elements ofR , one from each
equivalence class, is said to be a complete set of nonassociates.

Definition 2 (Complete set of residues). Let µ be any nonzero element of R. Let
a, b ∈ R; a is congruent to b modulo µ if µ divides a − b. This is an equivalence rela-
tion over R. A set of elements of R, one from each equivalence class, is said to be a
complete set of residues modulo µ (or shorter, a complete set of residues of µ).

Let us start introducing the Isabelle/HOL implementation of associated (due to
Eberl) and congruent elements (this and the following definitions are available from
file Hermite.thy of our development [17]). In the definitions, x dvd y means that the
element x divides the element y:

definition associated x y ←→ x dvd y ∧ y dvd x
definition cong a b u = (u dvd (a - b))

We easily connect Eberl’s definition of associated elements with Definition 1 and
show they are equivalent.

lemma associates a b = (∃u∈Units. a = u * b)

Next, we define the corresponding relations of associates and congruence intro-
duced by the definitions. We define the relations by means of sets. Two elements (a, b)
belong to the set if they are related. Hence:

definition associated_rel = {(a, b). associated a b}
definition congruent_rel u = {(a, b). cong a b u}

We prove both of them to be reflexive, transitive, and symmetric (i.e., they are equiv-
alence relations over UNIV, where UNIV represents the set of all elements of the ring).

lemma equiv UNIV associated_rel
lemma equiv UNIV (congruent_rel u)

From the definitions of associated and congruent elements, we introduce the com-
plete set of nonassociates and complete sets of residues modulo an element. Authors
usually avoid these definitions imposing additional conditions to the Hermite normal
form. For instance, in the particular case of integers, the residues r modulo µ are usually
chosen such that 0 ≤ r < µ (see [13]), but −µ < r ≤ 0 (see [10]) and −µ2 < r ≤ µ

2
(see [3]) are also valid choices. Every possibility fits selecting a complete set of nonas-
sociates and complete sets of residues.

A function f is an associates function if for all a ∈ R, then a and f(a) are as-
sociated. In order to obtain a complete set of nonassociates, we impose the elements



belonging to the range of f to be pairwise nonassociates. Hence, a set S will be a com-
plete set of nonassociates if there exists an associates function f whose range is S.

definition ass_function f = ((∀a. associated a (f a)) ∧
pairwise (λa b. ¬ associated a b) (range f))

definition Complete_set_non_associates S =
(∃f. ass_function f ∧ range f = S)

Such definitions satisfy the following properties:

lemma assumes ass_function f
shows Complete_set_non_associates (range f)
lemma assumes Complete_set_non_associates S
and x ∈ S and y ∈ S and x 6= y shows ¬ associated x y

A function f is a residues function if, given u ∈ R, the following conditions hold:

1. For all a, b ∈ R, a and b are congruent modulo u if and only if f u a = f u b.
2. The elements which belong to the range of f are pairwise noncongruent modulo u.
3. For all a ∈ R, f u a and a are congruent modulo u

definition res_function f =
(∀u. (∀a b. cong a b u ←→ f u a = f u b)
∧ pairwise (λa b. ¬ cong a b u) (range (f u))
∧ (∀a. cong (f u a) a u))

Essentially, the residue function picks out an element for each residue class. From
the latter condition it follows that the elements (such as a) above a leading entry (such
as u) can be converted to f u a by elementary operations, since there exists k ∈ R such
that f u a = a + ku. There exists a complete set of residues for each element u ∈ R.
Thus, g models a complete sets of residues if there exists a residues function f such that
each set g u is exactly the range of f u:

definition Complete_set_residues g =
(∃f. res_function f ∧ (∀u. g u = range (f u)))

The function satisfies the expected properties:

lemma assumes f: res_function f
shows Complete_set_residues (λu. range (f u))
lemma assumes Complete_set_residues g
and x ∈ g b and y ∈ g b and x 6= y shows ¬ cong x y b

We can provide (executable) associates and residues functions involving elements
over Euclidean domains:

definition ass_function_euclidean p = normalize p
definition res_function_euclidean b n= (if b=0 then n else n mod b)



In the above definitions, normalize specifies a canonical representant for each
equivalence class in the Euclidean domain. For instance, in the case of the integers,
normalize corresponds to the absolute value. The functions are proven to be associates
and residues functions respectively:

lemma ass_function ass_function_euclidean
lemma res_function res_function_euclidean

We could also provide other different instances of associates and residues functions.
For instance, the minus absolute value can be used as an associates function for integer
elements:

lemma ass_function (λn::int. -abs n)
lemma range (λn::int. -abs n) = {x. x ≤ 0}

With the previous ingredients we can now introduce the definition of the Hermite
normal form.

Definition 3 (Echelon form). A matrix H ∈ Mm×n(R) is said to be in echelon form
if:

1. All rows consisting only of 0’s appear at the bottom of the matrix.
2. For any two consecutive nonzero rows, the leading entry of the lower row is to the

right of the leading entry of the upper row.

Definition 4 (Hermite normal form). Given a complete set of nonassociates S and
complete sets of residues G, a matrix H ∈ Mm×n(R) is said to be in Hermite normal
form if:

1. H is in echelon form.
2. The leading entry of every nonzero row belongs to S.
3. Let h be the leading entry of a nonzero row. Then each element above h belongs to
G h.

Our Isabelle/HOL implementation of the definition is parametrised by a matrix A
and two functions, associates and residues, which are demanded to be associates
and residues functions respectively. The operator LEAST n. P n returns the least ele-
ment n that satisfies a property P, in our case the least index n such that A$i$n6=0.

definition Hermite associates residues A =
(Complete_set_non_associates associates
∧ Complete_set_residues residues ∧ echelon_form A
∧ (∀i. ¬ is_zero_row i A −→

A $ i $ (LEAST n. A $ i $ n 6= 0) ∈ associates)
∧ (∀i. ¬ is_zero_row i A −→

(∀j. j<i −→ A$j$(LEAST n. A $ i $ n 6= 0)
∈ residues (A$i$(LEAST n. A$i$n 6= 0)))))



Definition 5 (Hermite normal form of a matrix). A matrix H ∈ Mm×n(R) is the
Hermite normal form of a matrix A ∈Mm×n(R) if:

1. There exists an invertible matrix P such that A = PH .
2. H is in Hermite normal form.

4.2 An algorithm to compute the Hermite normal form of a matrix

Any matrix over a Bézout domain can be transformed by means of elementary opera-
tions to its Hermite normal form. A schema of the computation of the Hermite normal
form is presented in Algorithm 1. There exist more efficient (in both computational cost
and space consumption) algorithms to compute the Hermite normal form of a matrix.
Normally they are restricted to specific domains, such as polynomial matrices [26].

Algorithm 1: An algorithm to compute the Hermite normal form of a matrix A
Input: A ∈Mm×n(B) and complete sets of nonassociates and residues.
Output: A matrix H such that ∃P. A = PH , where P ∈Mm×m(B) is invertible and

H ∈Mm×n(B) is in Hermite normal form with respect to the given complete
sets of nonassociates and residues.

1 Transform the matrix A to its corresponding echelon form;
2 Transform each row such that its leading entry belongs to the complete set of

nonassociates, multiplying each row by an appropriate constant;
3 Transform the elements above each leading entry, i.e., such elements must belong to the

corresponding complete set of residues with respect to the leading entry. This is done by
adding to each row above the leading entry, the row of the leading entry multiplied by a
constant (that is, the transformation is carried out by means of elementary operations).

We have implemented the Hermite algorithm in Isabelle/HOL iterating over rows.
That is, we have defined an operation that carries out the transformations over one row
and then we have defined the Hermite algorithm folding such an operation over all rows.
Our Hermite algorithm relies on our previous version of the echelon form algorithm [8].
The algorithm is parametrised by three functions:2

– A function that computes Bézout’s identity of two elements (required for the eche-
lon form).

– An associates function whose range is a complete set of nonassociates.
– A residues function whose range consists of complete sets of residues.

The Hermite algorithm must be parametrised with the functions that satisfy the
required properties presented above. The proof of correctness of the algorithm will
assume that such functions are really Bézout, associates, and residues functions respec-
tively. These requirements are expressed by means of premises.

2 Neither records nor locales [9] are used for this task, although they are a valid alternative.



The following Isabelle functions reproduce the steps in Algorithm 1. Step 1 corre-
sponds with the function echelon form of of our previous work. Step 3 is performed
by means of Hermite reduce above starting from the proper index (one of its param-
eters is the residues function). We use a primitive recursive definition over the represen-
tation of the row-indexes as natural numbers.

primrec Hermite_reduce_above A 0 i j res = A
| Hermite_reduce_above A (Suc n) i j res =

(let i’=((from_nat n)::’rows); Aij = A $ i $ j; Ai’j = A$i’$j;
k = (((res Aij (Ai’j))-(Ai’j)) div Aij) in

Hermite_reduce_above (row_add A i’ i k) n i j res)

This function is reused in Hermite of row i, which performs Step 2 (it also has
both the associates and the residues functions as parameters).

definition Hermite_of_row_i ass res A i =
(if is_zero_row i A then A else
let j = (LEAST n. A $ i $ n 6= 0); Aij= (A $ i $ j);
A’ = mult_row A i ((ass Aij) div Aij)

in Hermite_reduce_above A’ (to_nat i) i j res)

The function Hermite of upt row i iterates the process up to a row i.

definition Hermite_of_upt_row_i A i ass res =
foldl (Hermite_of_row_i ass res) A (map from_nat [0..<i])

Finally, Hermite of takes echelon form as starting point and applies the function
Hermite of upt row i to its rows:

definition Hermite_of A ass res bezout = (let A’= echelon_form_of A
bezout in Hermite_of_upt_row_i A’ (nrows A) ass res)

The soundness of the algorithm can be split into four parts:

1. The output matrix is in echelon form.
2. Each leading entry belongs to the complete set of nonassociates.
3. Each element above a leading entry belongs to the corresponding complete set of

residues.
4. The algorithm is carried out by means of elementary row operations (therefore, the

output matrix is the Hermite normal form of the input matrix).

Part 1 takes advantage of our previous proof about echelon forms [8], and re-
quires proving that Hermite of upt row i preserves echelon forms. This property
follows from the definition of Hermite reduce above, since it performs elemen-
tary row operations only above the leading coefficients of each row. Thus, it does
not alter any of the properties of the echelon form. Part 2 easily follows from the
definition Hermite of row i. The proof of Part 3 is based on the definition of
Hermite_reduce_above. The proof is more intricate, since we have to prove the



result for one row, and then apply inductively the result to the rest of rows (proving that
the previous ones are preserved in each iteration). The crucial lemma for this part states
that the property holds when the algorithm is iteratively applied up to the k − th row:

lemma defines n=(LEAST n. A $ i $ n 6= 0)
assumes ¬ is_zero_row i A and echelon_form A and ass_function ass
and res_function res and to_nat i < k and k ≤ nrows A and j < i
shows (Hermite_of_upt_row_i A k ass res) $ j $ n
∈ range (res (Hermite_of_upt_row_i A k ass res $ i $ n))

Finally, Part 4 is established by proving that the required steps to compute the Her-
mite normal form can be expressed as invertible matrices (here we also reuse results of
our previous developments), and therefore are equivalent to elementary operations. We
refer the interested reader to the file Hermite.thy of the development for the full-detailed
proofs and statements. In a modest 1400 code lines we obtain the final theorem:

theorem assumes ass_function ass
and res_function res and is_bezout_ext bezout
shows ∃P. invertible P ∧ (Hermite_of A ass res bezout) = P ** A
∧ Hermite (range ass) (λc. range (res c)) (Hermite_of A ass res
bezout)

In ca. 150 Isabelle/HOL code lines, we refine the algorithm to immutable arrays
and generate its SML and Haskell versions (see file Hermite IArrays.thy).

4.3 Uniqueness

Theorem 1. Fixing a complete set of nonassociates and complete sets of residues, if
A ∈Mn×n(R) is a nonsingular matrix, then its Hermite normal form is unique.

Let us note that the Hermite normal form of an invertible matrix is the identity
matrix when the standard associates and residues functions over euclidean domains are
chosen in the algorithm, but this does not hold in general. In order to prove Theorem 1,
we follow the proof by Newman [35, Theorem II.3]. Where Newman considers the
Hermite normal form as a lower triangular matrix we consider it upper triangular.

lemma assumes A = P ** H and A = Q ** K and invertible A
and invertible P and invertible Q
and Hermite associates residues H
and Hermite associates residues K shows H = K

The original proof comprises 28 lines [35, Th. II.3]. The argument proceeds as
follows: let us suppose that, for a given nonsingular matrix A, there are two different
upper triangular Hermite forms (wrt the same sets of associates and residues), H and
K. Then, there exists a unit matrix U such that H = UK. U must also be upper
triangular. Its diagonal elements are 1, since hii = uiikii with both hii, kii in the same
set of nonassociates. The remaining elements of the matrix must be equal to 0. Let
s ∈ {0 . . . n− 1} (any valid row). Since the matrix is upper triangular, we consider the



element us,s+j with j ∈ {1 . . . (ncolsA − s)} (i.e., any element above the diagonal).
We apply total induction in j, and therefore we assume that us,s+1, . . . , us,s+(j−1) are
equal to 0. Hence:

hs,s+j =

nrowsA∑
t=0

ustkt(s+j) (1)

=

s+j∑
t=s

ustkt(s+j) (2)

= ussks,s+j + us,s+1ks+1,s+j + · · ·+ us,s+jks+j,s+j (3)
= ussks,s+j + us,s+jks+j,s+j (4)
= ks,s+j + us,s+jks+j,s+j (5)

Step 2 follows from K being upper triangular; step 4 follows from the induction
hypothesis; step 5 follows from the first part of the proof (uii = 1). Therefore, hs,s+j ≡
ks,s+j mod ks+j,s+j , from where it follows that hs,s+j ≡ ks,s+j , since both elements
belong to the same complete set of residues of ks+j,s+j (and hence us,s+j = 0).

This inductive reasoning, which in the original proof took 18 lines, required 88
lines in our formalisation. The proof itself is not particularly intricate, but it demands a
correct manipulation of the indexes. The complete proof took 150 lines, thanks to the
strong reuse of previous results already available in the framework. It firmly follows the
book proof line by line.

4.4 Examples of execution

We provide two examples of execution of our formalised algorithm. Both use the stan-
dard associates and residues functions, which are defined for Euclidean domains. Let
us choose a rectangular random integer matrix A and a polynomial matrix B.

A =


37 9 10 28 40 23 59 25 73 79
5 96 93 7 71 44 63 90 27 89
70 65 36 69 2 81 14 30 92 60
16 98 100 50 64 21 39 95 80 34

 , B =

[
5x2 + 4x+ 3 x− 2

2x2 − 1 x3 + 4x2 + x

]

Their Hermite normal forms are computed in Isabelle/HOL similarly:

value[code] matrix_to_list_of_list (Hermite_of M
ass_function_euclidean res_function_euclidean euclid_ext2)

Where M is a matrix in Isabelle/HOL that corresponds to A or B, depend-
ing on the example we are executing. The function Hermite of has four param-
eters: the input matrix M , the standard associates function for Euclidean domains
(ass function euclidean), the standard residues function for Euclidean domains
(res function euclidean), and the function which computes Bézout coefficients
in Euclidean domains (euclid ext2), which is required by the echelon form algo-
rithm. Let us note that the type inference will determine which version of the associates



and residues functions must be executed, depending on the type of the input matrix.
The function matrix to list of list eases outputting matrices. The obtained re-
sults follow:


1 0 0 2126849 −2040340 −1544323 −3517370 −665650 1303207 −5664981
0 1 0 3330071 −3194626 −2417993 −5507258 −1042230 2040466 −8869838
0 0 1 1681610 −1613209 −1221033 −2781035 −526300 1030392 −4479062
0 0 0 3802428 −3647768 −2760977 −6288437 −1190065 2329900 −10127986


1 − 44

89
+

31

89
x− 68

89
x2 +

137

89
x3 +

40

89
x4

0 − 2

5
+

4

5
x+ 4x2 +

22

5
x3 +

24

5
x4 + x5


The results satisfy the expected properties (for instance, the polynomial matrix has

monic polynomials as leading entries in each row). Let us also note the growth on the
size of the elements. Both matrices are computed instantly. Such examples can also be
executed inside the logic, but they take 30 and 8 minutes respectively.

The performance of the algorithm is highly dependent on several factors. Some of
them follow from our design choices, such as the selection of associates and residues
functions, and the function to compute the Bézout identity. Some others depend on the
system configuration, such as the serialisations employed. Finally, the chosen algorithm
to compute the Hermite normal form itself can be extremely space consuming (there
exist versions that bound the size of the intermediate entries computed [27]). With our
particular version, the time to compute the Hermite normal form of a 20× 20 integer
matrix with random entries between 0 and 100 making use of the standard associates,
residues, and Bézout functions is negligible using the refinement to iarray. The re-
sulting matrix has elements with more than 50 digits. The same happens with a 25× 25
integer matrix. Memory issues appear with higher dimensions and greater elements.

5 Related and further work

Linear algebra has been formalised in many theorem provers: Isabelle/HOL [44],
Coq [12], Mizar [41], HOL Light [22], PVS [34], and ACL2 [19] are just a few ex-
amples of it. On the contrary, the verification and implementation of linear algebra
algorithms have not been so widely explored, especially involving matrices over rings.
The most similar works have been carried out in Coq. It is worth citing the CoqEAL
development [12], which contains several linear algebra algorithms formalised in Coq,
such as the Sasaki-Murao [14] algorithm for computing determinants of matrices over
rings. The closest work to ours is the one done by Cano et al. [11] also in Coq, which
presents a formalisation of the Smith normal form (SNF) of a matrix. Their formalisa-
tion is restricted to explicit division rings, such as constructive Bézout domains, whereas
in our case we can work with more abstracts structures where the existence of divisions
and greatest common divisors are known, but maybe not how to compute them. In any
case, the SNF algorithm is distinct from the Hermite normal form. SNF requires both



row and column operations and the result is a diagonal matrix. The Hermite normal
form sometimes can be view as a previous step, but is not required to compute the SNF.
The computation of the echelon form of integer matrices has been recently formalised
in ACL2 by Lambán et al. [30] as an application of abstract single threaded objects. A
formal proof of the SNF would be desirable in Isabelle/HOL. Most of the algorithms
to compute the SNF of a matrix are based on submatrices [43]. Unfortunately, subma-
trices are a delicate issue in the HA library: Since Isabelle does not feature dependent
types, we cannot use the size of the matrix in the definition of submatrix. Thiemann and
Yamada already faced this problem when formalising Jordan normal forms of matri-
ces [44], a kind of forms whose construction is done by means of block matrices. As a
solution, they propose a new matrix representation which is indeed an abstraction of the
HA representation, but flexible for dimensions. We aim to formalise the Smith normal
form in Isabelle using such a representation, also connecting it to the HA library and our
framework by means of the lifting and transfer package [24] and the new addition of lo-
cal type definitions when necessary [29]. This would also allow us to implement some
decision procedures based on linear algebra methods, such as the decision algorithm
proposed by Li et al [31].

6 Conclusions

We have presented a formalisation of the Hermite normal form of a matrix that reuses
our previous developments. The Hermite normal form of a matrix is a well-known
canonical matrix over rings. We have not only proved the correctness of the algorithm,
but we have also refined it to immutable arrays and we have formalised its uniqueness
as well. As far as we know, this is the first formalisation of the Hermite normal form in
any theorem prover, even only considering the case of integer matrices.

The formalisation could be seen as a proof pearl because of two reasons: we have
formalised a non-trivial and well-known linear algebra algorithm in a modest number
of lines (ca. 2300, to be compared with more than 10000 that we needed for similar
results with the Gauss-Jordan algorithm) thanks to a strong reuse of the infrastructure
presented in Section 3; and we have focused on obtaining the most general version by
means of a parametrised algorithm. The formalisation has been carried out involving
matrices over Bézout domains and it is not restricted to the common case of integer
matrices. Furthermore, the algorithm has been parametrised by functions so that it can
compute every definition of the Hermite normal form in the literature.
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