
Vector-Spaces

Jose Divasón Mallagaray

October 26, 2011

Contents

1 Previous general results 2

2 Previous relations between algebraic structures. 3
2.1 Previous properties . 4
2.2 Exercises in Halmos . 5

3 Definition of Vector Space 7

4 Examples 8

5 Comments 8

6 Linear dependence 11

7 Indexed sets 18

8 Linear combinations 27

9 Basis 32
9.1 Finite Dimensional Vector Space 36
9.2 Theorem 1. 38

10 Dimension 46

11 Isomorphism 62
11.1 Definition of Kn . 64
11.2 Canonical basis of Kn: . 67
11.3 Theorem on bijection . 71
11.4 Bijection between basis: . 73
11.5 Properties of canonical-basis-K-n n: 75
11.6 Linear maps. 80
11.7 Defining the isomorphism between Kn and V 81

1

12 Subspaces 87

13 Calculus of Subspaces 88
13.1 Theorem 1 . 89
13.2 Theorem 2. 90
13.3 Theorem 3. 91

14 Dimension of a Subspace 92
14.1 Theorem 1. 92
14.2 Theorem 2. 92

15 Dual Spaces 93

16 Brackets 94

17 Dual Bases 95
17.1 Theorem 1. 95
17.2 Theorem 2. 95
17.3 Theorem 3. 96

theory Previous
imports Main
begin

1 Previous general results

We present here some result and theorems which will be used in our devel-
opement. There are general properties, not centered in any section of our
implementation.

lemma less-than-Suc-union:
shows {i . i < Suc (n::nat)} = {i . i < n} ∪ {n}
〈proof 〉

Next two lemmas is a non-elegant trick which makes possible work with
premisses that contains multiples op ∧
lemma conjI3 : [[A; B ; C]] =⇒ A ∧ B ∧ C
〈proof 〉

lemma conjI4 : [[A; B ; C ; D]] =⇒ A ∧ B ∧ C ∧ D
〈proof 〉

lemma conjI5 : [[A; B ; C ; D ; E]] =⇒ A ∧ B ∧ C ∧ D ∧ E
〈proof 〉

lemma conjI6 :
shows [[A; B ; C ; D ; E ; F]] =⇒ A ∧ B ∧ C ∧ D ∧ E ∧ F
〈proof 〉

2

Next lemmas prove some properties of the bijections between subsets of a
given set.

lemma bij-betw-subset :
assumes b: bij-betw f A B and sb: C ⊆ A
shows bij-betw f C (f ‘ C)
〈proof 〉

lemma
bij-betw-image-minus:
assumes b: bij-betw f A B and a: a ∈ A
shows f ‘ (A − {a}) = B − {f a}
〈proof 〉

end
theory Field2
imports Previous
∼∼/src/HOL/Algebra/Ring
begin

2 Previous relations between algebraic structures.

We can create a lemma to check if one algebraic structure is a domain.

lemma domainI :
fixes R (structure)
assumes cring : cring R

and one-not-zero: 1 ∼= 0
and integral :

∧
a b. [| a ⊗ b = 0; a ∈ carrier R; b ∈ carrier R |] ==> a =

0 | b = 0
shows domain R
〈proof 〉

Similarly with a field:

lemma fieldI :
fixes R (structure)
assumes dom: domain R
and field-Units: Units R = carrier R − {0}
shows field R
〈proof 〉

A field is an additive monoid

lemma (in field) field-impl-monoid :
monoid (| carrier = carrier R, mult = add R, one = zero R |)
〈proof 〉

A field is a multiplicative monoid:

lemma field-is-monoid : fixes K (structure)
assumes field-K : field K shows monoid K

3

〈proof 〉

Every field is a ring

lemma field-is-ring : fixes K (structure)
assumes field-K : field K shows ring K
〈proof 〉

2.1 Previous properties

First of all we are going to introduce some properties of fields. Most of them
are also satisfied in rings and in previous algebraic structures, so they will
be trivial for us.

This property is trivial and proved in the library:

lemma (in field) r-zero:
x ∈ carrier R ==> x ⊕ 0 = x
〈proof 〉

However, we can make a long proof of the preceding fact.

lemma (in field) r-zero2 : x ∈ carrier R ==> x ⊕ 0 = x
〈proof 〉

print-facts
〈proof 〉

find-theorems ?x ⊕ ?y = ?y ⊕ ?x
〈proof 〉

This is also in the library (for commutative groups):

lemma (in field) a-comm:
!! x y . [[x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊕ y = y ⊕ x
〈proof 〉

But we can prove it: we have that the property is satisfied in a commutative
group. We will prove that a field is a commutative group and then we will
use the property.

lemma (in field) a-comm2 :
!! x y . [[x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊕ y = y ⊕ x
〈proof 〉

lemma (in field) a-assoc:
!! x y z . [[x ∈ carrier R; y ∈ carrier R; z ∈ carrier R]] =⇒(x ⊕ y) ⊕ z = x ⊕ (y
⊕ z)
〈proof 〉

lemma (in field) r-neg :
x ∈ carrier R =⇒ x ⊕ (x)=0
〈proof 〉

4

lemma (in field) m-comm:
!! x y . [[x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊗ y = y ⊗ x
〈proof 〉

lemma (in field) m-assoc:
!! x y z . [[x ∈ carrier R; y ∈ carrier R; z ∈ carrier R]] =⇒ (x ⊗ y) ⊗ z = x ⊗ (y
⊗ z)
〈proof 〉

lemma (in field) r-one:
x ∈ carrier R =⇒ x ⊗ 1 = x
〈proof 〉

lemma (in field) r-inv :
x∈ Units R =⇒ x ⊗ inv x = 1
〈proof 〉

lemma (in field) r-distr :
[[x∈ carrier R; y∈ carrier R;z∈ carrier R]] =⇒ x ⊗ (y ⊕ z) = x ⊗ y ⊕ x ⊗ z
〈proof 〉

lemma (in field) l-one:
x ∈ carrier R =⇒ 1 ⊗ x=x
〈proof 〉

2.2 Exercises in Halmos

Definition of field and some properties are already included in the library,
so we don’t make it.

Here we present some exercises proposed by Halmos. There are someone
already solved in the library, so they will be trivial for us.

Exercise 1A

lemma (in field) l-zero:
x ∈ carrier R =⇒ 0 ⊕ x=x
〈proof 〉

Exercise 1B

lemma (in field) a-l-cancel :
[[x ∈ carrier R; y∈ carrier R;z ∈ carrier R]] =⇒ (x ⊕ y = x ⊕ z) = (y = z)
〈proof 〉

Exercise 1C

lemma (in field) plus-minus-cancel :
[[x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊕ (y 	 x) = y
〈proof 〉

5

Corollary of 1C. It is in the library.

corollary (in field) minus-eq :
[[y ∈ carrier R; x ∈ carrier R]] =⇒ y 	 x = y ⊕ (x)
〈proof 〉

Exercise 1D

lemma (in field) r-null :
x ∈ carrier R=⇒ x ⊗ 0=0
〈proof 〉

lemma (in field) l-null :
x ∈ carrier R=⇒ 0 ⊗ x=0
〈proof 〉

Exercise 1E

lemma (in field) l-minus-one:
x∈ carrier R =⇒ (1) ⊗ x = 	x
〈proof 〉

Exercise 1F

lemma (in field) prod-minus:
assumes x-in-R: x ∈ carrier R
and y-in-R: y ∈ carrier R
shows (x) ⊗ (y) = x ⊗ y
〈proof 〉

Exercise 1G

This exercise can be solved directly using integral property. However we will
make it using Units = carrier R − {0R}. This is because field would not
need to be derived from domain, the properties for domain follow from the
assumptions of field (if we consider a field like a commutative ring in which
Units = carrier R − {0R}
lemma (in field) integral :

assumes x-y-eq-0 : x ⊗ y = 0
and x-in-R: x ∈ carrier R
and y-in-R: y ∈ carrier R
shows x = 0 | y = 0
〈proof 〉

end

theory Vector-Space
imports Field2
begin

6

3 Definition of Vector Space

Here the definition of a vector space using locales and inherit. We need to fix
a field, an abelian group and the scalar product relating both structures (an
abelian group together a field would be a vector space with one specific scalar
product but not with another). A vector space is an algebraic structure
composed of a field, an abelian monoid and a scalar product which satisfies
some properties.

locale vector-space = K : field K + V : abelian-group V
for K (structure) and V (structure) +
fixes scalar-product :: ′a => ′b => ′b (infixr · 70)
assumes mult-closed : [[x ∈ carrier V ;a ∈ carrier K]]
=⇒ a · x ∈ carrier V
and mult-assoc: [[x ∈ carrier V ; a ∈ carrier K ; b ∈ carrier K]]
=⇒ (a ⊗K b) · x = a · (b · x)
and mult-1 : [[x ∈ carrier V]] =⇒ 1K · x = x
and add-mult-distrib1 :
[[x∈ carrier V ; y ∈ carrier V ; a ∈ carrier K]]
=⇒ a · (x ⊕V y)= a·x ⊕V a·y
and add-mult-distrib2 :
[[x∈ carrier V ; a ∈ carrier K ; b ∈ carrier K]]
=⇒ (a ⊕K b) · x = a·x ⊕V b·x

Using this lemma we can check if an algebraic structure is a vector space

lemma vector-spaceI :
fixes K (structure) and V (structure)
and scalar-product :: ′a => ′b => ′b (infixr · 70)
assumes field-K : field K
and abelian-group-V : abelian-group V
and mult-closed :∧

x a. [[x ∈ carrier V ;a ∈ carrier K]] =⇒ a·x ∈ carrier V
and mult-assoc:∧

x a b. [[x ∈ carrier V ; a ∈ carrier K ; b ∈ carrier K]]
=⇒ (a ⊗K b)· x = a · (b · x)
and mult-1 :

∧
x . [[x ∈ carrier V]] =⇒ 1K · x = x

and add-mult-distrib1 :∧
x y a. [[x∈ carrier V ; y ∈ carrier V ; a ∈ carrier K]]

=⇒ a·(x ⊕V y)= a·x ⊕V a· y
and add-mult-distrib2 :∧

x a b. [[x∈ carrier V ; a ∈ carrier K ; b ∈ carrier K]]
=⇒ (a ⊕K b)· x = a·x ⊕V b·x
shows vector-space K V scalar-product
〈proof 〉

end

7

theory Examples
imports Vector-Space RealDef
begin

4 Examples

context vector-space
begin

Here we show that every field is a vector space over itself (we interpret the
scalar product as the ordinary multiplication of the field. We use make use
of vector-spaceI.

lemma field-is-vector-space:
assumes field-K : field K
shows vector-space K K op ⊗K
〈proof 〉

end
end
theory Comments
imports Examples
begin

5 Comments

context vector-space
begin

Now some properties of vector spaces.

Halmos proposes some exercises, but most of them are properties already
proved in abelian groups, rings... so they are in the library and using the in-
heritance of properties provided by locales we obtain them for vector spaces.
Lemmas in which the scalar product appears need to be proved and we make
it here.

We have two zeros: 0V and 0. We need to define separately the closure
property in order to avoid confusions. Alternatively, we could specify the
structure writing V .zero-closed and K .zero-closed.

lemma zeroV-closed : 0V ∈ carrier V
〈proof 〉

lemma zeroK-closed : 0K ∈ carrier K
〈proof 〉

A variation of r-neg (x ∈ carrier V =⇒ x ⊕V 	V x = 0V):

lemma r-neg ′:

8

assumes x-in-V : x ∈ carrier V
shows x 	V x=0V
〈proof 〉

We want to prove that a · 0V = 0V. First of all, we prove some auxiliary
lemmas:

lemma mult-zero-descomposition [simp]:
assumes a-in-K : a ∈ carrier K
shows a · 0V ⊕V a · 0V = a · 0V
〈proof 〉

lemma plus-minus-assoc:
assumes x-in-V : x ∈ carrier V
and y-in-V : y ∈ carrier V and z-in-V : z ∈ carrier V
shows x ⊕V y 	V z = x ⊕V (y 	V z)
〈proof 〉

Now we can complete theorem that we want to prove. It corresponds with
exercise 1C in section 4 in Halmos.

lemma scalar-mult-zeroV-is-zeroV :
assumes a-in-K :a ∈ carrier K
shows a · 0V = 0V
〈proof 〉

We apply a similar reasoning to prove that 0 · x = 0V (this corresponds
with exercise 1D in section 4 in Halmos):

lemma mult-zero-descomposition2 :
assumes x-in-V : x ∈ carrier V
shows 0K · x ⊕V 0K · x = 0K · x
〈proof 〉

The exercise 1D in section 4 in Halmos is proved as follows:

lemma zeroK-mult-V-is-zeroV :
assumes x-in-V : x ∈ carrier V
shows 0K · x = 0V
〈proof 〉

Another relevant property permit us to relate the additive inverse of the
multiplicative unit with the additive inverse. It corresponds with exercise
(1F) in section 4 in Halmos.

lemma negate-eq :
assumes x-in-V : x ∈ carrier V
shows (K 1K) · x = 	V x
〈proof 〉

The previous property can be proved not only for the multiplicative unit
of K but for every element in its carrier. We redo the demonstration (the
previous lemma could be proved as a corollary of this):

9

lemma negate-eq2 :
assumes x-in-V : x ∈ carrier V
and a-in-K : a ∈ carrier K
shows (K a) · x = 	V (a·x)
〈proof 〉

The next two lemmas prove exercise 1E, which says that the scalar product
also satisfies an integral property (if a · b = 0V , either a = 0K or b = 0V):

lemma mult-zero-uniq :
assumes x-in-V : x ∈ carrier V and x-not-zero: x 6= 0V
and a-in-K : a ∈ carrier K and m-ax-0 : a · x = 0V
shows a = 0K
〈proof 〉

lemma integral :
assumes x-in-V : x∈ carrier V
and a-in-K : a ∈ carrier K
and m-ax-0 : a · x= 0V
shows a = 0K | x=0V
〈proof 〉

We present here some other properties which don’t appear in Halmos but
that will be useful in our development. For instance, distributivity of sub-
straction with respect to the scalar product:

lemma diff-mult-distrib1 :
assumes x-in-V : x∈ carrier V
and y-in-V : y ∈ carrier V
and a-in-K : a ∈ carrier K
shows a · (x 	V y) = a · x 	V a · y
〈proof 〉

The following result proves distributivity of substraction (of K) with respect
to the scalar product:

lemma diff-mult-distrib2 :
assumes x-in-V : x∈ carrier V
and a-in-K : a ∈ carrier K
and b-in-K : b ∈ carrier K
shows (a 	K b) · x = a·x 	V b·x
〈proof 〉

The following result proves that the unary substraction of K and V is a
self-cancelling operation by means of the scalar product:

lemma minus-mult-cancel :
assumes x-in-V : x ∈ carrier V and a-in-K :a∈ carrier K
shows (K a) · (V x) = a · x
〈proof 〉

10

A result proving that the scalar product is commutative over the elements
of K:

lemma mult-left-commute:
assumes x-in-V : x ∈ carrier V
and a-in-K : a∈ carrier K
and b-in-K :b∈ carrier K
shows a · b · x = b · a · x
〈proof 〉

A result proving that the scalar product is left-cancelling for the elements
of K different from 0:

lemma mult-left-cancel :
assumes x-in-V : x ∈ carrier V
and y-in-V : y∈carrier V
and a-in-K : a∈carrier K
and a-not-zero: a 6=0K
shows (a · x = a · y) = (x = y)
〈proof 〉

A similar result to the previous one but proving that the element of V can
be also cancelled:

lemma mult-right-cancel :
assumes x-in-V : x ∈ carrier V
and a-in-K : a ∈ carrier K
and b-in-K : b∈carrier K
and x-not-zero: x 6=0V
shows (a · x = b · x) = (a = b)
〈proof 〉

end
end
theory Linear-dependence
imports Comments
begin

6 Linear dependence

context vector-space
begin

In this section we will present the definition of linearly dependent set and
linearly independent set. First of all we will introduce the definition of
linear-combination.

A linear combination is a finite sum of vectors of V multiplicated by scalars.
However, how can we specify the scalars? In a linear combination each
vector will be multiplicated by one specific scalar, so this scalar depends on
the vector. For that reason, we introduce the notion of coefficients-function.

11

definition coefficients-function :: ′b set => (′b => ′a) set
where coefficients-function X
= {f . f ∈ X → carrier K ∧ (∀ x . x /∈X −→ f x = 0K)}

The explanation of the definition of coefficients function is as follows: given
any set of vectors X, its coefficients functions will be every function which
maps each of the vectors in X to scalars in K. We impose an additional
condition, in such a way that every element out of the set of vectors X is
mapped to a distinguished element (in this case 0) of K.

The first condition in the definition (f ∈ X → carrier K) is clear. A co-
efficients function is a function which maps, as we have said before, the
elements of a given set X to their corresponding scalars in K. The second
condition (∀ x . x /∈ X −→ f x = 0) requires further explanation: the reason
to map every element out of the set X to a distinguished point is that this
allows us to compare coefficients functions through the extensional equality
of functions ((f = g) = (∀ x . f x = g x)). Thus, two coefficients function
will be equal whenever they map every vector of X to the same scalar of K
(this statement would not hold in the absence of the second condition).

Giving f a coefficients function and a certain x in carrier V then f x (the
scalar of the vector) will be in carrier K.

lemma fx-in-K :
assumes x-in-V : x ∈ carrier V
and cf-f : f ∈ coefficients-function (carrier V)
shows f (x) ∈ carrier K
〈proof 〉

For every x ∈ carrier V, multiplication between the scalar and the vector (f
x · x) is in carrier V.

lemma fx-x-in-V :
assumes x-in-V : x ∈ carrier V
and cf-f : f ∈ coefficients-function (carrier V)
shows f (x)·x ∈ carrier V
〈proof 〉

Now we are going to define a linear combination. In Halmos, next section is
about linear combinations, however we have to introduce now the definition
because we will use it to define the linear dependence of a set. We will use
the definition of sums over a finite set (finsum) which already exists in the
Isabelle library. Note that we are defining a linear-combination with two
parameters: second is the set of elements of V and first is the coefficients
function which assigns each vector to its scalar.

Due to the definition of finsum-def we are only considering the case of a finite
linear combination. The case of infinite linear combinations is undefined.
This is not a problem for us, because we will work with finite vector spaces

12

and in our development we will only need linear combinations over finite
sets. In addition, the sums in an infinite vector space are all finite because
without additional structure the axioms of a vector space do not permit us
to meaningfully speak about an infinite sum of vectors.

definition linear-combination :: (′b ⇒ ′a) ⇒ ′b set ⇒ ′b
where linear-combination f X = finsum V (λy . f (y)·y) X

In order to define the notion of linear dependence of a set we need to demand
that this set be finite and a subset of the carrier. To abbreviate notation we
will define these two premises as good-set.

definition good-set :: ′b set => bool
where good-set X = (finite X ∧ X ⊆ carrier V)

Next two lemmas show both properties:

lemma good-set-finite:
assumes good-set-X : good-set X
shows finite X
〈proof 〉

lemma good-set-in-carrier :
assumes good-set-X : good-set X
shows X ⊆ carrier V
〈proof 〉

Empty set is a good-set.

lemma [simp]: good-set {}
〈proof 〉

Now, we can present the definition of linearly dependent set. A set will be
dependent if there exists a linear combination equal to zero in which not all
scalars are zero.

definition linear-dependent :: ′b set ⇒ bool
where linear-dependent X = (good-set X
∧ (∃ f . f ∈ coefficients-function (carrier V) ∧ linear-combination f X = 0V
∧ ¬(∀ x ∈ X . f x = 0K)))

This definition is equivalent to the previous one:

definition linear-dependent-2 :: ′b set ⇒ bool
where linear-dependent-2 X =
(∃ f . f ∈ coefficients-function (carrier V) ∧ good-set X
∧ linear-combination f X = 0V ∧ ¬ (∀ x ∈ X . f x = 0K))

Next lemma, which is in the library, proves that are equivalent

lemma (∃ f . X ∧ Y f) = (X ∧ (∃ f . Y f))
〈proof 〉

13

lemma linear-dependent-eq-def :
shows linear-dependent X = linear-dependent-2 X
〈proof 〉

We introduce now the notion of a linearly independent set. We will prove
later that linear dependence and independence are complementary notions
(every set will be either dependent or independent).

definition linear-independent :: ′b set ⇒ bool
where linear-independent X =
(good-set X
∧ (∀ f . (f ∈ coefficients-function (carrier V) ∧ linear-combination f X = 0V)
−→ (∀ x ∈ X . f (x)=0K)))

Next lemmas prove that if we have a linear (in)dependent set hence we have
a good-set (finite and in the carrier).

lemma l-ind-good-set : linear-independent X =⇒ good-set X
〈proof 〉

lemma l-dep-good-set : linear-dependent X =⇒ good-set X
〈proof 〉

The empty set is linearly independent.

lemma empty-set-is-linearly-independent [simp]:
shows linear-independent {}
〈proof 〉

We can prove that linear independence is the opposite of linear dependence.
For that, we first prove that every set which is not linearly independent must
be linearly dependent:

lemma not-independent-implies-dependent :
assumes good-set : good-set X
shows ¬ linear-independent X =⇒ linear-dependent X
〈proof 〉

Now we prove that every set which is linearly dependent is not linearly
independent:

lemma dependent-implies-not-independent :
shows linear-dependent X =⇒ ¬ linear-independent X
〈proof 〉

Hence the result:

lemma dependent-if-only-if-not-independent :
assumes good-set : good-set X
shows linear-dependent X ←→ ¬ linear-independent X
〈proof 〉

14

Analogously, we can prove that a set is not linearly dependent if and only if
it is linearly independent. We use [[¬ P ; ¬ R =⇒ P]] =⇒ R and the previous
lemma:

lemma not-dependent-implies-independent :
assumes good-set : good-set X
shows ¬ linear-dependent X =⇒ linear-independent X
〈proof 〉

lemma independent-implies-not-dependent :
shows linear-independent X =⇒ ¬ linear-dependent X
〈proof 〉

Finally, we obtain the equivalence of definitions:

lemma independent-if-only-if-not-dependent :
assumes good-set : good-set X
shows linear-independent X ←→ ¬ linear-dependent X
〈proof 〉

Every good set will be either dependent or independent (but not both at the
same time). Note: the operator OR of this proof is not an exclusive OR, so
really here we are proving that every set is either dependent or independent
or both.

lemma li-or-ld :
assumes good-set :good-set X
shows linear-dependent X | linear-independent X
〈proof 〉

In order to avoid that problem, we need to implement the operator exclusive
OR:

definition xor :: bool ⇒ bool ⇒ bool
where xor A B ≡ (A ∧ ¬ B) ∨ (¬A ∧ B)

Now we can prove that every good set will be either dependent or indepen-
dent (but not both at the same time):

lemma li-xor-ld :
assumes good-set :good-set X
shows xor (linear-dependent X) (linear-independent X)
〈proof 〉

A corollary of these theorems using that the empty set is linearly indepen-
dent: if we have a linearly dependent set, then it isn’t the empty set:

lemma dependent-not-empty :
assumes ld-A: linear-dependent A
shows A 6={}
〈proof 〉

15

Now we prove that every set X containing a linearly dependent subset Y is
itself linearly dependent. This property is stated in Halmos but not proved,
he says that the fact is clear.

The proof is easy but long. We want to achieve a linear combination of the
elements of X equal to zero and where not all scalars are zero. We know
that a subset Y of X is dependent, so there exists a linear combination of
the elements of Y equal to zero where not all scalars are zero (we will denote
its coefficients funcion as f). If we define a coefficients function for the set
X where the scalars of the elements y ∈ Y are f(y) and 0K for the rest of
elements in X, then we will obtain a linear combination of elements of X
equal to zero where not all scalars are zero (because not for all x ∈ Y f(x)
is 0K).

lemma linear-dependent-subset-implies-linear-dependent-set :
assumes Y-subset-X : Y ⊆ X and good-set : good-set X
and linear-dependent-Y : linear-dependent Y
shows linear-dependent X
〈proof 〉

More properties and facts:

lemma exists-subset-ld :
assumes ld-X : linear-dependent X
shows ∃Y . Y ⊆ X ∧ linear-dependent Y
〈proof 〉

lemma exists-subset-li :
assumes ld-X : linear-dependent X
shows ∃Y . Y⊆X ∧ linear-independent Y
〈proof 〉

A set containing 0V is not an independent set:

lemma zero-not-in-linear-independent-set :
assumes li-A: linear-independent A
shows 0V /∈ A
〈proof 〉

Every subset of an independent set is also independent. This property has
been proved using sledgehammer.

lemma independent-set-implies-independent-subset :
assumes A-in-B : A ⊆ B
and li-B : linear-independent B
shows linear-independent A
〈proof 〉

We can even extend the notions of linearly dependent and independent sets
to infinite sets in the following way. We shall say that a set is linearly
independent if every finite subset of it is such.

16

definition linear-independent-ext :: ′b set ⇒ bool
where linear-independent-ext X
= (∀A. finite A ∧ A ⊆ X −→ linear-independent A)

Otherwise, it is linearly dependent.

definition linear-dependent-ext :: ′b set ⇒ bool
where linear-dependent-ext X
= (∃A. A ⊆ X ∧ linear-dependent A)

As expected, if we have a linearly independent set it will be also linear-independent-ext
set.

lemma independent-imp-independent-ext :
assumes li-X : linear-independent X
shows linear-independent-ext X
〈proof 〉

The same property holds for dependent sets:

lemma dependent-imp-dependent-ext :
assumes ld-X : linear-dependent X
shows linear-dependent-ext X
〈proof 〉

Every finite set which is linear-independent-ext will also be linear-independent :

lemma fin-ind-ext-impl-ind :
assumes li-ext-X : linear-independent-ext X
and finite-X : finite X
shows linear-independent X
〈proof 〉

Similarly with the notion of linear dependence:

lemma fin-dep-ext-impl-dep:
assumes ld-ext-X : linear-dependent-ext X
and gs-X : good-set X
shows linear-dependent X
〈proof 〉

We can prove that also in the infinite case, the definitions of linear-independent-ext
and linear-dependent-ext are complementary (every set will be of one type
or the other). Let’s see it:

lemma not-independent-ext-implies-dependent-ext :
assumes X-in-V : X ⊆ carrier V
shows ¬ linear-independent-ext X =⇒ linear-dependent-ext X
〈proof 〉

lemma not-dependent-ext-implies-independent-ext :
assumes X-in-V : X ⊆ carrier V
shows ¬ linear-dependent-ext X =⇒ linear-independent-ext X

17

〈proof 〉

lemma independent-ext-implies-not-dependent-ext :
shows linear-independent-ext X =⇒ ¬ linear-dependent-ext X
〈proof 〉

lemma dependent-ext-implies-not-independent-ext :
shows linear-dependent-ext X =⇒ ¬ linear-independent-ext X
〈proof 〉

corollary dependent-ext-if-only-if-not-indepentent-ext :
assumes X-in-V : X ⊆ carrier V
shows linear-dependent-ext X ←→ ¬ linear-independent-ext X
〈proof 〉

corollary independent-ext-if-only-if-not-depentent-ext :
assumes X-in-V : X ⊆ carrier V
shows linear-independent-ext X ←→ ¬ linear-dependent-ext X
〈proof 〉

end
end
theory Indexed-Set

imports Main FuncSet Previous
begin

7 Indexed sets

The next type definition, iset, represents the notion of an indexed set, which
is a pair: a set and a function that goes from naturals to the set.

type-synonym (′a) iset = ′a set × (nat => ′a)

Now we define functions which make possible to separate an indexed set into
the set and the function and we add them to the simplifier, since they are
only meant to be abbreviations of the “fst” and “snd” operations:

definition iset-to-set :: ′a iset => ′a set
where iset-to-set A = fst A

definition iset-to-index :: ′a iset => (nat => ′a)
where iset-to-index A = snd A

lemmas [simp] = iset-to-set-def iset-to-index-def

An indexing of a set will be any bijection between the set of the natural
numbers less than its cardinality (because we start counting from 0) and
the set. Note: we will always work with finite sets. By default, the definition
of card assigns to an infinite set cardinality equal to 0.

18

definition indexing :: (′a iset) => bool
where indexing A = bij-betw (iset-to-index A)
{..<card (iset-to-set A)} (iset-to-set A)

Once we have the definition of indexing, we are going to prove some prop-
erties of it:

We introduce some lemmas presenting properties and alternative defini-
tions of “indexing”. For instance, whenever we have an indexing A =
(iset to set A, iset to index A) the index function will map naturals in the
range {.. < card(A)} to elements of iset to set A and, moreover, the image
set of the indexing function in such range will be whole set iset to set A.

lemma indexing-equiv-img :
assumes ob: indexing A
shows (iset-to-index A)
∈ {..<(card (iset-to-set A))} → (iset-to-set A)
∧ (iset-to-index A) ‘ {..<(card (iset-to-set A))}
= (iset-to-set A)
〈proof 〉

The implication is also satisfied in the opposite direction:

lemma img-equiv-indexing :
assumes f : (iset-to-index A)
∈ {..<(card (iset-to-set A))} → (iset-to-set A)
∧ (iset-to-index A) ‘ {..<(card (iset-to-set A))}
= (iset-to-set A)
shows indexing A
〈proof 〉

Now we present another alternative definition of indexing linking it with the
notions of injectivity and surjectivity:

lemma indexing-inj-surj :
assumes ob: indexing A
shows inj-on (iset-to-index A) {..<(card (iset-to-set A))}
∧ (iset-to-index A) ‘ {..<(card (iset-to-set A))}

= (iset-to-set A)
〈proof 〉

lemma indexing-inj-surj-inv :
assumes inj-on (iset-to-index A) {..<(card (iset-to-set A))}
∧ (iset-to-index A) ‘ {..<(card (iset-to-set A))} = (iset-to-set A)
shows indexing A
〈proof 〉

One basic property is that the empty set with any function of appropriate
type is an indexing :

lemma indexing-empty :
indexing ({}, f)

19

〈proof 〉

We can obtain an equivalent notion of previous lemma writing the property
in the unfolded definition of indexing.

lemma indexing-empty-inv :
shows inj-on (iset-to-index ({}, f)) {..<card (iset-to-set ({}, f))}
∧ iset-to-index ({}, f) ‘ {..<card (iset-to-set ({}, f))} = iset-to-set ({}, f) 〈proof 〉

Now we are proving a basic but useful lemma: if we have an indexing of
a set, then the image of a natural less than the cardinality of the set is an
element of the set.

lemma indexing-in-set :
assumes indexing (A,f)
and n < card A
shows f n ∈ A
〈proof 〉

We present two auxiliary lemmas about indexings and their behaviours as
injective functions. The first one claims that if we have an indexing and two
naturals (less than the cardinality of the set) with the same image, then the
naturals are equal (which is a consequence of injectivity):.

lemma
indexing-impl-eq-preimage:
assumes i : indexing (A, f)
and x : x ∈ {..<card A} and y : y ∈ {..<card A}
and f : f x = f y
shows x = y
〈proof 〉

On the contrary, if we have the same assumptions than before but we con-
sider that the image of both naturals are different, then the numbers are
distinct.

lemma
indexing-impl-ndiff-image:
assumes i : indexing (A, f)
and x : x ∈ {..<card A} and y : y ∈ {..<card A}
and f : x 6= y
shows f x 6= f y
〈proof 〉

The following lemma proves that for any finite set A, there exist a natural
number n and a function f such that f is an index function of A with
{.. < n} the collection of indexes. The prof is no constructive, is based on a
lemma in the Isabelle library proving that every finite set is a mapping of a
range of the naturals.

lemma finite-imp-nat-seg-image-inj-on-Pi :

20

assumes f : finite A
shows (∃n::nat . ∃ f ∈{i . i < n} → A.
((f ‘ {i . i < n} = A) ∧ inj-on f {i . i < n}))
〈proof 〉

The bijection is between the naturals up to card A and the set. Thanks to
that we are giving to the set an indexation, we are representing a set more
or less like a vector in C++: a structure with card(A) components (from
position 0 to (card(A)− 1)). Each component f(i) tallies with one element
of the set.

The following lemma extends the previous one, since we prove that n in the
previous lemma is actually card(A). The proof is carried out by induction
on the finite set A, and the indexing function is explicitly given (?f in the
proof below):

lemma finite-imp-nat-seg-image-inj-on-Pi-card :
assumes f : finite A
shows (∃ f ∈ {i . i < (card A)} → A. ((f ‘ {i . i < (card A)} = A)
∧ inj-on f {i . i < (card A)}))
〈proof 〉

As a corollary, we prove that for each finite set there exists an indexing of
it. This is the main theorem of this section and it will be very useful in the
future to assign an order to a finite set (we will need it in future proofs).

corollary obtain-indexing :
assumes finite-A: finite A
shows ∃ f . indexing (A,f)
〈proof 〉

In addition, if we have an indexing we will know that the set is finite. This
lemma will allow us to remove the premise finite A whenever we have
indexings. This is because Isabelle assigns 0 as the cardinality of an infinite
set. Suppose that A is infinite. If we have an indexing(A, f), hence f is a
bijection between the set of naturals less than the cardinality of A (0 due
to the implementation) and A. Then, A = f ‘{.. < card(A)} = f ‘{.. < 0} =
f ‘{} = {}. However, we have supposed that A was infinite and {} is not, so
we have a contradiction and A is always finite.

lemma indexing-finite[simp]:
assumes indexing-A: indexing (A,f)
shows finite A
〈proof 〉

After introducing the notion of indexed set, we need to introduce two basic
operations over indexed sets: insert and remove. They will be generic with
respect to the position where an element can be inserted or removed. For
instance, given an indexed set {(a, 0), (b, 1), (c, 2)} if we are to insert an ele-
ment d, we will admit indexing {(d, 0), (a, 1), (b, 2), (c, 3)}, {(a, 0), (d, 1), (b, 2), (c, 3)}

21

and so on. In other words, inserting an element in a sorted set preserves the
order of the elements, but maybe not their positions.

First we define the function which, for a given indexing A and an element
a gives all possible indexings for the set insert a (iset to set A) preserving
(iset to index A):

n is the position where ’a’ will be inserted. It shoul be a natural number
between 0 (first position) and card A (last position).

definition indexing-ext :: (′a iset) => ′a => (nat => nat => ′a)
where
indexing-ext A a =
(%n. %k . if k < n then (iset-to-index A) k
else if k = n then a
else (iset-to-index A) (k − 1))

Now we present a basic property (it will be useful to be applied in induction
proofs): If one indexing-ext generated from an indexation F and from one
element a /∈ index-to-set F is good (is an indexing), then the indexation of
F is also good (an indexing).

It is a long lemma (about 300 lines). The proof of injectivity must be
separated in several different cases, depending on the position where we
insert the element (after, before or exactly in the nth position):

lemma indexing-indexing-ext :
assumes ob:
indexing ((insert x (iset-to-set F)), (indexing-ext F x n))
and n1 : 0 ≤ n
and n2 : n ≤ card (iset-to-set F)
and x-notin-F : x /∈ (iset-to-set F)
shows indexing F
〈proof 〉

From the above definitions we can define the operation insert for indexed
sets. We don’t assume that the new element (which is going to be inserted in
the set) is not in the set, this will appear as a premise in the corresponding
results.

Given any indexed set A, an element a and a position n, the operation
insert iset will introduce a in iset to set A in the position n (modifying
accordingly the original indexation iset to index A).

definition insert-iset :: ′a iset => ′a => nat => ′a iset
where
insert-iset A a n
= (insert a (iset-to-set A), indexing-ext A a n)

Next lemma claims that if we insert an element in an indexing, we are
increasing the cardinality of the set in a unit. Logically, we need to assume

22

that the element which is going to be inserted is not in the set.

lemma insert-iset-increase-card :
assumes indexing-A: indexing (A,f)
and a-notin-A: a /∈ A
shows card (iset-to-set (insert-iset (A,f) a n)) = card A + 1
〈proof 〉

Given an indexing (A, f), an element a /∈ A and a position n ≤ card(A),
the result of inserting a in A in position n will be an indexing:

lemma insert-iset-indexing :
assumes indexing-A: indexing (A,f)
and a-notin-A: a /∈ A
and n2 : n ≤ (card A)
shows indexing (insert-iset (A,f) a n)
〈proof 〉

We introduce the definition of a generic function remove-iset which removes
the nth element of an indexed set. Logically, the position of the element
which is going to be removed must be less than the cardinality of the set.
The indexing must be also modified in such a way that every element above
n will decrease its position in one unit. For instance, if we have the in-
dexed set {(a, 0), (b, 1), (c, 2)} and we remove the position 0, we will obtain
{(b, 0), (c, 1)}.
definition remove-iset :: ′a iset => nat => ′a iset

where remove-iset A n = (fst A − {(snd A) n},
(λk . if k < n then (snd A) k else (snd A) (Suc k)))

Here an equivalent definition to remove-iset ?A ?n = (fst ?A − {snd ?A
?n}, λk . if k < ?n then snd ?A k else snd ?A (Suc k)):

lemma remove-iset-def ′:
remove-iset (A, f) n = (A − {f n}, (λk . if k < n then f k else f (Suc k)))
〈proof 〉

The following lemma proves that, for any indexing, the result of removing
an element in a valid position will be again an indexing. This is a long
lemma (about 150 lines).

lemma
indexing-remove-iset :
assumes i : indexing (B , h)
and n: n < card B
shows indexing (remove-iset (B , h) n)
〈proof 〉

The result of inserting an element in an indexed set in position n and then
removing the element in position n is the original indexed set.

lemma

23

remove-iset-insert-iset-id :
assumes x-notin-A: x /∈ A
and n-l-c: n < card A
shows remove-iset (insert-iset (A, f) x n) n = (A, f)
〈proof 〉

Next lemma is a good example of proof by acumulation of facts, and it is
ideal to structure it using moreover and finish it with ultimately. However,
we can use [[A; B ; C ; D]] =⇒ A ∧ B ∧ C ∧ D to abridge it:

The lemma claims that given an indexing (X, f), there exists an indexing
(insert x X, h) which places x in the last position (and keeps the elements
of X in their original places).

lemma indexation-x-union-X :
assumes finite: finite X and x-not-in-X : x /∈ X
and f-buena:f ∈ {i . i < (card X)} → X and ordenFX : f ‘ {i . i < (card X)} =

X
shows ∃ h. (h ∈ {i . i < (card (insert x X))} → (insert x X)
∧ h‘{i . i < (card (insert x X))} = (insert x X)
∧ h (card X) = x ∧ (∀ i . i<card(X) −→ h i = f i))
〈proof 〉

This is an indispensable lemma to prove the theorem that claims that an
independent set can be completed to a basis. Given any pair of (disjoint)
sets A and B, there exists an indexing function h which places the elements
of A in the first card(A) positions and then the elements of B. In the proof,
the indexing function is explicitly provided:

lemma indexing-union:
assumes disjuntos: A∩B={}
and finite-A: finite A
and A-not-empty : A 6={} — If not the result is trivial.
and finite-B : finite B
shows ∃ h. indexing (A∪B ,h) ∧ h‘ {..<card(A)}= A
∧ h‘ ({..<(card(A)+card(B))}−{..<card(A)})=B
〈proof 〉

Now we are going to define a new function which returns the position where
an element a is in a set A. When we use this function it is very important
to assume that a ∈ A, since functions are total in HOL, and without the
premise a ∈ A we would obtain an undefined value of the righ type. An
alternative definition could be made writing LEAST instead of THE and
then we could remove n < card A. Note that both THE and LEAST are
based on the Hilbert’s ε operator, which, in general, places us out of a
constructive setting.

This function will be very important for the proof that each basis of a vector
space has the same cardinality.

24

definition obtain-position :: ′c⇒ ′c iset ⇒ nat
where obtain-position a A = (THE n. (snd A) n = a
∧ n < card (fst A))

Under the right premises, this natural number exists and is smaller than
card(A) which ensures that obtain-position is well-defined.

lemma exists-n-obtain-position:
assumes a-in-A: a ∈ A
and indexing-A: indexing (A,f)
shows ∃n::nat . f n = a
〈proof 〉

We proof that exists someone that also verifies n < card A

lemma exists-n-and-less-card-obtain-position:
assumes a-in-A: a ∈ A
and indexing-A: indexing (A,f)
shows ∃n::nat . f n = a ∧ n < (card A)
〈proof 〉

Thanks to the previous lemma and the injectivity of indexing functions, we
can prove the existence and the unicity of obtain-position:

lemma exists-n-and-is-unique-obtain-position:
assumes a-in-A: a∈ A
and indexing-A: indexing (A,f)
shows ∃ !n::nat . f n = a ∧ n < (card A)
〈proof 〉

Now that we have proved that obtain-position is well defined, we prove that
its result satisfies the required properties. The number which is returned by
obtain-position is less than the cardinal of the set:

lemma obtain-position-less-card :
assumes a-in-A: a ∈ A
and indexing-A: indexing (A,f)
shows (obtain-position a (A,f)) < card A
〈proof 〉

The function really returns the position of the element.

lemma obtain-position-element :
assumes a-in-A: a ∈ A
and indexing-A: indexing (A,f)
shows f (obtain-position a (A,f)) = a
〈proof 〉

An element will not be in the set returned by the function remove-iset called
with the position of that element.

lemma a-notin-remove-iset :
assumes a-in-A: a ∈ A

25

and indexing-A: indexing (A,f)
shows a /∈ fst (remove-iset (A,f) (obtain-position a (A,f)))
〈proof 〉

Finally some important theorems to prove future properties of indexed sets.
Isabelle has an induction rule to prove properties of finite sets. Unfortu-
nately, this rule is of little help for proving properties of indexed sets, since
the set and the indexing function must behave accordingly in the induction
rule, and their inherent properties. Consequently, we have to introduce a
special induction rule for indexed sets.

First an auxiliary lemma:

lemma exists-indexing-ext :
assumes i : indexing (insert x A, f)
shows ∃ h. ∃n ∈ {..card A}. (f = (indexing-ext (A, h) x) n)
〈proof 〉

The first one induction rule:

theorem
indexed-set-induct :
assumes indexing (A, f)
and finite A
and !!f . indexing ({}, f) ==> P {} f
and step: !!a A f n. [|a /∈ A; finite A; indexing (A, f);

0 ≤ n; n ≤ card A|] ==> P (insert a A) ((indexing-ext (A, f) a) n)
shows P A f
〈proof 〉

This induction rule is similar to the proper of finite sets, [[finite F ; P {};∧
x F . [[finite F ; x /∈ F ; P F]] =⇒ P (insert x F)]] =⇒ P F, but taking into

account the indexing. Thus, if a property P holds for the empty set and one
of its indexing functions, and when it holds for a given set A and an indexing
function f , we now how to prove it for the pair insert a A (with a /∈ A)
and any of the extensions of f , then P holds for every indexing (A, f). The
proof of the property is completed by induction over the set A, but keeping
f free for later instantiation with the right indexing functions.

lemma
indexed-set-induct2 [case-names indexing finite empty insert]:
assumes indexing (A, f)
and finite A
and !!f . indexing ({}, f) ==> P {} f
and step: !!a A f n. [|a /∈ A;

[| indexing (A, f) |] ==> P A f ;
finite (insert a A);
indexing ((insert a A), (indexing-ext (A, f) a n));
0 ≤ n; n ≤ card A |] ==>
P (insert a A) (indexing-ext (A, f) a n)

26

shows P A f
〈proof 〉

end

theory Linear-combinations
imports Linear-dependence Indexed-Set
begin

8 Linear combinations

context vector-space
begin

To define the notion of linear dependence and independence we already in-
troduced the definition of linear combination. Nevertheless, here we present
some properties of linear combinations. We could have used them to simplify
the proofs of some theorems in the previous section, but we have decided to
keep the order of the sections in Halmos.

A linear-combination is closed, when considering a set X ⊆ carrier V and
a proper coefficients function f :

lemma linear-combination-closed :
assumes good-set : good-set X
and f : f ∈ coefficients-function (carrier V)
shows linear-combination f X ∈ carrier V
〈proof 〉

A linear-combination over the empty set is equal to 0V

lemma linear-combination-of-zero:
shows linear-combination f {} = x ←→ x = 0V
〈proof 〉

From previous lemma we can obtain a corollary which will be useful as a
simplification rule.

corollary linear-combination-empty-set [simp]:
shows linear-combination f {} = 0V
〈proof 〉

The computation of the linear combination of a unipuntual set is direct:

lemma linear-combination-singleton:
assumes cf-f : f ∈ coefficients-function (carrier V)
and x-in-V : x ∈ carrier V
shows linear-combination f {x} = f x · x
〈proof 〉

A linear-combination of insert x X is equal to f x · x ⊕V linear-combination
f X

27

lemma linear-combination-insert :
assumes good-set-X : good-set X
and x-in-V : x ∈ carrier V
and x-not-in-X : x /∈ X
and cf-f : f ∈ coefficients-function (carrier V)
shows linear-combination f (insert x X)
= f x · x ⊕V linear-combination f X
〈proof 〉

If each term of the linear combination is zero, then the sum is zero.

lemma linear-combination-zero:
assumes good-set-X : good-set X
and cf-f : f ∈ coefficients-function (carrier V)
and all-zero:

∧
x . x ∈ X =⇒ f (x) · x = 0V

shows linear-combination f X = 0V
〈proof 〉

This is an auxiliary lemma which we will use later to prove that a · linear-combination
f X = linear-combination (λi . a ⊗ f i) X. We prove it doing induction over
the finite set X. Firstly, we have to prove the property in case that the set
is empty. After that, we suppose that the result is true for a set X and then
we have to prove it for a set insert x X where x /∈ X.

lemma finsum-aux :
[[finite X ; X ⊆ carrier V ; a∈ carrier K ; f ∈ X→ carrier K]]
=⇒ a · (

⊕
Vy∈X . f y · y)=(

⊕
Vy∈X . a· (f y · y))

〈proof 〉

To multiply a linear combination by a scalar a is the same that multiplying
each term of the linear combination by a.

lemma linear-combination-rdistrib:
[[good-set X ; f ∈ coefficients-function (carrier V);
a ∈ carrier K]] =⇒ a · (linear-combination f X)
= linear-combination (%i . a ⊗ f (i)) X
〈proof 〉

Now some useful lemmas which will be helpful to prove other ones.

lemma coefficients-function-g-f-null :
assumes cf-f : f ∈ coefficients-function (carrier V)
shows (λx . if x ∈ Y then f (x) else 0K)
∈ coefficients-function (carrier V) 〈proof 〉

This lemma is a generalization of the idea through we have proved linear-dependent-subset-implies-linear-dependent-set :
[[Y ⊆ X ; good-set X ; linear-dependent Y]] =⇒ linear-dependent X. Using it
we could reduce its proof, but in Halmos the section of linear dependence
goes before the one about linear combinations. The proof is based on divid-
ing the linear combination into two sums, from which one of them is equal
to 0V . This lemma takes up about 130 code lines.

28

lemma eq-lc-when-out-of-set-is-zero:
assumes good-set-A: good-set A and good-set-Y : good-set Y
and cf-f : f ∈ coefficients-function (carrier V)
shows linear-combination (λx . if x ∈ Y then f (x) else 0K)
(Y∪A) = linear-combination f Y
〈proof 〉

Another auxiliary lemma. It will be very useful to prove properties in
future sections. If we have an equality of the form 0V = g x · x ⊕V
linear-combination g X, then we can work out the value of x (there ex-
ists a coefficients function f such that x = linear combination f X. This
coefficients function is explicitly defined by dividing each of the values g(y)
by g(x)).

lemma work-out-the-value-of-x :
assumes good-set : good-set X
and coefficients-function-g :
g ∈ coefficients-function (carrier V)
and x-in-V : x ∈ carrier V
and gx-not-zero: g x 6= 0K
and lc-descomposicion: 0V = g(x)·x ⊕V linear-combination g X
shows ∃ f . f ∈ coefficients-function (carrier V)
∧ linear-combination f X = x
〈proof 〉

Now we are going to prove a property presented in Halmos, section 6: if
{xi}i∈N is linearly independent, then a necessary an sufficient condition that
x be a linear combination of {xi}i∈N is that the enlarged set, obtained by
adjoining x to {xi}i∈N, be linearly dependent.

Here the first implication. The proof is based on definig a linear com-
bination of the set insert x X equal to 0V . As long as we know that
linear combination f X = x we define a coefficients function for insert x
X where the coefficients of y ∈ X are f(y) and the coefficient of x is −1.
A detail that is omitted in Halmos is that not every coefficient is zero since
the coefficient of x is −1. The complete proof requires 102 lines of Isabelle
code.

lemma lc1 :
assumes linear-independent-X : linear-independent X
and x-in-V :x ∈ carrier V and x-not-in-X :x /∈ X
shows (∃ f . f ∈ coefficients-function (carrier V) ∧ linear-combination f X = x)

=⇒ linear-dependent (insert x X)
〈proof 〉

And now we present the second implication. The proof is based on obtaining
a linear combination of insert x X in which not all scalars are zero (we can
do it since X is linearly dependent). Hence we prove that the scalar of
x is not zero (if it is, hence X would be dependent and independent so

29

a contradiction). Then, we can express x as a linear combination of the
elements of X.

lemma lc2 :
assumes linear-independent-X : linear-independent X
and x-in-V : x ∈ carrier V
and x-not-in-X : x /∈ X
shows linear-dependent (insert x X)
=⇒ (∃ f . f ∈ coefficients-function (carrier V)
∧ linear-combination f X = x)
〈proof 〉

Finally, the theorem proving the equivalence of both definitions.

lemma lc1-eq-lc2 :
assumes linear-independent-X : linear-independent X
and x-in-V :x ∈ carrier V and x-not-in-X :x /∈ X
shows linear-dependent (insert x X) ←→
(∃ f . f ∈ coefficients-function (carrier V)
∧ linear-combination f X = x)
〈proof 〉

This lemma doesn’t appears in Halmos (but it seems to be a similar result
to the theorem ??). The proof is based on obtaining a linear combination
of the elements of X ∪ Y equal to 0V where not all scalars are equal to 0K.
Hence we can express an element y ∈ (X ∪ Y) such that its scalar is not
zero as a linear combination of the rest elements of X ∪ Y . This is a long
proof of 180 lines.

lemma exists-x-linear-combination:
assumes li-X : linear-independent X
and ld-XY : linear-dependent (X ∪ Y)
shows ∃ y∈Y . ∃ g . g ∈ coefficients-function (carrier V)
∧ y = linear-combination g (X ∪ (Y − {y}))
〈proof 〉

A corollary of the previous lemma claims that if we have a linearly depen-
dent set, then there exists one element which can be expressed as a linear
combination of the other elements of the set.

corollary exists-x-linear-combination2 :
assumes ld-Y : linear-dependent Y
shows ∃ y∈Y . ∃ g . g ∈ coefficients-function (carrier V)
∧ y = linear-combination g (Y − {y})
〈proof 〉

Every singleton set is linearly independent. This lemma could be in previous
section, however we have to make use of some properties of linear combina-
tions. We can repeat the proof without these properties, but it would be
longer. We will use that a · x = 0 =⇒ a = 0 because x 6= 0.

lemma unipuntual-is-li :

30

assumes x-in-V : x ∈ carrier V and x-not-zero: x 6= 0V
shows linear-independent {x}
〈proof 〉 thm finsum-insert
〈proof 〉

Now we are ready to prove the theorem 1 in section 6 in Halmos. It will be
useful (really indispensable) in future proofs and it is basic in our develope-
ment. The theorem claims that in a linear dependent set exists an element
which is a linear combination of the preceding ones.

NOTE: As we are assuming that 0V is not in the set, the element which is
a linear combination of the preceding ones will be between the second and
the last position of the set (1 and card(A)− 1 with the notation used in our
implementation of indexed sets). The element in the first position (position
0) can’t be a linear combination of the preceding ones because it would be
a linear combination of the empty set, hence this element would be 0V and
it is not in the set.

We make the proof using induction (we don’t follow the proof of the book).
At first, it seemed easier this way.

lemma
linear-dependent-set-contains-linear-combination:
assumes ld-X : linear-dependent X
and not-zero: 0V /∈ X
shows ∃ y ∈ X . ∃ g . ∃ k ::nat . ∃ f ∈ {i . i<(card X)} → X . f‘{i . i<(card X)} =

X ∧ g ∈ coefficients-function (carrier V)
∧ (1 ::nat) ≤ k ∧ k < (card X) ∧ f k = y ∧ y = linear-combination g (f‘{i ::nat .

i<k})
〈proof 〉

lemma
card-less-induct-good-set :
assumes c: good-set A
and step:

∧
A. [[(

∧
B . [[card B < card A; good-set B]] =⇒ P B);

good-set A]] =⇒ P A
shows P A
〈proof 〉

Really, the result that we need to prove corresponds closer to the next theo-
rem than we have proved in the previous theorem linear-dependent-set-contains-linear-combination.
We have to assume that the indexation is known beforehand. This will be
necessary in the future, because we will remove dependent elements in re-
gard a gived indexation of one set (so the removed element will be unique).
We will apply this theorem iteratively to a set in future proofs, so if we

31

didn’t fix the order beforehand we won’t have unicity of the result (because
the indexing could change in each step).

We will use the induction rule for indexed sets that we introduced before
(indexed-set-induct2). This is a laborious and large theorem, of about 400
code lines.

theorem
linear-dependent-set-sorted-contains-linear-combination:
assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A
and i : indexing (A, f)
shows ∃ y∈A. ∃ g . ∃ k ::nat .
g ∈ coefficients-function (carrier V)
∧ (1 ::nat) ≤ k ∧ k < (card A)
∧ f k = y ∧ y = linear-combination g (f‘{i ::nat . i<k})
〈proof 〉

The proof can be also done without induction and then the proof of the
theorem is shorter: “only” 200 code lines. The proof is a generalization of
one of the cases in the induction above.

theorem
linear-dependent-set-sorted-contains-linear-combination2 :
assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A
and i : indexing (A, f)
shows ∃ y∈A. ∃ g . ∃ k ::nat .
g ∈ coefficients-function (carrier V)
∧ (1 ::nat) ≤ k ∧ k < (card A)
∧ f k = y ∧ y = linear-combination g (f‘{i ::nat . i<k})
〈proof 〉

end
end
theory Basis
imports Linear-combinations
begin

9 Basis

context vector-space
begin

A finite spanning set is a finite set of vectors that can generate every vector
in the space through such linear combinations.

definition spanning-set :: ′b set ⇒ bool
where spanning-set X = (good-set X
∧ (∀ x . x ∈ carrier V −→ (∃ f . f ∈ coefficients-function (carrier V) ∧ linear-combination

f X = x)))

32

Even, we can talk about an infinite spanning set. We say that a set (finite or
infinite) X ⊆ carrier V is a spanning set (we will rename this definition as
spanning-set-ext) if for every x ∈ carrier V it is possible to choose a finite
subset of X such that exists a linear combination of its elements equal to x.

As we have said before, the sums are all finite: we can not talk about an
infinite sum of vectors without adding some concepts and more structure
(the axioms of Vector Space do not allow it).

definition spanning-set-ext :: ′b set ⇒ bool
where spanning-set-ext X = (∀ x . x ∈ carrier V −→
(∃A. ∃ f . good-set A ∧ A ⊆ X ∧ f ∈ coefficients-function (carrier V) ∧ linear-combination

f A = x))

Let’s see the compatibility between the definitions:

Now we prove that every spanning-set is a spanning-set-ext :

lemma spanning-imp-spanning-ext :
assumes sp-X : spanning-set X
shows spanning-set-ext X
〈proof 〉

Whenever we have a spanning-set-ext which is finite and X ⊆ carrier V
then it is a spanning-set.

lemma gs-spanning-ext-imp-spanning :
assumes sp-X : spanning-set-ext X
and gs-X : good-set X
shows spanning-set X
〈proof 〉

A basis is an independent spanning set. We define it in general (X could be
finite or infinite).

definition basis :: ′b set ⇒ bool
where basis X = (X ⊆ carrier V ∧ linear-independent-ext X ∧ spanning-set-ext

X)

If we have a finite basis, then it is a good set.

lemma finite-basis-implies-good-set :
assumes basis-B : basis B
and finite-B : finite B
shows good-set B
〈proof 〉

We introduce the definition of span of a determinated set A like the set of
all elements which can be expressed as a linear combination of the elements
of A.

definition span :: ′b set => ′b set

33

where span A = {x . ∃ g ∈ coefficients-function (carrier V). x = linear-combination
g A}

First of all, we prove the behavior of span with respect to {}.
lemma

span-empty [simp]:
shows span {} = {0V}
〈proof 〉

One auxiliar result says that 0V is in the span of every set.

lemma
span-contains-zero [simp]:
assumes fin-A: finite A
and A-in-V : A ⊆ carrier V
shows 0V ∈ span A
〈proof 〉

Now we are going to prove that if we remove an element of a set which is
a linear combination of the rest of elements then the span of the set is the
same than the span of the set minus the element. This will be a fundamental
property to be applied in the future. First of all, we do two auxiliar proofs.

This auxiliary lemma claims that given a coefficients funcion g of A − {a}
hence there exists another one (denoted by ga) such that linear-combination
g (A − {a}) = linear-combination ga A. The coefficients function ga will
be defined as follows: λx . if x = a then 0 else g x.

lemma exists-function-Aa-A:
assumes cf-g : g ∈ coefficients-function (carrier V)
and good-set-A: good-set A
and a-in-A: a ∈ A
shows ∃ ga ∈ coefficients-function (carrier V).
(
⊕

Vy∈A − {a}. g y · y) = (
⊕

Vy∈A. ga y · y)
〈proof 〉

This auxiliary lemma is similar to the previous one. It claims that given a co-
efficients function h and another one g such that a = linear-combination g (A
− {a}), there exists a coefficients function ga such that linear-combination h
A = linear-combination ga (A − {a}). This coefficients funcion ga is defined
as follows: λx . h a ⊗ g x ⊕ h x. In other words, with these premises every
linear combination of elements of A can be expressed as a linear combination
of elements of A− {a}.
lemma exists-function-A-Aa:

assumes cf-h:h ∈ coefficients-function (carrier V)
and cf-g : g ∈ coefficients-function (carrier V)
and a-lc-g-Aa: a = linear-combination g (A−{a})
and good-set-A: good-set A and a-in-A: a∈A
shows ∃ ga ∈ coefficients-function (carrier V).

34

(
⊕

Vy∈A. h y · y) = (
⊕

Vy∈A − {a}. ga y · y)
〈proof 〉

Now we present the theorem. The proof is done by double content of both
span sets and we make use of the two previous lemmas.

theorem
span-minus:
assumes good-set-A: good-set A
and a-in-A: a ∈ A
and exists-g : ∃ g . g∈ coefficients-function (carrier V)
∧ a = linear-combination g (A − {a})
shows span A = span (A − {a})
〈proof 〉

A corollary of this theorem claims that for every linearly dependent set A,
then ∃ a∈A. span A = span (A − {a}).

We also need to use linear-dependent Y =⇒ ∃ y∈Y . ∃ g . g ∈ coefficients-function
(carrier V) ∧ y = linear-combination g (Y − {y})
corollary

span-minus2 :
assumes ld-A: linear-dependent A
shows ∃ a∈A. span A = span (A − {a})
〈proof 〉

If an element y is not in the span of a set A, hence that element is not in
that set. The proof is completed by reductio ad absurdum. If a ∈ A, then
there is a linear combination of the elements of A, and thus a ∈ span(A),
which is a contradiction with one of the premises.

lemma not-in-span-impl-not-in-set :
assumes y-notin-span: y /∈ span A
and cb-A: good-set A
and y-in-V : y ∈ carrier V
shows y /∈ A
〈proof 〉

If we have an element which is not in the span of an independent set, then
the result of inserting this element into that set is a linearly independent set.
The proof is done dividing the goal into cases. The case where A 6= {} again
is divided in cases with respect to the boolean linear-independent (insert
y A). In the case where linear-independent (insert y A) is false, again we
proceed by reductio ad absurdum. It is a long lemma of 129 lines.

lemma insert-y-notin-span-li :
assumes y-notin-span: y /∈ span A
and y-in-V : y ∈ carrier V
and li-A: linear-independent A
shows linear-independent (insert y A)

35

〈proof 〉

We can unify the concepts of spanning-set, span and basis and illustrate the
relationships that exist among them.

The span of a spanning-set is carrier V.

lemma span-basis-implies-spanning-set :
assumes span-A-V : span A = carrier V
and good-set-A: good-set A
shows spanning-set A
〈proof 〉

The opposite implication:

lemma spanning-set-implies-span-basis:
assumes sg-A: spanning-set A
shows span A = carrier V
〈proof 〉

Now we present the relationship between spanning-set and span: if span A = carrier V
then A is a spanning set.

lemma span-V-eq-spanning-set :
assumes cb-A: good-set A
shows span A = carrier V ←→ spanning-set A
〈proof 〉

Now we can introduce in Isabelle a new definition of basis (in the case
of finite dimensional vector spaces). A finite basis will be a set A which
is linear-independent and satisfies span A = carrier V. We use the previ-
ous lemma to check that it is equivalent to basis X = (X ⊆ carrier V ∧
linear-independent-ext X ∧ spanning-set-ext X).

lemma basis-def ′:
assumes cb-A: good-set A
shows basis A ←→ (linear-independent A ∧ span A = carrier V)
〈proof 〉

If we have a finite basis, we can forget extended versions of linear indepen-
dence and spanning set:

lemma finite-basis:
assumes fin-A: finite A
shows basis A ←→ (linear-independent A ∧ spanning-set A)
〈proof 〉

end

9.1 Finite Dimensional Vector Space

For working in a finite vector space we need to fix a finite basis.

36

The definition of finite dimensional vector spaces in Isabelle/HOL is direct.
It consists of a vector space in which we assume that there exists a finite
basis. Note that we have not proved yet that every vector space contains a
basis.

locale finite-dimensional-vector-space = vector-space +
fixes X :: ′c set
assumes finite-X : finite X
and basis-X : basis X

context finite-dimensional-vector-space
begin

From this point the fixed basis is denoted by X.

We add to simplifier both premisses.

lemmas [simp] = finite-X basis-X

It is easy to show that the basis is a good set, is linearly independent and a
spanning set.

lemma good-set-X :
shows good-set X
〈proof 〉

lemma linear-independent-X :
shows linear-independent X
〈proof 〉

lemma spanning-set-X :
shows spanning-set X
〈proof 〉

We add to simplifier these three lemmas.

lemmas [simp] = good-set-X linear-independent-X spanning-set-X

For all x ∈ carrier V exists a linear combination of elements of the basis
(we can write x ∈ carrier V in combination of the elements of a basis).

lemma exists-combination:
assumes x-in-V : x ∈ carrier V
shows ∃ f . (f ∈ coefficients-function (carrier V) ∧ x = linear-combination f X)
〈proof 〉

Next lemma shows us that coordinates of a vector are unique for each basis

lemma unique-coordenates:
assumes x-in-V : x ∈ carrier V
and cf-f : f ∈ coefficients-function (carrier V)
and lc-f : x = linear-combination f X
and cf-g : g ∈ coefficients-function (carrier V)

37

and lc-g : x = linear-combination g X
shows ∀ x ∈ X . g x = f x
〈proof 〉

We have fixed a finite basis and now we can prove some theorems about the
span. Note that the concept of finitude of the basis is very important in the
proofs.

The span of a basis is the total, so it’s easy to prove that carrier V ⊆
span X. The other implication is also easy: we have only to unfold the
definition and use [[good-set ?X ; ?f ∈ coefficients-function (carrier V)]] =⇒
linear-combination ?f ?X ∈ carrier V.

lemma span-basis-is-V : span X = carrier V
〈proof 〉

The span of every set joined with a basis is the total. Before proving this
theorem, we make two auxiliar lemmas.

First one:

lemma exists-linear-combination-union-basis:
assumes fin-A: finite A
and A-in-V : A ⊆ carrier V
and x-in-V : x ∈ carrier V
shows ∃ g . g ∈ coefficients-function (carrier V) ∧ x = linear-combination g (A
∪ X)
〈proof 〉

Second one

lemma span-union-basis-eq :
assumes fin-A: finite A
and A-in-V : A ⊆ carrier V
shows span (A ∪ X) = span X
〈proof 〉

Finally the theorem: the span of every set joined with a basis is the total

corollary span-union-basis-is-V :
assumes fin-A: finite A
and A-in-V : A ⊆ carrier V
shows span (A ∪ X) = carrier V
〈proof 〉

9.2 Theorem 1.

From this, we are going to center into the proof that every linearly indepen-
dent set can be extended to a basis.

The function remove-ld takes an element of type ′a iset and returns other
element of that type in which in the set has been removed the first element

38

that is a combination of the preceding ones, and the indexation has removed
the corresponding index.

In the next definition, making use of previous theorem:

[[linear-dependent Xa; 0V /∈ Xa]] =⇒ ∃ y∈Xa. ∃ g k . ∃ f ∈{i . i < card Xa}
→ Xa. f ‘ {i . i < card Xa} = Xa ∧ g ∈ coefficients-function (carrier V)
∧ 1 ≤ k ∧ k < card Xa ∧ f k = y ∧ y = linear-combination g (f ‘ {i . i
< k}), we remove the least element that verifies the property that it can
be expressed as a linear combination of the preceding ones. The existence
of this element is guaranteed by the fact that the set is linearly dependent.
If we iterate the function remove-ld we can be sure that it will terminate
because sooner or later we will achieve a linearly independent set.

It is important to note that we have to provide a fixed indexation f for the
elements to be removed are uniquely determined.

The function remove-ld must be only applied to an indexation of a linearly
dependent set that does not contain 0V, since these are the uniques con-
ditions where we have ensured the existence of the element to be removed
using:

linear-dependent-set-contains-linear-combination: [[linear-dependent Xa; 0V
/∈ Xa]] =⇒ ∃ y∈Xa. ∃ g k . ∃ f ∈{i . i < card Xa} → Xa. f ‘ {i . i < card Xa}
= Xa ∧ g ∈ coefficients-function (carrier V) ∧ 1 ≤ k ∧ k < card Xa ∧ f
k = y ∧ y = linear-combination g (f ‘ {i . i < k}).
definition remove-ld :: ′c iset => ′c iset

where remove-ld A =
(let n = (LEAST k ::nat . ∃ y∈(fst A). ∃ g .
g ∈ coefficients-function (carrier V)
∧ (1 ::nat) ≤ k ∧ k < (card (fst A))
∧ (snd A) k = y
∧ y = linear-combination g ((snd A) ‘ {i ::nat . i<k}))
in remove-iset A n)

Next lemma expresses another notation for remove-ld ?A = Let (LEAST k .
∃ y∈fst ?A. ∃ g . g ∈ coefficients-function (carrier V) ∧ 1 ≤ k ∧ k < card
(fst ?A) ∧ snd ?A k = y ∧ y = linear-combination g (snd ?A ‘ {i . i < k}))
(remove-iset ?A).

lemma remove-ld-def ′:
remove-ld (A, f) = (let n = (LEAST k ::nat . ∃ y∈A. ∃ g .

g ∈ coefficients-function (carrier V) ∧ (1 ::nat) ≤ k
∧ k < (card A) ∧ f k = y ∧ y = linear-combination g (f‘{i ::nat . i<k}))

in (A − {f n}, (λk . if k < n then f k else f (Suc k))))
〈proof 〉

Now we can prove some properties of the function remove-ld : it preserves
the carrier, is monotone and decrease the cardinality.

39

lemma remove-ld-preserves-carrier :
assumes b: B ⊆ carrier V
shows fst (remove-ld (B , h)) ⊆ carrier V
〈proof 〉

lemma remove-ld-monotone:
assumes b: B ⊆ carrier V
shows fst (remove-ld (B , h)) ⊆ B
〈proof 〉

lemma remove-ld-decr-card :
assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A
and indexing-A-f : indexing (A, f)
shows card (fst (remove-ld (A, f))) = card A − 1
〈proof 〉

corollary remove-ld-decr-card2 :
assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A
and indexing-A-f : indexing (A, f)
shows card (fst (remove-ld (A, f))) < card A
〈proof 〉

This is an indispensable result: our function remove-ld preserves the propi-
ety of span. For this proof is very important the theorem span-minus:
[[good-set ?A; ?a ∈ ?A; ∃ g . g ∈ coefficients-function (carrier V) ∧ ?a =
linear-combination g (?A − {?a})]] =⇒ span ?A = span (?A − {?a}).
lemma remove-ld-preserves-span:

assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A
and indexing-A-f : indexing (A, f)
shows span (fst (remove-ld (A, f))) = span A
〈proof 〉

The next function iterate-remove-ld has done that we have to install Is-
abelle2011. In previous versions we have to make use of function (tailrec),
but this element had some bugs. In particular, we could not use function
(tailrec) in the next definition.

partial-function (tailrec) iterate-remove-ld :: ′c set => (nat => ′c) => ′c set
where iterate-remove-ld A f = (if linear-independent A then A

else iterate-remove-ld (fst (remove-ld (A, f)))
(snd (remove-ld (A, f))))

declare iterate-remove-ld .simps [simp del]

Its behaviour is the next: from a set and a indexation of it, we apply recur-
sively the operation remove-ld up to we achieve a linearly independent set.

40

The reiterated elimination of the linearly dependent elements would have to
keep the span.

If we call to the function iterate-remove-ld with a linearly independent set,
it will return us that set.

lemma iterate-remove-ld-empty [simp]: iterate-remove-ld {} f = {}
〈proof 〉

lemma
iterate-remove-ld-li [simp]:
assumes li-A: linear-independent A
shows iterate-remove-ld A f = A
〈proof 〉

Now we are going to prove some lemmas about indexings and remove-iset.
Note that we can not put this lemmas in the file Indexed-Set .thy because
the axioms good-set and linear-dependent are sometimes in the premises.

The next lemma express that the result of aplying remove-iset preserves the
good set property. In our context we need to prove it for remove-ld...but it
does not cease to be a particular case of remove-iset.

lemma
remove-iset-good-set :
assumes c: good-set A
and i : indexing (A, h)
shows good-set (fst (remove-iset (A, h) n))
〈proof 〉

lemma
remove-ld-good-set :
assumes c: good-set A
and i : indexing (A, h)
shows good-set (fst (remove-ld (A, h)))
〈proof 〉

Next theorem applies [[indexing (?B , ?h); ?n < card ?B]] =⇒ indexing
(remove-iset (?B , ?h) ?n) to the function remove-ld. We can omit the good
set condition: it is implicit in the fact that the set is linearly dependent.

theorem indexing-remove-ld :
assumes l : linear-dependent A
and i : indexing (A, f)
and n: 0V /∈ A
shows indexing (remove-ld (A, f))
〈proof 〉

Next lemma shows us that first element of a indexed set is in the carrier.
Note that we can not put this lemma in the file Indexed Set due to the axiom
A ⊆ carrier V (we have not a structure of carrier in that file).

41

lemma f0-in-V :
assumes indexing-A: indexing (A,f)
and A-in-V : A ⊆ carrier V
and A-not-empty : A 6={} — Essential to cardinality
shows f 0 ∈ carrier V
〈proof 〉

If A is independent, then its firts element is not zero.

lemma f0-not-zero:
assumes indexing-A: indexing (A,f)
and li-A: linear-independent A
and A-not-empty : A 6={}
shows f 0 6= 0V
〈proof 〉

We can also prove that apply the function insert-iset return us a good set.

lemma insert-iset-good-set :
assumes a-notin-A: a /∈ A
and indexing : indexing (A,f)
and a-in-V : a ∈ carrier V
and cb-A: good-set A
shows good-set (fst(insert-iset (A,f) a n))
〈proof 〉

Remove an element and after that insert it is a good set

lemma good-set-insert-remove:
assumes B-in-V : B ⊆ carrier V
and A-in-V : A ⊆ carrier V
and A-not-empty : A 6= {}
and indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and a-in-B : a ∈ B
shows good-set (fst (insert-iset (remove-iset (B , g) (obtain-position a (B , g)))

a n))
〈proof 〉

The result of applying the function iterate-remove-ld to any finite set in
carrier V will be always independent (the function finishes).

We are going to make the proof firstly by dividing in cases (with respect to
the condiction linear-independent A) and after that by total induction over
the cardinal of the set: (

∧
x . (

∧
y . f y < f x =⇒ P y) =⇒ P x) =⇒ P a.

With respect to the induction, it is important to note that we can not make
induction over the structure of the set, with the following induction rule for
indexed set that we have introduced in section ??:

indexed-set-induct2 : [[indexing (A, f); finite A;
∧

f . indexing ({}, f) =⇒ P
{} f ;

∧
a A f n. [[a /∈ A; indexing (A, f) =⇒ P A f ; finite (insert a A);

42

indexing (insert a A, indexing-ext (A, f) a n); 0 ≤ n; n ≤ card A]] =⇒ P
(insert a A) (indexing-ext (A, f) a n)]] =⇒ P A f

If we make induction over the structure, we will have to prove the case
insert a A and the induction hypothesis will say that the result is true for
A. However, independently of in what position of the indexation we place
the element a, we can not know if remove-ld (insert a A, indexing-ext (A,
f) a n) will return the same set A or it will return another set. In other
words: the result of inserting the element a in any position of the A set and
after that removing the least element which is a linear combination of the
preceding ones (remove-ld does it) is not equal to the original set. We can
not ensure it even when we insert the element a in the least position that it
can be expressed as a linear combination of the preceding ones: we can not
be sure that remove-ld will remove that element. For example, in the set
{(1 , 0), (2 , 0), (0 , 1)}, if we insert the element (0 , 2) in the least position
where it is a linear combination of the preceding ones we achieve the set
{(1 , 0), (2 , 0), (0 , 1), (0 , 2)}. However, if we apply remove-ld to this set,
it will return {(1 , 0), (0 , 1), (0 , 2)} and this is not equal to the original
set.

lemma
linear-independent-iterate-remove-ld :
assumes A-in-V : A ⊆ carrier V
and not-zero: 0V /∈ A
and indexing-A-f : indexing (A, h)
shows linear-independent (iterate-remove-ld A h)
〈proof 〉

Similarly to the previous theorem, we can prove that the function iterate-remove-ld
preserves the span.

lemma iterate-remove-ld-preserves-span:
assumes A-in-V : A ⊆ carrier V
and indexing-A-f : indexing (A,h)
and not-zero: 0V /∈ A
shows span (iterate-remove-ld A h) = span A
〈proof 〉

If we have an indexing (A ∪ B , h) where elements of an independent set
A are in its first positions and after those the elements of a set B, then A
will be in remove-ld (A ∪ B , h) (we will have removed an element of B).
The premisse of A ∩ B = {} is indispensable in order to avoid the notion of
multisets. In the book, Halmos doesn’t worry about this: he simply create
a set with all elements of A in the first positions and after that all elements
of B...but what does it happen if a element of B are in A? we will have a
multiset because we have the same element in two positions. However, this
is not a limitation for our theorem if we make a trick like these: A∪B =
A∪(B−A). Using that we avoid the problem.

43

lemma A-in-remove-ld :
assumes indexing : indexing (A∪B ,h)
and ld-AB : linear-dependent (A∪B)
and surj-h-A:h‘ {..<card(A)}= A

and li-A: linear-independent A
and zero-not-in: 0V /∈ (A∪B)
and disjuntos: A∩B={}
shows A ⊆ fst (remove-ld ((A∪B),h))
〈proof 〉

This lemma is an extended version of previous one. It shows that we are
removing one element of the second set and preserving the indexation.

lemma descomposicion-remove-ld :
assumes indexing : indexing (A∪B ,h)
and B-not-empty : B 6={} — Due to cardinality, it is indispensable.
and surj-h-A:h‘ {..<card(A)}= A
and surj-h-B :h‘ ({..<(card(A)+card(B))}−{..<card(A)})=B
and li-A: linear-independent A
and zero-not-in: 0V /∈ (A∪B)
and ld-AB : linear-dependent (A∪B)
and disjuntos: A∩B={}

shows ∃ y . fst (remove-ld ((A∪B),h))=A∪(B−{y}) ∧ y∈B
∧ (snd (remove-ld (A∪B , h))) ‘ ({..<card A + card (B−{y})} − {..<card A})

= (B−{y})
∧ snd (remove-ld((A∪B), h)) ‘ {..<card A}=A ∧ indexing (A ∪ (B−{y}), snd

(remove-ld (A∪B , h)))
〈proof 〉

Finally an important lemma proved using (
∧

x . (
∧

y . ?f y < ?f x =⇒ ?P y)
=⇒ ?P x) =⇒ ?P ?a such as we do in linear-independent-iterate-remove-ld
and in iterate-remove-ld-preserves-span. We need above lemmas to prove
it. It shows us that iterate-remove-ld does not remove any element of A if
elements of A are in first positions and A is linearly independent.

lemma A-in-iterate-remove-ld :
assumes indexing : indexing (A∪B ,h)
and B-in-V : B ⊆ carrier V
and surj-h-A:h‘ {..<card(A)}= A
and surj-h-B :h‘ ({..<(card(A)+card(B))}−{..<card(A)})=B
and li-A: linear-independent A
and zero-not-in: 0V /∈ (A∪B)
and disjuntos: A∩B={}
shows A ⊆ (iterate-remove-ld (A∪B) h)
〈proof 〉

Now we are in position to prove that every independent set can be extended
to a basis. First we prove it for any non-empty set.

lemma extend-not-empty-independent-set-to-a-basis:

44

assumes li-A: linear-independent A
and A-not-empty : A 6={}
shows ∃B . basis B ∧ A ⊆ B
〈proof 〉

And finally the theorem (case empty is trivial since we add all elements of
our fixed basis X to it.

theorem extend-independent-set-to-a-basis:
assumes li-A: linear-independent A
shows ∃B . basis B ∧ A ⊆ B
〈proof 〉

We have proved that any independent set can be extended to a basis, but
in anywhere we have proved that there exists a basis (we have supposed it
as a premisse in the case of finite dimensional vector spaces). The proof
that every vector space has a basis is not made in Halmos: some addi-
tional results as Zorn’s lemma, chains or well-ordering are required. See
http://planetmath.org/encyclopedia/EveryVectorSpaceHasABasis.html for
a detailed proof.

However, we can prove the existence of a basis in a particular case: when
carrier V is finite.

To prove this result, we are going to apply the function iterate-remove-ld to
carrier V − {0V}. This function requires that 0V doesn’t belong to the set
where we apply it, so we will not apply it to carrier V, but to carrier V −
{0V}. This function will return us a linearly independent set which span is
the same as the span of carrier V − {0V}. Proving that span (carrier V
− {0V}) = carrier V we will obtain the result (because carrier V − {0V}
is a spanning set).

Let’s see the proof. Firstly, we can see that the set V is a spanning-set. It
is trivial.

lemma spanning-set-V :
assumes finite-V : finite (carrier V)
shows spanning-set (carrier V)
〈proof 〉

Thanks to that, the span of V is itself (trivially).

lemma span-V-is-V :
assumes finite-V : finite (carrier V)
shows span (carrier V) = carrier V
〈proof 〉

Now we need to prove that spanning-set (carrier V − {0V}).
lemma spanning-set-V-minus-zero:

assumes finite-V : finite (carrier V−{0V})

45

shows spanning-set (carrier V−{0V})
〈proof 〉

As a corollary we have that span (carrier V − {0V}) = carrier V

corollary span-V-minus-zero-is-V :
assumes finite-V : finite (carrier V−{0V})
shows span (carrier V−{0V})=carrier V
〈proof 〉

Finally, the theorem:

theorem finite-V-implies-ex-basis:
assumes finite-V : finite (carrier V)
shows ∃B . basis B
〈proof 〉

A similar result than spanning-set-V-minus-zero is the next. We will use
this theorem in the future.

lemma spanning-set-minus-zero:
assumes finite-B : finite B
and B-in-V : B ⊆ carrier V
and sg-B : spanning-set B
shows spanning-set (B−{0V})
〈proof 〉

Every finite or infinite vector space contains a spanning-set-ext (in particu-
lar, carrier V fullfills this condition):

lemma spanning-set-ext-carrier-V :
shows spanning-set-ext (carrier V)
〈proof 〉

lemma vector-space-contains-spanning-set-ext :
shows ∃A. spanning-set-ext A ∧ A ⊆ carrier V
〈proof 〉

end
end
theory Dimension

imports Basis
begin

10 Dimension

context finite-dimensional-vector-space
begin

Now we are going to prove that every basis of a finite vector space has the
same cardinality than any other basis.

46

First of all, we are going to define a function that remove the first element of
an iset. We will use the function remove-iset. Note that this redefinition is
essential: we can not iterate remove-iset because is remove-iset : : iset×N→
iset

definition remove-iset-0 :: ′e iset => ′e iset
where remove-iset-0 A = remove-iset A 0

A property about this function and the empty set:

lemma remove-iset-empty :
shows fst (remove-iset-0 ({},f))={}
〈proof 〉

Now the definition of the function by means of we are going to prove the
theorem.

definition swap-function :: (′c iset × ′c iset)
=> (′c iset × ′c iset)
where swap-function A = (remove-iset-0 (fst A),
if (((snd(fst A) 0)) ∈ fst(snd A)) then
insert-iset (remove-iset (snd A)
(obtain-position ((snd(fst A) 0)) (snd A))) (snd(fst A) 0) 0
else
remove-ld (insert-iset (snd A) ((snd(fst A) 0)) 0))

From this, we will prove some basic properties that swap-function satisfies.

The set of the first component of the result is finite:

lemma finite-fst-swap-function:
assumes indexing-A: indexing (A,f)
shows finite (iset-to-set(fst(swap-function ((A,f),(B ,g)))))
〈proof 〉

The set of the first component of the result is in the carrier:

lemma swap-function-fst-in-carrier :
assumes A-in-V : A ⊆ carrier V
shows iset-to-set(fst(swap-function ((A,f),(B ,g)))) ⊆ carrier V
〈proof 〉

If the first set is not empty, then the set of the first component of the result
is contained (strictly) in it.

lemma fst-swap-function-subset-fst :
assumes indexing-A: indexing (A,f)
and A-not-empty : A 6={} — INDISPENSABLE: IF NOT THE EMPTY CASE

WILL NOT BE STRICT
shows iset-to-set(fst(swap-function ((A,f),(B ,g)))) ⊂ A
〈proof 〉

If we not demand that content be strict, then the result is trivial.

47

lemma fst-swap-function-subseteq-fst :
shows iset-to-set(fst(swap-function ((A,f),(B ,g)))) ⊆ A
〈proof 〉

We are goint to prove that the set of the second component of the result is a
good-set. To prove it we will make use of [[B ⊆ carrier V ; A ⊆ carrier V ; A
6= {}; indexing (A, f); indexing (B , g); a ∈ B]] =⇒ good-set (fst (insert-iset
(remove-iset (B , g) (obtain-position a (B , g))) a n)).

lemma swap-function-snd-good-set :
assumes B-in-V : B ⊆ carrier V
and A-in-V : A ⊆ carrier V
and A-not-empty : A 6={}
and indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
shows good-set (iset-to-set(snd(swap-function ((A,f),(B ,g)))))
〈proof 〉

corollary swap-function-snd-in-carrier :
assumes B-in-V : B ⊆ carrier V
and A-in-V : A ⊆ carrier V
and A-not-empty : A 6={}
and indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
shows (iset-to-set(snd(swap-function ((A,f),(B ,g))))) ⊆ carrier V
〈proof 〉

If the first set is independent, our function will preserve it.

lemma fst-swap-function-preserves-li :
assumes li-A: linear-independent A
shows linear-independent (iset-to-set(fst(swap-function ((A,f),(B ,g)))))
〈proof 〉

If the first element of the iset (A,f) is in B, the function will preserve the
second set (but it will have changed the indexation, putting that element in
first position of B).

lemma swap-function-preserves-B-if-fst-element-of-A-in-B :
assumes f0-in-B : f 0 ∈B
and indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
shows iset-to-set(snd(swap-function ((A,f),(B ,g))))=B
〈proof 〉

This is an auxiliar lemma which says that if we insert an element into a
spanning set, the result will be a linearly dependent set. We will need this
result to assure the existence of the element to remove of the second set using
the function swap-function through the theorem [[linear-dependent A; 0V /∈
A; indexing (A, f)]] =⇒ ∃ y∈A. ∃ g k . g ∈ coefficients-function (carrier V)

48

∧ 1 ≤ k ∧ k < card A ∧ f k = y ∧ y = linear-combination g (f ‘ {i . i <
k})
lemma linear-dependent-insert-spanning-set :

assumes f0-notin-B : f 0 /∈ B
and indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6= {} — Essential to cardinality
and sg-B : spanning-set B
shows linear-dependent (iset-to-set (insert-iset (B ,g) (f 0) 0))
〈proof 〉

This result is similar to linear-dependent-insert-spanning-set but using sets
directly, not isets.

lemma spanning-set-insert :
assumes sg-B : spanning-set B
and finite-B : finite B
and B-in-V : B ⊆ carrier V
and a-in-V : a ∈ carrier V
shows spanning-set (insert a B)
〈proof 〉

Our function will preserve that the second term is a spanning-set.

lemma swap-function-preserves-sg :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and B-in-V : B⊆carrier V
and A-not-empty : A 6={} — Essential to cardinality
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows spanning-set (iset-to-set(snd(swap-function ((A,f),(B ,g)))))
〈proof 〉

swap-function preserves the cardinality of the second iset.

lemma snd-swap-function-preserves-card :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6= {}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows card (iset-to-set (snd (swap-function ((A,f),(B ,g))))) = card B
〈proof 〉

Next lemmas shows us how our function decreases the cardinality of the first
term.

49

lemma fst-swap-function-decr-card :
assumes indexing-A: indexing (A,f)
shows card (iset-to-set(fst(swap-function ((A,f),(B ,g))))) = card A − 1
〈proof 〉

Now we are going to prove that exists an element of the second iset such
that if we apply the swap-function, the second term will be able to be writen
as the second set removing that element and adding the first element of the
first set.

We will prove it by cases, first the case that B is not empty

lemma swap-function-exists-y-in-B-not-empty :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6= {}
and B-not-empty : B 6= {}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows ∃ y∈B . iset-to-set (snd(swap-function ((A,f),(B ,g)))) = (insert (f 0)

(B−{y}))
〈proof 〉 thm descomposicion-remove-ld
〈proof 〉

And now the case that B is empty. It is an inconsistent case: if B is
empty and a spanning set, then the vector space is {0V}. A is not empty,
so A={0V}. However, we will have a contradiction: A will be dependent
({0V} is dependent) and also independent (by hypothesis).

lemma swap-function-exists-y-in-B-empty :
assumes indexing-A: indexing (A,f)
and A-not-empty : A 6={}
and B-empty : B={}
and li-A: linear-independent A
and sg-B : spanning-set B
shows ∃ y∈B . iset-to-set (snd(swap-function ((A,f),(B ,g))))=(insert (f 0) (B−{y}))
〈proof 〉

lemma swap-function-exists-y-in-B :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows ∃ y∈B . iset-to-set (snd(swap-function ((A,f),(B ,g))))=(insert (f 0) (B−{y}))
〈proof 〉

50

From this we can obtain a corollary: 0V is not in the second term of the
result of applying swap-function to a spanning-set.

corollary zero-notin-snd-swap-function:
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows 0V /∈ iset-to-set (snd(swap-function ((A,f),(B ,g))))
〈proof 〉

The first term of the result of applying swap-function is an indexing.

lemma fst-swap-function-indexing :
assumes indexing-A: indexing (A,f)
and A-in-V : A ⊆ carrier V
shows indexing (fst(swap-function ((A,f),(B ,g))))
〈proof 〉

Similarly with the second term:

lemma snd-swap-function-indexing :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows indexing (snd(swap-function ((A,f),(B ,g))))
〈proof 〉

If the first argument is an empty iset, then swap-function will also return
the empty set (in first component).

lemma swap-function-empty :
shows iset-to-set(fst(swap-function (({},f),(B ,g))))={}
〈proof 〉

lemma swap-function-empty2 :
assumes A-empty : A={}
shows iset-to-set(fst(swap-function ((A,f),(B ,g))))={}
〈proof 〉

end

Up to now we have proved properties of swap-function. However, we want to
iterate it a specific number of times (compose with itself several times). We

51

need to implement the power of a function because (surprisingly) it is not
in the library. We are interpreting the power of a function as a composition
with itself.

We will have to be careful with the types: we can not iterate (compose)
every function: a function can be composed with itself if the result and the
arguments are of the same type (and the number of arguments is the same
as the number of arguments of the result).

We can do the instantiation out of our context, since it is more general:

instantiation fun :: (type, type) power
begin

definition one-fun :: ′a => ′a
where one-fun-def : one-fun = id

definition times-fun :: (′a => ′a) => (′a => ′a) => ′a => ′a
where times-fun f g = (%x . f (g x))

instance
〈proof 〉

end

Once we have finished the instatiation, we can prove some general properties
about the power of a function.

For example: the power of the identity function is also the identity.

lemma id-n: shows id ˆ n = id
〈proof 〉

Any function power to zero is the identity.

lemma power-zero-id : fˆ0 =id
〈proof 〉

A corollary of this lemma will be indispensable for the proofs by induction.

lemma fun-power-suc: shows fˆ(Suc n)= f ◦ (fˆn)
〈proof 〉

corollary fun-power-suc-eq :
shows (fˆ(Suc n)) x = f ((fˆn) x)
〈proof 〉

context finite-dimensional-vector-space
begin

Now we will begin with the proofs of properties that swap-function iterated

52

several times satisfies. In general, we have proved a property in the case
n = 1 and now we are going to generalize it for any n by induction.

Most properties are invariants of the swap-function, so we will have proved a
property in case n = 1. To generalize it we will apply induction: we suppose
that a property is true for fn and we want to prove it for f (Suc(n)). By in-
duction hypothesis, fn satisfies the property and thanks to fun-power-suc-eq
we can write f Suc n x = f (f n x). As we have the property proved in case
n = 1, we will obtain the result generalized.

For example, we have proved swap-function-empty : iset-to-set (fst (swap-function
(({}, f), B , g))) = {} and now we will generalize it.

lemma swap-function-power-empty :
shows iset-to-set(fst((swap-functionˆn) (({},f),(B ,g))))={}
〈proof 〉

lemma swap-function-power-empty2 :
assumes A-empty : A={}
shows iset-to-set(fst((swap-functionˆn) ((A,f),(B ,g))))={}
〈proof 〉

The generalized lemma for swap-function-fst-in-carrier.

lemma swap-function-power-fst-in-carrier :
assumes A-in-V : A ⊆ carrier V
shows iset-to-set(fst((swap-functionˆn) ((A,f),(B ,g)))) ⊆ carrier V
〈proof 〉

Iterating the function the independence (in first argument) is preserved.

lemma fst-swap-function-power-preserves-li :
assumes li-A: linear-independent A
shows linear-independent (iset-to-set(fst(((swap-functionˆ(n))) ((A,f),(B ,g)))))
〈proof 〉

The first term is always an indexing. This is the generalization of fst-swap-function-indexing.

lemma fst-swap-function-power-indexing :
assumes indexing-A: indexing (A,f)
and A-in-V : A ⊆ carrier V
shows indexing (fst((swap-functionˆn) ((A,f),(B ,g))))
〈proof 〉

Now we can prove that if we compose n-times swap-function, the cardinality
of the set of the first term will be decreased in n. Note that to use the induc-
tion hypothesis, we have to have proved previously fst-swap-function-power-indexing
(and obviously also fst-swap-function-decr-card).

lemma fst-swap-function-power-decr-card :
assumes indexing-A: indexing (A, f)
and A-in-V : A ⊆ carrier V

53

shows card (iset-to-set (fst ((swap-functionˆn) ((A, f), B , g)))) = card A − n
〈proof 〉

The generalization of finite-fst-swap-function:

lemma finite-fst-swap-function-power :
assumes indexing-A: indexing (A,f)
and A-in-V : A ⊆ carrier V
shows finite (iset-to-set(fst((swap-functionˆn) ((A,f),(B ,g)))))
〈proof 〉

If we iterate cardinality of A times the function, where A is the set of the
first argument, then the first term of the result will be the empty set (we
have removed card A elements in A).

corollary swap-function-power-card-fst-empty :
assumes indexing-A: indexing (A,f)
and A-in-V : A ⊆ carrier V
shows iset-to-set(fst((swap-functionˆ(card A)) ((A,f),(B ,g))))={}
〈proof 〉

And if we iterate a number of times less than card A, then the (first) result
set will not be empty:

corollary swap-function-power-fst-not-empty-if-n-l-cardA:
assumes indexing-A: indexing (A,f)
and A-in-V : A ⊆ carrier V
and n-l-card : n < card A
shows iset-to-set(fst((swap-functionˆn) ((A,f),(B ,g)))) 6={}
〈proof 〉

This is a very important property which shows us how is the result of ap-
plying the function remove-iset-0 a specific number of times.

lemma remove-iset-0-eq :
assumes i : indexing (A,f)
and k-l-card : k<card A
shows (remove-iset-0ˆk) (A,f)=(f‘{k ..<card A},λn. f (n+k))
〈proof 〉

corollary corollary-remove-iset-0-eq :
assumes i : indexing (A,f)
and n-l-card : n < card A
shows snd ((remove-iset-0ˆn) (A,f)) 0 = f n
〈proof 〉

In the next lemma we prove some properties at same the time. We have
done like that because in the induction case the properties need each oth-
ers. We can not prove one separately: for example, to prove that 0V /∈
iset-to-set (snd (swap-functionSuc n ((A, f), B , g))) we would write that
swap-functionSuc n ((A, f), B , g) = swap-function (swap-functionn ((A,
f), B , g)) and we would apply the theorem zero-notin-snd-swap-function:

54

[[indexing (A, f); indexing (B , g); B ⊆ carrier V ; A 6= {}; linear-independent
A; spanning-set B ; 0V /∈ B]] =⇒ 0V /∈ iset-to-set (snd (swap-function ((A,
f), B , g)))

However, to apply this theorem we need that spanning-set (iset-to-set (snd
(swap-functionn ((A, f), B , g)))). To prove that we would need to use
swap-function-preserves-sg :

[[indexing (A, f); indexing (B , g); B ⊆ carrier V ; A 6= {}; linear-independent
A; spanning-set B ; 0V /∈ B]] =⇒ spanning-set (iset-to-set (snd (swap-function
((A, f), B , g))))

And a premise would be that 0V /∈ iset-to-set (snd (swap-functionn ((A,
f), B , g)))...but this is what we want to prove. Bringing all together in the
same theorem we will have everything we need like induction hypothesis, so
we can prove it. Next we will separate the properties.

lemma zeronotin-sg-carrier-indexing :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n < card A
shows 0V /∈ iset-to-set (snd ((swap-functionˆn) ((A, f), B , g)))
∧ spanning-set(iset-to-set(snd((swap-functionˆn)((A,f),(B ,g)))))
∧ (iset-to-set(snd((swap-functionˆn) ((A,f),(B ,g)))))
⊆ carrier V
∧ indexing (snd((swap-functionˆn) ((A,f),(B ,g))))
〈proof 〉

Now we can obtain the properties separately as corollaries.

corollary zero-notin-snd-swap-function-power :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n<card A
shows 0V /∈ iset-to-set (snd ((swap-functionˆn) ((A, f), B , g)))
〈proof 〉

55

corollary swap-function-power-preserves-sg :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n<card A
shows spanning-set (iset-to-set (snd ((swap-functionˆn) ((A, f), B , g))))
〈proof 〉

corollary swap-function-power-snd-in-carrier :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n<card A
shows iset-to-set (snd ((swap-functionˆn) ((A, f), B , g))) ⊆ carrier V
〈proof 〉

corollary snd-swap-function-power-indexing :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n<card A
shows indexing (snd ((swap-function ˆ n) ((A, f), B , g)))
〈proof 〉

Swap-function preserves the cardinality of the second iset.

lemma snd-swap-function-power-preserves-card :
assumes indexing-A: indexing (A, f)
and indexing-B : indexing (B , g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6= {}
and li-A: linear-independent A
and sg-B : spanning-set B

56

and zero-notin-B : 0V /∈ B
and n-l-card : n<card A
shows card (iset-to-set (snd ((swap-functionˆn) ((A, f), B , g)))) = card B
〈proof 〉

The first term of swap-function iterated is the same than remove-iset-0 it-
erated.

lemma fst-swap-function-power-eq :
fst ((swap-function ˆ n) ((A, f), B , g)) = (remove-iset-0 ˆ n) (A, f)
〈proof 〉

The first element of the result of the first term in the nth iteration is f(n).

lemma snd-fst-swap-function-image-0 :
assumes indexing-A: indexing (A,f)
and c: n < card A
shows snd (fst ((swap-function ˆ n) ((A, f), B , g))) 0 = f (n)
〈proof 〉

If we compose n times the swap-function, the first term will be the first set
minus the first n elements of it.

lemma swap-function-fst-image-until-n:
assumes indexing-A: indexing (A,f)
and A-not-empty : A 6={}
and n-l-cardA: n<card A
shows iset-to-set (fst ((swap-function ˆ n) ((A, f), B , g))) = f ‘ {n..<card A}
〈proof 〉

Now an auxiliar and ugly lemma which we will use to prove the swap theo-
rem. It is very laborious and hard lemma, similar that swap-function-exists-y-in-B
but much more precisse and difficult (over 400 lines). It represents properties
that has the function during the process of iterating.

lemma aux-swap-theorem1 :
assumes indexing-A: indexing (A,f) — In this set are the elements that we have

not included in second term yet.
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A6={}
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and li-Z : linear-independent Z — Z is the first independent set, the set over we

would apply our function the first time. A is the subset of Z where there are the
elements of Z that we have not added to B yet. The elements that we have added
to B are in C.

and A-union-C : A∪C =Z — Of course, the union of A and C is Z.
and disjoint : A∩C ={} — The sets are disjoints.
and surj-g-C : g‘{..<card C}= C — In first positions of B there are elements of

Z that we have already included. This set will be independent, so when we apply
remove-ld we will delete an element of (B-C)

57

shows ∃ y∈B . iset-to-set (snd(swap-function ((A,f),(B ,g))))
=(insert (f 0) (B−{y}))
∧ y /∈ C
∧ iset-to-index (snd(swap-function ((A,f),(B ,g))))
‘ {..<card (C) + 1} = C ∪ {f 0}
〈proof 〉

Another important auxiliary lemma. Applying the swap function n-times
(with n < card(A)) to ((A, f), B , g), where A is independent and B a span-
ning set, we will have that the first n elements of A will be in the first posi-
tions of the second component of the result. Of course, these elements come
from A and thus they are independent. We make use of aux-swap-theorem1
to prove this lemma.

lemma aux-swap-theorem2 :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n < card A
shows f‘{..<n}
= iset-to-index (snd((swap-functionˆ(n)) ((A,f),(B ,g))))‘{..<n}
∧ iset-to-index (snd((swap-functionˆ(n)) ((A,f),(B ,g))))‘{..<n}
⊂ A
∧ linear-independent
(iset-to-index (snd((swap-functionˆ(n)) ((A,f),(B ,g))))‘{..<n})
∧ n = (card (iset-to-index (snd((swap-functionˆ(n))
((A,f),(B ,g))))‘{..<n}))
〈proof 〉

At last, we can prove the swap theorem. We separate it in cases, when A is
empty and when it is not. We use the auxiliar lemma aux-swap-theorem2.

theorem swap-theorem-not-empty :
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B

shows card A ≤ card B
〈proof 〉

Finally the theorem (every independent set has cardinal less than or equal
to every spanning set) and some corollaries:

58

theorem swap-theorem:
assumes indexing-A: indexing (A,f)
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows card A ≤ card B
〈proof 〉

The next corollary omits the need of indexing functions for A and B (these
are obtained through auxiliary lemmas).

corollary swap-theorem2 :
assumes finite-B : finite B
and B-in-V : B ⊆ carrier V
and A-in-V : A ⊆ carrier V
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows card A ≤ card B
〈proof 〉

Now we can prove that the number of elements in any (finite) basis (of a
finite-dimensional vector space) is the same as in any other (finite) basis.

theorem eq-cardinality-basis:
assumes basis-B : basis B
and finite-B : finite B
shows card X = card B
〈proof 〉

corollary eq-cardinality-basis2 :
assumes basis-A: basis A
and finite-A: finite A
and basis-B : basis B
and finite-B : finite B
shows card A = card B
〈proof 〉

We can make the definicion of dimension of a vector space and relationate
the concept with above theorems.

The dimension of a vector space is the cardinality of one of its basis. We
have fixed X as a basis, so the definition is trivial:

definition dimension :: nat
where dimension = card X

If we have another basis, the dimension is equal to its cardinality.

59

lemma eq-dimension-basis:
assumes basis-A: basis A
and finite-A: finite A
shows dimension = card A
〈proof 〉

Whenever we have an independent set, we will know that its cardinality is
less than the dimension of the vector space.

lemma card-li-le-dim:
assumes li-A: linear-independent A
shows card A ≤ dimension
〈proof 〉

Whenever the cardinality of a set is greater (strictly) than the dimension of
V then the set is dependent.

corollary card-g-dim-implies-ld :
assumes card-g-dim: card A > dimension
and A-in-V : A ⊆ carrier V
shows linear-dependent A
〈proof 〉

The following lemma proves that the cardinality of any spanning set is
greater than the dimension. In the infinite case (when A is not finite but is a
spanning-set-ext) it would be trivial, but Isabelle assigns 0 as the cardinality
of an infinite set.

We will use swap-theorem, so 0V must not be in the spanning-set over we
apply it.

lemma card-sg-ge-dim:
assumes sg-A: spanning-set A
shows card A ≥ dimension
〈proof 〉

There not exists a spanning-set with cardinality less than the dimension.

corollary card-less-dim-implies-not-sg :
assumes cardA-l-dim: card A < dimension
shows ¬ spanning-set A
〈proof 〉

If we have a set which cardinality is equal to the dimension of a finite vector
space, then it is a finite set. We have to assume that the basis is not empty:
if X is empty, then card(X) = 0 = card(A). However and due to the
implementation of cardinality in Isabelle (giving 0 as the cardinality of an
infinite set), we could only prove that either A is infinite or empty.

lemma card-eq-not-empty-basis-implies-finite:
assumes cardA-dim: card A = dimension
and X-not-empty : X 6={}

60

shows finite A
〈proof 〉

Assuming that A is in V , the problem is solved.

lemma card-eq-basis-implies-finite:
assumes cardA-dim: card A = dimension
and A-in-V : A ⊆ carrier V
shows finite A
〈proof 〉

If a set has cardinality equal to the dimension, if it is a basis then is inde-
pendent.

lemma card-eq-basis-imp-li :
assumes cardA-dim: card A = dimension
shows basis A =⇒ linear-independent A
〈proof 〉

If we have an independent set with cardinality equal to the dimension, then
this set is a basis.

lemma card-li-set-eq-basis-imp-li :
assumes card-eq-dim: card A = dimension
shows linear-independent A =⇒ basis A
〈proof 〉

If a spanning set has cardinality equal to the dimension, then is independent
(so a basis).

lemma card-sg-set-eq-basis-imp-li :
assumes card-eq-dim: card A = dimension
shows spanning-set A =⇒ linear-independent A
〈proof 〉

corollary card-sg-set-eq-basis-imp-basis:
assumes card-eq-dim: card A = dimension
shows spanning-set A =⇒ basis A
〈proof 〉

lemma basis-iff-linear-independent :
assumes card-eq : card A = dimension
shows basis A ←→ linear-independent A
〈proof 〉

We can remove from eq-cardinality-basis2 the premises about finiteness: we
can prove that in a finite dimensional vector space there not exist infinite
bases.

lemma
not-finite-A-contains-empty-set :
assumes A: ¬ finite A

61

shows {} ⊆ A
〈proof 〉

lemma not-finite-diff :
assumes A: ¬ finite A
shows ¬ finite (A − {x})
〈proof 〉

lemma not-finite-diff-set :
assumes A: ¬ finite A
and B : finite B
shows ¬ finite (A − B)
〈proof 〉

We can obtain a subset with the number of elements that we want from an
infinite set:

lemma subset-card-n:
assumes A: ¬ finite A
shows ∀ k ::nat . ∃B . B ⊆ A ∧ card B = k
〈proof 〉

Every basis of a finite dimensional vector space is finite (because each set of
cardinality greater than the dimension is linearly dependent (card-g-dim-implies-ld),
so we can not have an infinite basis).

lemma basis-not-infinite:
assumes basis-A: basis A
shows finite A
〈proof 〉

Finally the theorem:

lemma eq-cardinality-basis ′:
assumes A: basis A and B : basis B
shows card A = card B
〈proof 〉

end
end

theory Isomorphism
imports Dimension

begin

11 Isomorphism

The types keyword seems to be replaced by type-synonym in the Isabelle
2011 release.

62

The following definition of vector has been obtained from the AFP, where a
similar one is defined over real, instead of ′a, for defining the Cauchy-Schwarz
Inequality http://afp.sourceforge.net/entries/Cauchy.shtml.

22-07-2011: JE: For some time I thought that many of the proofs required
the vector spaces to be non empty (not of dimension zero). This is why one
can meet a lot of premises of the type (0 :: ′a) < n or about the dimension
being non zero (all these premises are now enclosed between comments). Af-
ter a closer look I could remove each of these premises and make everything
general for every finite dimension.

types ′a vector = (nat => ′a) ∗ nat

definition
ith :: ′a vector => nat => ′a

where ith v i = fst v i

definition
vlen :: ′a vector => nat
where vlen v = snd v

Before getting into the definition of the vector space Kn, we introduce a
generic lemma that states that the decomposition of an element x ∈ carrier
V as a linear combination of the elements of a given basis is unique.

The lemma requires the basis X to be finite, because otherwise there would
be a linear combination of the infinite number of elements of the basis equal
to zero, but the finsum of an infinite set is undefined, and thus we cannot
complete the proof.

context abelian-group
begin

Some previous lemmas about addition in abelian monoids.

lemma
add-minus-add-minus:
assumes a: a ∈ carrier G
and b: b ∈ carrier G
and c: c ∈ carrier G
shows a ⊕ b 	 c = a ⊕ (b 	 c)
〈proof 〉

lemma
minus-add-minus-minus:
assumes a: a ∈ carrier G
and b: b ∈ carrier G
and c: c ∈ carrier G
shows a 	 (b ⊕ c) = a 	 b 	 c
〈proof 〉

63

http://afp.sourceforge.net/entries/Cauchy.shtml

thm minus-add
〈proof 〉

lemma
add-minus-add-minus-add-minus:
assumes a: a ∈ carrier G
and b: b ∈ carrier G
and c: c ∈ carrier G
and d : d ∈ carrier G
shows a ⊕ b 	 (c ⊕ d) = a 	 c ⊕ (b 	 d)
〈proof 〉

corollary add-minus-add-minus-add-minus-comm:
assumes a: a ∈ carrier G
and b: b ∈ carrier G
and c: c ∈ carrier G
and d : d ∈ carrier G
shows a ⊕ b 	 (c ⊕ d) = b 	 d ⊕ (a 	 c)
〈proof 〉

lemma finsum-minus-eq :
assumes fin-A: finite A
and f-PI : f ∈ A → carrier G
shows 	 finsum G f A = finsum G (λx . 	 f x) A
〈proof 〉

end

context vector-space
begin

The following function should replace to coefficients-function; the problem
with coefficients-function is that it does not impose any condition over func-
tions out of their domain, carrier V ; thus, we cannot prove that two coeffi-
cient functions which are equal over their corresponding domain (the basis
X) are equal. We have to impose an additional restriction that the function
out of its domain is equal to 0

end

11.1 Definition of Kn

context field
begin

The following definition represents the carrier set of the vector space. Note
that the type variable is now ′a, so we define only the following concepts
over the field of the coefficients.

— Seleccionamos un representante cannico para cada elemento, haciendo que todas
las coordenadas sean cero por encima de la dimensin del espacio vectorial

64

— Adems, debemos asegurar que la dimensin del vector, o la longitud del mismo,
sea igual al nmero de componenetes en el que estamos interesados; sino perderamos
la inyectividad de algunas operaciones

— Hay que tener en cuenta que en una lista de 1 elemento (por ejemplo, los ele-
mentos del carrier de K1) nos interesa nicamente el elemento en la posicin 0, de ah
que nos interesen los elementos con vlen = n - 1;

Para los elementos en K-n-carrier A (0 :: ′d) debemos observar que su primera
componente ser 0 y su segunda componente ser tambin 0, lo que nos deja
con un K0 cuyo nico elemento es el 0 :: ′c de la estructura correspondiente
(Kn).

definition K-n-carrier :: ′a set => nat => (′a vector) set
where K-n-carrier A n = {v . ((∀ i<n. ith v i ∈ A)) ∧
(∀ i≥n. ith v i = 0) ∧ (vlen v = (n − 1))}

lemma ith-closed :
assumes k : k ∈ K-n-carrier A n and i : i ∈ {..<n}
shows ith k i ∈ A
〈proof 〉

lemma K-n-carrier-zero:
K-n-carrier A 0 = {v . (ith v 0 = 0) ∧ (∀ i>0 . ith v i = 0) ∧ (vlen v = 0)}
〈proof 〉

lemma K-n-carrier-zero-ext : K-n-carrier A 0 = {(λi . 0, 0)}
〈proof 〉

lemma K-n-carrier-one:
K-n-carrier A 1 = {v . ith v 0 ∈ A ∧ (∀ i≥1 . ith v i = 0) ∧ (vlen v = 0)}
〈proof 〉

definition
K-n-add :: nat => ′a vector => ′a vector => ′a vector (infixr ⊕ı 65)
where K-n-add n = (λv w . ((λi . ith v i ⊕R ith w i), n − 1))

lemma K-n-add-zero:
shows K-n-add 0 = (λv w . ((λi . ith v i ⊕R ith w i), 0))
〈proof 〉

definition K-n-mult :: nat => ′a vector => ′a vector => ′a vector
where K-n-mult n = (λv w . ((λi . ith v i ⊗R ith w i), n − 1))

lemma K-n-mult-zero:
shows K-n-mult 0 = (λv w . ((λi . ith v i ⊗R ith w i), 0))
〈proof 〉

definition K-n-zero :: nat => ′a vector

65

where K-n-zero n = ((λi . 0R), n − 1)

lemma K-n-zero-zero:
shows K-n-zero 0 = ((λi . 0R), 0)
〈proof 〉

definition K-n-one :: nat => ′a vector
where K-n-one n = ((λi . 1R), n − 1)

Actually, in the following case, one should be equal to zero

lemma K-n-one-zero:
shows K-n-one 0 = ((λi . 1R), 0)
〈proof 〉

We are now forced to define also operations K-n-mult and K-n-one for our
abelian group Kn. This is due to the fact that the abelian group predicate
in the Algebra Library is defined over rings, and even if we have no interest
in using that operations (they are not required to prove that an algebraic
structure is an abelian group), they must be defined somehow. In our case
this is not a major problem, since they can be defined just following the
previous definitions of K-n-zero and K-n-add.

definition K-n :: nat => ′a vector ring
where
K-n n = (| carrier = K-n-carrier (carrier R) n,

mult = (λv w . K-n-mult n v w),
one = K-n-one n,
zero = K-n-zero n,
add = (λv w . K-n-add n v w)|)

lemma abelian-group-K-n:
shows abelian-group (K-n n)
〈proof 〉

corollary abelian-monoid-K-n:
shows abelian-monoid (K-n n)
〈proof 〉

We are later to consider K-n like one abelian group over which R gives
place to a vector space. We must define first the scalar product between
both structures.

definition
K-n-scalar-product :: ′a => ′a vector => ′a vector
(infixr � 65)
where a � b = (λn::nat . a ⊗R ith b n, vlen b)

lemma K-n-scalar-product-closed :
assumes a: a ∈ carrier R
and b: b ∈ carrier (K-n n)

66

shows a � b ∈ carrier (K-n n)
〈proof 〉

lemma field-R: field R
〈proof 〉

lemma
vector-space-K-n:
shows vector-space R (K-n n) (op �)
〈proof 〉

11.2 Canonical basis of Kn:

In the following section we introduce the elements that generate the canon-
ical basis of the vector space K-n n and prove some properties of them.

The elements of the canonical basis of K-n are the following ones:

definition x-i :: nat => nat => ′a vector
where x-i j n = ((λi . if i = j then 1 else 0), n − 1)

The elements x-i are part of the carrier (K-n n).

lemma
x-i-closed :
assumes j-l-n: j < n
shows x-i j n ∈ carrier (K-n n)
〈proof 〉

Any two elements of the basis are different:

lemma x-i-ne-x-j :
assumes i-ne-j : i 6= j
shows x-i i n 6= x-i j n
〈proof 〉

In the following lemma we can even omit the premise of i being smaller than
n, so the result is also true for vectors which are not part of the canonical
basis. It claims that an element of the canonical basis is not equal to 0K-n n

lemma x-i-ne-zero:
shows x-i i n 6= 0K-n n
〈proof 〉

end

context vector-space
begin

lemma

67

coefficients-function-Pi :
assumes x : x ∈ carrier V
and cf-f : f ∈ coefficients-function A
shows f x ∈ carrier K
〈proof 〉

end

context abelian-group
begin

lemma
finsum-twice:
assumes f : f ∈ {i ,j} → carrier G
and i-ne-j : i 6= j
shows finsum G f {i , j} = f i ⊕ f j
〈proof 〉

end

context comm-monoid
begin

lemma mult-if :
shows (λk . x ⊗ (if k = i then y else z)) = (λk . if k = i then x ⊗ y else x ⊗ z)
〈proof 〉

end

lemma
fun-eq-contr :
assumes fg : f = g
and x : f x 6= g x
shows False 〈proof 〉

context abelian-monoid
begin

lemma
finsum-singleton-set :
assumes f : f a ∈ carrier G
shows finsum G f {a} = f a
〈proof 〉

end

context field
begin

68

lemma comm-monoid-R: comm-monoid R 〈proof 〉

lemma abelian-monoid-R: abelian-monoid R 〈proof 〉

Some previous about the linear independece of the elements of the canonical
basis:

lemma x-i-li :
assumes j-l-n: j < n
shows vector-space.linear-independent R (K-n n) (op �) {(x-i j n)}
〈proof 〉

Any two different elements of the canonical basis are linearly independent:

lemma x-i-x-j-li :
assumes j-l-n: j < n
and i-l-n: i < n
and i-ne-j : i 6= j
shows vector-space.linear-independent R (K-n n) (op �) {(x-i i n), (x-i j n)}
〈proof 〉

We did not find a better way to define the elements of the canonical basis
than accumulating them iteratively. In order to define them as a range,
from x-i 0 n up to x-i (n − 1) n, the underlying type, in this case ′a vector,
should be of sort “order” (which in general is not, only the elements of the
basis have some notion of order.)

The following fuction iteratively joins all the elements of the form x-i k n in
order to create the canonical basis of K-n n.

We have considered as a special case the situation where both indexes are
equal to 0. This case will give us the basis of K-n 0, which is the empty set.
Note that a linear combination over an empty set is equal to (λi . 0K, 0),
which is the only element in carrier (K-n 0).

fun canonical-basis-acc :: nat => nat => ′a vector set
where
canonical-basis-acc 0 0 = {}
| canonical-basis-acc 0 n = {x-i 0 n}
| canonical-basis-acc (Suc i) n
= (if (Suc i < n) then
insert (x-i (Suc i) n) (canonical-basis-acc i n) else {})

We now prove some lemmas trying to establish the relation between the
elements of the form x-i i n and the ones in canonical-basis-acc.

lemma
finite-canonical-basis-acc:
shows finite (canonical-basis-acc k n)
〈proof 〉

69

lemma
canonical-basis-acc-closed :
assumes i-l-j : i < j
shows canonical-basis-acc i j ⊆ carrier (K-n j)
〈proof 〉

The canonical basis in dimension n is given by all elements ranging from x-i
0 n up to x-i (n − 1) n

definition canonical-basis-K-n :: nat => ′a vector set where
canonical-basis-K-n n = canonical-basis-acc (n − 1) n

lemma
canonical-basis-acc-insert :
assumes j-l-k : j < k
and k-l-n: k < n
shows x-i k n /∈ canonical-basis-acc j n
〈proof 〉

lemma
card-canonical-basis-acc:
assumes k-le-n: k < n
shows card (canonical-basis-acc k n) = Suc k
〈proof 〉

end

lemma
n-minus-one-l-n:
assumes n-g-0 : 0 < n
shows n − (1 ::nat) < n
〈proof 〉

context field
begin

The following lemma is true for dimension 0 thanks to the special case
canonical-basis-acc 0 0 = {} previously introduced:

lemma
canonical-basis-K-n-closed :

shows canonical-basis-K-n n ⊆ carrier (K-n n)
〈proof 〉

The following lemma is true for dimension 0 thanks to the special case
canonical-basis-acc 0 0 = {} previously introduced:

lemma
card-canonical-basis-K-n:

70

shows card (canonical-basis-K-n n) = n
〈proof 〉

The following lemma does not even require to have a dimension greater than
0.

lemma
finite-canonical-basis-K-n:

shows finite (canonical-basis-K-n n)
〈proof 〉

lemma
canonical-basis-acc-insert2 :
assumes j-le-k : j ≤ k
and k-l-n: k < n
shows x-i j n ∈ canonical-basis-acc k n
〈proof 〉

lemma
canonical-basis-K-n-elements:
assumes j-in-n: j ∈ {..<n}
shows x-i j n ∈ canonical-basis-K-n n
〈proof 〉

lemma
canonical-basis-K-n-good-set :

shows vector-space.good-set (K-n n) (canonical-basis-K-n n)
〈proof 〉

end

JE: I have moved this definition to Finite-Vector-Space, so I remove it from
here. This is to be checked with the other files.

11.3 Theorem on bijection

context abelian-monoid
begin

We need to prove the following lemma which is a generic version of the
theorem finsum-cong :

[[A = B ; (f ∈ B → carrier G) = True;
∧

i . i ∈ B =simp=> f i = g i]] =⇒
finsum G f A = finsum G g B in the case where finite sums are defined over
sets of different type, but isomorphic (in finsum-cong only the case where
both sets of both finite sums are equal is considered).

71

lemma finsum-cong ′′:
assumes fB : finite B
and bb: bij-betw h B A
and f : f : A −> carrier G and g : g : B −> carrier G
and eq : (

∧
x . x ∈ B =simp=> g x = f (h x))

shows finsum G f A = finsum G g B
〈proof 〉

end

lemma n-notin-lessThan-n: (n::nat) /∈ {..<n}
〈proof 〉

context field
begin

lemma
snd-in-carrier :
assumes x : x ∈ carrier (K-n n)
shows snd x = n − 1
〈proof 〉

The following lemma gives a different representation of the elements of K-n
n; this representation will be later used to prove that the elements of K-n n
can be expressed as linear combinations of the elements of canonical-basis-K-n
n.

lemma
x-in-carrier :
assumes x : x ∈ carrier (K-n n)
shows x = (λi . if i ∈ {..<n} then fst x i else 0, n − 1)
〈proof 〉

The following lemma was later unused; every element can be “embedded”
into a smaller dimension by means of “forgetful” function (we forget the last
position of the vector).

lemma
K-n-carrier-embed :
assumes x : x ∈ carrier (K-n (Suc k))
shows ((λn. if n ∈ {..<k} then fst x n else 0), k − 1) ∈ carrier (K-n k)
〈proof 〉

Functions with only a single nonzero element can be expressed as scalar
products of x-i elements.

lemma
singleton-function-x-i :
assumes x : x ∈ carrier R
shows (λi . if i = j then x else 0, n − 1) = x � x-i j n
〈proof 〉

72

The following lemma is rather important, since it shows how to express any
element in carrier (K-n k) in a canonical way: it proves that any element
in carrier (K-n k) can be expressed as a finite sum of the elements x-i j k.

It is important to note that in the proof we have introduced an extra natural
variable n, with n ≤ k, which permits to prove the result by induction in n
over the field K-n k.

If we do not use the extra variable n and we apply induction directly over
k, the induction step will produce two different algebraic structures, K-n k,
where the property holds, and K-n (Suc k), where the property must be
proved, but then the induction hypothesis cannot be used.

lemma
lambda-finsum:
assumes cl : ∀ i∈{..<n}. x i ∈ carrier R
and n-le-k : n ≤ k
shows (λi . if i ∈ {..<n} then x i else 0, k − 1) =
finsum (K-n k) (λi . x i � x-i i k) {..<n}
〈proof 〉

Now, as a corollary of the previous result, we obtain that any element of
K-n n can be expressed as a finite sum of the elements of the form x-i j n.

lemma lambda-finsum-n:
assumes cl : ∀ i∈{..<n}. x i ∈ carrier R
shows (λi . if i ∈ {..<n} then x i else 0, n − 1) =
finsum (K-n n) (λi . x i � x-i i n) {..<n}
〈proof 〉

Finally, we get the lemma that states tha any element of the set K-n-carrier
n is a linear combination of elements of canonical-basis-K-n n:

lemma
K-n-carrier-finsum-x-i :
assumes x : x ∈ carrier (K-n n)
shows x = finsum (K-n n) (λj . fst x j � x-i j n) {..<n}
〈proof 〉

11.4 Bijection between basis:

In the following lemmas we try to establish an explicit bijection between
the sets X, which is a basis of V, and the set canonical-basis-K-n n. This
bijection will be later extended, by linearity, to a bijection between carrier
V and carrier (K-n n)

lemma canonical-basis-acc-eq-x-i :
assumes x : x ∈ canonical-basis-acc k n
and k-l-n: k < n
shows ∃ j∈{..<Suc k}. x-i j n = x
〈proof 〉

73

corollary
canonical-basis-acc-isom-x-i :
assumes x : x ∈ canonical-basis-acc k n
and k-l-n: k < n
shows ∃ !j∈{..<Suc k}. x = x-i j n
〈proof 〉

corollary
canonical-basis-acc-isom-x-i2 :
assumes x : x ∈ canonical-basis-acc k n
and k-l-n: k < n
shows ∃ !j∈{..<n}. x = x-i j n
〈proof 〉

lemma
canonical-basis-is-x-i :
assumes x : x ∈ canonical-basis-K-n n

shows ∃ j∈{..<n}. x = x-i j n
〈proof 〉

corollary
canonical-basis-isom-x-i :
assumes x : x ∈ canonical-basis-K-n n

shows ∃ !j∈{..<n}. x = x-i j n
〈proof 〉

The function preim maps vectors of the basis canonical-basis-K-n n to their
index.

definition
preim :: ′a vector => nat => nat
where preim x n = (THE j . j ∈ {..<n} ∧ x = x-i j n)

lemma
preim-x-i-x-eq-x :
assumes x-l-n: x < n

shows preim (x-i x n) n = x
〈proof 〉

lemma
preim-eq-x-i-acc:
assumes x : x ∈ canonical-basis-acc k n
and k-l-n: k < n
shows x-i (preim x n) n = x
〈proof 〉

74

lemma
preim-eq-x-i :
assumes x : x ∈ canonical-basis-K-n n

shows x-i (preim x n) n = x
〈proof 〉

lemma
preim-lessThan:
assumes x : x ∈ canonical-basis-K-n n

shows preim x n ∈ {..<n}
〈proof 〉

11.5 Properties of canonical-basis-K-n n:

The following lemma proves that two different ways of writing down an
element of K-n n as a linear combination of the elements of the basis
canonical-basis-K-n n are equivalent.:

lemma
finsum-canonical-basis-acc-finsum-card :
assumes k-l-n: k < n
and f : f ∈ carrier (K-n n) → carrier R
shows (

⊕
K-n nx∈canonical-basis-acc k n. f x � x)

= (
⊕

K-n nk∈{..<Suc k}. f (x-i k n) � x-i k n)
〈proof 〉

lemma
finsum-canonical-basis-K-n-finsum-card :
assumes f : f ∈ carrier (K-n n) → carrier R
shows (

⊕
K-n nx∈(canonical-basis-K-n n). f x � x)

= (
⊕

K-n nk∈{..<n}. f (x-i k n) � x-i k n)
〈proof 〉

The space generated by the vector-space.span of canonical-basis-K-n n is
equal to the vector space K-n n.

lemma
span-canonical-basis-K-n-carrier-K-n:

shows vector-space.span R (K-n n) (op �) (canonical-basis-K-n n) = carrier
(K-n n)
〈proof 〉

lemma
canonical-basis-K-n-spanning-set :

shows vector-space.spanning-set R (K-n n) (op �) (canonical-basis-K-n n)
〈proof 〉

75

The elements of canonical-basis-acc j n are linearly independent.

lemma
canonical-basis-acc-linear-independent-ext :
assumes j-l-n: j < n
shows vector-space.linear-independent-ext R (K-n n) (op �) (canonical-basis-acc

j n)
〈proof 〉

end

context vector-space
begin

The following lemma should be moved to the place where linear-independent-ext
has been defined, like a simp rule:

lemma linear-independent-ext-empty [simp]:
shows linear-independent-ext {}
〈proof 〉

end

context field
begin

lemma
canonical-basis-K-n-linear-independent-ext :

shows vector-space.linear-independent-ext R (K-n n) (op �) (canonical-basis-K-n
n)
〈proof 〉

We finally prove that canonical-basis-K-n n is a basis for K-n.

lemma
canonical-basis-K-n-basis:

shows vector-space.basis R (K-n n) (op �) (canonical-basis-K-n n)
〈proof 〉

corollary
canonical-basis-K-n-basis-card-n:

shows vector-space.basis R (K-n n) (op �) (canonical-basis-K-n n) ∧
card (canonical-basis-K-n n) = n
〈proof 〉

end

context finite-dimensional-vector-space

76

begin

After proving the most relevant properties of field .K-n K n, we fix one
indexing of the basis elements (of X) that will allow us to define later the
function which given any element of the carrier set decomposes it into the
coefficients for each term if the indexation.

The theorem obtain-indexing : finite A =⇒ ∃ f . indexing (A, f) and the
premise that the vector space is finite, and so is it basis X, ensures that the
following definition is sound.

definition indexing-X :: nat => ′c
where indexing-X-def : indexing-X = (SOME f . indexing (X , f))

Relying in the fact that at least one indexing of the basis X exists, we can
prove that indexing-X satisfies the properties of every indexing.

lemma indexing-X-is-indexing :
shows indexing (X , indexing-X)
〈proof 〉

The following function is to be used as the inverse function of field .preim;
this function and field .preim will be defined to prove an isomorphism be-
tween field .canonical-basis-K-n K (card X) and {..<card X }.
definition iso-nat-can :: nat => ′a vector

where iso-nat-can n = (x-i n (dimension))

The composition of the functions field .preim K and iso-nat-can over the set
{..<dimension} is equal to the identity.

lemma preim-iso-nat-can-id :
assumes x : x ∈ {..<dimension}
shows preim (iso-nat-can x) (dimension) = x
〈proof 〉

In a very similar way, the composition of field .preim K and iso-nat-can over
the set field .canonical-basis-K-n K dimension is equal to the identity:

lemma iso-nat-can-preim-id :
assumes y : y ∈ canonical-basis-K-n (dimension)
shows iso-nat-can (preim y (dimension)) = y
〈proof 〉

lemma
bij-betw-iso-nat-can:
shows bij-betw iso-nat-can {..<dimension}
(canonical-basis-K-n (dimension))
〈proof 〉

lemma
bij-betw-preim:

77

shows bij-betw (λi . preim i (dimension))
(canonical-basis-K-n (dimension)) {..<dimension}
〈proof 〉

The following function will be used to define an isomorphism between the
sets {..<dimension} and X, which inverse will be the inverse of the indexing
function indexing-X.

definition
iso-nat-X :: nat => ′c
where iso-nat-X n = indexing-X n

The inverse function of the previous iso-nat-X is the following function,
which properties we are to prove first:

definition
preim2 :: ′c => nat
where preim2 x = (THE j . j ∈ {..<dimension} ∧ x = indexing-X j)

The preim2 function needs to be completed, since otherwise we can not
ensure for the elements out of the basis X that their value preim2 x is not
in the set {..<dimension}. If the value preim2 x could be in {..<dimension}
for elements out of X, then the function fst x (preim2 y), for y /∈ X could
take values different from 0.

The way to complete it is a bit artificial, since we can not use 0 to complete
it, but some element a with dimension ≤ a, which are the natural numbers
that are mapped to 0 by coefficients-function. In particular, we have chosen
a = dimension.

definition
preim2-comp :: ′c => nat
where preim2-comp x = (if x ∈ X then (THE j . j ∈ {..<dimension} ∧ x =

indexing-X j) else dimension)

lemma
indexing-X-bij :
shows bij-betw indexing-X {..<dimension} X
〈proof 〉

lemma
indexing-X-preimage:
assumes x : x ∈ X
shows ∃ j . j ∈ {..<dimension} ∧ x = indexing-X j
〈proof 〉

corollary
indexing-X-preimage-unique:
assumes x : x ∈ X
shows ∃ !j . j ∈ {..<dimension} ∧ x = indexing-X j
〈proof 〉

78

lemma
preim2-in-dimension:
assumes x : x ∈ X
shows preim2 x ∈ {..<dimension}
〈proof 〉

lemma
preim2-comp-in-dimension:
assumes x : x ∈ X
shows preim2-comp x ∈ {..<dimension}
〈proof 〉

lemma
preim2-is-indexing-X :
assumes x : x ∈ X
shows x = indexing-X (preim2 x)
〈proof 〉

The functions preim2-comp and iso-nat-X are inverse of each other, over
the sets X and {..<dimension}
lemma

preim2-comp-is-indexing-X :
assumes x : x ∈ X
shows x = indexing-X (preim2-comp x)
〈proof 〉

lemma iso-nat-X-preim2-id :
assumes x : x ∈ X
shows iso-nat-X (preim2 x) = x
〈proof 〉

lemma iso-nat-X-preim2-comp-id :
assumes x : x ∈ X
shows iso-nat-X (preim2-comp x) = x
〈proof 〉

lemma preim2-iso-nat-X-id :
assumes n: n ∈ {..<dimension}
shows preim2 (iso-nat-X n) = n
〈proof 〉

lemma preim2-comp-iso-nat-X-id :
assumes n: n ∈ {..<dimension}
shows preim2-comp (iso-nat-X n) = n
〈proof 〉

Therefore, we can prove that there exists a bijection between them:

lemma

79

bij-betw-iso-nat-X :
shows bij-betw iso-nat-X {..<dimension} X
〈proof 〉

lemma
bij-betw-preim2 :
shows bij-betw preim2 X {..<dimension}
〈proof 〉

end

11.6 Linear maps.

In this section we are going to introduce the notion of linear map between
vector spaces. This is a previous step for the definition of an isomorphism
between vector spaces. Then, we will have to prove the existence of an
isomorphism between the vector spaces K-n dimension and V.

The definition between comments would be the expected and desired one.
Unfortunately, it introduces changes in the namespace that are really in-
convenient. The second locale hides the names of constants in vector space,
demanding long names for the first locale constanst. We do not know how to
control this behaviour: thus, we preferred the long version, in which locale
interpretation has to be done later by hand:

locale linear-map =
fixes K :: (′a, ′b) ring-scheme
and V :: (′c, ′d) ring-scheme
and W :: (′e, ′f) ring-scheme
and scalar-product1 :: ′a => ′c => ′c (infixr ·V 70)
and scalar-product2 :: ′a => ′e => ′e (infixr ·W 70)
assumes V : vector-space K V (op ·V)
and W : vector-space K W (op ·W)

context linear-map
begin

Linear maps, as characterised in ”Linear Algebra Done Right”, have to
satisfy the additivity and homogeneity properties:

definition additivity :: (′c => ′e) => bool
where additivity T = (∀ x∈carrier V . ∀ y ∈ carrier V . T (x ⊕V y) = T x ⊕W

T y)

definition homogeneity :: (′c => ′e) => bool
where homogeneity T = (∀ k∈carrier K . ∀ x∈carrier V . T (k ·V x) = k ·W T

x)

definition linear-map :: (′c => ′e) => bool
where linear-map T = (additivity T ∧ homogeneity T)

80

end

We introduce a new locale for finite dimensional vector spaces, just imposing
that there is a finite basis for one ot the vector spaces.

locale linear-map-fin-dim = linear-map +
fixes X
assumes fin-dim: finite-dimensional-vector-space K V (op ·V) X

We produce two different sublocales, or interpretations, of the locale linear-map-fin-dim
by means of the locale finite-dimensional-vector-space. They allow us to later
define linear maps from V to K-n and also the opposite way, from K-n to
V. The system forces us to make them named interpretations, just to avoid
colliding names.

sublocale finite-dimensional-vector-space <
V-K-n: linear-map-fin-dim K V K-n dimension op · K-n-scalar-product X
〈proof 〉

sublocale finite-dimensional-vector-space < K-n-V : linear-map-fin-dim K K-n di-
mension V

K-n-scalar-product op · canonical-basis-K-n dimension
〈proof 〉

11.7 Defining the isomorphism between Kn and V .

context finite-dimensional-vector-space
begin

Some properties proving that there exists a unique function of coefficients
for each element in the carrier set of V ; this unique function is the one that
decomposes any element into its linear combination over the elements of the
basis:

lemma
basis-implies-linear-combination:
assumes x : (x :: ′c) ∈ carrier V
shows ∃ f . f ∈ coefficients-function (carrier V) ∧ x = linear-combination f X
〈proof 〉

In order to ensure the uniqueness of the coefficients function we have to use
coefficients-function, which is mapped to 0 out of its domain.

lemma
basis-implies-coeff-function-comp-linear-combination:
assumes x : (x :: ′c) ∈ carrier V
shows ∃ f . f ∈ coefficients-function X ∧ x = linear-combination f X
〈proof 〉

Firstly we prove a theorem similar to unique-coordenates: [[x ∈ carrier
V ; f ∈ coefficients-function (carrier V); x = linear-combination f X ; g ∈

81

coefficients-function (carrier V); x = linear-combination g X]] =⇒ ∀ x∈X .
g x = f x. It claims that the coordinates are unique in a basis.

lemma
linear-combination-unique:
assumes x : x ∈ carrier V
shows ∃ !f . f ∈ coefficients-function X & linear-combination f X = x
〈proof 〉

The previous lemma ensures the existence of only one function f satisfying
to be a linear combination and a coefficients function which generates any
x belonging to carrier V

definition lin-comb :: ′c => (′c => ′a)
where lin-comb x = (THE f . f ∈ coefficients-function X
∧ linear-combination f X = x)

lemma
lin-comb-is-coefficients-function:
assumes x : x ∈ carrier V
shows lin-comb x ∈ coefficients-function X
〈proof 〉

lemma
lin-comb-is-the-linear-combination:
assumes x : x ∈ carrier V
shows x = linear-combination (lin-comb x) X
〈proof 〉

lemma
indexing-X-n-in-X :
assumes n-dimension: n < dimension
shows indexing-X n ∈ X
〈proof 〉

corollary
indexing-X-n-in-carrier-V :
assumes n-dimension: n < dimension
shows indexing-X n ∈ carrier V
〈proof 〉

A lemma stating that every element of the carrier set can be expressed as a
finite sum over the elements of the set {..<dimension} thanks to the function
lin-comb.

lemma
lin-comb-is-the-linear-combination-indexing :
assumes x : x ∈ carrier V
shows x = finsum V (λi . lin-comb x (indexing-X i) · indexing-X i) {..<dimension}

82

〈proof 〉

A lemma on how the elements of the basis are mapped by lin-comb:

lemma
lin-comb-basis:
assumes x : x ∈ X
shows lin-comb x = (λi . if i = x then 1 else 0)
〈proof 〉

thm linear-combination-def
〈proof 〉

end

context vector-space
begin

The following lemma is a minor modification of [[finite ?X ; ?X ⊆ carrier
V ; ?a ∈ carrier K ; ?f ∈ ?X → carrier K]] =⇒ ?a · (

⊕
Vy∈?X . ?f y · y)

= (
⊕

Vy∈?X . ?a · ?f y · y), but with a bit more general statement. In
particular, it removes a premise stating that X ⊆ carrier V, which is never
used in the proof of [[finite ?X ; ?X ⊆ carrier V ; ?a ∈ carrier K ; ?f ∈ ?X
→ carrier K]] =⇒ ?a · (

⊕
Vy∈?X . ?f y · y) = (

⊕
Vy∈?X . ?a · ?f y · y)

and also generalizes the inner expression of the finite sum. It may either
replace [[finite ?X ; ?X ⊆ carrier V ; ?a ∈ carrier K ; ?f ∈ ?X → carrier
K]] =⇒ ?a · (

⊕
Vy∈?X . ?f y · y) = (

⊕
Vy∈?X . ?a · ?f y · y) in the file

Vector-Space or added besides it in the same file.

lemma finsum-aux2 :
[[finite X ; a ∈ carrier K ; f ∈ X → carrier K ; g ∈ X → carrier V]]
=⇒ a · (

⊕
Vy∈X . f y · g y)=(

⊕
Vy∈X . a · (f y · g y))

〈proof 〉

end

context finite-dimensional-vector-space
begin

The following functions are the candidates to be proved to define the iso-
morphism between the vector spaces V and field .K-n K dimension. They
have to be proved to be linear maps between the vector spaces, and inverse
one of each other.

definition iso-K-n-V :: ′a vector => ′c
where iso-K-n-V x = finsum V (λi . fst x i · indexing-X i) {..<dimension}

definition iso-V-K-n :: ′c => ′a vector
where iso-V-K-n x =
finsum (K-n dimension) (λi . (K-n-scalar-product (lin-comb (x) (indexing-X i))

(x-i i dimension))) {..<dimension}

83

We prove that iso-K-n-V is a linear map, this means both additive and
homogeneous:

lemma linear-map-iso-K-n-V : K-n-V .linear-map iso-K-n-V
〈proof 〉

find-theorems ith ?x ?i ∈ -
〈proof 〉

The following lemma states that the function lin-comb satisfies the additivity
condition. It will be later used to prove that the function iso-V-K-n is also
an additive function.

lemma
lin-comb-additivity :
assumes x : x ∈ carrier V
and y : y ∈ carrier V
shows lin-comb (x ⊕V y) = (λi . lin-comb x i ⊕ lin-comb y i)
〈proof 〉

end

context vector-space
begin

lemma
finsum-mult-assocf :
assumes x1 : X ⊆ carrier V
and x2 : finite X
and k : k ∈ carrier K
and f : f ∈ X → carrier K
and g : g ∈ X → carrier V
shows (

⊕
Vy∈X . (k ⊗ f y) · g y) = k · (

⊕
Vy∈X . f y · g y)

〈proof 〉 thm insert .hyps (2)
〈proof 〉

lemma
finsum-mult-assoc:
assumes k : k ∈ carrier K
and f : f ∈ {..n} → carrier K
and g : g ∈ {..n} → carrier V
shows (

⊕
Vy∈{..n::nat}. (k ⊗ f y) · g y) = k · (

⊕
Vy∈{..n}. f y · g y)

〈proof 〉

lemma
finsum-mult-assoc-le:
assumes k : k ∈ carrier K
and f : f ∈ {..<n} → carrier K
and g : g ∈ {..<n} → carrier V
shows (

⊕
Vy∈{..<n::nat}. (k ⊗ f y) · g y) = k · (

⊕
Vy∈{..<n}. f y · g y)

〈proof 〉

84

end

context finite-dimensional-vector-space
begin

The following lemma states that the function lin-comb satisfies the homo-
geneous property. It will be later used to prove that the function iso-V-K-n
is homogeneous:

lemma
lin-comb-homogeneity :
assumes k : k ∈ carrier K
and x : x ∈ carrier V
shows lin-comb (k · x) = (λi . k ⊗ lin-comb x i)
〈proof 〉

end

context abelian-monoid
begin

lemma finsum-add ′:
assumes f : f ∈ {..<n} → carrier G
and g : g ∈ {..<n} → carrier G
shows (

⊕
i∈{..<n::nat}. f i ⊕ g i) = finsum G f {..<n} ⊕ finsum G g {..<n}

〈proof 〉

end

context finite-dimensional-vector-space
begin

The following lemma proves that the application iso-V-K-n is a linear map
between V and field .K-n K dimension.

lemma linear-map-iso-V-K-n: V-K-n.linear-map iso-V-K-n
〈proof 〉

end

lemma
lessThan-remove:
assumes i : (i ::nat) ∈ {..<k}
shows {..<k} = ({..<k} − {i}) ∪ {i}
〈proof 〉

context finite-dimensional-vector-space
begin

The functions iso-K-n-V and iso-V-K-n behave correctly in their respective
domains:

85

lemma iso-V-K-n-Pi : iso-V-K-n ∈ carrier V → carrier (K-n dimension)
〈proof 〉

lemma iso-K-n-V-Pi : shows iso-K-n-V ∈ carrier (K-n dimension) → carrier V
〈proof 〉

lemma
lin-comb-fimsum-candidate:
assumes x : x ∈ carrier (K-n dimension)
shows (

⊕
Vy∈X . fst x (preim2-comp y) · y) = (

⊕
Vi∈{..<dimension}. fst x i

· indexing-X i)
〈proof 〉

The following lemma expresses how to write down the lin-comb of a finite
sum of the elements of the basis:

lemma
lin-comb-linear-combination-candidate:
assumes x : x ∈ carrier (K-n dimension)
shows lin-comb (

⊕
Vi∈{..<dimension}. fst x i · indexing-X i) = (λy . fst x

(preim2-comp y))
〈proof 〉

With the previous lemmas, we can now prove that iso-V-K-n is a bijection
between the correspoding carrier sets:

lemma iso-V-K-n-bij : shows bij-betw iso-V-K-n (carrier V) (carrier (K-n dimen-
sion))
〈proof 〉

lemma iso-K-n-V-bij : shows bij-betw iso-K-n-V (carrier (K-n dimension)) (carrier
V)
〈proof 〉

end

context linear-map
begin

definition vector-space-isomorphism :: (′c => ′e) => bool
where vector-space-isomorphism f == bij-betw f (carrier V) (carrier W) ∧

linear-map f

end

context finite-dimensional-vector-space
begin

Finally, the two following lemmas state the isomorphism (in both directions
actually) between field .K-n K dimension and V :

lemma V-K-n.vector-space-isomorphism iso-V-K-n

86

〈proof 〉

lemma vector-space-isomorphism iso-K-n-V
〈proof 〉

end

end
theory Subspaces

imports Isomorphism
begin

12 Subspaces

context vector-space
begin

definition subspace :: ′b set => bool
where subspace M == ((M ⊆ carrier V) ∧ M 6= {}
∧ (∀α∈carrier K . ∀β∈carrier K . ∀ x∈M . ∀ y∈M .
α · x ⊕V β · y ∈ M))

lemma
zero-in-subspace:
assumes s: subspace M
shows 0V ∈ M
〈proof 〉

In the following statement we can observe the operation of field updating
for records:

lemma
subspace-is-vector-space:
assumes s: subspace M
shows vector-space K (V (|carrier := M |)) (op ·)
〈proof 〉

lemma
subspace-zero:
shows subspace {0V}
〈proof 〉

lemma subspace-V :
shows subspace (carrier V)
〈proof 〉

As one would expect, a subspace is closed under addition:

lemma subspace-add-closed :
assumes s: subspace S

87

and x : x ∈ S and y : y ∈ S
shows x ⊕V y ∈ S
〈proof 〉

The definition of finsum (see finsum ?G = finprod (|carrier = carrier ?G ,
mult = op ⊕?G, one = 0?G|)) is done in such a way hat for any infinite
set it returns undefined and otherwise the result of a folding operator over
the finite set. Under these circumstances it seems rather hard to prove
properties of subspaces considering infinite sums:

lemma subspace-finsum-closed :
assumes s: subspace S
and f : finite S
and y : Y ⊆ S
and c: f ∈ Y → carrier K
shows finsum V (λi . f i · i) Y ∈ S
〈proof 〉

lemma subspace-finsum-closed ′:
assumes s: subspace S
and f : finite Y
and y : Y ⊆ S
and c: f ∈ Y → carrier K
shows finsum V (λi . f i · i) Y ∈ S
〈proof 〉

corollary subspace-linear-combination-closed :
assumes s: subspace S
and f : finite Y
and y : Y ⊆ S
and c: f ∈ coefficients-function Y
shows linear-combination f Y ∈ S
〈proof 〉

end

end

theory Calculus-of-Subspaces
imports Subspaces Ideal

begin

13 Calculus of Subspaces

The theory Ideal is imported in order to use the definition of the sum of two
sets, given by the operation set-add ′

88

context vector-space
begin

lemma
subspace-inter-closed :
assumes s: subspace M
and sm: subspace M ′

shows subspace (M ∩ M ′)
〈proof 〉

13.1 Theorem 1

In the following result we have to avoid empty intersections, since the empty
intersection is defined to be equal to UNIV. UNIV is not a subspace, since
it is not (in general, it could be in some cases) a subset of carrier V.

Nevertheless, this does not mean any limitation in practice, since any set
will be always a subset of the subspace carrier V (see subspace (carrier V))

We need to prove that intersection of subspaces is a subspace to define later
the subspace spanned by any set as the intersection of every subspace in
which the set is contained. Thus, assuming that the intersection will be not
empty (carrier V will be always a member of such intersection) is natural.

lemma subspace-finite-inter-closed :
assumes a: finite A
and ne: A 6= {}
and kj : ∀ j∈A. subspace (P j)
shows subspace (

⋂
j∈A. P j)

〈proof 〉

The same lemma than [[finite ?A; ?A 6= {}; ∀ j∈?A. subspace (?P j)]] =⇒
subspace (

⋂
j∈?A ?P j) but for collections indexed by the natural numbers:

lemma subspace-finite-inter-index-closed :
assumes smn: ∀ j∈{..(n::nat)}. subspace (M j)
shows subspace (

⋂
j∈{..n}. M j)

〈proof 〉

We now remove the requisite of the collection of subspaces being finite.
Thus, the proof cannot be longer carried out by induction in the structure
of the set.

lemma subspace-infinite-inter-closed :
assumes ne: A 6= {}
and kj : ∀ j∈A. subspace (P j)
shows subspace (

⋂
j∈A. P j)

〈proof 〉

It is now clear than the previous results for finite intersections ∀ j∈{..?n}.
subspace (?M j) =⇒ subspace (

⋂
j ≤ ?n ?M j) and [[finite ?A; ?A 6= {};

89

∀ j∈?A. subspace (?P j)]] =⇒ subspace (
⋂

j∈?A ?P j) can be proved as a
corollary of [[?A 6= {}; ∀ j∈?A. subspace (?P j)]] =⇒ subspace (

⋂
j∈?A ?P

j), but we prefer to leave their induction proofs since they illustrate different
ways of proving similar results depending on the context or the premises.

Here Halmos introduces the definition of the span of a set S ⊆ carrier V as
the interection of all the subsets in which S is contained. We already have
a notion of the span of a set in our setting, as the set of all the elements
which are equal to the linear combinations of the elements of this set. We
will name this new notion subspace-span, and then prove that they both are
equal:

We introduce an auxiliar definition of the set of subspaces in which one set
is enclosed:

definition subspace-encloser :: (′b => bool) => (′b => bool) set
where subspace-encloser A = {M . subspace M ∧ A ⊆ M }

A trivial lemma stating that a set is always enclosed in the subspace carrier
V :

lemma
assumes m: M ⊆ carrier V
shows carrier V ∈ subspace-encloser M
〈proof 〉

The definition of the subspace spanned by a set, following Halmos:

definition subspace-span :: (′b ⇒ bool) ⇒ ′b ⇒ bool
where subspace-span A = (

⋂
B∈(subspace-encloser A). B)

The previous lemma [[finite ?A; ?A 6= {}; ∀ j∈?A. subspace (?P j)]] =⇒
subspace (

⋂
j∈?A ?P j) is now used to prove that subspace-span is a subspace

itself.

lemma
subspace-span-monotone:
assumes s: S ⊆ carrier V
shows S ⊆ subspace-span S
〈proof 〉

lemma
subspace-subspace-span:
assumes s: S ⊆ carrier V
shows subspace (subspace-span S)
〈proof 〉

13.2 Theorem 2.

The definition of finsum in Isabelle relies on the notion of finiteness of the
set which elements are added up. Working in a finite dimensional vector

90

space does not mean that every subset is finite, and thus the elements in
the span of such a set cannot be written as finite sums of its elements.

The previous point is not explicit is Halmos, where it is never explained how
to deal with infinite sums (or sums over not finite sets).

lemma
subspace-span-empty :
subspace-span {} = {0V}
〈proof 〉

lemma theorem-2 :
assumes f : finite S
and s: S ⊆ carrier V
shows span S = subspace-span S
〈proof 〉

13.3 Theorem 3.

The following theorem appears in Halmos as an easy consequence of the
previous one; probably it should be proved based on the fact that any linear
combination can be written down as the sum of two elements, being one in
the first set and the other in the second one.

term I <+>R J
find-theorems - <+>?F -
lemma theorem-3 :

assumes I : subspace I
and J : subspace J
shows subspace-span (I ∪ J) = I <+>V J
〈proof 〉

The following definition is simply a rewriting rule, it may be skipped; note
also that produces ambiguous parse trees when parsing deducing types from
expressions, so it could be avoided if it produces any clashes:

definition set-add2 :: ′b set => ′b set => ′b set (infixl + 60)
where set-add2 A B = subspace-span (A ∪ B)

corollary set-add2-set-add ′:
assumes I : subspace I
and J : subspace J
shows I + J = I <+>V J
〈proof 〉

The following definition is applied only to subspaces:

definition complement :: ′b set => ′b set => bool
where complement I J = ((I ∩ J = {0V}) ∧ (I + J = carrier V))

end

91

end
theory Dimension-of-a-Subspace

imports Calculus-of-Subspaces
begin

14 Dimension of a Subspace

context finite-dimensional-vector-space
begin

14.1 Theorem 1.

The theorem states that the subspace is itself a vector space and that its
dimesion is less than or equal to the one of V. We split both conclusions in
two different lemmas that later will be merged.

The first part of the theorem has been already proved:

lemma theorem-1-part-1 :
assumes m: subspace M
shows vector-space K (V (|carrier :=M |)) (op ·)
〈proof 〉

The second part of the theorem requires a definition of dimension. The
dimension of a (finite) vector space should be defined as the cardinal of any
of its basis, once we have proved that every basis has the same cardinal (file
Finite-Vector-Space.thy). In the meanwhile, I use dim

Its proof should be direct by reduction ad absurdum, following the one in
Halmos.

lemma theorem-1-part-2 :
assumes m: subspace M
shows dim (V (|carrier :=M |)) ≤ dimension
〈proof 〉

14.2 Theorem 2.

The notation in the following statement might be a bit confusing. The
indexing f is just necessary to later select the first m elements of a base,
with m being the dimension of the subspace M. These m elements can be
completed up to a basis of V.

The proof should be done using that M is a vector space of dimension less
or equal to the one of V. Therefore we can find a basis of it which cardinal
is less than or equal to dimension. This basis is a collection of linearly
independent vectors, and therefore can be completed up to a basis of V,
thanks to one of the lemmas proved in Finite-Vector-Space.thy.

92

lemma theorem-2 :
assumes m: subspace M
shows (∃B f . (basis B) ∧ indexing (B , f) ∧
(vector-space.basis K (V (|carrier :=M |)) (op ·) (f ‘ {..dim (V (|carrier :=M |))})))
〈proof 〉

end

end
theory Dual-Spaces

imports Dimension-of-a-Subspace
begin

15 Dual Spaces

context vector-space
begin

This definition can be found also on Bauer’s development, taking as the
scalar field the set of real numbers, and with the name of linear form. We
follow linear functional as Halmos’ text

We split the definition of linear form into its multiplicative and additive
components:

definition additive-functional :: (′b => ′a) => bool
where additive-functional f
≡ (∀ x∈carrier V . ∀ y∈carrier V . f (x ⊕V y) = f x ⊕K f y)

definition multiplicative-functional :: (′b => ′a) => bool
where multiplicative-functional f
≡ (∀ k∈carrier K . ∀ x∈carrier V . f (k · x) = k ⊗K (f x))

definition linear-functional :: (′b => ′a) => bool
where linear-functional f ≡ additive-functional f
∧ multiplicative-functional f

The following lemma appears in Halmos (as the homogeneous property)
and also in Bauer’s files; in Bauer there are also some properties about the
difference anf lineal functionals.

lemma linear-functional-zero:
assumes linear-functional f
shows f 0V = 0
〈proof 〉

We introduce the definition of the dual space of the vector space V. We have
to provide a carrier set, a zero operation and an addition. As the definition
of abelian groups in Isabelle is done omver the ring type, we also have to
provide some definition of unit and multiplication, that will be useless.

93

The dual space is also denoted in Halmos V ′

definition dual-space :: (′b => ′a) ring (V ′)
where dual-space = (| carrier = linear-functional ,

mult = undefined ,
one = undefined ,
zero = (λx . 0),
add = (λy1 .λy2 .λx . y1 x ⊕ y2 x)|)

We create a synonim for the previous definition to ease readability:

lemmas V ′-def = dual-space-def

term vector-space K V ′

term (λx f y . x ⊗ f y)

I guess it is not necessary to go down to finite dimensional vector spaces to
prove the following lemma. If it is necessary, the context should be changed
accordingly:

lemma vector-space-V ′: vector-space K V ′ (λx f y . x ⊗ f y)

〈proof 〉

end

end
theory Brackets

imports Dual-Spaces
begin

16 Brackets

context vector-space
begin

The following notation is not working properly: 1. I do not know how to
invert the order of the parameters, in such a a way that <x ,f> denotes f x ;
2. Even in the right order, where <f ,x> denotes f x, the notation <f ,x>
produces problems when trying to use it.

A couple of notes on the following notation; it is done trying to mimic the
similar ideas in Halmos. First of all, we have chosen the symbols < - >
instead of [-] since brackets would produce ambiguous inputs with lists,
forcing us to write explicitly in a lot of scenarios the type of each of the
components of the pair.

Second, the input annotation of abbreviation makes the special syntax pro-
posed to work only in the input mode, i.e., when we write something. Wi-
htout this annotation, the output would be also changed, but that would

94

affect to every function application in our setting, which is not our intention
and apparently makes the pretty printer loop. For more details see https:
//lists.cam.ac.uk/pipermail/cl-isabelle-users/2011-August/msg00007.html

abbreviation (input)
app :: ′b => (′b => ′a) => ′a (<(-),(-)> 90)
where <x , f> == f x

term <x , f> ⊕ <y , f>

end

end
theory Dual-Bases

imports Brackets
begin

17 Dual Bases

context finite-dimensional-vector-space
begin

17.1 Theorem 1.

We recall here that X is a basis for the vector space V and indexing-X is a
way to provide the basis with coordinates.

The definition of indexing is polymorphic, and in this lemma will be used
both for the basis X and also for the set of scalars.

In this lemma will be useful the results in file Vector-Space-K-n.thy, for in-
stance ?x ∈ carrier V =⇒ ∃ !f . f ∈ coefficients-function X ∧ linear-combination
f X = ?x and ?x ∈ carrier V =⇒ ?x = (

⊕
Vi∈{..<dimension}. lin-comb

?x (indexing-X i) · indexing-X i), where it is proved that any element in
carrier V can be expressed in a unique way as a linear combination of the
elements in X.

thm lin-comb-is-the-linear-combination-indexing
find-theorems (∃ !f . -)

lemma theorem-1 :
assumes ia: indexing ((A:: ′a set), fA)
and c: card A = dimension
shows (∃ !y . linear-functional y ∧ (∀ i∈{..<dimension}. <indexing-X i , y> = fA

i))
〈proof 〉

17.2 Theorem 2.

term linear-functional

95

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2011-August/msg00007.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2011-August/msg00007.html

definition delta :: nat => nat => ′a
where delta i j = (if i = j then 1 else 0)

definition linear-functional-basis :: nat => (′c => ′a)
where linear-functional-basis n = (λx . delta (preim2 x) n)

definition linear-functional-basis-set :: (′c => ′a) set
where linear-functional-basis-set = {(λx . delta (preim2 x) n) | n. n ∈ {..<dimension}}

lemma theorem-2 :
shows vector-space.basis K V ′ (λx f y . x ⊗ f y) linear-functional-basis-set
〈proof 〉

17.3 Theorem 3.

lemma theorem-3 :
assumes x-ne-0 : x 6= 0V
shows ∃ y . linear-functional y ∧ <x ,y> 6= 0K
〈proof 〉

corollary theorem-3-c:
assumes x-ne-0 : u 6= v
shows ∃ y . linear-functional y ∧ <u,y> 6= <v ,y>
〈proof 〉

end

end

96

	Previous general results
	Previous relations between algebraic structures.
	Previous properties
	Exercises in Halmos

	Definition of Vector Space
	Examples
	Comments
	Linear dependence
	Indexed sets
	Linear combinations
	Basis
	Finite Dimensional Vector Space
	Theorem 1.

	Dimension
	Isomorphism
	Definition of Kn
	Canonical basis of Kn:
	Theorem on bijection
	Bijection between basis:
	Properties of canonical-basis-K-n n:
	Linear maps.
	Defining the isomorphism between Kn and V.

	Subspaces
	Calculus of Subspaces
	Theorem 1
	Theorem 2.
	Theorem 3.

	Dimension of a Subspace
	Theorem 1.
	Theorem 2.

	Dual Spaces
	Brackets
	Dual Bases
	Theorem 1.
	Theorem 2.
	Theorem 3.

