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theory Previous
imports Main
begin

1 Previous general results

We present here some result and theorems which will be used in our devel-
opement. There are general properties, not centered in any section of our
implementation.

lemma less-than-Suc-union:
shows {i . i < Suc (n::nat)} = {i . i < n} ∪ {n}
unfolding lessThan-def [symmetric]
unfolding lessThan-Suc-atMost
using atMost-Suc by (cases n, auto)

Next two lemmas is a non-elegant trick which makes possible work with
premisses that contains multiples op ∧
lemma conjI3 : [[A; B ; C ]] =⇒ A ∧ B ∧ C

by fast

lemma conjI4 : [[A; B ; C ; D ]] =⇒ A ∧ B ∧ C ∧ D
by fast

lemma conjI5 : [[A; B ; C ; D ; E ]] =⇒ A ∧ B ∧ C ∧ D ∧ E
by fast

lemma conjI6 :
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shows [[A; B ; C ; D ; E ; F ]] =⇒ A ∧ B ∧ C ∧ D ∧ E ∧ F
by fast

Next lemmas prove some properties of the bijections between subsets of a
given set.

lemma bij-betw-subset :
assumes b: bij-betw f A B and sb: C ⊆ A
shows bij-betw f C (f ‘ C )
using b sb
unfolding bij-betw-def
unfolding image-def inj-on-def by auto

lemma
bij-betw-image-minus:
assumes b: bij-betw f A B and a: a ∈ A
shows f ‘ (A − {a}) = B − {f a}

proof
show f ‘ (A − {a}) ⊆ B − {f a}

using b
unfolding bij-betw-def
using a unfolding image-def unfolding inj-on-def by auto

show B − {f a} ⊆ f ‘ (A − {a})
using b
unfolding bij-betw-def
using a unfolding image-def unfolding inj-on-def by auto

qed

end
theory Field2
imports Previous
∼∼/src/HOL/Algebra/Ring
begin

2 Previous relations between algebraic structures.

We can create a lemma to check if one algebraic structure is a domain.

lemma domainI :
fixes R (structure)
assumes cring : cring R

and one-not-zero: 1 ∼= 0
and integral :

∧
a b. [| a ⊗ b = 0; a ∈ carrier R; b ∈ carrier R |] ==> a =

0 | b = 0
shows domain R
unfolding domain-def
apply (rule conjI )
using cring apply fast
unfolding domain-axioms-def
apply (rule conjI )
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using one-not-zero apply fast
using integral by fast

Similarly with a field:

lemma fieldI :
fixes R (structure)
assumes dom: domain R
and field-Units: Units R = carrier R − {0}
shows field R
unfolding field-def
apply (intro conjI )
using dom apply fast
unfolding field-axioms-def using field-Units .

A field is an additive monoid

lemma (in field) field-impl-monoid :
monoid (| carrier = carrier R, mult = add R, one = zero R |)
using abelian-monoid .a-monoid [of R]
using field-axioms
unfolding field-def
unfolding domain-def
unfolding cring-def
unfolding ring-def
unfolding abelian-group-def
by simp

A field is a multiplicative monoid:

lemma field-is-monoid : fixes K (structure)
assumes field-K : field K shows monoid K

proof −
from field-K show ?thesis

unfolding field-def
unfolding domain-def
unfolding cring-def
unfolding ring-def
by best

qed

Every field is a ring

lemma field-is-ring : fixes K (structure)
assumes field-K : field K shows ring K

proof −
from field-K show ?thesis

unfolding field-def
unfolding domain-def
unfolding cring-def
by best

qed
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2.1 Previous properties

First of all we are going to introduce some properties of fields. Most of them
are also satisfied in rings and in previous algebraic structures, so they will
be trivial for us.

This property is trivial and proved in the library:

lemma (in field) r-zero:
x ∈ carrier R ==> x ⊕ 0 = x

using r-zero [of x ] .

However, we can make a long proof of the preceding fact.

lemma (in field) r-zero2 : x ∈ carrier R ==> x ⊕ 0 = x
proof −

assume x-in-R: x ∈ carrier R
have l-zero: 0 ⊕ x = x

— Using ’rule’ we can give a lemma which goal is the same that the goal that
we want to prove. Then, the ’rule’ will convert my goal to the premisses of the
theorem.

proof (rule abelian-monoid .l-zero [of R])
show abelian-monoid R

print-facts
using field-axioms
unfolding field-def
unfolding domain-def
unfolding cring-def
unfolding ring-def
unfolding abelian-group-def by fast

next
— Using ’next’ we closed the previous proof, so we would lose the local results

of it. We open a new context for the second goal that we have. It is more or less
than if we close a ’for’ or a ’while’ in C++ or Java: we will lose the local variables,
but we will keep the global ones.

show x ∈ carrier R
using x-in-R .

qed
show ?thesis

find-theorems ?x ⊕ ?y = ?y ⊕ ?x
using l-zero
using a-comm [OF zero-closed x-in-R] by simp

qed

This is also in the library (for commutative groups):

lemma (in field) a-comm:
!! x y . [[x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊕ y = y ⊕ x
using cring-simprules (10 ) .

But we can prove it: we have that the property is satisfied in a commutative
group. We will prove that a field is a commutative group and then we will
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use the property.

lemma (in field) a-comm2 :
!! x y . [[x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊕ y = y ⊕ x

proof −
fix x y
assume x-in-R: x ∈ carrier R and y-in-R: y ∈ carrier R
— First we prove that the additive structure is a comm-group, the result is proved

for comm-monoid.
have c-gr : comm-group (|carrier = carrier R, mult = op ⊕, one = 0|)
proof (rule abelian-group.a-comm-group [of R])

show abelian-group R
using field-axioms
unfolding field-def
unfolding domain-def
unfolding cring-def
unfolding ring-def by fast

qed
show x ⊕ y = y ⊕ x

using comm-monoid .m-comm [of (|carrier = carrier R, mult = op ⊕, one =
0|) x y ]

using c-gr
unfolding comm-group-def
using x-in-R
using y-in-R by simp

qed

lemma (in field) a-assoc:
!! x y z . [[x ∈ carrier R; y ∈ carrier R; z ∈ carrier R]] =⇒(x ⊕ y) ⊕ z = x ⊕ (y
⊕ z )
using a-assoc .

lemma (in field) r-neg :
x ∈ carrier R =⇒ x ⊕ (	 x )=0
using cring-simprules(17 ) .

lemma (in field) m-comm:
!! x y . [[ x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊗ y = y ⊗ x
using m-comm .

lemma (in field) m-assoc:
!! x y z . [[x ∈ carrier R; y ∈ carrier R; z ∈ carrier R]] =⇒ (x ⊗ y) ⊗ z = x ⊗ (y
⊗ z )
using m-assoc .

lemma (in field) r-one:
x ∈ carrier R =⇒ x ⊗ 1 = x
using r-one .
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lemma (in field ) r-inv :
x∈ Units R =⇒ x ⊗ inv x = 1
using Units-r-inv .

lemma (in field) r-distr :
[[x∈ carrier R; y∈ carrier R;z∈ carrier R]] =⇒ x ⊗ (y ⊕ z ) = x ⊗ y ⊕ x ⊗ z
using r-distr .

lemma (in field) l-one:
x ∈ carrier R =⇒ 1 ⊗ x=x

using r-one
using one-closed
using m-comm [of x 1]
by simp

2.2 Exercises in Halmos

Definition of field and some properties are already included in the library,
so we don’t make it.

Here we present some exercises proposed by Halmos. There are someone
already solved in the library, so they will be trivial for us.

Exercise 1A

lemma (in field) l-zero:
x ∈ carrier R =⇒ 0 ⊕ x=x
using r-zero [of x ]
using zero-closed
using a-comm [of x 0] by simp

Exercise 1B

lemma (in field) a-l-cancel :
[[x ∈ carrier R; y∈ carrier R;z ∈ carrier R]] =⇒ (x ⊕ y = x ⊕ z ) = (y = z )
using a-l-cancel .

Exercise 1C

lemma (in field) plus-minus-cancel :
[[x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊕ (y 	 x ) = y

proof −
assume x-in-R: x ∈ carrier R

and y-in-R: y∈ carrier R
moreover have minus-x-in-R: 	 x ∈ carrier R

using a-inv-closed [OF x-in-R] .
have prev-eq : (x ⊕ 	 x ) ⊕ y = y

using x-in-R y-in-R
by (simp add : r-neg l-zero)

show ?thesis
unfolding minus-eq [OF y-in-R x-in-R]
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unfolding a-comm [OF y-in-R minus-x-in-R]
unfolding a-assoc [symmetric, OF x-in-R minus-x-in-R y-in-R]
using prev-eq .

qed

Corollary of 1C. It is in the library.

corollary (in field) minus-eq :
[[y ∈ carrier R; x ∈ carrier R]] =⇒ y 	 x = y ⊕ (	 x )
using minus-eq by simp

Exercise 1D

lemma (in field) r-null :
x ∈ carrier R=⇒ x ⊗ 0=0
using r-null .

lemma (in field) l-null :
x ∈ carrier R=⇒ 0 ⊗ x=0
using l-null .

Exercise 1E

lemma (in field) l-minus-one:
x∈ carrier R =⇒ (	1) ⊗ x = 	x

proof −
assume x-in-R: x ∈ carrier R
have (	1) ⊗ x = 	(1 ⊗ x )

using l-minus[OF one-closed x-in-R] .
also have ...= 	x using l-one[OF x-in-R] by presburger
finally show ?thesis .

qed

Exercise 1F

lemma (in field) prod-minus:
assumes x-in-R: x ∈ carrier R
and y-in-R: y ∈ carrier R
shows (	x ) ⊗ (	y) = x ⊗ y

proof −
have minus-x-in-R: 	 x ∈ carrier R

and minus-y-in-R: 	 y ∈ carrier R
using a-inv-closed [OF x-in-R]
using a-inv-closed [OF y-in-R] .

show ?thesis
unfolding l-minus [OF x-in-R minus-y-in-R]
unfolding r-minus [OF x-in-R y-in-R]
unfolding minus-minus [OF m-closed [OF x-in-R y-in-R]] ..

qed

Exercise 1G

This exercise can be solved directly using integral property. However we will
make it using Units = carrier R − {0R}. This is because field would not
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need to be derived from domain, the properties for domain follow from the
assumptions of field (if we consider a field like a commutative ring in which
Units = carrier R − {0R}
lemma (in field) integral :

assumes x-y-eq-0 : x ⊗ y = 0
and x-in-R: x ∈ carrier R
and y-in-R: y ∈ carrier R
shows x = 0 | y = 0

proof (cases x 6= 0)
— We give as a parametrer to ’cases’ a boolean (x not 0); this will make appear

two cases: when the boolean is true (case True) and when the boolean is false (case
False). For us, case False will be trivial.

case False show ?thesis
using False — This is the negation of the boolean that I have written in ’cases’.

by fast — Case False is trivial, it implies that x is zero and the lemma would
be proved.
next

— We want to separate in cases and for that we must use next, if not in this
case, we could apply the premise False in case True

case True — Next case: case True
note x-neq-0 = True

— With this command we are assigning a pseudonym to True because we will
separate in cases y not 0 and then we will meet with cases True and False, again.

show ?thesis
proof (cases y 6= 0)

case False show ?thesis — Trivial case
using False by simp

next
case True
note y-neq-0 = True

— Really here we will not need the pseudonym (we will not make more
distinction between cases), but we will use it to clarify the premises and its names.

show ?thesis
proof −

have y-un: y ∈ Units R
using y-in-R
using field-Units
using y-neq-0 by simp

have inv-y-in-R: inv y ∈ carrier R
using Units-inv-closed [OF y-un] .

— Now we will begin with a ’calculation’ in Isabelle. A calculation is a group
of equalities which are linked amongst themselves. For that, we use the command
’also’ and ’. . .’

have 0 = 0 ⊗ inv y
— We can not use simp: left term of the equality is simpler than right one.

using l-null [symmetric, OF inv-y-in-R] .
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also have . . . = (x ⊗ y) ⊗ inv y
— Here we make use of the original premise of the lemma: x * y = 0
unfolding x-y-eq-0 [symmetric] ..

also have . . . = x ⊗ (y ⊗ inv y)
unfolding m-assoc [OF x-in-R y-in-R inv-y-in-R] ..

also have . . . = x ⊗ 1
unfolding Units-r-inv [OF y-un] ..

also have . . . = x
unfolding r-one [OF x-in-R] ..
— At the beginning of our ’calculation’ we have started with 0, so we have

proved that 0 = x (through some intermediate steps). To close a ’calculation’ it
is used the command ’finally’ which makes equal the left term of the first ’have’
before the ’also’ with the right term of the last.

finally have 0 = x .
— Using 0 = x we can obtain a contradiction with our premises trivially.
then show ?thesis using x-neq-0 by fast

qed
qed

qed

end

theory Vector-Space
imports Field2
begin

3 Definition of Vector Space

Here the definition of a vector space using locales and inherit. We need to fix
a field, an abelian group and the scalar product relating both structures (an
abelian group together a field would be a vector space with one specific scalar
product but not with another). A vector space is an algebraic structure
composed of a field, an abelian monoid and a scalar product which satisfies
some properties.

locale vector-space = K : field K + V : abelian-group V
for K (structure) and V (structure) +
fixes scalar-product :: ′a => ′b => ′b (infixr · 70 )
assumes mult-closed : [[x ∈ carrier V ;a ∈ carrier K ]]
=⇒ a · x ∈ carrier V
and mult-assoc: [[x ∈ carrier V ; a ∈ carrier K ; b ∈ carrier K ]]
=⇒ (a ⊗K b) · x = a · (b · x )
and mult-1 : [[x ∈ carrier V ]] =⇒ 1K · x = x
and add-mult-distrib1 :
[[x∈ carrier V ; y ∈ carrier V ; a ∈ carrier K ]]
=⇒ a · (x ⊕V y)= a·x ⊕V a·y
and add-mult-distrib2 :
[[x∈ carrier V ; a ∈ carrier K ; b ∈ carrier K ]]
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=⇒ (a ⊕K b) · x = a·x ⊕V b·x

Using this lemma we can check if an algebraic structure is a vector space

lemma vector-spaceI :
fixes K (structure) and V (structure)
and scalar-product :: ′a => ′b => ′b (infixr · 70 )
assumes field-K : field K
and abelian-group-V : abelian-group V
and mult-closed :∧

x a. [[x ∈ carrier V ;a ∈ carrier K ]] =⇒ a·x ∈ carrier V
and mult-assoc:∧

x a b. [[ x ∈ carrier V ; a ∈ carrier K ; b ∈ carrier K ]]
=⇒ (a ⊗K b)· x = a · (b · x )
and mult-1 :

∧
x . [[x ∈ carrier V ]] =⇒ 1K · x = x

and add-mult-distrib1 :∧
x y a. [[x∈ carrier V ; y ∈ carrier V ; a ∈ carrier K ]]

=⇒ a·(x ⊕V y)= a·x ⊕V a· y
and add-mult-distrib2 :∧

x a b. [[x∈ carrier V ; a ∈ carrier K ; b ∈ carrier K ]]
=⇒ (a ⊕K b)· x = a·x ⊕V b·x
shows vector-space K V scalar-product

proof (unfold vector-space-def , intro conjI )
show field K using field-K .
show abelian-group V using abelian-group-V .

next
show vector-space-axioms K V scalar-product

by (auto intro: vector-space.intro abelian-group.intro
field .intro vector-space-axioms.intro assms)

qed

end

theory Examples
imports Vector-Space RealDef
begin

4 Examples

context vector-space
begin

Here we show that every field is a vector space over itself (we interpret the
scalar product as the ordinary multiplication of the field. We use make use
of vector-spaceI.

lemma field-is-vector-space:
assumes field-K : field K
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shows vector-space K K op ⊗K
proof (rule vector-spaceI )

show field K using field-K .
show abelian-group K using field-K

unfolding field-def
unfolding domain-def
unfolding cring-def
unfolding ring-def
by fast

next
show

∧
x a. [[x ∈ carrier K ; a ∈ carrier K ]] =⇒ a ⊗K x ∈ carrier K

using monoid .m-closed [OF field-is-monoid [OF field-K ]] by best
next

show
∧

x a b. [[x ∈ carrier K ; a ∈ carrier K ; b ∈ carrier K ]]
=⇒ a ⊗K b ⊗K x = a ⊗K (b ⊗K x )
using monoid .m-assoc [OF field-is-monoid [OF field-K ]] by best

next
show

∧
x . x ∈ carrier K =⇒ 1K ⊗K x = x

using monoid .l-one [OF field-is-monoid [OF field-K ]] by best
next

show
∧

x y a. [[x ∈ carrier K ; y ∈ carrier K ; a ∈ carrier K ]]
=⇒ a ⊗K (x ⊕K y) = a ⊗K x ⊕K a ⊗K y
using ring .r-distr [OF field-is-ring [OF field-K ]] by best

next
show

∧
x a b. [[x ∈ carrier K ; a ∈ carrier K ; b ∈ carrier K ]]

=⇒ (a ⊕K b) ⊗K x = a ⊗K x ⊕K b ⊗K x
proof −

fix x and a and b
assume x-in-K : x ∈ carrier K

and a-in-K : a∈ carrier K and b-in-K :b∈ carrier K
show (a ⊕K b) ⊗K x = a ⊗K x ⊕K b ⊗K x

using ring .l-distr
[OF field-is-ring [OF field-K ] a-in-K b-in-K x-in-K ] .

qed
qed (auto)

end
end
theory Comments
imports Examples
begin

5 Comments

context vector-space
begin

Now some properties of vector spaces.
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Halmos proposes some exercises, but most of them are properties already
proved in abelian groups, rings... so they are in the library and using the in-
heritance of properties provided by locales we obtain them for vector spaces.
Lemmas in which the scalar product appears need to be proved and we make
it here.

We have two zeros: 0V and 0. We need to define separately the closure
property in order to avoid confusions. Alternatively, we could specify the
structure writing V .zero-closed and K .zero-closed.

lemma zeroV-closed : 0V ∈ carrier V
using V .zero-closed .

lemma zeroK-closed : 0K ∈ carrier K
using K .zero-closed .

A variation of r-neg (x ∈ carrier V =⇒ x ⊕V 	V x = 0V):

lemma r-neg ′:
assumes x-in-V : x ∈ carrier V
shows x 	V x=0V

proof −
have 0V = x ⊕ V 	V x

using V .r-neg [OF x-in-V , symmetric] .
also have . . .=x 	V x using a-minus-def [symmetric, OF x-in-V x-in-V ] .
finally show ?thesis by simp

qed

We want to prove that a · 0V = 0V. First of all, we prove some auxiliary
lemmas:

lemma mult-zero-descomposition [simp]:
assumes a-in-K : a ∈ carrier K
shows a · 0V ⊕V a · 0V = a · 0V

proof −
have a· 0V =a· (0V ⊕V 0V)

using V .r-zero [symmetric, OF V .zero-closed ] by simp
also
have . . .=a· 0 V ⊕ V a· 0 V

using add-mult-distrib1 [OF V .zero-closed V .zero-closed a-in-K ] by simp
finally show ?thesis by rule

qed

lemma plus-minus-assoc:
assumes x-in-V : x ∈ carrier V
and y-in-V : y ∈ carrier V and z-in-V : z ∈ carrier V
shows x ⊕V y 	V z = x ⊕V (y 	V z )

proof −
have minus-z-in-V :	V z ∈ carrier V

using V .a-inv-closed [OF z-in-V ] .
have x ⊕V y 	V z = x ⊕V y ⊕V 	V z
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using a-minus-def [of x ⊕V y , OF - z-in-V ]
using V .a-closed [OF x-in-V y-in-V ] .

also have x ⊕V y ⊕V 	V z = x ⊕V (y ⊕V 	V z )
using V .a-assoc [OF x-in-V y-in-V minus-z-in-V ] .

also have . . . = x ⊕V (y 	V z )
unfolding a-minus-def [symmetric, OF y-in-V z-in-V ] ..

finally show ?thesis by simp
qed

Now we can complete theorem that we want to prove. It corresponds with
exercise 1C in section 4 in Halmos.

lemma scalar-mult-zeroV-is-zeroV :
assumes a-in-K :a ∈ carrier K
shows a · 0V = 0V

proof −
have mclosed : a· 0 V ∈ carrier V

using mult-closed [OF V .zero-closed a-in-K ] .
have a · 0V = a· 0V ⊕V a· 0V

using mult-zero-descomposition [OF a-in-K ] by simp
hence a · 0V 	V a · 0V = a· 0V ⊕V a· 0V 	V a · 0V

using mclosed by simp
thus ?thesis

unfolding plus-minus-assoc [OF mclosed mclosed mclosed ]
unfolding r-neg ′ [OF mclosed ]
using V .r-zero [OF mclosed ] by simp

qed

We apply a similar reasoning to prove that 0 · x = 0V (this corresponds
with exercise 1D in section 4 in Halmos):

lemma mult-zero-descomposition2 :
assumes x-in-V : x ∈ carrier V
shows 0K · x ⊕V 0K · x = 0K · x

proof −
have 0K · x = (0K ⊕K 0K)· x

using zeroK-closed
using K .r-zero [OF zeroK-closed ,symmetric] by simp

from this show ?thesis
using add-mult-distrib2 [OF x-in-V zeroK-closed zeroK-closed ,symmetric]
by simp

qed

The exercise 1D in section 4 in Halmos is proved as follows:

lemma zeroK-mult-V-is-zeroV :
assumes x-in-V : x ∈ carrier V
shows 0K · x = 0V

proof −
have mclosed : 0K · x ∈ carrier V

using mult-closed [OF x-in-V zeroK-closed ] .
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have 0K · x = 0K · x ⊕V 0K · x
using mult-zero-descomposition2 [OF x-in-V ,symmetric] .

hence 0K · x 	V 0K · x = 0K · x ⊕V 0K · x 	V 0K · x by simp
thus ?thesis

unfolding plus-minus-assoc [OF mclosed mclosed mclosed ]
unfolding r-neg ′ [OF mclosed ]
using V .r-zero [OF mclosed ] by simp

qed

Another relevant property permit us to relate the additive inverse of the
multiplicative unit with the additive inverse. It corresponds with exercise
(1F) in section 4 in Halmos.

lemma negate-eq :
assumes x-in-V : x ∈ carrier V
shows (	K 1K) · x = 	V x

proof (rule V .minus-equality [symmetric, of (	K 1K) · x x ])
show x ∈ carrier V using x-in-V .
have minus-oneK-closed : 	 K 1 K ∈ carrier K

using K .a-inv-closed [OF K .one-closed ] .
show 	 1 · x ∈ carrier V

using mult-closed [OF x-in-V minus-oneK-closed ] .
show 	1 · x ⊕V x = 0V
proof −

have 0V = 0K · x
using zeroK-mult-V-is-zeroV [symmetric, OF x-in-V ] .

also have . . . = (	K 1K ⊕K 1K)· x
unfolding K .l-neg [OF K .one-closed ] ..

also have . . . = 	K 1 K· x ⊕V 1 K · x
using add-mult-distrib2 [OF x-in-V minus-oneK-closed K .one-closed ] .

also have . . . = 	K 1 K· x ⊕V x
unfolding mult-1 [OF x-in-V ] ..

finally show ?thesis by rule
qed

qed

The previous property can be proved not only for the multiplicative unit
of K but for every element in its carrier. We redo the demonstration (the
previous lemma could be proved as a corollary of this):

lemma negate-eq2 :
assumes x-in-V : x ∈ carrier V
and a-in-K : a ∈ carrier K
shows (	K a) · x = 	V (a·x )

proof(rule V .minus-equality [symmetric, of (	K a)· x a·x ])
show a·x ∈ carrier V using mult-closed [OF x-in-V a-in-K ] .
show 	 a · x ∈ carrier V

using mult-closed [OF x-in-V K .a-inv-closed [OF a-in-K ]] .
show 	a·x ⊕V a·x = 0V
proof −

have 0V = 0K · x
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using zeroK-mult-V-is-zeroV [symmetric, OF x-in-V ] .
also have . . . = (	K a⊕K a)· x

unfolding K .l-neg [OF a-in-K ] ..
also have . . . = 	K a· x ⊕V a · x

using add-mult-distrib2
[OF x-in-V K .a-inv-closed [OF a-in-K ] a-in-K ] .

finally show ?thesis by rule
qed

qed

The next two lemmas prove exercise 1E, which says that the scalar product
also satisfies an integral property (if a · b = 0V , either a = 0K or b = 0V ):

lemma mult-zero-uniq :
assumes x-in-V : x ∈ carrier V and x-not-zero: x 6= 0V
and a-in-K : a ∈ carrier K and m-ax-0 : a · x = 0V
shows a = 0K

proof (rule classical)
assume a-not-zero: a 6= 0K
have a-un: a ∈ Units K

using a-not-zero
using a-in-K
using K .field-Units by simp

have inv-a-in-K : inv a ∈ carrier K
using K .Units-inv-closed [OF a-un] .

have x = (inv a ⊗ a)· x
using K .Units-l-inv [OF a-un]
using mult-1 [OF x-in-V ]
by simp

also have . . .= inv a · (a · x )
using mult-assoc [OF x-in-V inv-a-in-K a-in-K ] .

also have . . .= inv a · 0V using m-ax-0 by simp
also have . . .= 0V

using scalar-mult-zeroV-is-zeroV [OF inv-a-in-K ] .
finally have x = 0V .
with x-not-zero show a=0K by contradiction

qed

lemma integral :
assumes x-in-V : x∈ carrier V
and a-in-K : a ∈ carrier K
and m-ax-0 : a · x= 0V
shows a = 0K | x=0V

proof (cases x 6= 0V)
case False show ?thesis using False by simp

next
case True
note x-not-zero = True
show ?thesis
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proof (cases a 6= 0K)
case False show ?thesis using False by simp

next
case True
note a-not-zero=True
show ?thesis

using mult-zero-uniq [OF x-in-V x-not-zero a-in-K m-ax-0 ]
using a-not-zero by contradiction

qed
qed

We present here some other properties which don’t appear in Halmos but
that will be useful in our development. For instance, distributivity of sub-
straction with respect to the scalar product:

lemma diff-mult-distrib1 :
assumes x-in-V : x∈ carrier V
and y-in-V : y ∈ carrier V
and a-in-K : a ∈ carrier K
shows a · (x 	V y) = a · x 	V a · y

proof −
have minus-y-in-V : 	V y ∈ carrier V

using V .a-inv-closed [OF y-in-V ] .
have minus-one-in-K : 	K 1 ∈ carrier K

using K .a-inv-closed [OF K .one-closed ] .
have mclosed : a · y ∈ carrier V

using mult-closed [OF y-in-V a-in-K ] .
have mclosed2 : a · x ∈ carrier V

using mult-closed [OF x-in-V a-in-K ] .
have a · (x 	V y)=a · (x ⊕V 	V y)

using a-minus-def [OF x-in-V y-in-V ] by simp
also have . . .= a · x ⊕ V a · (	V y)

using add-mult-distrib1 [OF x-in-V minus-y-in-V a-in-K ] .
also have . . .= a · x ⊕ V a · (	K 1K · y)

using negate-eq [OF y-in-V ] by simp
also have . . .= a · x ⊕ V (a ⊗K (	K 1K))· y

using mult-assoc [OF y-in-V a-in-K minus-one-in-K ,symmetric]
by simp

also have . . .= a · x ⊕ V ((	K 1K)⊗K a)· y
using K .m-comm [OF minus-one-in-K a-in-K ] by simp

also have . . .= a · x ⊕ V (	K 1K) · a · y
using mult-assoc [OF y-in-V minus-one-in-K a-in-K ] by simp

also have . . .= a · x ⊕ V 	V (a · y)
using negate-eq [OF mclosed ] by simp

also have . . .= a · x 	V a· y
using a-minus-def [OF mclosed2 mclosed ,symmetric] .

finally show ?thesis .
qed

The following result proves distributivity of substraction (of K) with respect
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to the scalar product:

lemma diff-mult-distrib2 :
assumes x-in-V : x∈ carrier V
and a-in-K : a ∈ carrier K
and b-in-K : b ∈ carrier K
shows (a 	K b) · x = a·x 	V b·x

proof −
have minus-b-in-K : 	K b ∈ carrier K

using K .a-inv-closed [OF b-in-K ] .
have bx-in-V : b·x ∈ carrier V

using mult-closed [OF x-in-V b-in-K ] .
have (a 	K b) · x=(a ⊕K 	K b)·x

using K .minus-eq [OF a-in-K b-in-K ] by simp
also have . . .=a·x ⊕V (	K b)·x

using add-mult-distrib2 [OF x-in-V a-in-K minus-b-in-K ] .
also have . . .=a·x ⊕V (	K (1K ⊗K b))·x

using K .l-one [OF b-in-K ] by simp
also have . . .=a·x ⊕V (	K 1K ⊗K b)·x

using K .l-minus [OF K .one-closed b-in-K ,symmetric] by simp
also have . . .=a·x ⊕V (	K 1K)·b·x

using mult-assoc [OF x-in-V K .a-inv-closed [OF K .one-closed ] b-in-K ]
by simp

also have . . .=a·x ⊕V 	V (b·x )
using negate-eq [OF bx-in-V ] by simp

also have . . .=a·x 	V b·x
using a-minus-def [OF mult-closed [OF x-in-V a-in-K ] bx-in-V ,symmetric] .

finally show ?thesis by simp
qed

The following result proves that the unary substraction of K and V is a
self-cancelling operation by means of the scalar product:

lemma minus-mult-cancel :
assumes x-in-V : x ∈ carrier V and a-in-K :a∈ carrier K
shows (	K a) · (	V x ) = a · x

proof −
have (	Ka) · (	Vx ) = (	Ka ⊗ (	K1K)) · x

using negate-eq [OF x-in-V ]
mult-assoc[OF x-in-V K .a-inv-closed [OF a-in-K ]
K .a-inv-closed [OF K .one-closed ]]

by auto
also have . . .=(a⊗1) · x

using K .prod-minus [OF a-in-K K .one-closed ] by auto
finally show ?thesis using K .r-one [OF a-in-K ] by auto

qed

A result proving that the scalar product is commutative over the elements
of K:

lemma mult-left-commute:
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assumes x-in-V : x ∈ carrier V
and a-in-K : a∈ carrier K
and b-in-K :b∈ carrier K
shows a · b · x = b · a · x

proof −
have a·b·x=(a⊗b)·x

using mult-assoc[OF x-in-V a-in-K b-in-K , symmetric] .
also have . . .=(b⊗a)·x using K .m-comm[OF a-in-K b-in-K ] by simp
finally show ?thesis

using mult-assoc[OF x-in-V b-in-K a-in-K ] by simp
qed

A result proving that the scalar product is left-cancelling for the elements
of K different from 0:

lemma mult-left-cancel :
assumes x-in-V : x ∈ carrier V
and y-in-V : y∈carrier V
and a-in-K : a∈carrier K
and a-not-zero: a 6=0K
shows (a · x = a · y) = (x = y)

proof
assume ax-ay :a·x=a·y
have a-in-Units: a ∈ Units K

using K .field-Units and a-in-K and a-not-zero by simp
have x=1K · x using mult-1 [OF x-in-V , symmetric] .
also have . . .=((inv a)⊗K a)·x

using K .Units-l-inv [OF a-in-Units] by simp
also have . . .=(inv a)· a·x

using mult-assoc[OF x-in-V
K .Units-inv-closed [OF a-in-Units] a-in-K ]

by simp
also have . . .=(inv a)· a·y using ax-ay by simp
also have . . .=((inv a)⊗K a)·y

using mult-assoc[OF y-in-V K .Units-inv-closed
[OF a-in-Units] a-in-K ] by simp

also have . . .=1K · y
using K .Units-l-inv [OF a-in-Units, symmetric] by simp

finally show x=y using mult-1 [OF y-in-V ] by simp
next

assume x-y : x=y
then show a·x=a·y by simp

qed

A similar result to the previous one but proving that the element of V can
be also cancelled:

lemma mult-right-cancel :
assumes x-in-V : x ∈ carrier V
and a-in-K : a ∈ carrier K
and b-in-K : b∈carrier K
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and x-not-zero: x 6=0V
shows (a · x = b · x ) = (a = b)

proof
assume ax-by :a·x=b·x
have (a 	 K b)· x=a·x 	 V b·x

using diff-mult-distrib2 [OF x-in-V a-in-K b-in-K ] .
also have . . .=a·x 	 V a·x using ax-by by simp
also have . . .=0V

using r-neg ′[OF mult-closed [OF x-in-V a-in-K ]] .
finally have (a 	 K b)· x=0V by simp
hence ab-zero: a 	 K b=0K

using x-not-zero
using integral [OF x-in-V K .minus-closed [OF a-in-K b-in-K ]]
by simp

thus a=b
proof −

have a-min-b: a ⊕K 	 Kb=0K
using ab-zero and a-minus-def [OF a-in-K b-in-K ] by simp

have 	 K(	 K b)=a
using K .minus-equality
[OF a-min-b K .a-inv-closed [OF b-in-K ] a-in-K ] .

thus ?thesis using K .minus-minus[OF b-in-K ] by simp
qed

next
assume a=b
then show a·x=b·x by simp

qed

end
end
theory Linear-dependence
imports Comments
begin

6 Linear dependence

context vector-space
begin

In this section we will present the definition of linearly dependent set and
linearly independent set. First of all we will introduce the definition of
linear-combination.

A linear combination is a finite sum of vectors of V multiplicated by scalars.
However, how can we specify the scalars? In a linear combination each
vector will be multiplicated by one specific scalar, so this scalar depends on
the vector. For that reason, we introduce the notion of coefficients-function.

definition coefficients-function :: ′b set => ( ′b => ′a) set
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where coefficients-function X
= {f . f ∈ X → carrier K ∧ (∀ x . x /∈X −→ f x = 0K)}

The explanation of the definition of coefficients function is as follows: given
any set of vectors X, its coefficients functions will be every function which
maps each of the vectors in X to scalars in K. We impose an additional
condition, in such a way that every element out of the set of vectors X is
mapped to a distinguished element (in this case 0) of K.

The first condition in the definition (f ∈ X → carrier K ) is clear. A co-
efficients function is a function which maps, as we have said before, the
elements of a given set X to their corresponding scalars in K. The second
condition (∀ x . x /∈ X −→ f x = 0) requires further explanation: the reason
to map every element out of the set X to a distinguished point is that this
allows us to compare coefficients functions through the extensional equality
of functions ((f = g) = (∀ x . f x = g x )). Thus, two coefficients function
will be equal whenever they map every vector of X to the same scalar of K
(this statement would not hold in the absence of the second condition).

Giving f a coefficients function and a certain x in carrier V then f x (the
scalar of the vector) will be in carrier K.

lemma fx-in-K :
assumes x-in-V : x ∈ carrier V
and cf-f : f ∈ coefficients-function (carrier V )
shows f (x ) ∈ carrier K
using assms unfolding coefficients-function-def by auto

For every x ∈ carrier V, multiplication between the scalar and the vector (f
x · x ) is in carrier V.

lemma fx-x-in-V :
assumes x-in-V : x ∈ carrier V
and cf-f : f ∈ coefficients-function (carrier V )
shows f (x )·x ∈ carrier V
using mult-closed [OF x-in-V fx-in-K [OF x-in-V cf-f ]] .

Now we are going to define a linear combination. In Halmos, next section is
about linear combinations, however we have to introduce now the definition
because we will use it to define the linear dependence of a set. We will use
the definition of sums over a finite set (finsum) which already exists in the
Isabelle library. Note that we are defining a linear-combination with two
parameters: second is the set of elements of V and first is the coefficients
function which assigns each vector to its scalar.

Due to the definition of finsum-def we are only considering the case of a finite
linear combination. The case of infinite linear combinations is undefined.
This is not a problem for us, because we will work with finite vector spaces
and in our development we will only need linear combinations over finite
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sets. In addition, the sums in an infinite vector space are all finite because
without additional structure the axioms of a vector space do not permit us
to meaningfully speak about an infinite sum of vectors.

definition linear-combination :: ( ′b ⇒ ′a) ⇒ ′b set ⇒ ′b
where linear-combination f X = finsum V (λy . f (y)·y) X

In order to define the notion of linear dependence of a set we need to demand
that this set be finite and a subset of the carrier. To abbreviate notation we
will define these two premises as good-set.

definition good-set :: ′b set => bool
where good-set X = (finite X ∧ X ⊆ carrier V )

Next two lemmas show both properties:

lemma good-set-finite:
assumes good-set-X : good-set X
shows finite X
using good-set-X
unfolding good-set-def by simp

lemma good-set-in-carrier :
assumes good-set-X : good-set X
shows X ⊆ carrier V
using good-set-X
unfolding good-set-def by simp

Empty set is a good-set.

lemma [simp]: good-set {}
unfolding good-set-def by simp

Now, we can present the definition of linearly dependent set. A set will be
dependent if there exists a linear combination equal to zero in which not all
scalars are zero.

definition linear-dependent :: ′b set ⇒ bool
where linear-dependent X = (good-set X
∧ (∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f X = 0V
∧ ¬(∀ x ∈ X . f x = 0K)))

This definition is equivalent to the previous one:

definition linear-dependent-2 :: ′b set ⇒ bool
where linear-dependent-2 X =
(∃ f . f ∈ coefficients-function (carrier V ) ∧ good-set X
∧ linear-combination f X = 0V ∧ ¬ (∀ x ∈ X . f x = 0K))

Next lemma, which is in the library, proves that are equivalent

lemma (∃ f . X ∧ Y f ) = (X ∧ (∃ f . Y f ))
using ex-simps (2 ) [of X Y ] .
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lemma linear-dependent-eq-def :
shows linear-dependent X = linear-dependent-2 X
unfolding linear-dependent-def
unfolding linear-dependent-2-def by blast

We introduce now the notion of a linearly independent set. We will prove
later that linear dependence and independence are complementary notions
(every set will be either dependent or independent).

definition linear-independent :: ′b set ⇒ bool
where linear-independent X =
(good-set X
∧ (∀ f . (f ∈ coefficients-function (carrier V ) ∧ linear-combination f X = 0V)
−→ (∀ x ∈ X . f (x )=0K)))

Next lemmas prove that if we have a linear (in)dependent set hence we have
a good-set (finite and in the carrier).

lemma l-ind-good-set : linear-independent X =⇒ good-set X
unfolding linear-independent-def by simp

lemma l-dep-good-set : linear-dependent X =⇒ good-set X
unfolding linear-dependent-def by simp

The empty set is linearly independent.

lemma empty-set-is-linearly-independent [simp]:
shows linear-independent {}
unfolding linear-independent-def
by simp

We can prove that linear independence is the opposite of linear dependence.
For that, we first prove that every set which is not linearly independent must
be linearly dependent:

lemma not-independent-implies-dependent :
assumes good-set : good-set X
shows ¬ linear-independent X =⇒ linear-dependent X

proof (unfold linear-dependent-def )
assume not-linear-independent : ¬ linear-independent X
from not-linear-independent obtain f

where f-in-coefficients: f ∈ coefficients-function (carrier V )
and sum-zero: linear-combination f X = 0V
and not-all-zero: ¬(∀ x ∈ X . f (x )=0K)
unfolding linear-independent-def using good-set by best

have f ∈ coefficients-function (carrier V )
∧ linear-combination f X = 0V ∧ ¬ (∀ x∈X . f x = 0)
using f-in-coefficients and good-set and sum-zero and not-all-zero
by simp

hence ∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = 0V ∧ ¬ (∀ x∈X . f x = 0)
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by (rule exI [of - f ])
thus good-set X ∧ (∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = 0V ∧ ¬ (∀ x∈X . f x = 0))
using good-set by simp

qed

Now we prove that every set which is linearly dependent is not linearly
independent:

lemma dependent-implies-not-independent :
shows linear-dependent X =⇒ ¬ linear-independent X

proof (rule impE )
assume ld : linear-dependent X
show ¬ linear-independent X
proof (unfold linear-independent-def )

from ld obtain f where good-set : good-set X
and cf-f : f ∈ coefficients-function (carrier V )
and lc-f-X-zero: linear-combination f X = 0V
and not-all-zero: ¬(∀ x ∈ X . f x = 0K)
unfolding linear-dependent-def by auto

have ¬ (∀ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = 0V −→ (∀ x∈X . f x = 0))
using cf-f and lc-f-X-zero and not-all-zero by auto

thus ¬ (good-set X
∧ (∀ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = 0V −→ (∀ x∈X . f x = 0)))
using good-set by auto

qed
qed (auto)

Hence the result:

lemma dependent-if-only-if-not-independent :
assumes good-set : good-set X
shows linear-dependent X ←→ ¬ linear-independent X
using dependent-implies-not-independent

and not-independent-implies-dependent [OF good-set ] by auto

Analogously, we can prove that a set is not linearly dependent if and only if
it is linearly independent. We use [[¬ P ; ¬ R =⇒ P ]] =⇒ R and the previous
lemma:

lemma not-dependent-implies-independent :
assumes good-set : good-set X
shows ¬ linear-dependent X =⇒ linear-independent X

proof −
assume not-linear-dependent : ¬ linear-dependent X
have imp: ¬ linear-independent X =⇒ linear-dependent X

using not-independent-implies-dependent [OF good-set ] .
show linear-independent X

apply (rule swap [OF not-linear-dependent imp]) .
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qed

lemma independent-implies-not-dependent :
shows linear-independent X =⇒ ¬ linear-dependent X

proof −
assume li : linear-independent X
have imp: linear-dependent X =⇒ ¬ linear-independent X

using dependent-implies-not-independent .
show ¬ linear-dependent X apply (rule swap[OF - imp])

using li by simp+
qed

Finally, we obtain the equivalence of definitions:

lemma independent-if-only-if-not-dependent :
assumes good-set : good-set X
shows linear-independent X ←→ ¬ linear-dependent X
using independent-implies-not-dependent

and not-dependent-implies-independent [OF good-set ]
by fast

Every good set will be either dependent or independent (but not both at the
same time). Note: the operator OR of this proof is not an exclusive OR, so
really here we are proving that every set is either dependent or independent
or both.

lemma li-or-ld :
assumes good-set :good-set X
shows linear-dependent X | linear-independent X

proof (cases linear-dependent X )
case False show ?thesis

using not-dependent-implies-independent [OF good-set ] by fast
next

case True thus ?thesis by fast
qed

In order to avoid that problem, we need to implement the operator exclusive
OR:

definition xor :: bool ⇒ bool ⇒ bool
where xor A B ≡ (A ∧ ¬ B) ∨ (¬A ∧ B)

Now we can prove that every good set will be either dependent or indepen-
dent (but not both at the same time):

lemma li-xor-ld :
assumes good-set :good-set X
shows xor (linear-dependent X ) (linear-independent X )

proof (unfold xor-def ,auto)
assume ld-X : linear-dependent X

and li-X : linear-independent X
have ¬ linear-independent X
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using dependent-implies-not-independent [OF ld-X ] .
thus False using li-X by contradiction

next
assume ¬ linear-independent X thus linear-dependent X

using not-independent-implies-dependent [OF good-set -]
by simp

qed

A corollary of these theorems using that the empty set is linearly indepen-
dent: if we have a linearly dependent set, then it isn’t the empty set:

lemma dependent-not-empty :
assumes ld-A: linear-dependent A
shows A 6={}

using dependent-implies-not-independent [OF ld-A] empty-set-is-linearly-independent
by auto

Now we prove that every set X containing a linearly dependent subset Y is
itself linearly dependent. This property is stated in Halmos but not proved,
he says that the fact is clear.

The proof is easy but long. We want to achieve a linear combination of the
elements of X equal to zero and where not all scalars are zero. We know
that a subset Y of X is dependent, so there exists a linear combination of
the elements of Y equal to zero where not all scalars are zero (we will denote
its coefficients funcion as f). If we define a coefficients function for the set
X where the scalars of the elements y ∈ Y are f(y) and 0K for the rest of
elements in X, then we will obtain a linear combination of elements of X
equal to zero where not all scalars are zero (because not for all x ∈ Y f(x)
is 0K).

lemma linear-dependent-subset-implies-linear-dependent-set :
assumes Y-subset-X : Y ⊆ X and good-set : good-set X
and linear-dependent-Y : linear-dependent Y
shows linear-dependent X

proof (unfold linear-dependent-def )
— Using that Y is dependent, we can obtain a linear combination equal to zero

where not all scalars are zero.
from linear-dependent-Y
obtain f where sum-zero-f-Y :linear-combination f Y = 0V

and not-all-zero-f : ¬ (∀ x∈Y . f x = 0)
and coefficients-function-f :
f ∈ coefficients-function (carrier V )
unfolding linear-dependent-def
by best

— Now we define the function and prove that is a coefficients function:
let ?g= (λx . if x ∈ Y then f (x ) else 0K)
have coefficients-function-g :

?g ∈ coefficients-function (carrier V )
using coefficients-function-f
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unfolding coefficients-function-def
by auto

— We want to prove another two things: that the linear combination is zero
and not all scalars are zero.

— First:
have sum-zero-g-X : linear-combination ?g X = 0V
proof −

— We will separate the linear combination into two ones, in the set Y and in
the set X − Y . We can do it thanks to the theorem finsum-Un-disjoint : [[finite A;
finite B ; A ∩ B = {}; g ∈ A → carrier V ; g ∈ B → carrier V ]] =⇒ finsum V g
(A ∪ B) = finsum V g A ⊕V finsum V g B and that the descomposition of the
sets is disjoint.

— Some properties which we will need for the proof:
have descomposicion-conjuntos:X =Y∪(X−Y )

using Y-subset-X by auto
have disjuntos: Y ∩ (X−Y )={}

by simp
have finite-X : finite X

using good-set
unfolding good-set-def by simp

have finite-Y : finite Y
using linear-dependent-Y
unfolding linear-dependent-def
unfolding good-set-def by auto

have finite-X-minus-Y : finite (X−Y )
using finite-X by simp

have g1 :?g ∈ Y → carrier K
using coefficients-function-g
unfolding coefficients-function-def
using good-set
unfolding good-set-def
using Y-subset-X
by auto

have g2 :?g ∈ (X−Y ) → carrier K
using coefficients-function-g
unfolding coefficients-function-def
using good-set
unfolding good-set-def
by auto

let ?h=(λx . ?g(x )·x )
have h1 : ?h ∈ Y → carrier V
proof

fix x
assume x-in-Y : x∈Y
have x-in-V : x∈ carrier V
proof

have Y-subset-V : Y⊆ carrier V
using good-set
unfolding good-set-def

27



using Y-subset-X
by auto

show ?thesis using Y-subset-V and x-in-Y by auto
qed (auto)
have gx-in-K : ?g(x )∈ carrier K

using g1
using x-in-Y
unfolding Pi-def by auto

have gx-x-in-V : ?g(x )·x ∈ carrier V
using mult-closed [OF x-in-V gx-in-K ] by auto

show (if x ∈ Y then f x else 0) · x ∈ carrier V
using gx-x-in-V by auto

qed
have h2 : ?h ∈ (X−Y ) → carrier V
proof

fix x
assume x-in-X-minus-Y : x∈ (X−Y )
have x-in-V : x∈ carrier V
proof

have X-minus-Y-subset-V : (X−Y ) ⊆ carrier V
using good-set
unfolding good-set-def
using Y-subset-X
by auto

show ?thesis
using X-minus-Y-subset-V
using x-in-X-minus-Y by auto

qed (auto)
have gx-in-K : ?g(x )∈ carrier K

using x-in-X-minus-Y
by auto

have gx-x-in-V : ?g(x )·x ∈ carrier V
using mult-closed [OF x-in-V gx-in-K ] by auto

show (if x ∈ Y then f x else 0) · x ∈ carrier V
using gx-x-in-V by auto

qed
— And now the decomposition. We will make a calculation until we achieve

the thesis.
have linear-combination ?g X

= linear-combination ?g (Y∪(X−Y ))
using descomposicion-conjuntos by simp

also have descomposicion:
...=linear-combination ?g Y ⊕V linear-combination ?g (X−Y )
unfolding linear-combination-def
using finsum-Un-disjoint [OF finite-Y finite-X-minus-Y

disjuntos h1 h2 ]
by auto

— First linear combination of right term is the same linear combination of
the elements of Y where it was equal to zero.
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also have ...=0V ⊕V linear-combination ?g (X−Y )
proof −

have linear-combination ?g Y =linear-combination f Y
proof (unfold linear-combination-def )

have iguales: Y =Y ..
show (

⊕
Vy∈Y . (if y ∈ Y then f y else 0) · y)

= (
⊕

Vy∈Y . f y · y)
using finsum-cong [OF iguales] using h1 by auto

qed
also have ...=0V using sum-zero-f-Y .
finally show ?thesis by simp

qed
also have ...=0V ⊕V 0V
proof −

— Thanks to the definition of ?g, the linear combination in (X − Y ) is also
zero (because all scalars are zero).

— As each scalar is zero, the multiplication between it and its vector is zero
(zeroK-mult-V-is-zeroV : x ∈ carrier V =⇒ 0 · x = 0V). Then we are adding a
finite sum of zeros, so it will be zero using finsum-zero: finite A =⇒ (

⊕
Vi∈A. 0V)

= 0V.
have sum-g-X-minus-Y :linear-combination ?g (X−Y )=0V
proof −

have X-subset-V : X ⊆ carrier V
using good-set
unfolding good-set-def by auto

hence X-minus-Y-subset-V :(X−Y ) ⊆ carrier V by auto
have not-in-Y : x∈ (X−Y )=⇒ x /∈ Y by auto
have linear-combination ?g (X−Y )=(

⊕
Vy∈X − Y . 0 · y)

proof (unfold linear-combination-def )
have igualesX-minus-Y : X−Y =X−Y ..
show (

⊕
Vy∈X − Y . (if y ∈ Y then f y else 0) · y)

= finsum V (op · 0) (X − Y )
using finsum-cong [OF igualesX-minus-Y eqTrueI [OF h2 ]]
by auto

qed
also have . . .=(

⊕
Vy∈X − Y . 0V)

proof (rule finsum-cong ′)
show X − Y = X − Y ..
show (λy . 0V) ∈ X − Y → carrier V by simp
show

∧
i . i ∈ X − Y =⇒ 0 · i = 0V

using zeroK-mult-V-is-zeroV
using X-minus-Y-subset-V by auto

qed
also have . . .=0V

using finsum-zero [OF finite-X-minus-Y ] .
finally show ?thesis .

qed
thus ?thesis by simp

qed
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also have ...=0V by simp
finally show ?thesis .

qed
— Second property is easy:

have not-all-zero-g : ¬ (∀ x∈X . ?g x = 0)
using Y-subset-X
using not-all-zero-f by auto

have ?g ∈ coefficients-function (carrier V )
∧ linear-combination ?g X = 0V ∧ ¬ (∀ x∈X . ?g x = 0)
using coefficients-function-g and good-set

and sum-zero-g-X and not-all-zero-g by fast
hence
∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = 0V ∧ ¬ (∀ x∈X . f x = 0)
by (rule exI [of - ?g ])

thus good-set X ∧ (∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = 0V ∧ ¬ (∀ x∈X . f x = 0))
using good-set by simp

qed

More properties and facts:

lemma exists-subset-ld :
assumes ld-X : linear-dependent X
shows ∃Y . Y ⊆ X ∧ linear-dependent Y
using ld-X by auto

lemma exists-subset-li :
assumes ld-X : linear-dependent X
shows ∃Y . Y⊆X ∧ linear-independent Y

proof (rule exI [of - {}])
show {}⊆X ∧ linear-independent {}

using empty-set-is-linearly-independent by auto
qed

A set containing 0V is not an independent set:

lemma zero-not-in-linear-independent-set :
assumes li-A: linear-independent A
shows 0V /∈ A

proof (cases 0V /∈ A)
case True thus ?thesis .

next
case False show ?thesis
proof −

have cb-A: good-set A using l-ind-good-set [OF li-A] .
have zero-in-A: 0V ∈ A using False by simp
let ?g=(λx . if x=0V then 1K else 0K)
have cf-g : ?g ∈ coefficients-function (carrier V )

unfolding coefficients-function-def by auto
have lc-zero: linear-combination ?g A=0V

30



proof (unfold linear-combination-def )
have (

⊕
Vy∈A. (if y = 0V then 1 else 0) · y)

=(
⊕

Vy∈A. 0V)
proof (rule finsum-cong ′,auto)

show 1 · 0V = 0V
using scalar-mult-zeroV-is-zeroV by auto

fix i
assume i-in-A: i ∈ A and i-not-zero: i 6= 0V
show 0 · i = 0V

using zeroK-mult-V-is-zeroV and i-in-A and cb-A
unfolding good-set-def by auto

qed
also have ...=0V

using finsum-zero using good-set-finite[OF cb-A] by auto
finally show

(
⊕

Vy∈A. (if y = 0V then 1 else 0) · y) = 0V .
qed
have not-all-zero: ¬(∀ x∈A. ?g x = 0)

using zero-in-A by auto
— Contradiction with linear-independent

show ?thesis
using cf-g lc-zero not-all-zero li-A
unfolding linear-independent-def by auto

qed
qed

Every subset of an independent set is also independent. This property has
been proved using sledgehammer.

lemma independent-set-implies-independent-subset :
assumes A-in-B : A ⊆ B
and li-B : linear-independent B
shows linear-independent A
by (metis A-in-B good-set-def good-set-finite good-set-in-carrier

dependent-implies-not-independent finite-subset l-ind-good-set
li-B linear-dependent-subset-implies-linear-dependent-set
not-independent-implies-dependent subset-trans)

We can even extend the notions of linearly dependent and independent sets
to infinite sets in the following way. We shall say that a set is linearly
independent if every finite subset of it is such.

definition linear-independent-ext :: ′b set ⇒ bool
where linear-independent-ext X
= (∀A. finite A ∧ A ⊆ X −→ linear-independent A)

Otherwise, it is linearly dependent.

definition linear-dependent-ext :: ′b set ⇒ bool
where linear-dependent-ext X
= (∃A. A ⊆ X ∧ linear-dependent A)
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As expected, if we have a linearly independent set it will be also linear-independent-ext
set.

lemma independent-imp-independent-ext :
assumes li-X : linear-independent X
shows linear-independent-ext X

proof −
have fin-X : finite X and X-in-V : X ⊆ carrier V

using l-ind-good-set [OF li-X ] unfolding good-set-def by simp+
show ?thesis unfolding linear-independent-ext-def
proof (auto)

fix A
assume A-in-X : A ⊆ X
show linear-independent A

using independent-set-implies-independent-subset
[OF A-in-X li-X ] .

qed
qed

The same property holds for dependent sets:

lemma dependent-imp-dependent-ext :
assumes ld-X : linear-dependent X
shows linear-dependent-ext X
unfolding linear-dependent-ext-def
using l-dep-good-set [OF ld-X ]
unfolding good-set-def
using ld-X
by fast

Every finite set which is linear-independent-ext will also be linear-independent :

lemma fin-ind-ext-impl-ind :
assumes li-ext-X : linear-independent-ext X
and finite-X : finite X
shows linear-independent X
by (metis finite-X li-ext-X linear-independent-ext-def subset-refl)

Similarly with the notion of linear dependence:

lemma fin-dep-ext-impl-dep:
assumes ld-ext-X : linear-dependent-ext X
and gs-X : good-set X
shows linear-dependent X
by (metis gs-X ld-ext-X linear-dependent-ext-def

linear-dependent-subset-implies-linear-dependent-set)

We can prove that also in the infinite case, the definitions of linear-independent-ext
and linear-dependent-ext are complementary (every set will be of one type
or the other). Let’s see it:

lemma not-independent-ext-implies-dependent-ext :
assumes X-in-V : X ⊆ carrier V
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shows ¬ linear-independent-ext X =⇒ linear-dependent-ext X
unfolding linear-independent-ext-def and linear-dependent-ext-def
using not-independent-implies-dependent and X-in-V
unfolding good-set-def
by auto

lemma not-dependent-ext-implies-independent-ext :
assumes X-in-V : X ⊆ carrier V
shows ¬ linear-dependent-ext X =⇒ linear-independent-ext X
by (metis X-in-V not-independent-ext-implies-dependent-ext)

lemma independent-ext-implies-not-dependent-ext :
shows linear-independent-ext X =⇒ ¬ linear-dependent-ext X
by (metis good-set-finite independent-implies-not-dependent

l-dep-good-set linear-dependent-ext-def
linear-independent-ext-def )

lemma dependent-ext-implies-not-independent-ext :
shows linear-dependent-ext X =⇒ ¬ linear-independent-ext X
by (metis independent-ext-implies-not-dependent-ext)

corollary dependent-ext-if-only-if-not-indepentent-ext :
assumes X-in-V : X ⊆ carrier V
shows linear-dependent-ext X ←→ ¬ linear-independent-ext X
using assms not-independent-ext-implies-dependent-ext

dependent-ext-implies-not-independent-ext
by blast

corollary independent-ext-if-only-if-not-depentent-ext :
assumes X-in-V : X ⊆ carrier V
shows linear-independent-ext X ←→ ¬ linear-dependent-ext X
using assms not-dependent-ext-implies-independent-ext

independent-ext-implies-not-dependent-ext
by blast

end
end
theory Indexed-Set

imports Main FuncSet Previous
begin

7 Indexed sets

The next type definition, iset, represents the notion of an indexed set, which
is a pair: a set and a function that goes from naturals to the set.

type-synonym ( ′a) iset = ′a set × (nat => ′a)

Now we define functions which make possible to separate an indexed set into
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the set and the function and we add them to the simplifier, since they are
only meant to be abbreviations of the “fst” and “snd” operations:

definition iset-to-set :: ′a iset => ′a set
where iset-to-set A = fst A

definition iset-to-index :: ′a iset => (nat => ′a)
where iset-to-index A = snd A

lemmas [simp] = iset-to-set-def iset-to-index-def

An indexing of a set will be any bijection between the set of the natural
numbers less than its cardinality (because we start counting from 0 ) and
the set. Note: we will always work with finite sets. By default, the definition
of card assigns to an infinite set cardinality equal to 0.

definition indexing :: ( ′a iset) => bool
where indexing A = bij-betw (iset-to-index A)
{..<card (iset-to-set A)} (iset-to-set A)

Once we have the definition of indexing, we are going to prove some prop-
erties of it:

We introduce some lemmas presenting properties and alternative defini-
tions of “indexing”. For instance, whenever we have an indexing A =
(iset to set A, iset to index A) the index function will map naturals in the
range {.. < card(A)} to elements of iset to set A and, moreover, the image
set of the indexing function in such range will be whole set iset to set A.

lemma indexing-equiv-img :
assumes ob: indexing A
shows (iset-to-index A)
∈ {..<(card (iset-to-set A))} → (iset-to-set A)
∧ (iset-to-index A) ‘ {..<(card (iset-to-set A))}
= (iset-to-set A)
using ob
unfolding indexing-def
unfolding bij-betw-def by auto

The implication is also satisfied in the opposite direction:

lemma img-equiv-indexing :
assumes f : (iset-to-index A)
∈ {..<(card (iset-to-set A))} → (iset-to-set A)
∧ (iset-to-index A) ‘ {..<(card (iset-to-set A))}
= (iset-to-set A)
shows indexing A
proof −
have inj-on (iset-to-index A) {..<card (iset-to-set A)}

proof −
have card ((iset-to-index A) ‘ {..<(card (iset-to-set A))})
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=card (iset-to-set A) using f by auto
also have ...= card ({..<card (iset-to-set A)})

using card-lessThan by auto
finally have 1 :

card ( (iset-to-index A) ‘ {..<(card (iset-to-set A))})
= card ({..<card (iset-to-set A)}) .

have 2 : finite {..<card (iset-to-set A)}
by (metis finite-lessThan)

show ?thesis using eq-card-imp-inj-on [OF 2 1 ] .
qed
moreover have iset-to-index A ‘ {..<card (iset-to-set A)}

= iset-to-set A using f by auto
ultimately show ?thesis

unfolding indexing-def unfolding bij-betw-def
by simp

qed

Now we present another alternative definition of indexing linking it with the
notions of injectivity and surjectivity:

lemma indexing-inj-surj :
assumes ob: indexing A
shows inj-on (iset-to-index A) {..<(card (iset-to-set A))}
∧ (iset-to-index A) ‘ {..<(card (iset-to-set A))}

= (iset-to-set A)
using ob
unfolding indexing-def
unfolding bij-betw-def .

lemma indexing-inj-surj-inv :
assumes inj-on (iset-to-index A) {..<(card (iset-to-set A))}
∧ (iset-to-index A) ‘ {..<(card (iset-to-set A))} = (iset-to-set A)
shows indexing A
unfolding indexing-def
unfolding bij-betw-def by fact

One basic property is that the empty set with any function of appropriate
type is an indexing :

lemma indexing-empty :
indexing ({}, f )
unfolding indexing-def
unfolding bij-betw-def by simp

We can obtain an equivalent notion of previous lemma writing the property
in the unfolded definition of indexing.

lemma indexing-empty-inv :
shows inj-on (iset-to-index ({}, f )) {..<card (iset-to-set ({}, f ))}
∧ iset-to-index ({}, f ) ‘ {..<card (iset-to-set ({}, f ))} = iset-to-set ({}, f ) by

simp
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Now we are proving a basic but useful lemma: if we have an indexing of
a set, then the image of a natural less than the cardinality of the set is an
element of the set.

lemma indexing-in-set :
assumes indexing (A,f )
and n < card A
shows f n ∈ A
using assms unfolding indexing-def bij-betw-def by auto

We present two auxiliary lemmas about indexings and their behaviours as
injective functions. The first one claims that if we have an indexing and two
naturals (less than the cardinality of the set) with the same image, then the
naturals are equal (which is a consequence of injectivity):.

lemma
indexing-impl-eq-preimage:
assumes i : indexing (A, f )
and x : x ∈ {..<card A} and y : y ∈ {..<card A}
and f : f x = f y
shows x = y
apply (rule inj-onD [of f {..<card A}])
using i
unfolding indexing-def bij-betw-def
by simp fact+

On the contrary, if we have the same assumptions than before but we con-
sider that the image of both naturals are different, then the numbers are
distinct.

lemma
indexing-impl-ndiff-image:
assumes i : indexing (A, f )
and x : x ∈ {..<card A} and y : y ∈ {..<card A}
and f : x 6= y
shows f x 6= f y

proof (rule ccontr , simp)
assume f x = f y
hence x = y

using i
unfolding indexing-def bij-betw-def inj-on-def
using x y by auto

thus False using f by contradiction
qed

The following lemma proves that for any finite set A, there exist a natural
number n and a function f such that f is an index function of A with
{.. < n} the collection of indexes. The prof is no constructive, is based on a
lemma in the Isabelle library proving that every finite set is a mapping of a
range of the naturals.
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lemma finite-imp-nat-seg-image-inj-on-Pi :
assumes f : finite A
shows (∃n::nat . ∃ f ∈{i . i < n} → A.
((f ‘ {i . i < n} = A) ∧ inj-on f {i . i < n}))

proof −
obtain f and n

where a1 : f ‘ {i . i < (n::nat)} = A ∧ inj-on f {i . i < n}
and a2 : f ∈ {i . i < n} → A
using finite-imp-nat-seg-image-inj-on [OF f ] by auto

thus ?thesis by auto
qed

The bijection is between the naturals up to card A and the set. Thanks to
that we are giving to the set an indexation, we are representing a set more
or less like a vector in C++: a structure with card(A) components (from
position 0 to (card(A)− 1)). Each component f(i) tallies with one element
of the set.

The following lemma extends the previous one, since we prove that n in the
previous lemma is actually card(A). The proof is carried out by induction
on the finite set A, and the indexing function is explicitly given (?f in the
proof below):

lemma finite-imp-nat-seg-image-inj-on-Pi-card :
assumes f : finite A
shows (∃ f ∈ {i . i < (card A)} → A. ((f ‘ {i . i < (card A)} = A)
∧ inj-on f {i . i < (card A)}))
using f proof (induct)
case empty
show ?case by auto

next
case (insert b B)
show ∃ f ∈{i ::nat . i <

card (insert b B)} → insert b B .
f ‘ {i ::nat . i < card (insert b B)} = insert b B ∧
inj-on f {i ::nat . i < card (insert b B)}

proof −
obtain g

where g1 : g ∈ {i . i < (card B)} → B
and g2 : g ‘ {i ::nat . i < card B} = B ∧ inj-on g
{i ::nat . i < card B}
using insert .hyps (3 ) by auto

let ?f = (λn::nat . if n ∈ {i . i < card B} then g n
else if n = card B then b else g n)

have f1 : ?f ∈{i ::nat . i < card (insert b B)}
→ insert b B

proof
fix x
assume x-bounded : x ∈ {i ::nat . i < card (insert b B)}
show (if x ∈ {i ::nat . i < card B} then g x else if x
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= card B then b else g x ) ∈ insert b B
proof (cases x ∈ {i ::nat . i < card B})

case True then show ?thesis using g1 unfolding Pi-def by simp
next

case False
have x = card B
proof −

have card (insert b B) = Suc (card B) — To prove this we need that b
won’t be in B and that the set be finite

using insert .hyps (2 )
using insert .hyps (1 ) by simp

thus ?thesis
using False
using x-bounded by simp

qed
thus ?thesis by simp

qed
qed
have f2 : ?f ‘ {i ::nat . i < card (insert b B)}

= (insert b B) ∧ inj-on ?f {i ::nat . i < card (insert b B)}
proof

show ?f ‘ {i ::nat . i < card (insert b B)} = insert b B
proof −

have ?f ‘ {i ::nat . i < card (insert b B)} = ?f ‘
({i ::nat . i < card B} ∪ {i . i = card B})
using insert .hyps (2 )
using insert .hyps (1 ) by auto

also have . . . = ?f ‘ {i ::nat . i < card B} ∪
?f ‘ {i . i = card B}
by (rule image-Un)

also have . . . = B ∪ ?f ‘ {i . i = card B}
using g2 by auto

also have . . . = B ∪ {b} by simp
finally show ?thesis by simp

qed
show inj-on ?f {i ::nat . i < card (insert b B)}
proof −

have inj-on ?f {i ::nat . i < card (insert b B)} = inj-on
?f (insert (card B) {i . i < (card B)})

proof −
have {i ::nat . i < card (insert b B)} = insert (card

B) {i . i < (card B)}
using insert .hyps (2 )
using insert .hyps (1 ) by auto

thus ?thesis by simp
qed
also have . . . = (inj-on ?f {i . i < (card B)} ∧ ?f

(card B) /∈ ?f ‘ ({i . i < (card B)} − {card B}))
by (rule inj-on-insert)
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also have . . . = (True ∧ ?f (card B) /∈ ?f ‘
({i . i < (card B)} − {card B}))
using g2 unfolding inj-on-def by auto

also have . . . = (True ∧ True)
using insert .hyps (2 ) using g2 by auto

also have . . . = True by fast
finally show ?thesis by fast

qed
qed
show ?thesis

using f1 f2 by auto
qed

qed

As a corollary, we prove that for each finite set there exists an indexing of
it. This is the main theorem of this section and it will be very useful in the
future to assign an order to a finite set (we will need it in future proofs).

corollary obtain-indexing :
assumes finite-A: finite A
shows ∃ f . indexing (A,f )

proof (unfold indexing-def ,unfold bij-betw-def ,auto)
from finite-A obtain f where surj : f ‘ {i . i < (card A)} = A and inj-on: inj-on

f {i . i < (card A)}
using finite-imp-nat-seg-image-inj-on-Pi-card [OF finite-A] by auto

show ∃ f . inj-on f {..<card A} ∧ f ‘ {..<card A} = A using surj and inj-on
and lessThan-def [of card A]

by auto
qed

In addition, if we have an indexing we will know that the set is finite. This
lemma will allow us to remove the premise finite A whenever we have
indexings. This is because Isabelle assigns 0 as the cardinality of an infinite
set. Suppose that A is infinite. If we have an indexing(A, f), hence f is a
bijection between the set of naturals less than the cardinality of A (0 due
to the implementation) and A. Then, A = f ‘{.. < card(A)} = f ‘{.. < 0} =
f ‘{} = {}. However, we have supposed that A was infinite and {} is not, so
we have a contradiction and A is always finite.

lemma indexing-finite[simp]:
assumes indexing-A: indexing (A,f )
shows finite A
by (metis bij-betw-finite finite-lessThan

fst-conv indexing-def iset-to-set-def indexing-A)

After introducing the notion of indexed set, we need to introduce two basic
operations over indexed sets: insert and remove. They will be generic with
respect to the position where an element can be inserted or removed. For
instance, given an indexed set {(a, 0), (b, 1), (c, 2)} if we are to insert an ele-
ment d, we will admit indexing {(d, 0), (a, 1), (b, 2), (c, 3)}, {(a, 0), (d, 1), (b, 2), (c, 3)}
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and so on. In other words, inserting an element in a sorted set preserves the
order of the elements, but maybe not their positions.

First we define the function which, for a given indexing A and an element
a gives all possible indexings for the set insert a (iset to set A) preserving
(iset to index A):

n is the position where ’a’ will be inserted. It shoul be a natural number
between 0 (first position) and card A (last position).

definition indexing-ext :: ( ′a iset) => ′a => (nat => nat => ′a)
where
indexing-ext A a =
(%n. %k . if k < n then (iset-to-index A) k
else if k = n then a
else (iset-to-index A) (k − 1 ))

Now we present a basic property (it will be useful to be applied in induction
proofs): If one indexing-ext generated from an indexation F and from one
element a /∈ index-to-set F is good (is an indexing), then the indexation of
F is also good (an indexing).

It is a long lemma (about 300 lines). The proof of injectivity must be
separated in several different cases, depending on the position where we
insert the element (after, before or exactly in the nth position):

lemma indexing-indexing-ext :
assumes ob:
indexing ((insert x (iset-to-set F )), (indexing-ext F x n))
and n1 : 0 ≤ n
and n2 : n ≤ card (iset-to-set F )
and x-notin-F : x /∈ (iset-to-set F )
shows indexing F

proof (unfold indexing-def bij-betw-def , intro conjI )
let ?h = iset-to-index F
let ?F = iset-to-set F
show inj-on-h:inj-on ?h {..<card ?F}
proof (unfold inj-on-def , rule ballI , rule ballI , rule impI )

fix xa y
assume xa: xa ∈ {..<card ?F}

and y : y ∈ {..<card ?F} and h: ?h xa = ?h y
show xa = y
proof (rule inj-onD

[of (indexing-ext F x n) {..<card (insert x ?F )}])
show xa ∈ {..<card (insert x ?F )}

using xa
by (metis card-infinite card-insert-le gr-implies-not0 le-neq-implies-less

lessThan-iff less-or-eq-imp-le order-le-less-trans)
show y ∈ {..<card (insert x ?F )}

using y
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by (metis card-infinite card-insert-le gr-implies-not0 le-neq-implies-less
lessThan-iff less-or-eq-imp-le order-le-less-trans)

show inj-on (indexing-ext F x n) {..<card (insert x ?F )}
using ob unfolding indexing-def bij-betw-def
by auto

next
show indexing-ext F x n xa = indexing-ext F x n y
proof (cases xa < n)

case True note xa-l-n = True
show ?thesis
proof (cases y < n)

case True
show ?thesis

unfolding indexing-ext-def
using xa-l-n True using h by simp

next
case False hence n-le-y : n ≤ y and xa-l-y : xa < y

using xa-l-n by simp-all
have ?h xa = (indexing-ext F x n) xa

unfolding indexing-ext-def
using xa-l-n by simp

moreover have ?h y = (indexing-ext F x n) (Suc y)
using n-le-y
unfolding indexing-ext-def by simp

ultimately
have eq : (indexing-ext F x n) xa = (indexing-ext F x n) (Suc y)

using h by simp
have xa = Suc y
proof (rule inj-onD [of indexing-ext F x n {..<card (insert x ?F )}])

show inj-on (indexing-ext F x n) {..<card (insert x ?F )}
using ob
unfolding indexing-def
unfolding bij-betw-def by auto

show indexing-ext F x n xa = indexing-ext F x n (Suc y)
using eq .

show xa ∈ {..<card (insert x ?F )}
using xa

by (metis card-infinite card-insert-disjoint lessThan-iff less-SucI less-zeroE
x-notin-F )

show Suc y ∈ {..<card (insert x ?F )}
using x-notin-F using y

by (metis Suc-mono card-infinite card-insert-disjoint lessThan-iff
less-zeroE )

qed
hence False using xa-l-y by simp
thus ?thesis by simp

qed
next

case False
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hence n-le-xa: n ≤ xa using False by simp
show ?thesis
proof (cases n = xa)

case True note n-eq-xa = True
show ?thesis
proof (cases y < n)

case True
have x-eq : ?h xa = indexing-ext F x n (Suc xa)

unfolding indexing-ext-def
using n-eq-xa by simp

moreover have y-eq : ?h y = indexing-ext F x n y
unfolding indexing-def
using True unfolding indexing-ext-def by simp

ultimately
have eq : (indexing-ext F x n) y = (indexing-ext F x n) (Suc xa)

using h by simp
have y = Suc xa
proof (rule inj-onD [of indexing-ext F x n {..<card (insert x ?F )}])

show inj-on (indexing-ext F x n) {..<card (insert x ?F )}
using ob
unfolding indexing-def
unfolding bij-betw-def by auto

show indexing-ext F x n y = indexing-ext F x n (Suc xa)
using eq .

show y ∈ {..<card (insert x ?F )}
using y

by (metis card-infinite card-insert-disjoint lessThan-iff less-SucI
less-zeroE x-notin-F )

show Suc xa ∈ {..<card (insert x ?F )}
using x-notin-F using xa

by (metis Suc-mono card-infinite card-insert-disjoint lessThan-iff
less-zeroE )

qed
hence False using n-eq-xa True by simp
thus ?thesis by simp

next
case False
hence n-le-y : n ≤ y by simp
show ?thesis
proof (cases n = y)

case True note n-eq-y = True
show ?thesis

unfolding indexing-ext-def
using n-eq-xa n-eq-y by simp

next
case False hence n-l-y : n < y using n-le-y by simp
have x-eq : ?h xa = indexing-ext F x n (Suc xa)

unfolding indexing-ext-def
using n-eq-xa by simp
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moreover have y-eq : ?h y = indexing-ext F x n (Suc y)
unfolding indexing-ext-def
using n-l-y by simp

ultimately
have eq : (indexing-ext F x n) (Suc y) = (indexing-ext F x n) (Suc xa)

using h by simp
have Suc y = Suc xa
proof (rule inj-onD [of indexing-ext F x n {..<card (insert x ?F )}])

show inj-on (indexing-ext F x n) {..<card (insert x ?F )}
using ob
unfolding indexing-def
unfolding bij-betw-def by auto

show indexing-ext F x n (Suc y) = indexing-ext F x n (Suc xa)
using eq .

show Suc y ∈ {..<card (insert x ?F )}
using y

by (metis Suc-mono card-infinite card-insert-disjoint lessThan-iff
less-zeroE x-notin-F )

show Suc xa ∈ {..<card (insert x ?F )}
using x-notin-F using xa

by (metis Suc-mono card-infinite card-insert-disjoint lessThan-iff
less-zeroE )

qed
hence False using n-eq-xa n-l-y by simp
thus ?thesis by simp

qed
qed

next
case False
hence n-l-xa: n < xa using n-le-xa by simp
show ?thesis
proof (cases y < n)

case True note y-l-n = True
have x-eq : ?h xa = indexing-ext F x n (Suc xa)

unfolding indexing-ext-def
using n-l-xa by simp

moreover have y-eq : ?h y = indexing-ext F x n y
unfolding indexing-ext-def
using True by simp

ultimately
have eq : (indexing-ext F x n) y = (indexing-ext F x n) (Suc xa)

using h by simp
have y = Suc xa
proof (rule inj-onD [of indexing-ext F x n {..<card (insert x ?F )}])

show inj-on (indexing-ext F x n) {..<card (insert x ?F )}
using ob
unfolding indexing-def
unfolding bij-betw-def by auto

show indexing-ext F x n y = indexing-ext F x n (Suc xa)
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using eq .
show y ∈ {..<card (insert x ?F )}

using y
by (metis card-infinite card-insert-disjoint lessThan-iff less-SucI

less-zeroE x-notin-F )
show Suc xa ∈ {..<card (insert x ?F )}

using x-notin-F using xa
by (metis Suc-mono card-infinite card-insert-disjoint lessThan-iff

less-zeroE )
qed
hence False using n-l-xa True by simp
thus ?thesis by simp

next
case False
hence n-le-y : n ≤ y by simp
show ?thesis
proof (cases n = y)

case True note n-eq-y = True
have ?h xa = (indexing-ext F x n) (Suc xa)

unfolding indexing-ext-def
using n-l-xa by simp

moreover have ?h y = (indexing-ext F x n) (Suc y)
using n-le-y
unfolding indexing-ext-def by simp

ultimately
have eq : (indexing-ext F x n) (Suc xa) = (indexing-ext F x n) (Suc y)

using h by simp
have Suc xa = Suc y
proof (rule inj-onD [of indexing-ext F x n {..<card (insert x ?F )}])

show inj-on (indexing-ext F x n) {..<card (insert x ?F )}
using ob
unfolding indexing-def
unfolding bij-betw-def by auto

show indexing-ext F x n (Suc xa) = indexing-ext F x n (Suc y)
using eq .

show Suc xa ∈ {..<card (insert x ?F )}
using xa

by (metis Suc-mono card-infinite card-insert-disjoint lessThan-iff
less-zeroE x-notin-F )

show Suc y ∈ {..<card (insert x ?F )}
using x-notin-F using y

by (metis Suc-mono card-infinite card-insert-disjoint lessThan-iff
less-zeroE )

qed
hence False using n-l-xa n-eq-y by simp
thus ?thesis by simp

next
case False
hence n-l-y : n < y using n-le-y by simp
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have ?h xa = (indexing-ext F x n) (Suc xa)
unfolding indexing-ext-def
using n-l-xa by simp

moreover have ?h y = (indexing-ext F x n) (Suc y)
using n-l-y
unfolding indexing-ext-def by simp

ultimately
have eq : (indexing-ext F x n) (Suc xa) = (indexing-ext F x n) (Suc y)

using h by simp
have Suc xa = Suc y
proof (rule inj-onD [of indexing-ext F x n {..<card (insert x ?F )}])

show inj-on (indexing-ext F x n) {..<card (insert x ?F )}
using ob
unfolding indexing-def
unfolding bij-betw-def by auto

show indexing-ext F x n (Suc xa) = indexing-ext F x n (Suc y)
using eq .

show Suc xa ∈ {..<card (insert x ?F )}
using xa

by (metis Suc-mono card-infinite card-insert-disjoint lessThan-iff
less-zeroE x-notin-F )

show Suc y ∈ {..<card (insert x ?F )}
using x-notin-F using y

by (metis Suc-mono card-infinite card-insert-disjoint lessThan-iff
less-zeroE )

qed
thus ?thesis by simp

qed
qed

qed
qed

qed
qed
show ?h ‘ {..<card ?F} = ?F
proof −

have finite-iset-to-set-F : finite (iset-to-set F )
by (metis bij-betw-finite finite-insert finite-lessThan fst-conv indexing-def

iset-to-set-def ob)
have surj-indexing : (indexing-ext F x n) ‘ {..<card (insert x ?F )}=(insert x

(?F ))
using ob unfolding indexing-def and bij-betw-def by auto

have inj-on-indexing : inj-on (indexing-ext F x n) {..<card (insert x ?F )}
using ob unfolding indexing-def bij-betw-def by auto

have descomposicion-conjunto: {..<card (insert x ?F )}={..<n}∪{n}∪{n<..<card
(insert x ?F )}

using n1 and n2 and x-notin-F and card-insert-if and finite-iset-to-set-F
unfolding iset-to-set-def by auto

have F-indexing-ext-desc:(?F )=(indexing-ext F x n) ‘ {..<n} ∪ (indexing-ext
F x n) ‘ {n<..<card (insert x ?F )}
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proof −
have descomposicion-conjuntos2 : {..<n} ∪ {n<..<card (insert x ?F )}={..<card

(insert x ?F )}−{n}
using n2 and descomposicion-conjunto by auto
have (indexing-ext F x n) ‘ {..<n} ∪ (indexing-ext F x n) ‘ {n<..<card

(insert x ?F )}
=(indexing-ext F x n) ‘ ({..<n} ∪ {n<..<card (insert x ?F )})
by auto

also have ...=indexing-ext F x n ‘ ({..<card (insert x ?F )}−{n})
using descomposicion-conjuntos2 by auto

also have ...=indexing-ext F x n ‘ {..<card (insert x ?F )}−indexing-ext F x
n ‘{n}

proof (rule inj-on-image-set-diff [OF inj-on-indexing ])
show {..<card (insert x (iset-to-set F ))} ⊆ {..<card (insert x (iset-to-set

F ))} ..
show {n} ⊆ {..<card (insert x (iset-to-set F ))} using descomposicion-conjunto

by auto
qed

also have ...= (insert x ?F ) − {x} using surj-indexing unfolding indexing-ext-def
by auto

also have ...=?F using x-notin-F by auto
finally show ?F= (indexing-ext F x n) ‘ {..<n} ∪ (indexing-ext F x n) ‘

{n<..<card (insert x ?F )} by auto
qed
have card-insert-suc-eq : card (insert x (?F ))−Suc 0 =card (?F )

using card-insert-if and x-notin-F and finite-iset-to-set-F by auto
have desc1 : (indexing-ext F x n) ‘ {..<n}=?h‘ {..<n} unfolding indexing-ext-def

by auto
have desc2 : (indexing-ext F x n) ‘ {n<..<card (insert x ?F )}= ?h ‘{i . n≤i ∧

i<card (insert x (?F ))−Suc 0}
unfolding indexing-ext-def image-def Pi-def apply auto

proof −
show

∧
xa. [[n < xa; xa < card (insert x (fst F ))]]

=⇒ ∃ xb≥n. xb < card (insert x (fst F )) − Suc 0 ∧ snd F (xa − Suc 0 ) =
snd F xb

proof −
fix xa
assume n-l-xa: n < xa and xa-l-card-xF : xa < card (insert x (fst F ))
show ∃ xb≥n. xb < card (insert x (fst F )) − Suc 0 ∧ snd F (xa − Suc 0 )

= snd F xb
proof −

let ?xb=xa−Suc 0
have xa>0 using n1 and n-l-xa by auto
hence 1 :?xb < card (insert x (fst F )) − Suc 0 using xa-l-card-xF by

auto
have 2 :snd F (xa − Suc 0 ) = snd F ?xb ..
have 3 : ?xb≥n using n-l-xa by auto
show ?thesis using 1 and 2 and 3 by auto

qed qed
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show
∧

xa. [[n ≤ xa; xa < card (insert x (fst F )) − Suc 0 ]]
=⇒ ∃ x∈{n<..<card (insert x (fst F ))}. snd F xa = snd F (x − Suc 0 )

proof −
fix xa
assume n-le-xa: n ≤ xa and xa-l-card-xF-suc: xa < card (insert x (fst F ))

− Suc 0
show ∃ x∈{n<..<card (insert x (fst F ))}. snd F xa = snd F (x − Suc 0 )
proof (rule bexI [of - xa+Suc 0 ])

show snd F xa = snd F (xa + Suc 0 − Suc 0 ) by auto
show xa + Suc 0 ∈ {n<..<card (insert x (fst F ))} using n-le-xa and

xa-l-card-xF-suc by auto
qed qed qed

have ?h ‘ {..<card ?F} = ?h‘{..<n}∪?h‘{i . n≤i ∧ i<card ?F} using n2 by
force

also have ...=(indexing-ext F x n) ‘ {..<n} ∪ (indexing-ext F x n) ‘ {n<..<card
(insert x ?F )}

using desc1 and desc2 and card-insert-suc-eq by auto
also have ...=?F using F-indexing-ext-desc by simp
finally show ?thesis .

qed
qed

From the above definitions we can define the operation insert for indexed
sets. We don’t assume that the new element (which is going to be inserted in
the set) is not in the set, this will appear as a premise in the corresponding
results.

Given any indexed set A, an element a and a position n, the operation
insert iset will introduce a in iset to set A in the position n (modifying
accordingly the original indexation iset to index A).

definition insert-iset :: ′a iset => ′a => nat => ′a iset
where
insert-iset A a n
= (insert a (iset-to-set A), indexing-ext A a n)

Next lemma claims that if we insert an element in an indexing, we are
increasing the cardinality of the set in a unit. Logically, we need to assume
that the element which is going to be inserted is not in the set.

lemma insert-iset-increase-card :
assumes indexing-A: indexing (A,f )
and a-notin-A: a /∈ A
shows card (iset-to-set (insert-iset (A,f ) a n) ) = card A + 1
by (metis a-notin-A card .insert fst-conv indexing-A indexing-finite insert-iset-def

iset-to-set-def nat-add-commute)

Given an indexing (A, f), an element a /∈ A and a position n ≤ card(A),
the result of inserting a in A in position n will be an indexing:

lemma insert-iset-indexing :
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assumes indexing-A: indexing (A,f )
and a-notin-A: a /∈ A
and n2 : n ≤ (card A)
shows indexing (insert-iset (A,f ) a n)

proof (unfold indexing-def ,unfold bij-betw-def , rule conjI )
have finite-A: finite A using indexing-finite[OF indexing-A] .
have card-insert : card (insert a A)=card A + 1

using a-notin-A card-insert-if [OF finite-A] by force
have descomposicion-conjunto:
{..< card (insert a A)}={..<n}∪{n}∪{n<..<card (insert a A)}
using n2
by (metis Suc-eq-plus1 Un-commute Un-empty-right Un-insert-right

atLeastLessThanSuc-atLeastAtMost
atLeastSucAtMost-greaterThanAtMost
atLeastSucLessThan-greaterThanLessThan card-insert
ivl-disj-un(9 ) lessThan-Suc lessThan-Suc-atMost)

show surj : iset-to-index (insert-iset (A, f ) a n) ‘
{..<card (iset-to-set (insert-iset (A, f ) a n))}
= iset-to-set (insert-iset (A, f ) a n)

proof (unfold insert-iset-def , simp)
have ∀ x∈{..<n}. indexing-ext (A, f ) a n x = f x unfolding indexing-ext-def

by auto
hence ind-1 : indexing-ext (A, f ) a n ‘ {..<n}= f ‘{..<n} unfolding image-def

by auto
have ∀ x∈{n<..< card (insert a A)}. indexing-ext (A, f ) a n x = f (x − Suc

0 ) unfolding indexing-ext-def by auto
hence ind-2 : indexing-ext (A, f ) a n ‘ {n<..< card (insert a A)} = f ‘ {i . n≤i

∧ i < card A} unfolding image-def
proof (auto)

show
∧

xa. [[∀ x∈{n<..<card (insert a A)}. indexing-ext (A, f ) a n x = f (x
− Suc 0 ); n < xa; xa < card (insert a A)]]

=⇒ ∃ x≥n. x < card A ∧ f (xa − Suc 0 ) = f x
proof −

fix xa
assume n-l-xa: n < xa and xa-l-cardAa: xa < card (insert a A)
show ∃ x≥n. x < card A ∧ f (xa − Suc 0 ) = f x
proof −

let ?x=xa − Suc 0
have 1 : ?x < card A using xa-l-cardAa using card-insert

by (metis One-nat-def Suc-diff-1 Suc-eq-plus1 gr0I gr-implies-not0
less-diff-conv less-irrefl-nat linorder-neqE-nat n-l-xa xt1 (9 ))

have 2 : f (xa − Suc 0 ) = f ?x by simp
have 3 : ?x≥n using n-l-xa by simp
show ?thesis using 1 and 2 and 3 by auto

qed
qed
show

∧
xa. [[∀ x∈{n<..<card (insert a A)}. indexing-ext (A, f ) a n x = f (x

− Suc 0 ); n ≤ xa; xa < card A]]
=⇒ ∃ x∈{n<..<card (insert a A)}. f xa = f (x − Suc 0 )
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proof −
fix xa
assume n-le-xa: n ≤ xa and xa-l-cardA: xa < card A
show ∃ x∈{n<..<card (insert a A)}. f xa = f (x − Suc 0 )
proof −

let ?x=xa + Suc 0
have 1 : f xa = f (?x − Suc 0 ) by simp

have 2 : ?x∈{n<..<card (insert a A)} using n-le-xa and xa-l-cardA
card-insert by auto

show ?thesis using 1 and 2 by fast
qed

qed
qed
have desc-indexing : indexing-ext (A, f ) a n ‘ {..<n} ∪ indexing-ext (A, f ) a n

‘ {n<..<card (insert a A)}
= f‘{..<card A}
using ind-1 and ind-2 and n2 by force

show indexing-ext (A, f ) a n ‘ {..<card (insert a A)} = insert a A
proof −

have indexing-ext (A, f ) a n ‘ {..<card (insert a A)}
= indexing-ext (A, f ) a n ‘ {..<n} ∪ indexing-ext (A, f ) a n ‘ {n}
∪ indexing-ext (A, f ) a n ‘ {n<..<card (insert a A)} using descomposicion-conjunto

by blast
also have ...= f‘{..<card A} ∪ {a} using desc-indexing unfolding indexing-ext-def

by simp
also have ...=insert a A using indexing-A unfolding indexing-def bij-betw-def

a-notin-A by force
finally show ?thesis .

qed
qed
show inj-on (iset-to-index (insert-iset (A, f ) a n))
{..<card (iset-to-set (insert-iset (A, f ) a n))}

proof (rule eq-card-imp-inj-on) — We need to have proved previously the injec-
tivity

show finite {..<card (iset-to-set (insert-iset (A, f ) a n))}
unfolding insert-iset-def by simp

show card (iset-to-index (insert-iset (A, f ) a n) ‘ {..<card (iset-to-set (insert-iset
(A, f ) a n))})

= card {..<card (iset-to-set (insert-iset (A, f ) a n))}
using surj by simp

qed
qed

We introduce the definition of a generic function remove-iset which removes
the nth element of an indexed set. Logically, the position of the element
which is going to be removed must be less than the cardinality of the set.
The indexing must be also modified in such a way that every element above
n will decrease its position in one unit. For instance, if we have the in-
dexed set {(a, 0), (b, 1), (c, 2)} and we remove the position 0, we will obtain
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{(b, 0), (c, 1)}.
definition remove-iset :: ′a iset => nat => ′a iset

where remove-iset A n = (fst A − {(snd A) n},
(λk . if k < n then (snd A) k else (snd A) (Suc k)))

Here an equivalent definition to remove-iset ?A ?n = (fst ?A − {snd ?A
?n}, λk . if k < ?n then snd ?A k else snd ?A (Suc k)):

lemma remove-iset-def ′:
remove-iset (A, f ) n = (A − {f n}, (λk . if k < n then f k else f (Suc k)))
unfolding remove-iset-def by (auto simp add : fun-eq-iff )

The following lemma proves that, for any indexing, the result of removing
an element in a valid position will be again an indexing. This is a long
lemma (about 150 lines).

lemma
indexing-remove-iset :
assumes i : indexing (B , h)
and n: n < card B
shows indexing (remove-iset (B , h) n)

proof (unfold indexing-def bij-betw-def , intro conjI , simp)
have fin-B : finite B using indexing-finite[OF i ] .
have h-n-in-B : h n ∈ B

using n i unfolding indexing-def bij-betw-def by auto
have eq-i :

∧
x y . [[x ∈ {..<card B}; y ∈ {..<card B}; h x = h y ]]

=⇒ x = y
using i unfolding indexing-def bij-betw-def inj-on-def
by auto

show inj-on (snd (remove-iset (B , h) n))
{..<card (fst (remove-iset (B , h) n))}
unfolding remove-iset-def
unfolding inj-on-def

proof (rule ballI , rule ballI , rule impI , unfold fst-conv snd-conv)
fix x y
assume x : x ∈ {..<card (B − {h n})}

and y : y ∈ {..<card (B − {h n})}
and eq : (if x < n then h x else h (Suc x )) = (if y < n then h y else h (Suc y))

show x = y
proof (cases x < n)

case True note x-l-n = True
show x = y
proof (cases y < n)

case True
show x = y
proof (rule eq-i)

show x ∈ {..<card B} using x
by (metis lessThan-iff less-or-eq-imp-le n order-le-less-trans x-l-n)

show y ∈ {..<card B} using y
by (metis lessThan-iff less-or-eq-imp-le n order-le-less-trans True)
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show h x = h y using eq x-l-n True by simp
qed

next
case False
have x 6= (Suc y) using x-l-n False by auto
moreover have x = (Suc y)
proof (rule eq-i)

show x ∈ {..<card B} using x
by (metis lessThan-iff less-or-eq-imp-le n order-le-less-trans x-l-n)

show (Suc y) ∈ {..<card B} using y using h-n-in-B
by (metis Suc-eq-plus1 〈x ∈ {..<card B}〉 card-Diff-singleton card-infinite

emptyE lessThan-0 lessThan-iff less-diff-conv)
show h x = h (Suc y) using eq x-l-n False by simp

qed
ultimately have False by contradiction
thus ?thesis by fast

qed
next

case False hence n-le-x : n ≤ x by arith
show x = y
proof (cases y < n)

case True
have x-ne-y : (Suc x ) 6= y using n-le-x True by auto
moreover have (Suc x ) = y
proof (rule eq-i)

show y ∈ {..<card B} using y
by (metis lessThan-iff less-or-eq-imp-le n order-le-less-trans True)

show (Suc x ) ∈ {..<card B} using x using h-n-in-B
by (metis Suc-eq-plus1 〈y ∈ {..<card B}〉 card-Diff-singleton card-infinite

emptyE lessThan-0 lessThan-iff less-diff-conv)
show h (Suc x ) = h y using eq True n-le-x by simp

qed
ultimately have False by contradiction
thus x = y by fast

next
case False
have Suc x = Suc y
proof (rule eq-i)

show Suc x ∈ {..<card B}
using x using card-Diff1-less [OF fin-B h-n-in-B ] using h-n-in-B

by (metis Suc-eq-plus1 card-Diff-singleton fin-B lessThan-iff less-diff-conv)
show Suc y ∈ {..<card B}

using y using card-Diff1-less [OF fin-B h-n-in-B ] using h-n-in-B
by (metis Suc-eq-plus1 card-Diff-singleton fin-B lessThan-iff less-diff-conv)
show h (Suc x ) = h (Suc y)

using eq using False using n-le-x by simp
qed

51



thus x = y by simp
qed

qed
qed
have h-im: h ‘ {..<card B} = B using i unfolding indexing-def bij-betw-def

by auto
show iset-to-index (remove-iset (B , h) n) ‘
{..<card (iset-to-set (remove-iset (B , h) n))}
= iset-to-set (remove-iset (B , h) n)

proof (unfold remove-iset-def iset-to-index-def iset-to-set-def fst-conv snd-conv)
show (λk . if k < n then h k else h (Suc k)) ‘ {..<card (B − {h n})} = B −

{h n}
(is ?h ′ ‘ {..<card (B − {h n})} = B − {h n})

proof −
have B − {h n} = h ‘ ({..<card B} − {n})

using bij-betw-image-minus [symmetric, of h {..<card B} B n]
using n using i unfolding indexing-def bij-betw-def by simp

also have ... = h ‘ ({..<n} ∪ {n<..<card B}) using n by auto
also have ... = h ‘ {..<n} ∪ h ‘ {n<..<card B} unfolding image-Un ..
also have ... = ?h ′ ‘ {..<n} ∪ h ‘ {n<..<card B} by auto
also have ... = ?h ′ ‘ {..<n} ∪ ?h ′ ‘ {n..<card (B − {h n})}
proof −

have ?h ′ ‘ {n..<card (B − {h n})} = h ‘ {n<..<card B}
unfolding image-def using fin-B h-n-in-B

proof (auto, force)
fix xa
assume n: n < xa and xa: xa < card B
hence xa-n-0 : 0 < xa by simp
show ∃ x∈{n..<card B − Suc 0}. h xa = h (Suc x )

apply (rule bexI [of - xa − 1 ])
apply (metis Suc-diff-1 xa-n-0 )
using n xa xa-n-0 by force

qed
thus ?thesis by fast

qed
also have ... = ?h ′ ‘ ({..<n} ∪ {n..<card (B − {h n})})

by (rule image-Un [symmetric, of ?h ′ {..<n} {n..<card (B − {h n})}])
also have ... = ?h ′ ‘ {..<card (B − {h n})} using n using fin-B h-n-in-B

by auto
finally show ?thesis by simp

qed
qed

qed

The result of inserting an element in an indexed set in position n and then
removing the element in position n is the original indexed set.

lemma
remove-iset-insert-iset-id :
assumes x-notin-A: x /∈ A
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and n-l-c: n < card A
shows remove-iset (insert-iset (A, f ) x n) n = (A, f )
unfolding insert-iset-def
using x-notin-A
unfolding indexing-ext-def
unfolding remove-iset-def by (auto simp add : fun-eq-iff n-l-c)

Next lemma is a good example of proof by acumulation of facts, and it is
ideal to structure it using moreover and finish it with ultimately. However,
we can use [[A; B ; C ; D ]] =⇒ A ∧ B ∧ C ∧ D to abridge it:

The lemma claims that given an indexing (X, f), there exists an indexing
(insert x X, h) which places x in the last position (and keeps the elements
of X in their original places).

lemma indexation-x-union-X :
assumes finite: finite X and x-not-in-X : x /∈ X
and f-buena:f ∈ {i . i < (card X )} → X and ordenFX : f ‘ {i . i < (card X )} =

X
shows ∃ h. (h ∈ {i . i < (card (insert x X ))} → (insert x X )
∧ h‘{i . i < (card (insert x X ))} = (insert x X )
∧ h (card X ) = x ∧ (∀ i . i<card(X ) −→ h i = f i))

proof (rule exI [of - (λi ::nat . if i<(card X ) then f (i) else x )], rule conjI4 )
let ?h = (λi ::nat . if i<(card X ) then f (i) else x )
show ?h ∈ {i . i < card (insert x X )} → insert x X

using f-buena unfolding Pi-def by auto
show ?h ‘ {i . i < card (insert x X )} = insert x X

using ordenFX
unfolding card-insert-disjoint [OF finite x-not-in-X ]
unfolding less-than-Suc-union
unfolding image-Un by auto

show (if card X < card X then f (card X ) else x ) = x by simp
show (∀ i<card X . (if i < card X then f i else x ) = f i) by simp

qed

This is an indispensable lemma to prove the theorem that claims that an
independent set can be completed to a basis. Given any pair of (disjoint)
sets A and B, there exists an indexing function h which places the elements
of A in the first card(A) positions and then the elements of B. In the proof,
the indexing function is explicitly provided:

lemma indexing-union:
assumes disjuntos: A∩B={}
and finite-A: finite A
and A-not-empty : A 6={} — If not the result is trivial.
and finite-B : finite B
shows ∃ h. indexing (A∪B ,h) ∧ h‘ {..<card(A)}= A
∧ h‘ ({..<(card(A)+card(B))}−{..<card(A)})=B

proof −
have ∃ f . indexing (A,f ) using obtain-indexing [OF finite-A] .
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from this obtain f where indexing-A-f : indexing (A,f ) by auto
have ∃ g . indexing (B ,g) using obtain-indexing [OF finite-B ] .
from this obtain g where indexing-B-g : indexing (B ,g) by auto
show ?thesis
proof (rule exI [of - (λx . if x∈ {..<card(A)}

then f (x ) else g(x−card(A)))])
let ?h=(λx . if x∈ {..<card(A)} then f (x ) else g(x−card(A)))
have ∀ x∈{..<card(A)}. f (x )= ?h (x ) by simp
hence surj-h-A: ?h‘ {..<card(A)}=A

using indexing-A-f unfolding indexing-def bij-betw-def by auto
have ∀ x∈{..<(card(A)+card(B))}−{..<card(A)}. g(x−card(A))=?h(x ) by

auto
hence ?h‘ ({..<(card(A)+card(B))}−{..<card(A)}) = g‘{..<card(B)}

unfolding image-def
proof (auto)

fix xa
assume xa-le-cardB : xa < card B
show ∃ x∈{..<card A + card B} − {..<card A}. g xa = g (x − card A)
proof (rule bexI [of - xa+card(A)])

have cardA-not-zero: card A 6= 0 using A-not-empty finite-A by auto
thus g xa = g (xa + card A − card A) by auto
show xa + card A ∈ {..<card A + card B} − {..<card A}

by (metis DiffI diff-add-inverse lessThan-iff less-diff-conv not-add-less2
xa-le-cardB)

qed
qed
hence surj-h-B : ?h‘ ({..<(card(A)+card(B))}−{..<card(A)})=B

using indexing-B-g unfolding indexing-def and bij-betw-def by auto
have indexing : indexing (A∪B ,?h)
proof (unfold indexing-def , simp,unfold bij-betw-def )

have 1 : ?h ‘ {..<card (A ∪ B)} = A ∪ B
proof −

have card (A∪B)=card(A)+card(B) using disjuntos and finite-A finite-B
card-Un-disjoint by auto

hence {..<card (A ∪ B)}={..<card(A)+card(B)} by simp
also have ...={..<card(A)} ∪ ({..<(card(A)+card(B))}−{..<card(A)}) by

auto
finally have ?h‘ {..<card (A ∪ B)} = ?h ‘ {..<card(A)} ∪ ?h ‘ ({..<(card(A)+card(B))}−{..<card(A)})

by force
thus ?thesis using surj-h-B and surj-h-A by auto

qed
have 2 : inj-on ?h {..<card (A ∪ B)}
proof (rule eq-card-imp-inj-on)

show finite {..<card (A ∪ B)} using finite-A and finite-B by auto
show card (?h ‘ {..<card (A ∪ B)}) = card {..<card (A ∪ B)}

using 1 and card-lessThan by auto
qed
show inj-on (λx . if x < card A then f x else g (x − card A))
{..<card (A ∪ B)} ∧
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(λx . if x < card A then f x else g (x − card A)) ‘ {..<card (A ∪ B)} =
A ∪ B
using 1 and 2 by auto

qed
show indexing(A ∪ B ,?h) ∧

?h ‘{..<card A} = A ∧
?h ‘ ({..<card A + card B} − {..<card A}) =
B using indexing surj-h-A surj-h-B by auto

qed
qed

Now we are going to define a new function which returns the position where
an element a is in a set A. When we use this function it is very important
to assume that a ∈ A, since functions are total in HOL, and without the
premise a ∈ A we would obtain an undefined value of the righ type. An
alternative definition could be made writing LEAST instead of THE and
then we could remove n < card A. Note that both THE and LEAST are
based on the Hilbert’s ε operator, which, in general, places us out of a
constructive setting.

This function will be very important for the proof that each basis of a vector
space has the same cardinality.

definition obtain-position :: ′c⇒ ′c iset ⇒ nat
where obtain-position a A = (THE n. (snd A) n = a
∧ n < card (fst A))

Under the right premises, this natural number exists and is smaller than
card(A) which ensures that obtain-position is well-defined.

lemma exists-n-obtain-position:
assumes a-in-A: a ∈ A
and indexing-A: indexing (A,f )
shows ∃n::nat . f n = a

proof −
have A6={} using a-in-A by blast
hence cardA-g-0 : card A > 0 using card-gt-0-iff and indexing-finite[OF indexing-A]

by blast
thus ?thesis using a-in-A indexing-A unfolding indexing-def bij-betw-def by

force
qed

We proof that exists someone that also verifies n < card A

lemma exists-n-and-less-card-obtain-position:
assumes a-in-A: a ∈ A
and indexing-A: indexing (A,f )
shows ∃n::nat . f n = a ∧ n < (card A)

proof −
have A6={} using a-in-A by blast
hence cardA-g-0 : card A > 0
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using card-gt-0-iff and indexing-finite[OF indexing-A] by blast
thus ?thesis using a-in-A indexing-A unfolding indexing-def bij-betw-def by

force
qed

Thanks to the previous lemma and the injectivity of indexing functions, we
can prove the existence and the unicity of obtain-position:

lemma exists-n-and-is-unique-obtain-position:
assumes a-in-A: a∈ A
and indexing-A: indexing (A,f )
shows ∃ !n::nat . f n = a ∧ n < (card A)

proof (rule ex-ex1I )
show ∃n. f n = a ∧ n < card A

using exists-n-and-less-card-obtain-position
[OF a-in-A indexing-A] .

show
∧

n y . [[f n = a ∧ n < card A; f y = a ∧ y < card A]]
=⇒ n = y

proof −
fix n and y
assume hip-n: f n = a ∧ n < card A

and hip-y : f y = a ∧ y < card A
show n=y
proof −

have inj-on: inj-on f {..<card A}
using indexing-A unfolding indexing-def bij-betw-def by simp

show ?thesis using inj-on-eq-iff [OF inj-on - - ] using hip-n hip-y by auto
qed

qed
qed

Now that we have proved that obtain-position is well defined, we prove that
its result satisfies the required properties. The number which is returned by
obtain-position is less than the cardinal of the set:

lemma obtain-position-less-card :
assumes a-in-A: a ∈ A
and indexing-A: indexing (A,f )
shows (obtain-position a (A,f )) < card A

proof (unfold obtain-position-def )
let ?P = (λn. f n = a ∧ n < card A)
have exK : (∃ !k . ?P k)

using exists-n-and-is-unique-obtain-position[OF a-in-A indexing-A] .
have ex-THE : ?P (THE k . ?P k)

using theI ′ [OF exK ] .
def n≡(THE k . ?P k)
have n < card A unfolding n-def

by (metis ex-THE )
thus (THE n. snd (A, f ) n = a ∧ n < card (fst (A, f ))) < card A

by (metis ex-THE fst-conv n-def snd-conv)
qed
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The function really returns the position of the element.

lemma obtain-position-element :
assumes a-in-A: a ∈ A
and indexing-A: indexing (A,f )
shows f (obtain-position a (A,f )) = a

proof (unfold obtain-position-def )
let ?P = (λn. f n = a ∧ n < card A)
have exK : (∃ !k . ?P k)

using exists-n-and-is-unique-obtain-position[OF a-in-A indexing-A] .
have ex-THE : ?P (THE k . ?P k)

using theI ′ [OF exK ] .
def n≡(THE k . ?P k)
have f n = a unfolding n-def

by (metis ex-THE )
thus f (THE n. snd (A, f ) n = a ∧ n < card (fst (A, f ))) = a

by (metis ex-THE fst-conv n-def snd-conv)
qed

An element will not be in the set returned by the function remove-iset called
with the position of that element.

lemma a-notin-remove-iset :
assumes a-in-A: a ∈ A
and indexing-A: indexing (A,f )
shows a /∈ fst (remove-iset (A,f ) (obtain-position a (A,f )))
unfolding remove-iset-def
using obtain-position-element [OF a-in-A indexing-A] by simp

Finally some important theorems to prove future properties of indexed sets.
Isabelle has an induction rule to prove properties of finite sets. Unfortu-
nately, this rule is of little help for proving properties of indexed sets, since
the set and the indexing function must behave accordingly in the induction
rule, and their inherent properties. Consequently, we have to introduce a
special induction rule for indexed sets.

First an auxiliary lemma:

lemma exists-indexing-ext :
assumes i : indexing (insert x A, f )
shows ∃ h. ∃n ∈ {..card A}. (f = (indexing-ext (A, h) x ) n)

proof −
have x-in-insert : x ∈ (insert x A) by simp
from i obtain n where n-less-card-insert : n < card (insert x A)

and fn-x : f n = x using obtain-position-less-card [OF x-in-insert i ]
and obtain-position-element [OF x-in-insert i ]
by blast

show ?thesis
proof (rule exI , rule bexI [of - n])

have finite (insert x A) using indexing-finite[OF i ] .
thus n ∈ {..card A} using n-less-card-insert and x-in-insert
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by (metis atMost-iff card-insert-disjoint
finite-insert insert-absorb less-or-eq-imp-le linorder-not-le not-less-eq-eq)

def h≡(λx . if x < n then f x else f (x + 1 ))
show f = indexing-ext (A, h) x n

unfolding indexing-ext-def unfolding h-def fun-eq-iff
using n-less-card-insert fn-x
by fastsimp

qed
qed

The first one induction rule:

theorem
indexed-set-induct :
assumes indexing (A, f )
and finite A
and !!f . indexing ({}, f ) ==> P {} f
and step: !!a A f n. [|a /∈ A; finite A; indexing (A, f );

0 ≤ n; n ≤ card A|] ==> P (insert a A) ((indexing-ext (A, f ) a) n)
shows P A f
using 〈finite A〉 and 〈indexing (A, f )〉

proof (induct arbitrary : f )
case empty
show ?case using empty (1 ) by fact

next
case (insert x F h ′)
show ?case
proof −

obtain h n
where h ′-def : h ′ = (indexing-ext (F , h) x ) n
and n1 : 0 ≤ n
and n2 : n ≤ card F
using exists-indexing-ext [OF insert .prems] by blast

show ?case
unfolding h ′-def

proof (rule step)
show x /∈ F by fact
show finite F by fact
show indexing (F , h)

apply (rule indexing-indexing-ext [of x - n])
using insert .prems unfolding h ′-def apply simp
unfolding iset-to-set-def fst-conv by fact+

show 0 ≤ n using n1 .
show n ≤ card F using n2 .

qed
qed

qed

This induction rule is similar to the proper of finite sets, [[finite F ; P {};∧
x F . [[finite F ; x /∈ F ; P F ]] =⇒ P (insert x F )]] =⇒ P F, but taking into
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account the indexing. Thus, if a property P holds for the empty set and one
of its indexing functions, and when it holds for a given set A and an indexing
function f , we now how to prove it for the pair insert a A (with a /∈ A)
and any of the extensions of f , then P holds for every indexing (A, f). The
proof of the property is completed by induction over the set A, but keeping
f free for later instantiation with the right indexing functions.

lemma
indexed-set-induct2 [case-names indexing finite empty insert ]:
assumes indexing (A, f )
and finite A
and !!f . indexing ({}, f ) ==> P {} f
and step: !!a A f n. [|a /∈ A;

[| indexing (A, f ) |] ==> P A f ;
finite (insert a A);
indexing ((insert a A), (indexing-ext (A, f ) a n));
0 ≤ n; n ≤ card A |] ==>
P (insert a A) (indexing-ext (A, f ) a n)

shows P A f
using 〈finite A〉 and 〈indexing (A, f )〉

proof (induct arbitrary : f )
case empty
show ?case using empty (1 ) by fact

next
case (insert x F h ′)
show ?case
proof −

obtain n h
where h ′-def : h ′ = (indexing-ext (F , h) x ) n
and n1 : 0 ≤ n
and n2 : n ≤ card F using exists-indexing-ext [OF insert .prems] by blast

show ?case
unfolding h ′-def

proof (rule step)
show x /∈ F by fact
have i-F-h: indexing (F , h)

apply (rule indexing-indexing-ext [of x (F , h) n])
using insert .prems unfolding h ′-def
using n1 n2 insert .hyps (2 ) by simp-all

show P F h by (rule insert .hyps (3 )) (rule i-F-h)
show 0 ≤ n using n1 .
show n ≤ card F using n2 .
show finite (insert x F ) using insert .hyps (1 ) by simp
show indexing (insert x F , indexing-ext (F , h) x n)

using insert .prems unfolding h ′-def .
qed

qed
qed
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end

theory Linear-combinations
imports Linear-dependence Indexed-Set
begin

8 Linear combinations

context vector-space
begin

To define the notion of linear dependence and independence we already in-
troduced the definition of linear combination. Nevertheless, here we present
some properties of linear combinations. We could have used them to simplify
the proofs of some theorems in the previous section, but we have decided to
keep the order of the sections in Halmos.

A linear-combination is closed, when considering a set X ⊆ carrier V and
a proper coefficients function f :

lemma linear-combination-closed :
assumes good-set : good-set X
and f : f ∈ coefficients-function (carrier V )
shows linear-combination f X ∈ carrier V

proof (unfold linear-combination-def , rule finsum-closed)
show finite X using good-set unfolding good-set-def by auto
show (λy . f y · y) ∈ X → carrier V
proof (unfold Pi-def , auto)

fix y
assume y-in-X : y ∈ X
hence y-in-V : y ∈ carrier V using good-set unfolding good-set-def by fast
show f y · y ∈ carrier V using fx-x-in-V [OF y-in-V f ] .

qed
qed

A linear-combination over the empty set is equal to 0V

lemma linear-combination-of-zero:
shows linear-combination f {} = x ←→ x = 0V

proof
assume l-combination-x : linear-combination f {} = x
have l-combination-zero: linear-combination f {}=0V

unfolding linear-combination-def
using finsum-empty by auto

show x = 0V
using l-combination-x and l-combination-zero by auto

next
assume x-zero: x = 0V
have l-combination-x : linear-combination f {} = 0V

unfolding linear-combination-def
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using finsum-empty by auto
show linear-combination f {}=x

using l-combination-x and x-zero by simp
qed

From previous lemma we can obtain a corollary which will be useful as a
simplification rule.

corollary linear-combination-empty-set [simp]:
shows linear-combination f {} = 0V
using linear-combination-of-zero by simp

The computation of the linear combination of a unipuntual set is direct:

lemma linear-combination-singleton:
assumes cf-f : f ∈ coefficients-function (carrier V )
and x-in-V : x ∈ carrier V
shows linear-combination f {x} = f x · x

proof −
have linear-combination f (insert x {})

= (f x ) · x ⊕V linear-combination f {}
proof (unfold linear-combination-def , rule finsum-insert)

show finite {} by simp
show x /∈ {} by simp
show (λy . f y · y) ∈ {} → carrier V by simp
show f x · x ∈ carrier V
proof (rule mult-closed)

show x ∈ carrier V using x-in-V .
show f x ∈ carrier K using cf-f

unfolding coefficients-function-def using x-in-V by auto
qed

qed
also have . . . = (f x ) · x ⊕V 0V

using linear-combination-empty-set by auto
also have . . . = (f x ) · x
proof (rule V .r-zero)

show f x · x ∈ carrier V
proof (rule mult-closed)

show x ∈ carrier V using x-in-V .
show f x ∈ carrier K

using cf-f
unfolding coefficients-function-def using x-in-V by auto

qed
qed
finally show ?thesis by auto

qed

A linear-combination of insert x X is equal to f x · x ⊕V linear-combination
f X

lemma linear-combination-insert :

61



assumes good-set-X : good-set X
and x-in-V : x ∈ carrier V
and x-not-in-X : x /∈ X
and cf-f : f ∈ coefficients-function (carrier V )
shows linear-combination f (insert x X )
= f x · x ⊕V linear-combination f X

proof (unfold linear-combination-def , rule finsum-insert)
show finite X using good-set-X

unfolding good-set-def by simp
show x /∈ X using x-not-in-X .
show (λy . f y · y) ∈ X → carrier V
proof (unfold Pi-def ,auto)

show
∧

x . x ∈ X =⇒ f x · x ∈ carrier V
proof (rule fx-x-in-V )

fix y
assume y-in-X : y ∈ X
show y ∈ carrier V

using good-set-X
unfolding good-set-def using y-in-X by auto

show f ∈ coefficients-function (carrier V ) using cf-f .
qed

qed
show f x · x ∈ carrier V using fx-x-in-V [OF x-in-V cf-f ] .

qed

If each term of the linear combination is zero, then the sum is zero.

lemma linear-combination-zero:
assumes good-set-X : good-set X
and cf-f : f ∈ coefficients-function (carrier V )
and all-zero:

∧
x . x ∈ X =⇒ f (x ) · x = 0V

shows linear-combination f X = 0V
proof −

have linear-combination f X = (
⊕

Vy∈X . f y · y)
unfolding linear-combination-def ..

also have ...=(
⊕

Vy∈X . 0V)
proof (rule finsum-cong ′,auto)

fix x
assume x-in-X : x∈X
show f x · x = 0V

using all-zero[OF x-in-X ] .
qed
also have ...=0V using finsum-zero good-set-X

unfolding good-set-def by blast
finally show ?thesis .

qed

This is an auxiliary lemma which we will use later to prove that a · linear-combination
f X = linear-combination (λi . a ⊗ f i) X. We prove it doing induction over
the finite set X. Firstly, we have to prove the property in case that the set
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is empty. After that, we suppose that the result is true for a set X and then
we have to prove it for a set insert x X where x /∈ X.

lemma finsum-aux :
[[finite X ; X ⊆ carrier V ; a∈ carrier K ; f ∈ X→ carrier K ]]
=⇒ a · (

⊕
Vy∈X . f y · y)=(

⊕
Vy∈X . a· (f y · y))

proof (induct set : finite)
case empty then show ?case

using scalar-mult-zeroV-is-zeroV by auto
next

case (insert x X ) then show ?case
proof −

have sum-closed : (
⊕

Vy∈X . f y · y) ∈ carrier V
proof (rule finsum-closed)

show finite X using insert .hyps (1 ) .
show (λy . f y · y) ∈ X → carrier V

using insert .prems (1 ) and insert .prems (3 ) and mult-closed
by auto

qed
have fx-x-in-V : f x · x∈ carrier V

using insert .prems (1 ) and insert .prems (3 ) and mult-closed
by auto

have (
⊕

Vy∈insert x X . f y · y)=f (x )·x ⊕V(
⊕

Vy∈X . f y · y)
proof (rule finsum-insert)

show finite X using insert .hyps (1 ) .
show x /∈ X using insert .hyps (2 ) .
show f x · x ∈ carrier V using fx-x-in-V .
show (λy . f y · y) ∈ X → carrier V

using insert .prems (1 ) and insert .prems (3 ) and mult-closed
by auto

qed
hence a·(

⊕
Vy∈insert x X . f y · y)=a·f (x )·x ⊕V a·(

⊕
Vy∈X . f y · y)

using add-mult-distrib1 [OF fx-x-in-V
sum-closed insert .prems(2 )] by auto

also have . . .=a·f (x )·x ⊕V (
⊕

Vy∈X . a· f y · y)
proof −

have X-subset-V : X ⊆ carrier V using insert .prems(1 ) by auto
have f1 : f ∈ X→carrier K using insert .prems(3 ) by auto
show ?thesis using insert .hyps(3 )[OF X-subset-V insert .prems(2 ) f1 ] by

auto
qed
also have . . .=(

⊕
Vy∈insert x X . a · f y · y)

proof (rule finsum-insert [symmetric])
show finite X using insert .hyps(1 ) .
show x /∈ X using insert .hyps(2 ) .
show (λy . a · f y · y) ∈ X → carrier V
proof (unfold Pi-def , auto)

fix y
assume y-in-X : y∈ X
show a· f y · y ∈ carrier V
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proof (rule mult-closed)
show f (y)·y ∈ carrier V using y-in-X and insert .prems(1 ) and in-

sert .prems(3 ) and mult-closed by auto
show a∈ carrier K using insert .prems(2 ) .

qed
qed
show a · f x · x ∈ carrier V
proof (rule mult-closed)
show f x · x ∈ carrier V using insert .prems (1 ) and insert .prems(3 ) and

mult-closed by auto
show a ∈ carrier K using insert .prems(2 ) .

qed
qed
finally show ?thesis by auto

qed
qed

To multiply a linear combination by a scalar a is the same that multiplying
each term of the linear combination by a.

lemma linear-combination-rdistrib:
[[good-set X ; f ∈ coefficients-function (carrier V );
a ∈ carrier K ]] =⇒ a · (linear-combination f X )
= linear-combination (%i . a ⊗ f (i)) X

proof −
assume good-set : good-set X

and coefficients-function-f :
f ∈ coefficients-function (carrier V )
and a-in-K :a ∈ carrier K

have X-subset-V : X⊆ carrier V
using good-set unfolding good-set-def by auto

have finite-X : finite X
using good-set unfolding good-set-def by auto

have f : f ∈ X→carrier K
proof (unfold Pi-def , auto)

fix x
assume x-in-X : x ∈ X
show f x∈ carrier K

using x-in-X and X-subset-V and coefficients-function-f
unfolding coefficients-function-def by auto

qed
show a · linear-combination f X

= linear-combination (λi . a ⊗ f i) X
proof (unfold linear-combination-def )

have (
⊕

Vy∈X . (a ⊗ f y) · y)=(
⊕

Vy∈X . a · f y · y)
proof (rule finsum-cong ′)

show X =X ..
show (λy . a · f y · y) ∈ X → carrier V
proof (unfold Pi-def , auto)

fix y

64



assume y-in-X : y∈ X
show a · f y · y ∈ carrier V
proof (rule mult-closed)

show f y · y ∈ carrier V using y-in-X and X-subset-V and f and
mult-closed by auto

show a∈ carrier K using a-in-K .
qed

qed
show

∧
i . i ∈ X =⇒ (a ⊗ f i) · i = a · f i · i

proof (rule impE , auto)
fix i
assume i-in-X : i∈ X
show (a ⊗ f i) · i = a · f i · i
proof (rule mult-assoc)

show i∈ carrier V using i-in-X and X-subset-V by auto
show a∈ carrier K using a-in-K .
show f i ∈ carrier K using i-in-X and f by auto

qed
qed

qed
also have . . .=a·(

⊕
Vy∈X . f y · y)

using finsum-aux [OF finite-X X-subset-V a-in-K f , symmetric] .
finally show a · (

⊕
Vy∈X . f y · y) = (

⊕
Vy∈X . (a ⊗ f y) · y)

by auto
qed

qed

Now some useful lemmas which will be helpful to prove other ones.

lemma coefficients-function-g-f-null :
assumes cf-f : f ∈ coefficients-function (carrier V )
shows (λx . if x ∈ Y then f (x ) else 0K)
∈ coefficients-function (carrier V ) using cf-f
unfolding coefficients-function-def by auto

This lemma is a generalization of the idea through we have proved linear-dependent-subset-implies-linear-dependent-set :
[[Y ⊆ X ; good-set X ; linear-dependent Y ]] =⇒ linear-dependent X. Using it
we could reduce its proof, but in Halmos the section of linear dependence
goes before the one about linear combinations. The proof is based on divid-
ing the linear combination into two sums, from which one of them is equal
to 0V . This lemma takes up about 130 code lines.

lemma eq-lc-when-out-of-set-is-zero:
assumes good-set-A: good-set A and good-set-Y : good-set Y
and cf-f : f ∈ coefficients-function (carrier V )
shows linear-combination (λx . if x ∈ Y then f (x ) else 0K)
(Y∪A) = linear-combination f Y

proof −
let ?g=(λx . if x ∈ Y then f (x ) else 0K)
have descomposicion-conjuntos:Y∪A=Y∪(A−Y ) by auto
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have disjuntos: Y Int (A−Y )={}
by simp

have finite-A: finite A
using good-set-A
unfolding good-set-def by simp

have finite-Y : finite Y
using good-set-Y
unfolding good-set-def by auto

have finite-A-minus-Y : finite (A−Y )
using finite-A by simp

have g1 :?g ∈ Y → carrier K
using coefficients-function-g-f-null [OF cf-f , of Y ]
unfolding coefficients-function-def
using good-set-Y
unfolding good-set-def
by auto

have g2 :?g ∈ (A−Y ) → carrier K
using coefficients-function-g-f-null [OF cf-f , of (A−Y )]
unfolding coefficients-function-def
by auto

let ?h=(λx . ?g(x )·x )
have h1 : ?h ∈ Y → carrier V
proof

fix x
assume x-in-Y : x∈Y
have x-in-V : x∈ carrier V
proof

have Y-subset-V : Y⊆ carrier V
using good-set-Y
unfolding good-set-def
by auto

show ?thesis using Y-subset-V and x-in-Y by auto
qed (auto)
have gx-in-K : ?g(x )∈ carrier K

using g1
using x-in-Y
unfolding Pi-def by auto

have gx-x-in-V : ?g(x )·x ∈ carrier V
using mult-closed [OF x-in-V gx-in-K ] by auto

show (if x ∈ Y then f x else 0) · x ∈ carrier V
using gx-x-in-V by auto

qed
have h2 : ?h ∈ (A−Y ) → carrier V
proof

fix x
assume x-in-A-minus-Y : x∈ (A−Y )
have x-in-V : x∈ carrier V
proof

have A-minus-Y-subset-V : (A−Y )⊆carrier V
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using good-set-Y and good-set-A
unfolding good-set-def
by auto

show ?thesis
using A-minus-Y-subset-V
using x-in-A-minus-Y by auto

qed (auto)
have gx-in-K : ?g(x )∈ carrier K

using x-in-A-minus-Y
by auto

have gx-x-in-V : ?g(x )·x ∈ carrier V
using mult-closed [OF x-in-V gx-in-K ] by auto

show (if x ∈ Y then f x else 0) · x ∈ carrier V
using gx-x-in-V by auto

qed
have descomposicion: linear-combination ?g (Y∪(A−Y ))=linear-combination ?g

Y ⊕V linear-combination ?g (A−Y )
unfolding linear-combination-def
using finsum-Un-disjoint [OF finite-Y finite-A-minus-Y disjuntos h1 h2 ]
by auto

have sum-g-Y-equal-sum-f-Y : linear-combination ?g Y =linear-combination f Y
proof (unfold linear-combination-def )

have iguales: Y =Y ..
show (

⊕
Vy∈Y . (if y ∈ Y then f y else 0) · y) = (

⊕
Vy∈Y . f y · y)

using finsum-cong [OF iguales] using h1 by auto
qed
have sum-g-A-minus-Y :linear-combination ?g (A−Y )=0 V
proof −

have X-subset-V : A ⊆ carrier V
using good-set-A
unfolding good-set-def by auto

hence A-minus-Y-subset-V :(A−Y ) ⊆ carrier V by auto
have not-in-Y : x ∈ (A−Y )=⇒ x /∈ Y by auto
have linear-combination ?g (A−Y )=(

⊕
Vy∈A − Y . 0 · y)

proof (unfold linear-combination-def )
have igualesA-minus-Y : A−Y =A−Y ..
show (

⊕
Vy∈A − Y . (if y ∈ Y then f y else 0) · y) = finsum V (op · 0) (A

− Y )
using finsum-cong [OF igualesA-minus-Y eqTrueI [OF h2 ]] by auto

qed
also have . . .=(

⊕
Vy∈A − Y . 0V)

proof (rule finsum-cong ′)
show A − Y = A − Y ..
show (λy . 0V) ∈ A − Y → carrier V by simp
show

∧
i . i ∈ A − Y =⇒ 0 · i = 0V

using zeroK-mult-V-is-zeroV
using A-minus-Y-subset-V by auto

qed
also have . . .=0 V
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using finsum-zero [OF finite-A-minus-Y ] .
finally show ?thesis by auto

qed
have aux : linear-combination ?g (Y∪(A−Y ))=linear-combination ?g (Y∪A)

using descomposicion-conjuntos by auto
show ?thesis

using descomposicion
using aux
using sum-g-Y-equal-sum-f-Y
using sum-g-A-minus-Y
using V .r-zero[OF linear-combination-closed [OF good-set-Y cf-f ]]
by auto

qed

Another auxiliary lemma. It will be very useful to prove properties in
future sections. If we have an equality of the form 0V = g x · x ⊕V
linear-combination g X, then we can work out the value of x (there ex-
ists a coefficients function f such that x = linear combination f X. This
coefficients function is explicitly defined by dividing each of the values g(y)
by g(x)).

lemma work-out-the-value-of-x :
assumes good-set : good-set X
and coefficients-function-g :
g ∈ coefficients-function (carrier V )
and x-in-V : x ∈ carrier V
and gx-not-zero: g x 6= 0K
and lc-descomposicion: 0V = g(x )·x ⊕V linear-combination g X
shows ∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = x

proof −
have gx-in-K : g(x ) ∈ carrier K

using coefficients-function-g using x-in-V
unfolding coefficients-function-def by auto

hence gx-in-Units: g(x )∈ Units K
using gx-not-zero using field-Units by auto

hence inv-gx-in-K : inv g(x ) ∈ carrier K
using Units-inv-closed by auto

hence minv-gx-in-K : 	 (inv g(x )) ∈ carrier K
using a-inv-closed by auto

have (	K (inv g x ))· 0V= 	K (inv g x ) · (g(x )·x ⊕V linear-combination g X )
using lc-descomposicion by auto

hence 0V= 	K (inv g x )·g(x )·x ⊕V 	K (inv g x )· (linear-combination g X )
using scalar-mult-zeroV-is-zeroV [OF minv-gx-in-K ]
using add-mult-distrib1 [OF mult-closed [OF x-in-V gx-in-K ]

linear-combination-closed [OF good-set coefficients-function-g ] minv-gx-in-K ]
by auto

also have . . .=(	K (inv g x )⊗ g(x ))·x ⊕V 	K (inv g x )· (linear-combination g
X )

using mult-assoc[OF x-in-V minv-gx-in-K gx-in-K ] by auto
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also have . . .=(	K ((inv g x )⊗ g(x )))·x ⊕V 	K (inv g x )· (linear-combination
g X )

using l-minus[OF inv-gx-in-K gx-in-K ] by auto
also have . . .=	Vx ⊕V 	K (inv g x )· (linear-combination g X )

using Units-l-inv [OF gx-in-Units] using negate-eq [OF x-in-V ] by auto
also have . . .=	Vx ⊕V linear-combination (%i . (	K (inv g x )) ⊗ g(i)) X
using linear-combination-rdistrib [OF good-set coefficients-function-g minv-gx-in-K ]

by auto
finally have igualdad : 0V=	Vx ⊕V linear-combination (%i . (	K (inv g x )) ⊗

g(i)) X .
let ?f =(λy .(	K (inv g x ))⊗ g(y))
have coefficients-function-f : ?f ∈ coefficients-function (carrier V )
proof (unfold coefficients-function-def , unfold Pi-def , auto)

fix y
assume y-in-V : y∈ carrier V
show 	 (inv g x ) ⊗ g y ∈ carrier K
using minv-gx-in-K y-in-V coefficients-function-g unfolding coefficients-function-def

by auto
next

fix xa
assume xa-notin-V : xa /∈ carrier V
have 	 (inv g x ) ⊗ g xa = 	 (inv g x ) ⊗ 0
using xa-notin-V coefficients-function-g unfolding coefficients-function-def

by simp
also have ...= 0 using K .r-null [OF minv-gx-in-K ] .
finally show 	 (inv g x ) ⊗ g xa = 0 .

qed
hence x ⊕V 0V= x ⊕V 	V x ⊕V linear-combination ?f X

using igualdad
using V .a-assoc [OF x-in-V a-inv-closed [OF x-in-V ] linear-combination-closed [OF

good-set -], symmetric]
by auto

hence x = linear-combination ?f X
using V .r-zero [OF x-in-V ]
using a-minus-def [OF x-in-V x-in-V ,symmetric] r-neg [OF x-in-V ]

using V .l-zero [OF linear-combination-closed [OF good-set coefficients-function-f ]]

by auto
thus ?thesis using coefficients-function-f by fastsimp

qed

Now we are going to prove a property presented in Halmos, section 6: if
{xi}i∈N is linearly independent, then a necessary an sufficient condition that
x be a linear combination of {xi}i∈N is that the enlarged set, obtained by
adjoining x to {xi}i∈N, be linearly dependent.

Here the first implication. The proof is based on definig a linear com-
bination of the set insert x X equal to 0V . As long as we know that
linear combination f X = x we define a coefficients function for insert x
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X where the coefficients of y ∈ X are f(y) and the coefficient of x is −1.
A detail that is omitted in Halmos is that not every coefficient is zero since
the coefficient of x is −1. The complete proof requires 102 lines of Isabelle
code.

lemma lc1 :
assumes linear-independent-X : linear-independent X
and x-in-V :x ∈ carrier V and x-not-in-X :x /∈ X
shows (∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f X = x )

=⇒ linear-dependent (insert x X )
proof −

assume (∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f X = x )
from this obtain f

where coefficients-function-f : f ∈ coefficients-function (carrier V )
and linear-combination-x : linear-combination f X = x by auto

show linear-dependent (insert x X )
proof (unfold linear-dependent-def )

have good-set : good-set X using l-ind-good-set [OF linear-independent-X ] .
have finite-X-union-x : finite (insert x X )

using good-set unfolding good-set-def by auto
have X-union-x-in-V : (insert x X ) ⊆ carrier V
proof −

have X-subset-V : X⊆ carrier V using good-set unfolding good-set-def by
auto

from this show ?thesis using x-in-V by auto
qed
have good-set-X-union-x : good-set (insert x X )

unfolding good-set-def using finite-X-union-x X-union-x-in-V by auto

let ?g=(λy . if y = x then 	K 1 K else f (y))
have g : ?g ∈ (insert x X )→ carrier K

using X-union-x-in-V
using coefficients-function-f
unfolding coefficients-function-def by auto

have coefficients-function-g : ?g∈ coefficients-function (carrier V )
proof (unfold coefficients-function-def , auto)

fix x
assume x ∈ carrier V
thus f x ∈ carrier K using fx-in-K [OF - coefficients-function-f ] by simp
next
assume x-notin-carrier-V : x /∈ carrier V
thus 	 1 = 0 using x-in-V by contradiction
next
fix xa
assume xa-not-x : xa 6= x and xa-notin-V : xa /∈ carrier V

thus f xa = 0 using coefficients-function-f unfolding coefficients-function-def
by blast

qed
have sum-zero: linear-combination ?g (insert x X )=0V
proof −
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have linear-combination ?g (insert x X )=?g x · x ⊕V linear-combination ?g
X

proof (rule linear-combination-insert)
show good-set X using good-set .
show x ∈ carrier V using x-in-V .
show x /∈ X using x-not-in-X .
show ?g ∈ coefficients-function (carrier V ) using coefficients-function-g

.
qed

also have . . .=	 1 · x ⊕V linear-combination ?g X using x-not-in-X by
auto

also have . . .=	Vx ⊕V x
proof −
have linear-combination ?g X =linear-combination f X unfolding linear-combination-def

proof (rule finsum-cong ′, auto)
assume x-in-X : x ∈ X
thus 	 1 · x = f x · x using x-not-in-X by contradiction

next
fix y
assume y-in-X : y ∈ X
hence y-in-V : y ∈ carrier V using good-set unfolding good-set-def by

fast
show f y · y ∈ carrier V using fx-x-in-V [OF y-in-V coefficients-function-f ]

.
qed
thus ?thesis

using negate-eq
using linear-combination-x
using x-in-V unfolding linear-combination-def by auto

qed
also have . . .=0V using V .l-neg [OF x-in-V ] .
finally show ?thesis by simp

qed
have not-all-zero: ¬ (∀ x :: ′b∈insert x X . ?g x = 0)
proof −

have minus-one-not-zero: 	1 6= 0
— We know that 1 is not 0, but not that - 1 is not 0. We have to prove it.
proof (rule notI )

assume minus-one-eq-zero: 	 1 = 0
hence 	 1 ⊕ 1 = 0 ⊕ 1 by simp
hence 0=1 using K .l-neg using K .one-closed using l-zero by simp
thus False using K .one-not-zero by simp

qed
thus ?thesis

using x-not-in-X by auto
qed
have ?g ∈ coefficients-function (carrier V )
∧ linear-combination ?g (insert x X ) = 0V ∧ ¬ (∀ x :: ′b∈insert x X . ?g x =
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0)
using coefficients-function-g and sum-zero and not-all-zero by auto

hence ∃ f :: ′b ⇒ ′a.
f ∈ coefficients-function (carrier V ) ∧ linear-combination f (insert x X ) =

0V
∧ ¬ (∀ x :: ′b∈insert x X . f x = 0)
apply (rule exI [of - ?g ]) .

thus
good-set (insert x X ) ∧
(∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f (insert x X )

= 0V
∧ ¬ (∀ x∈insert x X . f x = 0))
using good-set-X-union-x by simp

qed
qed

And now we present the second implication. The proof is based on obtaining
a linear combination of insert x X in which not all scalars are zero (we can
do it since X is linearly dependent). Hence we prove that the scalar of
x is not zero (if it is, hence X would be dependent and independent so
a contradiction). Then, we can express x as a linear combination of the
elements of X.

lemma lc2 :
assumes linear-independent-X : linear-independent X
and x-in-V : x ∈ carrier V
and x-not-in-X : x /∈ X
shows linear-dependent (insert x X )
=⇒ (∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = x )

proof −
assume linear-dependent-X-union-x : linear-dependent (insert x X )
show (∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f X = x )
proof −

have good-set : good-set X using l-ind-good-set [OF linear-independent-X ] .
have X-subset-V : X⊆ carrier V using good-set unfolding good-set-def by

auto
have finite-X : finite X using good-set unfolding good-set-def by auto
from linear-dependent-X-union-x obtain g

where coefficients-function-g : g ∈ coefficients-function (carrier V )
and sum-zero-g-X-union-x : linear-combination g (insert x X ) = 0V
and not-all-zero-g-X-union-x : ¬ (∀ x∈insert x X . g x = 0)
unfolding linear-dependent-def unfolding coefficients-function-def unfold-

ing linear-combination-def by auto
have lc-descomposicion: linear-combination g (insert x X ) = g(x )·x ⊕V linear-combination

g X
proof (unfold linear-combination-def , rule finsum-insert)

show finite X using finite-X .
show x /∈ X using x-not-in-X .
show (λy . g y · y) ∈ X → carrier V
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using coefficients-function-g unfolding coefficients-function-def using
X-subset-V using mult-closed by auto

show g x · x ∈ carrier V
using coefficients-function-g unfolding coefficients-function-def using

x-in-V using mult-closed by auto
qed
have gx-not-zero: g x 6= 0K
proof (rule notI )

assume gx-zero: g x = 0K
have sum-zero-g-X : linear-combination g X =0V
proof −

have gx-x-zero: g(x )· x=0V using gx-zero using zeroK-mult-V-is-zeroV
[OF x-in-V ] by auto

have 0V= 0V⊕V linear-combination g X
using lc-descomposicion using gx-x-zero using sum-zero-g-X-union-x by

auto
also have . . .=linear-combination g X
proof (rule V .l-zero)

show linear-combination g X ∈ carrier V
proof (unfold linear-combination-def , rule finsum-closed)

show finite X using good-set unfolding good-set-def by auto
show (λy . g y · y) ∈ X → carrier V

using coefficients-function-g unfolding coefficients-function-def
using X-subset-V using mult-closed by auto

qed
qed
finally show ?thesis by simp

qed
have not-all-zero-g-X : ¬ (∀ x∈X . g x = 0) using not-all-zero-g-X-union-x

and gx-zero by auto
have g ∈ coefficients-function (carrier V ) ∧ good-set X ∧ linear-combination

g X = 0V
using coefficients-function-g and good-set and sum-zero-g-X by simp
thus False using linear-independent-X and not-all-zero-g-X unfolding

linear-independent-def by auto
qed
have ∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f X = x
proof (rule work-out-the-value-of-x )

show good-set X using good-set .
show g ∈ coefficients-function (carrier V ) using coefficients-function-g .
show x ∈ carrier V using x-in-V .
show g x 6= 0 using gx-not-zero .
show 0V = g x · x ⊕V linear-combination g X using lc-descomposicion

using sum-zero-g-X-union-x by auto
qed
thus ?thesis by fast

qed
qed

Finally, the theorem proving the equivalence of both definitions.
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lemma lc1-eq-lc2 :
assumes linear-independent-X : linear-independent X
and x-in-V :x ∈ carrier V and x-not-in-X :x /∈ X
shows linear-dependent (insert x X ) ←→
(∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = x )
using assms lc1 lc2 by blast

This lemma doesn’t appears in Halmos (but it seems to be a similar result
to the theorem ??). The proof is based on obtaining a linear combination
of the elements of X ∪ Y equal to 0V where not all scalars are equal to 0K.
Hence we can express an element y ∈ (X ∪ Y ) such that its scalar is not
zero as a linear combination of the rest elements of X ∪ Y . This is a long
proof of 180 lines.

lemma exists-x-linear-combination:
assumes li-X : linear-independent X
and ld-XY : linear-dependent (X ∪ Y )
shows ∃ y∈Y . ∃ g . g ∈ coefficients-function (carrier V )
∧ y = linear-combination g (X ∪ (Y − {y}))

proof −
from ld-XY obtain f where coefficients-function-f : f ∈ coefficients-function

(carrier V )
and sum-zero-XY : linear-combination f (X∪Y )=0V
and not-all-zero: ¬ (∀ x ∈ X∪Y . f x = 0K)
and good-set-XY : good-set (X∪Y )
unfolding linear-dependent-def by auto

have X∪Y =X∪(Y−X ) by simp
hence linear-combination f (X∪Y )= linear-combination f (X∪(Y−X )) by simp
also have . . .=linear-combination f X ⊕V linear-combination f (Y−X )
proof (unfold linear-combination-def , rule finsum-Un-disjoint)

show finite X using good-set-XY unfolding good-set-def by auto
show finite (Y − X ) using good-set-XY unfolding good-set-def by auto
show X ∩ (Y − X ) = {} by simp
show (λy . f y · y) ∈ X → carrier V
proof (unfold Pi-def , auto)

fix x
assume x-in-X : x ∈ X
hence x-in-V : x ∈ carrier V using good-set-XY unfolding good-set-def by

fast
show f x · x ∈ carrier V using fx-x-in-V [OF x-in-V coefficients-function-f ] .
qed

show (λy . f y · y) ∈ Y − X → carrier V
proof −
have Y−X ⊆ carrier V using good-set-XY unfolding good-set-def by auto
thus ?thesis using coefficients-function-f unfolding coefficients-function-def

using mult-closed by auto
qed

qed
finally have descomposicion: linear-combination f X ⊕V linear-combination f
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(Y − X )=0V using sum-zero-XY by simp
have ¬(∀ x ∈ (Y−X ). f x = 0K)
proof (rule notI )

assume all-zero-YX : (∀ x ∈ (Y−X ). f x = 0K)
have good-set-X :good-set X using good-set-XY unfolding good-set-def by

auto
have linear-combination f (Y−X )=0V
proof −
have YX-in-V : Y−X ⊆ carrier V using good-set-XY unfolding good-set-def

by auto
have finite-YX :finite (Y−X ) using good-set-XY unfolding good-set-def by

auto
have good-set-X :good-set X using good-set-XY unfolding good-set-def by

auto
have (

⊕
Vy∈Y − X . f y · y)=(

⊕
Vy∈Y − X . 0V)

proof (rule finsum-cong ′)
show Y − X = Y − X by simp
show (λy . 0V) ∈ Y − X → carrier V by simp
show

∧
i . i ∈ Y − X =⇒ f i · i = 0V using YX-in-V using all-zero-YX

using zeroK-mult-V-is-zeroV by auto
qed
also have . . .=0V using finsum-zero[OF finite-YX ] .
finally show ?thesis unfolding linear-combination-def by simp

qed
hence linear-combination f X =0V

using descomposicion and good-set-X
and V .r-zero[OF linear-combination-closed [OF good-set-X coefficients-function-f ]]

by auto
hence (∀ x∈X . f x = 0)
using coefficients-function-f and good-set-X and li-X unfolding linear-independent-def

by auto
hence (∀ x∈X∪(Y−X ). f x = 0) using all-zero-YX by auto
hence (∀ x∈X∪Y . f x = 0) by auto
thus False using not-all-zero by contradiction

qed
then obtain y where y-in-Y : y ∈ Y and y-notin-X : y /∈ X and fy-not-zero:

f (y) 6=0K by auto
hence igualdad-conjuntos: insert y ((Y−X )−{y})=Y−X by auto
have linear-combination f (insert y ((Y−X )−{y}))=f (y)·y ⊕V linear-combination

f ((Y−X )−{y})
proof (unfold linear-combination-def , rule finsum-insert)

show finite (Y − X − {y}) using good-set-XY unfolding good-set-def by
auto

show y /∈ Y − X − {y} by simp
show (λx . f x · x ) ∈ Y − X − {y} → carrier V
proof −
have (Y − X − {y}) ⊆ carrier V using good-set-XY unfolding good-set-def

by auto
thus ?thesis
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using coefficients-function-f unfolding coefficients-function-def
using mult-closed by auto

qed
show f y · y ∈ carrier V
proof (rule mult-closed)

show y ∈ carrier V using y-in-Y and good-set-XY unfolding good-set-def
by auto

show f (y) ∈ carrier K
using coefficients-function-f unfolding coefficients-function-def
using good-set-XY unfolding good-set-def using y-in-Y by auto

qed
qed
hence eq-lc-when-out-of-set-is-zero: linear-combination f (Y−X )=f (y)·y ⊕V

linear-combination f ((Y−X )−{y})
using igualdad-conjuntos by auto

have good-set-X : good-set X using good-set-XY unfolding good-set-def by simp
have cb-YXy : good-set (Y−X−{y})using good-set-XY unfolding good-set-def

by auto
have cb-XYy : good-set (X∪(Y−{y})) using good-set-XY unfolding good-set-def

by auto
have fy-in-K :f (y) ∈ carrier K

using coefficients-function-f unfolding coefficients-function-def
using y-in-Y good-set-XY unfolding good-set-def by auto

hence mfy-in-K : 	K f (y) ∈ carrier K using K .a-inv-closed by auto
have 	K f (y) 6= 0K
proof (rule notI )

assume 	 f y = 0
hence 	(	 f (y)) =	0 by auto
hence f (y)=0 using fy-in-K and K .minus-minus and K .minus-zero by auto
thus False using fy-not-zero by contradiction

qed
hence mfy-in-Units-K : 	K f (y) ∈ Units K using mfy-in-K and K .field-Units

by auto
hence inv-mfy-in-K : inv(	K f (y)) ∈ carrier K by auto
have fy-y-in-V : f (y)·y ∈ carrier V
proof (rule mult-closed)
show y∈ carrier V using y-in-Y good-set-XY unfolding good-set-def by auto
show f (y) ∈ carrier K using fy-in-K .

qed
have linear-combination f (Y−X )=linear-combination f ((Y−X )−{y}) ⊕V

f (y)·y
using eq-lc-when-out-of-set-is-zero V .a-comm
[OF linear-combination-closed [OF cb-YXy coefficients-function-f ] fy-y-in-V ] by

auto
hence linear-combination f X ⊕V (linear-combination f ((Y−X )−{y}) ⊕V

f (y)·y)=0V
using descomposicion by auto

hence descomposicion2 : linear-combination f X ⊕V linear-combination f ((Y−X )−{y})
⊕V f (y)·y=0V
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using V .a-assoc
[OF linear-combination-closed [OF good-set-X coefficients-function-f ] linear-combination-closed

[OF cb-YXy coefficients-function-f ] fy-y-in-V ] by auto
hence linear-combination f X ⊕V linear-combination f ((Y−X )−{y}) ⊕V f (y)·y
⊕V 	V (f (y)·y)=0V ⊕V 	V (f (y)·y) by simp
have igualdad-conjuntos2 : X∪((Y−X )−{y}) = X∪(Y−{y}) using y-in-Y y-notin-X

by auto
have linear-combination f (X∪((Y−X )−{y})) = linear-combination f X ⊕V

linear-combination f ((Y−X )−{y})
proof (unfold linear-combination-def , rule finsum-Un-disjoint)

show finite X using good-set-X unfolding good-set-def by auto
show finite (Y − X − {y}) using good-set-XY unfolding good-set-def by

auto
show X ∩ (Y − X − {y}) = {} using y-in-Y y-notin-X by auto
show (λx . f x · x ) ∈ X → carrier V

using good-set-X unfolding good-set-def
using coefficients-function-f unfolding coefficients-function-def using mult-closed

by auto
show (λx . f x · x ) ∈ Y − X − {y} → carrier V
proof −
have (Y − X − {y}) ⊆ carrier V using good-set-XY unfolding good-set-def

by auto
thus ?thesis

using coefficients-function-f unfolding coefficients-function-def
using mult-closed by auto

qed
qed
hence linear-combination f (X∪(Y−{y})) = linear-combination f X ⊕V linear-combination

f ((Y−X )−{y})
using igualdad-conjuntos2 by auto

hence linear-combination f (X∪(Y−{y})) ⊕V f (y)·y ⊕V 	V (f (y)·y)=0V ⊕V
	V (f (y)·y) using descomposicion2 by auto

hence linear-combination f (X∪(Y−{y})) ⊕V (f (y)·y ⊕V 	V (f (y)·y))=0V
⊕V 	V (f (y)·y)

using V .a-assoc[OF linear-combination-closed [OF cb-XYy coefficients-function-f ]
fy-y-in-V V .a-inv-closed [OF fy-y-in-V ]]

by auto
hence linear-combination f (X∪(Y−{y})) ⊕V 0V=0V ⊕V 	V (f (y)·y) using

V .r-neg [OF fy-y-in-V ] by auto
hence linear-combination f (X∪(Y−{y}))= 	V(f (y)·y)
using V .r-zero[OF linear-combination-closed [OF cb-XYy coefficients-function-f ]]
using V .l-zero[OF V .a-inv-closed [OF fy-y-in-V ]]
by auto

hence linear-combination f (X∪(Y−{y}))= (	Kf (y)·y) using good-set-XY un-
folding good-set-def using y-in-Y

using negate-eq2 [OF - fy-in-K ] by auto
hence inv(	Kf (y)) · linear-combination f (X∪(Y−{y}))= inv(	Kf (y))·(	Kf (y)·y)

by simp
hence inv(	Kf (y)) · linear-combination f (X∪(Y−{y}))= ((inv(	Kf (y))) ⊗K(	Kf (y)))·
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y
using y-in-Y using good-set-XY unfolding good-set-def using mult-assoc[OF

- inv-mfy-in-K mfy-in-K ,symmetric]
by auto

hence inv(	Kf (y)) · linear-combination f (X∪(Y−{y}))= 1K· y using K .Units-l-inv [OF
mfy-in-Units-K ] by auto

hence inv(	Kf (y)) · linear-combination f (X∪(Y−{y}))= y
using y-in-Y using good-set-XY unfolding good-set-def using mult-1 by

auto
hence descomposicion3 : linear-combination (%i . inv(	Kf (y))⊗ f (i)) (X∪(Y−{y}))=

y
using linear-combination-rdistrib[OF cb-XYy coefficients-function-f inv-mfy-in-K ]

by auto
let ?g=(%i . inv(	Kf (y))⊗ f (i))
have coefficients-function-g : ?g ∈ coefficients-function (carrier V )
proof (unfold coefficients-function-def , unfold Pi-def , auto)

fix x
assume x-in-V : x ∈ carrier V

hence fx-in-K : f x ∈ carrier K using coefficients-function-f unfolding coefficients-function-def
by auto

show inv (	 f y) ⊗ f x ∈ carrier K using K .m-closed [OF inv-mfy-in-K
fx-in-K ] .

next
fix x
assume x-notin-V : x /∈ carrier V
have inv (	 f y) ⊗ f x = inv (	 f y) ⊗ 0
using x-notin-V coefficients-function-f unfolding coefficients-function-def by

simp
also have ...= 0 using K .r-null [OF inv-mfy-in-K ] .
finally show inv (	 f y) ⊗ f x = 0 .

qed
have linear-combination ?g (X∪(Y−{y}))= y using descomposicion3 by auto
hence ?g ∈ coefficients-function (carrier V ) ∧ y=linear-combination ?g (X∪(Y−{y}))

using coefficients-function-g by auto
hence ∃ g . g ∈ coefficients-function (carrier V ) ∧ y=linear-combination g (X∪(Y−{y}))

apply (rule exI [of - ?g ]) .
thus ?thesis using y-in-Y by auto

qed

A corollary of the previous lemma claims that if we have a linearly depen-
dent set, then there exists one element which can be expressed as a linear
combination of the other elements of the set.

corollary exists-x-linear-combination2 :
assumes ld-Y : linear-dependent Y
shows ∃ y∈Y . ∃ g . g ∈ coefficients-function (carrier V )
∧ y = linear-combination g (Y − {y})

proof −
have ld-empty-Y : linear-dependent({} ∪ Y ) using ld-Y by simp
have ∃ y∈Y . ∃ g . g ∈ coefficients-function (carrier V )
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∧ y = linear-combination g ({} ∪ (Y − {y}))
using exists-x-linear-combination
[OF empty-set-is-linearly-independent ld-empty-Y ] .

thus ?thesis by simp
qed

Every singleton set is linearly independent. This lemma could be in previous
section, however we have to make use of some properties of linear combina-
tions. We can repeat the proof without these properties, but it would be
longer. We will use that a · x = 0 =⇒ a = 0 because x 6= 0.

lemma unipuntual-is-li :
assumes x-in-V : x ∈ carrier V and x-not-zero: x 6= 0V
shows linear-independent {x}

proof (cases linear-independent {x})
case True show ?thesis using True .

next
case False show ?thesis
proof −

have cb: good-set {x}
using x-in-V unfolding good-set-def by simp

have linear-dependent {x}
using False
using not-independent-implies-dependent [OF cb False]
by auto

from this obtain f
where cf-f : f ∈ coefficients-function (carrier V )
and lc: linear-combination f {x} = 0V
and not-all-zero: ¬ (∀ x∈{x}. f x = 0)
unfolding linear-dependent-def by auto

have fx-not-zero: f x 6= 0 using not-all-zero by auto
have (f x ) · x = 0V thm finsum-insert
proof −

— We could have used [[fa ∈ coefficients-function (carrier V ); xa ∈ carrier
V ]] =⇒ linear-combination fa {xa} = fa xa · xa directly or next calculation:

have linear-combination f (insert x {})
= (f x ) · x ⊕V linear-combination f {}
using linear-combination-insert [OF - x-in-V - cf-f ]
by auto

also have . . . = (f x ) · x ⊕V 0V
using linear-combination-of-zero by auto

also have . . . = (f x ) · x
using V .r-zero[OF fx-x-in-V [OF x-in-V cf-f ]] .
finally show ?thesis using lc by auto

qed
hence f x = 0K

using mult-zero-uniq and x-in-V and x-not-zero and cf-f
unfolding coefficients-function-def by auto

thus ?thesis using fx-not-zero by contradiction
qed
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qed

Now we are ready to prove the theorem 1 in section 6 in Halmos. It will be
useful (really indispensable) in future proofs and it is basic in our develope-
ment. The theorem claims that in a linear dependent set exists an element
which is a linear combination of the preceding ones.

NOTE: As we are assuming that 0V is not in the set, the element which is
a linear combination of the preceding ones will be between the second and
the last position of the set (1 and card(A)− 1 with the notation used in our
implementation of indexed sets). The element in the first position (position
0) can’t be a linear combination of the preceding ones because it would be
a linear combination of the empty set, hence this element would be 0V and
it is not in the set.

We make the proof using induction (we don’t follow the proof of the book).
At first, it seemed easier this way.

lemma
linear-dependent-set-contains-linear-combination:
assumes ld-X : linear-dependent X
and not-zero: 0V /∈ X
shows ∃ y ∈ X . ∃ g . ∃ k ::nat . ∃ f ∈ {i . i<(card X )} → X . f‘{i . i<(card X )} =

X ∧ g ∈ coefficients-function (carrier V )
∧ (1 ::nat) ≤ k ∧ k < (card X ) ∧ f k = y ∧ y = linear-combination g (f‘{i ::nat .

i<k})
proof −

have good-set-X : good-set X using l-dep-good-set [OF ld-X ] .
hence finite-X : finite X unfolding good-set-def by simp
thus ?thesis using ld-X and not-zero
proof (induct set : finite)

case empty
show ?case

— Contradiction: we can prove that the empty set is linearly dependent.
using empty-set-is-linearly-independent
and dependent-implies-not-independent [OF empty .prems (1 )] by contradiction

next
case (insert x X )
show ?case
proof −

— Some previous facts which will be useful in the proof:
have finite-xX : finite (insert x X )

using insert .hyps(1 ) by auto
have cb-X : good-set X

using l-dep-good-set [OF insert .prems(1 )]
unfolding good-set-def by auto

show ?thesis
— Now we separate the proof in cases, depending on the set X is linearly

dependent.
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proof (cases linear-dependent X )
case True
have zero-not-in-X : 0V /∈ X using insert .prems(2 ) by simp
— We obtain the ’candidates’ for the goal, using the induction hypothesis.
obtain y f g k

where y-in-X : y ∈ X
and cf-g : g ∈ coefficients-function (carrier V ) and one-le-k : 1 ≤ k and

k-le-card-X : k < card X
and fk-y : f k = y and y-lc: y = linear-combination g (f ‘ {i . i < k}) and

ordenfX : f ‘{i . i < card X } = X
using insert .hyps(3 )[OF True zero-not-in-X ] by auto

have f-buena:f ∈ {i . i < (card X )} → X using ordenfX by auto
have y-in-xX :y ∈ (insert x X ) using y-in-X by simp
obtain h where h: h ∈ {i . i < (card (insert x X ))} → (insert x X )

and ordenxX :h‘{i . i < (card (insert x X ))} = (insert x X )
and h-cardX-x : h (card X ) = x and h-is-f-in-X : ∀ i . i<card(X ) −→

h(i)=f (i)
using indexation-x-union-X [OF insert .hyps(1 ) insert .hyps(2 ) f-buena

ordenfX ] by auto
show ?thesis

— We introduce the candidates: we have to proof that satisfy the require-
ments:

proof (rule bexI [of - y ], rule exI [of - g ], rule exI [of - k ], rule bexI [of -
h], rule conjI6 )

show y ∈ insert x X using y-in-X by fast
show h ∈ {i . i < card (insert x X )} → insert x X using ordenxX by fast
show h ‘ {i . i < card (insert x X )} = insert x X using ordenxX .
show g ∈ coefficients-function (carrier V ) using cf-g .
show 1 ≤ k using one-le-k .
show k < card (insert x X ) using k-le-card-X

by (metis card-insert-disjoint insert .hyps(1 ) insert .hyps(2 ) less-Suc-eq)
show h k = y using fk-y and h-is-f-in-X and k-le-card-X by simp
show y = linear-combination g (h ‘ {i . i < k})

using y-lc and h-is-f-in-X and k-le-card-X
unfolding image-def by auto

qed
next

case False
— We try to do it similarly: we define the candidates for the existencial

terms (in this case we can not obtain it from the induction hypothesis) and finally
we will face the thesis

have li-X : linear-independent X using not-dependent-implies-independent [OF
cb-X False] .

obtain y and g
where y-x : y=x and cf-g : g ∈ coefficients-function (carrier V )
and x-lc-X : x = linear-combination g X
using insert .prems(1 )
using exists-x-linear-combination[OF li-X , of {x}] by auto

obtain f where ordenfX : X = f ‘ {i . i<(card X )}
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using finite-imp-nat-seg-image-inj-on-Pi-card [of X ]
using insert .hyps (1 ) by auto

hence f-buena: f ∈ {i . i < (card X )} → X by auto
obtain h where h: h ∈ {i . i < (card (insert x X ))} → (insert x X )

and ordenxX :h‘{i . i < (card (insert x X ))} = (insert x X )
and h-cardX-x : h (card X ) = x and h-is-f-in-X : ∀ i . i<card(X ) −→

h(i)=f (i)
using indexation-x-union-X [OF insert .hyps(1 ) insert .hyps(2 ) f-buena

ordenfX [symmetric]] by auto
show ?thesis
proof (cases 1 ≤ card X )

case True
show ?thesis
proof (rule bexI [of - x ], rule exI [of - g ], rule exI [of - card X ], rule bexI

[of - h], rule conjI6 )
show h ‘ {i . i < card (insert x X )} = insert x X

using ordenxX .
show g ∈ coefficients-function (carrier V )

using cf-g .
show 1 ≤ (card X ) using True .
show card X < card (insert x X )

by (metis card-insert-disjoint insert .hyps(1 ) insert .hyps(2 ) lessI )
show h (card X ) = x using h-cardX-x .
show x = linear-combination g (h ‘ {i . i < (card X )})

using h-is-f-in-X ordenfX x-lc-X unfolding image-def by auto
show h ∈ {i . i < card (insert x X )} → insert x X using h .
show x ∈ insert x X by fast

qed
next

case False
show ?thesis
proof (rule FalseE )

have 1>(card X ) using False by simp
hence X-empty : X = {} using card-eq-0-iff and insert .hyps(1 ) by simp

have ld-x : linear-dependent {x} using insert .prems(1 ) unfolding
X-empty .

have li-x : linear-independent {x}
proof (rule unipuntual-is-li)

show x ∈ carrier V
using l-dep-good-set [OF ld-x ]
unfolding good-set-def by simp

show x 6= 0V using insert .prems(2 ) by auto
qed
show False

using independent-implies-not-dependent [OF li-x ] and ld-x
by contradiction

qed
qed

qed
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qed
qed

qed

lemma
card-less-induct-good-set :
assumes c: good-set A
and step:

∧
A. [[ (

∧
B . [[ card B < card A; good-set B ]] =⇒ P B);

good-set A ]] =⇒ P A
shows P A

proof −
have f : finite A using good-set-finite [OF c] .
have

∧
B . [[card B ≤ card A; good-set B ]] =⇒ P B

using f c proof (induct)
case empty
show ?case

apply (rule step)
using empty .prems by auto

next
case (insert x F )
show ?case

apply (rule step)
using insert .prems
using insert .hyps
unfolding good-set-def by auto

qed
thus ?thesis using c by auto

qed

Really, the result that we need to prove corresponds closer to the next theo-
rem than we have proved in the previous theorem linear-dependent-set-contains-linear-combination.
We have to assume that the indexation is known beforehand. This will be
necessary in the future, because we will remove dependent elements in re-
gard a gived indexation of one set (so the removed element will be unique).
We will apply this theorem iteratively to a set in future proofs, so if we
didn’t fix the order beforehand we won’t have unicity of the result (because
the indexing could change in each step).

We will use the induction rule for indexed sets that we introduced before
(indexed-set-induct2 ). This is a laborious and large theorem, of about 400
code lines.

theorem
linear-dependent-set-sorted-contains-linear-combination:
assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A

83



and i : indexing (A, f )
shows ∃ y∈A. ∃ g . ∃ k ::nat .
g ∈ coefficients-function (carrier V )
∧ (1 ::nat) ≤ k ∧ k < (card A)
∧ f k = y ∧ y = linear-combination g (f‘{i ::nat . i<k})
using i and ld-A and not-zero

proof (induct A f rule: indexed-set-induct2 )
show indexing (A, f ) by fact
case (empty f )
show ∃ y∈{}. ∃ g k . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ k ∧ k < card
{} ∧ f k = y
∧ y = linear-combination g (f ‘ {i . i < k})

using empty .prems (2 ) and independent-implies-not-dependent [OF empty-set-is-linearly-independent ]
by contradiction
next

case (insert a A f n)
show ?case
proof −

have good-set-aA: good-set (insert a A) using l-dep-good-set [OF prems(12 )] .
hence good-set-A: good-set A unfolding good-set-def by simp
have indexing-Af : indexing (A,f )

using indexing-indexing-ext prems (8 ) prems (9 ) prems (10 ) prems (5 )
by auto

have not-zero-A: 0V /∈ A using prems(13 ) by simp
have finite-A: finite A using prems(7 ) by auto
show ?thesis
proof (cases linear-dependent A)

case True show ?thesis
proof −

have ex : ∃ y∈A. ∃ g k . g ∈ coefficients-function (carrier V ) ∧
1 ≤ k ∧
k < card A ∧
f k = y ∧ y = linear-combination g (f ‘ {i . i < k})
using prems(6 )[OF indexing-Af indexing-Af True not-zero-A] .

from this obtain y g k where cf-g : g ∈ coefficients-function (carrier V )
and one-le-k : 1≤k and k-le-cardA: k < (card A)
and fk-y : f k = y
and y-lc-g-f : y = linear-combination g (f ‘ {i . i < k})
and y-in-A: y∈A by auto

have one-le-k-plus-one: 1≤(k+1 ) using one-le-k by simp
have k-plus-one-le-card-insert-a-A: (k+1 )<card(insert a A)
using k-le-cardA and card-insert-if [OF finite-A, of a] using prems(5 ) by

auto
let ?h=(λx . if x ∈ (f‘{i . i < k}) then g(x ) else 0K)
have cb-imf : good-set (f‘{i . i < k})

using indexing-Af unfolding indexing-def
unfolding bij-betw-def unfolding iset-to-index-def unfolding iset-to-set-def

using k-le-cardA one-le-k using good-set-A unfolding good-set-def
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by auto
hence cf-h: ?h ∈ coefficients-function (carrier V ) using coefficients-function-g-f-null [OF

cf-g ] by auto
have cb-a: good-set {a} using good-set-aA unfolding good-set-def by auto

show ?thesis
proof (cases 1≤k)

case False show ?thesis
proof (rule FalseE )

have k=0 using False by simp
hence f ‘ {i . i < k} = {} by auto
hence linear-combination g (f ‘ {i . i < k})=0V by auto
hence 0V=y using y-lc-g-f by simp
thus False using y-in-A and not-zero-A by auto

qed
next

case True
note one-le-k = True
show ?thesis
proof (cases k<n)

case True show ?thesis
proof −

have (indexing-ext (A, f ) a n) k = f k
using True
unfolding indexing-ext-def by auto

hence 1 :indexing-ext (A, f ) a n k = y using fk-y by simp
have indexing-ext (A, f ) a n ‘ {i . i < k} = f‘ {i . i < k}

using True unfolding indexing-ext-def by auto
hence linear-combination g (indexing-ext (A, f ) a n ‘ {i . i < k})=

linear-combination g (f ‘ {i . i < k})
using arg-cong2 by auto
hence 2 : y=linear-combination g (indexing-ext (A, f ) a n ‘ {i . i <

k}) using y-lc-g-f by auto
have k < card (insert a A)

using prems(5 ) and k-le-cardA and card-insert-if and finite-A by
auto

thus ?thesis using 1 2 one-le-k y-in-A cf-g by force
qed

next
case False note k-ge-n = False show ?thesis
proof (cases k=n)

case True show ?thesis
proof −

have 1 :indexing-ext (A, f ) a n ‘ {i . i < k} = f‘ {i . i < k}
using True unfolding indexing-ext-def by auto

hence linear-combination g (indexing-ext (A, f ) a n ‘ {i . i < k})=
linear-combination g (f ‘ {i . i < k})

using arg-cong2 by auto
hence y=linear-combination g (indexing-ext (A, f ) a n ‘ {i . i < k})
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using y-lc-g-f by auto
have igualdad-conjuntos: {i . i < (k+1 )}={i . i < k}∪{i . i = k} by

auto
hence indexing-ext (A, f ) a n ‘ {i . i < (k+1 )}=indexing-ext (A, f )

a n ‘ ({i . i < k}∪{i . i = k}) by auto
also have ...=indexing-ext (A, f ) a n ‘ {i . i < k} ∪ indexing-ext (A,

f ) a n ‘ {i . i = k} by auto
also have ...= f‘ {i . i < k} ∪ {a} using 1 and True unfolding

indexing-ext-def by auto
finally have 2 :indexing-ext (A, f ) a n ‘ {i . i < (k+1 )}=f‘ {i . i <

k} ∪ {a} .
hence y-lc-h: y=linear-combination ?h (indexing-ext (A, f ) a n ‘ {i .

i < (k+1 )})
proof −

have linear-combination ?h (indexing-ext (A, f ) a n ‘ {i . i <
(k+1 )})

=linear-combination ?h (f‘ {i . i < k} ∪ {a})
using arg-cong2 using 2 by auto

also have ...=linear-combination g (f‘ {i . i < k})
using eq-lc-when-out-of-set-is-zero[OF cb-a cb-imf cf-g ] by auto

also have ...=y using y-lc-g-f by simp
finally show ?thesis by simp

qed
have (indexing-ext (A, f ) a n) (k+1 ) = f k

using True
unfolding indexing-ext-def by auto

hence 3 :(indexing-ext (A, f ) a n) (k+1 ) = y using fk-y by simp
show ?thesis using cf-h one-le-k-plus-one k-plus-one-le-card-insert-a-A

3 y-lc-h y-in-A by force
−

qed
next

case False show ?thesis
proof −

have k-g-n: k>n using False and k-ge-n by simp
hence (indexing-ext (A, f ) a n) (k+1 ) = f k

unfolding indexing-ext-def by auto
hence indexing-ext-y : (indexing-ext (A, f ) a n) (k+1 ) = y using

fk-y by simp
have 1 :indexing-ext (A, f ) a n ‘ {i . i < n} = f‘ {i . i < n}

unfolding indexing-ext-def by auto
have 2 :indexing-ext (A, f ) a n ‘ {i . n < i ∧ i<(k+1 )} = f‘ {i . n ≤

i ∧ i<k}
using k-g-n unfolding indexing-ext-def unfolding iset-to-index-def

unfolding image-def
proof auto
show

∧
xa. [[n < xa; xa < Suc k ]] =⇒ ∃ x≥n. x < k ∧ f (xa − Suc

0 ) = f x
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proof −
fix xa
assume n-l-xa: n<xa and xa-l-suc-k : xa<(Suc k)
let ?x= xa−(Suc 0 )
have 1 :f (xa − Suc 0 )=f (?x ) by simp
have 2 :?x≥n using n-l-xa by auto
have 3 :?x < kusing xa-l-suc-k

by (metis One-nat-def diff-less gr0I gr-implies-not0
k-g-n less-imp-diff-less linorder-neqE-nat not-less-eq zero-less-Suc)
show ∃ x≥n. x < k ∧ f (xa − Suc 0 ) = f x using 1 and 2 and

3 by auto
qed
show

∧
xa. [[n ≤ xa; xa < k ]] =⇒ ∃ x>n. x < Suc k ∧ f xa = f (x

− Suc 0 )
proof −

fix xa
assume n-le-xa: n≤xa and xa-l-k : xa<k
let ?x= xa+(Suc 0 )
have 1 :f (xa)=f (?x − Suc 0 ) by simp
have 2 :?x>n using n-le-xa by auto
have 3 :?x < Suc kusing xa-l-k by auto
show ∃ x>n. x < Suc k ∧ f xa = f (x − Suc 0 ) using 1 and 2

and 3 by auto
qed

qed
have {i . i < (k+1 )}={i . i < n}∪{i . i = n}∪{i . n<i ∧ i<(k+1 )}

using k-g-n by auto
hence indexing-ext (A, f ) a n ‘ {i . i < (k+1 )}=indexing-ext (A, f )

a n ‘ ({i . i < n}
∪{i . i = n}∪{i . n<i ∧ i<(k+1 )}) by auto

also have ...=indexing-ext (A, f ) a n ‘ {i . i < n} ∪ indexing-ext (A,
f ) a n ‘ {i . i = n}

∪ indexing-ext (A, f ) a n ‘ {i . n<i ∧ i<(k+1 )} by auto
also have ...= f‘ {i . i < n} ∪ {a} ∪ f‘{i . n≤i ∧ i<k} using 1 2

k-g-n unfolding indexing-ext-def by auto
also have ...=f‘ {i . i < k} ∪ {a}
proof −

have {i . i < k}={i . i < n}∪{i . n≤i ∧ i<k} using k-g-n by auto
hence f‘{i . i < k}=f‘{i . i < n}∪f‘{i . n≤i ∧ i<k} by auto
thus ?thesis by auto

qed
finally have 3 : indexing-ext (A, f ) a n ‘ {i . i < (k+1 )}=f‘ {i . i <

k} ∪ {a} .
have y-lc-h: y=linear-combination ?h (indexing-ext (A, f ) a n ‘ {i . i

< (k+1 )})
proof −

have linear-combination ?h (indexing-ext (A, f ) a n ‘ {i . i <
(k+1 )})

=linear-combination ?h (f‘ {i . i < k} ∪ {a})

87



using arg-cong2 using 3 by auto
also have ...=linear-combination g (f‘ {i . i < k})

using eq-lc-when-out-of-set-is-zero[OF cb-a cb-imf cf-g ] by auto
also have ...=y using y-lc-g-f by simp
finally show ?thesis by simp

qed
show ?thesis

using cf-h one-le-k-plus-one k-plus-one-le-card-insert-a-A indexing-ext-y
3 y-lc-h y-in-A by force

qed
qed

qed
qed

qed
next

case False show ?thesis
proof −
have li-A: linear-independent A using False and independent-if-only-if-not-dependent

and good-set-A by simp
from prems(12 ) obtain h

where cf-h: h ∈ coefficients-function (carrier V )
and sum-zero: linear-combination h (insert a A)=0V
and not-all-zero: ¬ (∀ x∈insert a A. h x =0K)
unfolding linear-dependent-def by auto
have 1 :indexing-ext (A,f ) a n ‘ {..<(card(insert a A))} = (insert a A)

using prems(8 )
unfolding indexing-def unfolding bij-betw-def
unfolding iset-to-index-def by auto

let ?A={k∈{..<card (insert a A)}. h ((indexing-ext (A,f ) a n) k) 6= 0K}
have finite-A: finite ?A by auto
have A-not-empty : ?A6={} using not-all-zero using 1 by force
def m == Max ?A

have m-in-A: m∈ ?A using Max .closed [OF finite-A A-not-empty ] unfolding
m-def by force

have ∀ x∈{..<card (insert a A)}. (x<card(insert a A)) by auto
hence m-le-card-aA: m<(card(insert a A)) using Max-less-iff [OF finite-A

A-not-empty ] unfolding m-def by auto
have ¬ (∃ x∈?A. m < x ) using Max-less-iff [OF finite-A A-not-empty ]

unfolding m-def by auto
hence h-indexing-m-card-zero: ∀ x∈{m<..<(card(insert a A))}. h ((indexing-ext

(A,f ) a n) x ) = 0K by auto
have indexing-m-in-aA: indexing-ext (A,f ) a n m ∈ (insert a A) using 1

using m-le-card-aA by auto
have descomposicion-conjunto:{..<(card(insert a A))}= {..m} ∪ {m<..<(card(insert

a A))}
using m-le-card-aA unfolding m-def by auto

have indexing-ext (A,f ) a n ‘{..<(card(insert a A))}
= indexing-ext (A,f ) a n ‘ ({..m}∪{m<..<(card(insert a A))})
unfolding descomposicion-conjunto ..
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also have...= indexing-ext (A,f ) a n ‘ {..m} ∪ indexing-ext (A,f ) a n
‘{m<..<(card(insert a A))} by auto

finally have descomposicion-indexing-ext : indexing-ext (A, f ) a n ‘ {..<card
(insert a A)} =

indexing-ext (A, f ) a n ‘ {..m} ∪ indexing-ext (A, f ) a n ‘ {m<..<card
(insert a A)} .

have descomposicion-conjunto2 : {..m}=insert m {..<m} by auto
hence descomposicion-indexing-ext2 :indexing-ext (A, f ) a n ‘ {..m}

=(insert (indexing-ext (A, f ) a n m) (indexing-ext (A, f ) a n ‘ {..<m}))
by auto

have cb-l-m: good-set (indexing-ext (A, f ) a n ‘ {..m})
proof −

have indexing-ext (A, f ) a n ‘ {..m}
⊆ indexing-ext (A, f ) a n ‘ {..<card (insert a A)} using m-le-card-aA

by auto
hence indexing-ext (A, f ) a n ‘ {..m}⊆ (insert a A) using 1 by simp
thus ?thesis using good-set-aA unfolding good-set-def by auto

qed
have i-m-in-V : indexing-ext (A, f ) a n m ∈ carrier V using cb-l-m

unfolding good-set-def by auto
have 0V=linear-combination h (indexing-ext (A,f ) a n ‘ {..<(card(insert a

A))}) using sum-zero 1 by auto
also have ...=linear-combination h (indexing-ext (A, f ) a n ‘ {..m}
∪ indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)})
using descomposicion-indexing-ext by auto

also have ...= linear-combination h (indexing-ext (A, f ) a n ‘ {..m})
⊕V linear-combination h (indexing-ext (A, f ) a n ‘ {m<..<card (insert a

A)})
proof (unfold linear-combination-def , rule finsum-Un-disjoint ,force)

show finite (indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)}) using
m-le-card-aA by auto

show indexing-ext (A, f ) a n ‘ {..m} ∩ indexing-ext (A, f ) a n ‘ {m<..<card
(insert a A)} = {}

proof −
have disjuntos: {..m} ∩ {m<..<(card(insert a A))}={} by auto

have indexing-ext (A,f ) a n ‘ {..m}∩indexing-ext (A,f ) a n ‘{m<..<(card(insert
a A))}=

indexing-ext (A,f ) a n ‘ ({..m}∩{m<..<(card(insert a A))})
proof(rule inj-on-image-Int [symmetric])

show inj-on (indexing-ext (A,f ) a n) {..<card(insert a A)}
using prems(8 )
unfolding indexing-def unfolding iset-to-set-def iset-to-index-def
unfolding bij-betw-def by simp

show {..m} ⊆ {..<card (insert a A)} using m-le-card-aA by auto
show {m<..<card (insert a A)} ⊆ {..<card (insert a A)} using

m-le-card-aA by auto
qed
also have ...={} using disjuntos by simp
finally show ?thesis .
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qed
show (λy . h y · y) ∈ indexing-ext (A, f ) a n ‘ {..m} → carrier V
proof (auto,rule mult-closed)

fix x
assume x-le-m: x≤m
show indexing-ext (A, f ) a n x ∈ carrier V

using 1 and good-set-aA
unfolding good-set-def unfolding indexing-ext-def unfolding

iset-to-index-def
using x-le-m and m-le-card-aA by auto

thus h (indexing-ext (A, f ) a n x ) ∈ carrier K using cf-h unfolding
coefficients-function-def by auto

qed
show (λy . h y · y) ∈ indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)}

→ carrier V
proof (auto,rule mult-closed)

fix x
assume m-le-x : m<x

and x-le-card-aA: x<card(insert a A)
show indexing-ext (A, f ) a n x ∈ carrier V

using 1 and good-set-aA
unfolding good-set-def unfolding indexing-ext-def unfolding

iset-to-index-def
using m-le-x and x-le-card-aA by auto

thus h (indexing-ext (A, f ) a n x ) ∈ carrier K using cf-h unfolding
coefficients-function-def by auto

qed
qed
also have ...= linear-combination h (indexing-ext (A, f ) a n ‘ {..m}) ⊕V

0V
proof −

have linear-combination h (indexing-ext (A, f ) a n ‘ {m<..<card (insert
a A)})=0V

proof (unfold linear-combination-def )
have hy-zero:

∧
y . [[y∈indexing-ext (A, f ) a n ‘ {m<..<card (insert a

A)}]] =⇒ h y = 0K
using h-indexing-m-card-zero by auto

have (
⊕

Vy∈indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)}. h y ·
y) =

(
⊕

Vy∈indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)}. 0V)
proof (rule finsum-cong ′)

show indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)}
= indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)} ..

show (λy . 0V) ∈ indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)}
→ carrier V by auto

show
∧

i . i ∈ indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)} =⇒
h i · i = 0V

proof −
fix i
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assume i-in-indexing : i ∈ indexing-ext (A, f ) a n ‘ {m<..<card
(insert a A)}

show h i · i = 0V
proof −

have hi-zero:h(i)=0K using hy-zero[OF i-in-indexing ] .
have i-in-V : i∈ carrier V using 1
proof −

have indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)}
⊆ indexing-ext (A, f ) a n ‘ {..<card (insert a A)} using

m-le-card-aA by auto
hence indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)} ⊆

(insert a A) using 1 by simp
thus ?thesis using i-in-indexing and good-set-aA unfolding

good-set-def by auto
qed
show ?thesis using zeroK-mult-V-is-zeroV and hi-zero and i-in-V

by auto
qed

qed
qed
also have ...=0V
proof (rule finsum-zero)

show finite (indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)})
proof −

have indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)}
⊆ indexing-ext (A, f ) a n ‘ {..<card (insert a A)} using m-le-card-aA

by auto
hence indexing-ext (A, f ) a n ‘ {m<..<card (insert a A)}⊆ (insert

a A) using 1 by simp
thus ?thesis using good-set-aA unfolding good-set-def by auto

qed
qed
finally show (

⊕
Vy∈indexing-ext (A, f ) a n ‘ {m<..<card (insert a

A)}. h y · y) = 0V .
qed
thus ?thesis by auto

qed
also have ...=linear-combination h (indexing-ext (A, f ) a n ‘ {..m})
proof (rule V .r-zero, rule linear-combination-closed)

show good-set (indexing-ext (A, f ) a n ‘ {..m}) using cb-l-m .
show h ∈ coefficients-function (carrier V ) using cf-h .

qed
also have ...=h (indexing-ext (A, f ) a n m) · (indexing-ext (A, f ) a n m)
⊕V linear-combination h (indexing-ext (A, f ) a n ‘ {..<m})

proof −
have linear-combination h (indexing-ext (A, f ) a n ‘ {..m})
= linear-combination h ((insert (indexing-ext (A, f ) a n m) (indexing-ext

(A, f ) a n ‘ {..<m})))
using arg-cong2 and descomposicion-indexing-ext2 by auto
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also have ...
= h (indexing-ext (A, f ) a n m) · indexing-ext (A, f ) a n m
⊕V linear-combination h (indexing-ext (A, f ) a n ‘ {..<m})

proof (rule linear-combination-insert)
show good-set (indexing-ext (A, f ) a n ‘ {..<m}) using cb-l-m unfolding

good-set-def by auto
show indexing-ext (A, f ) a n m ∈ carrier V using i-m-in-V .
show indexing-ext (A, f ) a n m /∈ indexing-ext (A, f ) a n ‘ {..<m}
proof −

have inj-on-m: inj-on (indexing-ext (A, f ) a n) {..m}
proof (rule subset-inj-on)

show inj-on (indexing-ext (A, f ) a n) {..<card(insert a A)}
using prems(8 ) unfolding indexing-def unfolding bij-betw-def

by auto
show {..m}⊆{..<card(insert a A)} using m-le-card-aA by auto
qed

hence auxiliar :{indexing-ext (A, f ) a n m} ⊆ indexing-ext (A, f ) a n
‘ {m} by auto

have d1 :{..m}={..<m}∪{m} by auto
have {..<m}∩{m}={} by auto
hence disjuntos: (indexing-ext (A, f ) a n) ‘ {..<m} ∩ (indexing-ext

(A, f ) a n)‘ {m}={}
using inj-on-m and d1 by auto

show ?thesis
proof (cases indexing-ext (A, f ) a n m /∈ indexing-ext (A, f ) a n ‘

{..<m})
case True thus ?thesis .
next
case False show ?thesis

proof (rule FalseE )
have indexing-ext (A, f ) a n m ∈ indexing-ext (A, f ) a n ‘

{..<m} using False by auto
thus False using auxiliar and disjuntos by auto
qed

qed
qed

show h ∈ coefficients-function (carrier V ) using cf-h .
qed
finally show ?thesis by auto

qed
finally have descomposicion-lc: 0V=h (indexing-ext (A, f ) a n m) ·

indexing-ext (A, f ) a n m
⊕V linear-combination h (indexing-ext (A, f ) a n ‘ {..<m}) .

have ∃w . w ∈ coefficients-function (carrier V )
∧ linear-combination w (indexing-ext (A, f ) a n ‘ {..<m}) = indexing-ext

(A, f ) a n m
proof (rule work-out-the-value-of-x )
show good-set (indexing-ext (A, f ) a n ‘ {..<m}) using cb-l-m unfolding

good-set-def by auto
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show h ∈ coefficients-function (carrier V ) using cf-h .
show indexing-ext (A, f ) a n m ∈ carrier V using cb-l-m unfolding

good-set-def by auto
show h (indexing-ext (A, f ) a n m) 6= 0 using m-in-A by simp
show 0V = h (indexing-ext (A, f ) a n m) · indexing-ext (A, f ) a n m
⊕V linear-combination h (indexing-ext (A, f ) a n ‘ {..<m}) using

descomposicion-lc .
qed
from this obtain w where cf-w : w ∈ coefficients-function (carrier V ) and
lc-w : linear-combination w (indexing-ext (A, f ) a n ‘ {..<m}) = indexing-ext

(A, f ) a n m by auto
have one-le-m: 1≤m
proof (cases 1≤m)

case True thus ?thesis .
next

case False show ?thesis
proof (rule FalseE )

have m-zero: m=0 using False by auto
hence not-zero:indexing-ext (A, f ) a n m 6= 0V using m-in-A

by (metis 1 insert(9 ) imageI lessThan-iff m-le-card-aA)
have zero: linear-combination w (indexing-ext (A, f ) a n ‘ {..< m})=0V

using m-zero by auto
show False using lc-w and zero and not-zero by auto

qed
qed

let ?y=indexing-ext (A, f ) a n m
have {i . i < m}={..<m} by auto
hence ?y = linear-combination w (indexing-ext (A, f ) a n ‘ {i . i < m})

using lc-w by auto
thus ?thesis using cf-w and one-le-m and m-le-card-aA and indexing-m-in-aA

by force
qed

qed
qed
next
show finite Ausing l-dep-good-set [OF ld-A] unfolding good-set-def by simp

qed

The proof can be also done without induction and then the proof of the
theorem is shorter: “only” 200 code lines. The proof is a generalization of
one of the cases in the induction above.

theorem
linear-dependent-set-sorted-contains-linear-combination2 :
assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A
and i : indexing (A, f )
shows ∃ y∈A. ∃ g . ∃ k ::nat .
g ∈ coefficients-function (carrier V )
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∧ (1 ::nat) ≤ k ∧ k < (card A)
∧ f k = y ∧ y = linear-combination g (f‘{i ::nat . i<k})

proof −
have good-set-A: good-set A using l-dep-good-set [OF ld-A] .
from ld-A obtain h

where cf-h: h ∈ coefficients-function (carrier V )
and sum-zero: linear-combination h A=0V
and not-all-zero: ¬ (∀ x∈A. h x =0K)
unfolding linear-dependent-def by auto

have 1 : f ‘ {..<(card A)} = A using i
unfolding indexing-def unfolding bij-betw-def
unfolding iset-to-index-def by auto

let ?A={k∈{..<card A}. h (f k) 6= 0K}
have finite-A: finite ?A by auto
have A-not-empty : ?A6={} using not-all-zero using 1 by force
def m ≡ Max ?A
have m-in-A: m ∈ ?A using Max .closed [OF finite-A A-not-empty ] unfolding

m-def by force
have ∀ x∈{..<card A}. (x<card A) by auto
hence m-le-card-aA: m<(card A) using Max-less-iff [OF finite-A A-not-empty ]

unfolding m-def by auto
have ¬ (∃ x∈?A. m < x ) using Max-less-iff [OF finite-A A-not-empty ] unfold-

ing m-def by auto
hence h-indexing-m-card-zero: ∀ x∈{m<..<(card A)}. h (f x ) = 0K by auto
have indexing-m-in-aA: f m ∈ A using 1 using m-le-card-aA by auto
have descomposicion-conjunto:{..<(card A)} = {..m} ∪ {m<..<(card A)}

using m-le-card-aA unfolding m-def by auto
have f ‘{..<(card A)}

= f ‘ ({..m}∪{m<..<(card A)})
unfolding descomposicion-conjunto ..

also have...= f ‘ {..m} ∪ f ‘{m<..<(card(A))} by auto
finally have descomposicion-indexing-ext : f ‘ {..<card A} =

f ‘ {..m} ∪ f ‘ {m<..<card A} .
have descomposicion-conjunto2 : {..m}=insert m {..<m} by auto
hence descomposicion-indexing-ext2 : f ‘ {..m} = (insert (f m) (f ‘ {..<m}))

by auto
have cb-l-m: good-set (f ‘ {..m})
proof −

have f ‘ {..m} ⊆ f ‘ {..<card (A)} using m-le-card-aA by auto
hence f ‘ {..m} ⊆ A using 1 by simp
thus ?thesis using good-set-A unfolding good-set-def by auto

qed
have i-m-in-V : f m ∈ carrier V using cb-l-m unfolding good-set-def by auto

have 0V=linear-combination h (f ‘ {..<card A}) using sum-zero 1 by auto
also have ...=linear-combination h (f ‘ {..m} ∪ f ‘ {m<..<card A})

using descomposicion-indexing-ext by auto
also have ...= linear-combination h (f ‘ {..m})
⊕V linear-combination h (f ‘ {m<..<card A})
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proof (unfold linear-combination-def , rule finsum-Un-disjoint ,force)
show finite (f ‘ {m<..<card A}) using m-le-card-aA by auto
show f ‘ {..m} ∩ f ‘ {m<..<card A} = {}
proof −

have disjuntos: {..m} ∩ {m<..<(card(A))}={} by auto
have f ‘ {..m}∩f ‘{m<..<(card(A))}=

f ‘ ({..m}∩{m<..<(card(A))})
proof(rule inj-on-image-Int [symmetric])

show inj-on f {..<card(A)}
using i
unfolding indexing-def unfolding iset-to-set-def iset-to-index-def
unfolding bij-betw-def by simp

show {..m} ⊆ {..<card A} using m-le-card-aA by auto
show {m<..<card (A)} ⊆ {..<card (A)} using m-le-card-aA by auto

qed
also have ...={} using disjuntos by simp
finally show ?thesis .

qed
show (λy . h y · y) ∈ f ‘ {..m} → carrier V
proof (auto,rule mult-closed)

fix x
assume x-le-m: x≤m
show f x ∈ carrier V

using 1 and good-set-A
unfolding good-set-def unfolding indexing-ext-def unfolding iset-to-index-def

using x-le-m and m-le-card-aA by auto
thus h (f x ) ∈ carrier K using cf-h unfolding coefficients-function-def by

auto
qed
show (λy . h y · y) ∈ f ‘ {m<..<card (A)} → carrier V
proof (auto,rule mult-closed)

fix x
assume m-le-x : m<x

and x-le-card-aA: x<card(A)
show f x ∈ carrier V

using 1 and good-set-A
unfolding good-set-def unfolding indexing-ext-def unfolding iset-to-index-def

using m-le-x and x-le-card-aA by auto
thus h (f x ) ∈ carrier K using cf-h unfolding coefficients-function-def by

auto
qed

qed
also have ...= linear-combination h (f ‘ {..m}) ⊕V 0V
proof −

have linear-combination h (f ‘ {m<..<card (A)})=0V
proof (unfold linear-combination-def )

have hy-zero:
∧

y . [[y∈f ‘ {m<..<card (A)}]] =⇒ h y = 0K
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using h-indexing-m-card-zero by auto
have (

⊕
Vy∈f ‘ {m<..<card (A)}. h y · y) =

(
⊕

Vy∈f ‘ {m<..<card (A)}. 0V)
proof (rule finsum-cong ′)

show f ‘ {m<..<card (A)}
= f ‘ {m<..<card (A)} ..

show (λy . 0V) ∈ f ‘ {m<..<card (A)} → carrier V by auto
show

∧
i . i ∈ f ‘ {m<..<card (A)} =⇒ h i · i = 0V

proof −
fix i
assume i-in-indexing : i ∈ f ‘ {m<..<card (A)}
show h i · i = 0V
proof −

have hi-zero:h(i)=0K using hy-zero[OF i-in-indexing ] .
have i-in-V : i∈ carrier V using 1
proof −

have f ‘ {m<..<card (A)}
⊆ f ‘ {..<card (A)} using m-le-card-aA by auto

hence f ‘ {m<..<card A}⊆ A using 1 by simp
thus ?thesis using i-in-indexing and good-set-A unfolding good-set-def

by auto
qed
show ?thesis using zeroK-mult-V-is-zeroV and hi-zero and i-in-V by

auto
qed

qed
qed
also have ...=0V
proof (rule finsum-zero)

show finite (f ‘ {m<..<card (A)})
proof −

have f ‘ {m<..<card (A)}
⊆ f ‘ {..<card (A)} using m-le-card-aA by auto

hence f ‘ {m<..<card (A)}⊆ A using 1 by simp
thus ?thesis using good-set-A unfolding good-set-def by auto

qed
qed
finally show (

⊕
Vy∈f ‘ {m<..<card (A)}. h y · y) = 0V .

qed
thus ?thesis by auto

qed
also have ...=linear-combination h (f‘ {..m})
proof (rule V .r-zero, rule linear-combination-closed)

show good-set (f ‘ {..m}) using cb-l-m .
show h ∈ coefficients-function (carrier V ) using cf-h .

qed
also have ...=h (f m) · (f m)
⊕V linear-combination h (f ‘ {..<m})

proof −
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have linear-combination h (f ‘ {..m})
= linear-combination h ((insert (f m) (f ‘ {..<m})))
using arg-cong2 and descomposicion-indexing-ext2 by auto

also have ...
=h (f m) · f m ⊕V linear-combination h (f‘ {..<m})

proof (rule linear-combination-insert)
show good-set (f ‘ {..<m}) using cb-l-m unfolding good-set-def by auto
show f m ∈ carrier V using i-m-in-V .
show f m /∈ f ‘ {..<m}
proof −

have inj-on-m: inj-on f {..m}
proof (rule subset-inj-on)

show inj-on f {..<card(A)}
using i unfolding indexing-def unfolding bij-betw-def by auto

show {..m}⊆{..<card(A)} using m-le-card-aA by auto
qed
hence auxiliar :{f m} ⊆ f ‘ {m} by auto
have d1 :{..m}={..<m}∪{m} by auto
have {..<m}∩{m}={} by auto
hence disjuntos: f‘ {..<m} ∩ f‘ {m}={} using inj-on-m and d1 by auto
show ?thesis
proof (cases f m /∈ f ‘ {..<m})

case True thus ?thesis .
next

case False show ?thesis
proof (rule FalseE )

have f m ∈ f ‘ {..<m} using False by auto
thus False using auxiliar and disjuntos by auto

qed
qed

qed
show h ∈ coefficients-function (carrier V ) using cf-h .

qed
finally show ?thesis by auto

qed
finally have descomposicion-lc: 0V=h (f m) · f m
⊕V linear-combination h (f ‘ {..<m}) .

have ∃w . w ∈ coefficients-function (carrier V )
∧ linear-combination w (f ‘ {..<m}) = f m

proof (rule work-out-the-value-of-x )
show good-set (f ‘ {..<m}) using cb-l-m unfolding good-set-def by auto
show h ∈ coefficients-function (carrier V ) using cf-h .
show f m ∈ carrier V using cb-l-m unfolding good-set-def by auto
show h (f m) 6= 0 using m-in-A by simp
show 0V = h (f m) · f m
⊕V linear-combination h (f ‘ {..<m}) using descomposicion-lc .

qed
from this obtain w where cf-w : w ∈ coefficients-function (carrier V ) and

lc-w : linear-combination w (f ‘ {..<m}) = f m by auto
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have one-le-m: 1≤m
proof (cases 1≤m)

case True thus ?thesis .
next

case False show ?thesis
proof (rule FalseE )

have m-zero: m=0 using False by auto
hence not-zero:f m 6= 0V using m-in-A

by (metis indexing-m-in-aA not-zero)
have zero: linear-combination w (f ‘ {..< m})=0V using m-zero by auto
show False using lc-w and zero and not-zero by auto

qed
qed
let ?y=f m
have {i . i < m}={..<m} by auto
hence ?y = linear-combination w (f ‘ {i . i < m}) using lc-w by auto
thus ?thesis using cf-w and one-le-m and m-le-card-aA and indexing-m-in-aA

by force
qed

end
end
theory Basis
imports Linear-combinations
begin

9 Basis

context vector-space
begin

A finite spanning set is a finite set of vectors that can generate every vector
in the space through such linear combinations.

definition spanning-set :: ′b set ⇒ bool
where spanning-set X = (good-set X
∧ (∀ x . x ∈ carrier V −→ (∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination

f X = x )))

Even, we can talk about an infinite spanning set. We say that a set (finite or
infinite) X ⊆ carrier V is a spanning set (we will rename this definition as
spanning-set-ext) if for every x ∈ carrier V it is possible to choose a finite
subset of X such that exists a linear combination of its elements equal to x.

As we have said before, the sums are all finite: we can not talk about an
infinite sum of vectors without adding some concepts and more structure
(the axioms of Vector Space do not allow it).

definition spanning-set-ext :: ′b set ⇒ bool
where spanning-set-ext X = (∀ x . x ∈ carrier V −→
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(∃A. ∃ f . good-set A ∧ A ⊆ X ∧ f ∈ coefficients-function (carrier V ) ∧ linear-combination
f A = x ))

Let’s see the compatibility between the definitions:

Now we prove that every spanning-set is a spanning-set-ext :

lemma spanning-imp-spanning-ext :
assumes sp-X : spanning-set X
shows spanning-set-ext X
unfolding spanning-set-ext-def
using sp-X
by (auto simp add : mem-def spanning-set-def subset-refl)

Whenever we have a spanning-set-ext which is finite and X ⊆ carrier V
then it is a spanning-set.

lemma gs-spanning-ext-imp-spanning :
assumes sp-X : spanning-set-ext X
and gs-X : good-set X
shows spanning-set X

proof (unfold spanning-set-def , rule conjI )
show good-set X using gs-X .
show ∀ x . x ∈ carrier V
−→ (∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f X = x )

proof (auto)
fix x
assume x-in-V : x ∈ carrier V
from sp-X obtain A and f where A-in-X : A ⊆ X

and gs-A: good-set A
and cf-f : f ∈ coefficients-function (carrier V )
and lc-fA: linear-combination f A = x
unfolding spanning-set-ext-def using x-in-V by blast

def g ≡ (λx . if x ∈ A then f x else 0)
have cf-g : g ∈ coefficients-function (carrier V )

using cf-f
unfolding coefficients-function-def g-def by force

have linear-combination g X = x
proof −

have x=linear-combination f A using lc-fA by blast
also have ...=linear-combination g (A∪X ) unfolding g-def
proof (rule eq-lc-when-out-of-set-is-zero[symmetric])

show good-set X using gs-X .
show good-set A using gs-A .
show f ∈ coefficients-function (carrier V ) using cf-f .

qed
also have ...=linear-combination g X

using arg-cong2 [of g g A∪X X linear-combination]
using A-in-X by fast

finally show ?thesis by fast
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qed
thus ∃ g . g ∈ coefficients-function (carrier V )
∧ linear-combination g X = x using cf-g by auto

qed
qed

A basis is an independent spanning set. We define it in general (X could be
finite or infinite).

definition basis :: ′b set ⇒ bool
where basis X = (X ⊆ carrier V ∧ linear-independent-ext X ∧ spanning-set-ext

X )

If we have a finite basis, then it is a good set.

lemma finite-basis-implies-good-set :
assumes basis-B : basis B
and finite-B : finite B
shows good-set B
using basis-B finite-B unfolding basis-def good-set-def by fast

We introduce the definition of span of a determinated set A like the set of
all elements which can be expressed as a linear combination of the elements
of A.

definition span :: ′b set => ′b set
where span A = {x . ∃ g ∈ coefficients-function (carrier V ). x = linear-combination

g A}

First of all, we prove the behavior of span with respect to {}.
lemma

span-empty [simp]:
shows span {} = {0V}
unfolding span-def
unfolding linear-combination-def
using V .finsum-empty
unfolding coefficients-function-def by auto

One auxiliar result says that 0V is in the span of every set.

lemma
span-contains-zero [simp]:
assumes fin-A: finite A
and A-in-V : A ⊆ carrier V
shows 0V ∈ span A

proof −
have 0V = linear-combination (λx . 0K) A
proof (unfold linear-combination-def ,

subst finsum-zero [symmetric, OF fin-A], — Be careful applying unfold, we
enter in a loop.

rule finsum-cong ′)
show A = A by (rule refl)
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show op · 0 ∈ A → carrier V
unfolding Pi-def
using mult-closed using A-in-V by auto

show
∧

i . i ∈ A =⇒ 0V = 0 · i
using zeroK-mult-V-is-zeroV using A-in-V by auto

qed
thus ?thesis

unfolding span-def
unfolding coefficients-function-def
unfolding Pi-def using zero-closed by auto

qed

Now we are going to prove that if we remove an element of a set which is
a linear combination of the rest of elements then the span of the set is the
same than the span of the set minus the element. This will be a fundamental
property to be applied in the future. First of all, we do two auxiliar proofs.

This auxiliary lemma claims that given a coefficients funcion g of A − {a}
hence there exists another one (denoted by ga) such that linear-combination
g (A − {a}) = linear-combination ga A. The coefficients function ga will
be defined as follows: λx . if x = a then 0 else g x.

lemma exists-function-Aa-A:
assumes cf-g : g ∈ coefficients-function (carrier V )
and good-set-A: good-set A
and a-in-A: a ∈ A
shows ∃ ga ∈ coefficients-function (carrier V ).
(
⊕

Vy∈A − {a}. g y · y) = (
⊕

Vy∈A. ga y · y)
proof

let ?f =(%x . if x=a then 0K else g(x ))
show cf-f : ?f ∈ coefficients-function (carrier V )

using cf-g unfolding coefficients-function-def unfolding Pi-def by auto
show (

⊕
Vy∈A − {a}. g y · y) = (

⊕
Vy∈A. ?f y · y)

proof −
have A-in-V : A ⊆ carrier V using good-set-A unfolding good-set-def by simp

hence a-in-V : a ∈ carrier V using a-in-A by auto
have good-set-Aa: good-set (A − {a})

using good-set-A unfolding good-set-def by auto
have Aa-in-V : (A − {a}) ⊆ carrier V using A-in-V by auto
have insert-aA: (insert a (A − {a}))=A using a-in-A by auto
have (

⊕
Vy∈(insert a (A−{a})). ?f y · y)= ?f (a)·a ⊕V (

⊕
Vy∈A−{a}. ?f

y · y)
proof (rule finsum-insert)

show finite (A − {a}) using good-set-A unfolding good-set-def by simp
show a /∈ A − {a} by simp
show (λy . (if y = a then 0 else g y) · y) ∈ A − {a} → carrier V

using A-in-V cf-g unfolding coefficients-function-def
unfolding Pi-def using mult-closed by auto

show (if a = a then 0 else g a) · a ∈ carrier V
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using mult-closed [OF a-in-V K .zero-closed ] by auto
qed

also have ...=0V ⊕V (
⊕

Vy∈A−{a}. ?f y · y) using zeroK-mult-V-is-zeroV [OF
a-in-V ] by auto

also have ...=(
⊕

Vy∈A−{a}. ?f y · y)
using V .l-zero[OF linear-combination-closed [OF good-set-Aa cf-f ]]
unfolding linear-combination-def .

also have ...=(
⊕

Vy∈A−{a}. g y · y)
proof (rule finsum-cong ′)

show A − {a} = A − {a} ..
show (λy . g y · y) ∈ A − {a} → carrier V

using Aa-in-V using cf-g
unfolding Pi-def unfolding coefficients-function-def
using mult-closed by auto

show
∧

i . i ∈ A − {a} =⇒ (if i = a then 0 else g i) · i = g i · i by auto
qed
finally show ?thesis using insert-aA by auto

qed
qed

This auxiliary lemma is similar to the previous one. It claims that given a co-
efficients function h and another one g such that a = linear-combination g (A
− {a}), there exists a coefficients function ga such that linear-combination h
A = linear-combination ga (A − {a}). This coefficients funcion ga is defined
as follows: λx . h a ⊗ g x ⊕ h x. In other words, with these premises every
linear combination of elements of A can be expressed as a linear combination
of elements of A− {a}.
lemma exists-function-A-Aa:

assumes cf-h:h ∈ coefficients-function (carrier V )
and cf-g : g ∈ coefficients-function (carrier V )
and a-lc-g-Aa: a = linear-combination g (A−{a})
and good-set-A: good-set A and a-in-A: a∈A
shows ∃ ga ∈ coefficients-function (carrier V ).
(
⊕

Vy∈A. h y · y) = (
⊕

Vy∈A − {a}. ga y · y)
proof

let ?f = (%x . (h a ⊗ g x ) ⊕K h x )
have cb-Aa: good-set (A − {a})

using a-in-A and good-set-A unfolding good-set-def by auto
have a-in-V : a ∈ carrier V

using a-in-A and good-set-A unfolding good-set-def by auto
have A-in-V : A⊆ carrier V

using good-set-A unfolding good-set-def by auto
have igualdad-conjuntos: insert a (A−{a})=A using a-in-A by auto
show cf-f : ?f ∈ coefficients-function (carrier V )
proof (unfold coefficients-function-def , unfold Pi-def , auto)

fix x
assume x-in-V : x∈ carrier V
hence (h a ⊗ g x )∈ carrier K
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using cf-g cf-h a-in-V unfolding coefficients-function-def using K .m-closed
by auto

thus (h a ⊗ g x ) ⊕ h x ∈ carrier K
using K .a-closed [OF - fx-in-K [OF x-in-V cf-h]] by auto

next
fix x
assume x-notin-V : x /∈ carrier V
have h a ⊗ g x ⊕ h x = h a ⊗ g x ⊕ 0

using cf-h unfolding coefficients-function-def using x-notin-V by simp
also have ...= h a ⊗ 0 ⊕ 0

using cf-g unfolding coefficients-function-def using x-notin-V by simp
also have ...= 0 ⊕ 0 using K .r-null [OF fx-in-K [OF a-in-V cf-h]] by simp
also have ...= 0 by simp
finally show h a ⊗ g x ⊕ h x = 0 .

qed
show (

⊕
Vy∈A. h y · y) = (

⊕
Vy∈A − {a}. ?f y · y)

proof −
have linear-combination h (insert a (A−{a})) = h a · a ⊕V linear-combination

h (A−{a})
— We want to apply the theorem linear-combination-insert, so we have to

write insert a (A - a) instead of directly A.
proof (rule linear-combination-insert)

show good-set (A − {a}) using cb-Aa .
show a ∈ carrier V using a-in-V .
show a /∈ A − {a} using a-in-A by simp
show h ∈ coefficients-function (carrier V ) using cf-h .

qed
also have ... = h a · linear-combination g (A−{a}) ⊕V linear-combination h

(A−{a})
using a-lc-g-Aa by auto

also have ... = linear-combination (%x . h(a) ⊗ g x ) (A−{a}) ⊕V linear-combination
h (A−{a})

using fx-in-K [OF a-in-V cf-h] and linear-combination-rdistrib [OF cb-Aa cf-g
-] by auto

also have ... = (
⊕

Vy∈A − {a}. (h a ⊗ g y)·y ⊕V (h y) · y)
proof (unfold linear-combination-def , rule finsum-addf [symmetric])

show finite (A − {a}) using cb-Aa unfolding good-set-def by auto
show (λy . (h a ⊗ g y) · y) ∈ A − {a} → carrier V
proof (unfold Pi-def , auto)

fix x
assume x-in-A: x∈A
hence x-in-V : x∈carrier V

using good-set-A unfolding good-set-def by auto
hence (h a ⊗ g x )∈ carrier K

using cf-g cf-h a-in-V unfolding coefficients-function-def
using K .m-closed by auto

thus (h a ⊗ g x ) · x ∈ carrier V
using mult-closed [OF x-in-V -] by auto

qed
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show (λy . h y · y) ∈ A − {a} → carrier V
unfolding Pi-def using A-in-V using fx-x-in-V [OF - cf-h] by auto

qed
also have ...=linear-combination (%x . (h(a) ⊗ g x ) ⊕K (h x )) (A−{a})
proof (unfold linear-combination-def , rule finsum-cong ′)

show A − {a} = A − {a} ..
show (λy . (h a ⊗ g y ⊕ h y) · y) ∈ A − {a} → carrier V
proof (unfold Pi-def , auto)

fix x
assume x-in-A: x∈A
hence x-in-V : x∈carrier V

using good-set-A unfolding good-set-def by auto
hence (h a ⊗ g x )∈ carrier K

using cf-g cf-h a-in-V
unfolding coefficients-function-def using K .m-closed by auto

hence (h a ⊗ g x ) ⊕ h x ∈ carrier K
using K .a-closed [OF - fx-in-K [OF x-in-V cf-h]] by auto

thus (h a ⊗ g x ⊕ h x ) · x ∈ carrier V using mult-closed [OF x-in-V -] by
simp

qed
show

∧
i . i ∈ A − {a} =⇒ (h a ⊗ g i) · i ⊕V h i · i = (h a ⊗ g i ⊕ h i) · i

proof (rule add-mult-distrib2 [symmetric])
fix x
assume x-in-A: x∈A−{a}
thus x-in-V : x∈carrier V using cb-Aa unfolding good-set-def by auto
thus (h a ⊗ g x )∈ carrier K
using cf-g cf-h a-in-V unfolding coefficients-function-def using K .m-closed

by auto
show h x ∈ carrier K using fx-in-K [OF x-in-V cf-h] .

qed
qed

finally show ?thesis unfolding linear-combination-def using igualdad-conjuntos
by auto

qed
qed

Now we present the theorem. The proof is done by double content of both
span sets and we make use of the two previous lemmas.

theorem
span-minus:
assumes good-set-A: good-set A
and a-in-A: a ∈ A
and exists-g : ∃ g . g∈ coefficients-function (carrier V )
∧ a = linear-combination g (A − {a})
shows span A = span (A − {a})

proof
show span (A − {a}) ⊆ span A

unfolding span-def
unfolding linear-combination-def

104



using assms and exists-function-Aa-A by auto
next

from exists-g obtain g
where cf-g : g ∈ coefficients-function (carrier V )
and a-lc: a = linear-combination g (A−{a}) by auto

show span A ⊆ span (A − {a})
proof (unfold span-def , unfold linear-combination-def ,auto)

fix f
assume cf-f : f ∈ coefficients-function (carrier V )
show ∃ ga ∈ coefficients-function (carrier V ).

(
⊕

Vy∈A. f y · y) = (
⊕

Vy∈A − {a}. ga y · y)
using exists-function-A-Aa
[OF cf-f cf-g a-lc good-set-A a-in-A] .

qed
qed

A corollary of this theorem claims that for every linearly dependent set A,
then ∃ a∈A. span A = span (A − {a}).

We also need to use linear-dependent Y =⇒ ∃ y∈Y . ∃ g . g ∈ coefficients-function
(carrier V ) ∧ y = linear-combination g (Y − {y})
corollary

span-minus2 :
assumes ld-A: linear-dependent A
shows ∃ a∈A. span A = span (A − {a})

proof −
have ∃ a∈A. ∃ g . g ∈ coefficients-function (carrier V ) ∧ a = linear-combination

g (A − {a})
using exists-x-linear-combination2 [OF ld-A] .

thus ?thesis using span-minus l-dep-good-set [OF ld-A] by auto
qed

If an element y is not in the span of a set A, hence that element is not in
that set. The proof is completed by reductio ad absurdum. If a ∈ A, then
there is a linear combination of the elements of A, and thus a ∈ span(A),
which is a contradiction with one of the premises.

lemma not-in-span-impl-not-in-set :
assumes y-notin-span: y /∈ span A
and cb-A: good-set A
and y-in-V : y ∈ carrier V
shows y /∈ A

proof (cases y /∈ A)
case True thus ?thesis .

next
case False
show ?thesis
proof −

def g≡(%x . if x=y then 1 else 0)
have cf-g : g ∈ coefficients-function (carrier V )
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unfolding g-def coefficients-function-def using y-in-V
by simp

have linear-combination g A = y
proof −

have igualdad-conjuntos: A=(insert y (A−{y}))
using False by fast

hence linear-combination g A
=linear-combination g (insert y (A−{y}))
using arg-cong2 by force

also have ...=g(y)·y ⊕V linear-combination g (A−{y})
proof (rule linear-combination-insert)

show good-set (A − {y}) using cb-A
unfolding good-set-def by fast

show y ∈ carrier V using False cb-A
unfolding good-set-def by fast

show y /∈ A − {y} by simp
show g ∈ coefficients-function (carrier V ) using cf-g .

qed
also have ...=g(y)·y ⊕V 0V
proof −

have linear-combination g (A−{y})=0V
proof −

have (
⊕

Vy∈A − {y}. g y · y)=(
⊕

Vy∈A − {y}. 0V)
apply (rule finsum-cong ′) apply auto
unfolding g-def apply simp
apply (rule zeroK-mult-V-is-zeroV )
using cb-A unfolding good-set-def by blast

also have ...= 0V
using finsum-zero cb-A
unfolding good-set-def by blast

finally show ?thesis unfolding linear-combination-def .
qed
thus ?thesis by simp

qed
also have ...=g(y)·y

using r-zero and mult-closed and False cb-A
unfolding good-set-def g-def by auto

also have ...=y
using mult-1 False cb-A
unfolding good-set-def g-def by auto

finally show ?thesis .
qed
thus ?thesis

using cf-g y-notin-span unfolding span-def by fast
qed

qed

If we have an element which is not in the span of an independent set, then
the result of inserting this element into that set is a linearly independent set.
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The proof is done dividing the goal into cases. The case where A 6= {} again
is divided in cases with respect to the boolean linear-independent (insert
y A). In the case where linear-independent (insert y A) is false, again we
proceed by reductio ad absurdum. It is a long lemma of 129 lines.

lemma insert-y-notin-span-li :
assumes y-notin-span: y /∈ span A
and y-in-V : y ∈ carrier V
and li-A: linear-independent A
shows linear-independent (insert y A)

proof (cases A={})
case True thus ?thesis — If A is empty it is trivial.

using insertI1 span-empty
unipuntual-is-li y-in-V y-notin-span by auto

next
case False note A-not-empty=False
show ?thesis
proof (cases linear-independent (insert y A))

case True thus ?thesis .
next

case False show ?thesis
proof −

have y-not-zero: y 6=0V
using y-notin-span good-set-finite good-set-in-carrier

l-ind-good-set li-A span-contains-zero
by auto

have cb-A: good-set A using l-ind-good-set li-A by fast
have finite-A: finite A using good-set-finite l-ind-good-set li-A by fast

have ld-Ay : linear-dependent (A ∪ {y}) using not-independent-implies-dependent
False cb-A y-in-V

unfolding good-set-def by auto
have zero-not-in: 0V /∈ A ∪ {y} using zero-not-in-linear-independent-set [OF

li-A] y-not-zero by fast
have ∃ h. indexing (A ∪ {y}, h) ∧ h ‘ {..<card A} = A ∧ h ‘ ({..<card A

+ card {y}} − {..<card A}) = {y}
proof (rule indexing-union)
show A ∩ {y} = {} using not-in-span-impl-not-in-set [OF y-notin-span cb-A

y-in-V ] by simp
show finite A using finite-A .
show A 6= {} using A-not-empty .
show finite {y} by simp

qed
from this obtain h where indexing : indexing (A ∪ {y}, h) and surj-h-A: h

‘ {..<card A} = A
and surj-h-y : h ‘ ({..<card A + card {y}} − {..<card A}) = {y} by fastsimp

let ?P = (λk . ∃ b∈A∪{y}. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ k
∧

k < card (A∪{y}) ∧ h k = b ∧ b = linear-combination g (h ‘ {i . i < k}))
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have exK : (∃ k . ?P k)
using linear-dependent-set-sorted-contains-linear-combination [

OF ld-Ay zero-not-in indexing ] by auto
have ex-LEAST : ?P (LEAST k . ?P k)

using LeastI-ex [OF exK ] .
let ?k = (LEAST k . ?P k)
have ∃ b∈A∪{y}. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ ?k ∧
?k < card (A∪{y}) ∧ h ?k = b ∧ b = linear-combination g (h ‘ {i . i < ?k})
using ex-LEAST by simp

then obtain b g
where one-le-k : 1 ≤ ?k and k-l-card : ?k < card (A∪{y}) and h-k-eq-b: h

?k = b
and cf-g : g ∈ coefficients-function (carrier V ) and
combinacion-anteriores: b = linear-combination g (h ‘ {i . i < ?k})
and b-in-Ay : b ∈ (A ∪ {y})
by blast

show ?thesis
proof (cases b∈{y})

case True note b-in-y=True
have k-eq-card : ?k=card A
proof −

— I will prove that k is less or equal to card A. If k¡card A we will obtain
a contradiction (because the element will be in A). So k = card A

have card (A∪{y})= card A + 1
using not-in-span-impl-not-in-set [OF y-notin-span cb-A y-in-V ] finite-A

card-insert-if by auto
hence k-le-cardA: ?k ≤ card A using k-l-card by auto
thus ?thesis
proof (cases ?k<card A)

case True
have h ?k ∈ A using surj-h-A True by auto

thus ?thesis using not-in-span-impl-not-in-set [OF y-notin-span cb-A
y-in-V ] h-k-eq-b b-in-y by auto

next
case False thus ?thesis using k-le-cardA by auto

qed
qed
have linear-combination g A = y
proof −

have h ‘ {i . i < ?k}=A using surj-h-A k-eq-card by auto
hence linear-combination g A = linear-combination g (h ‘ {i . i < ?k})

using arg-cong2 [of g g A h‘{..<card A}] by presburger
also have ...=b using combinacion-anteriores by simp
also have ...=y using True by simp
finally show ?thesis .

qed
thus ?thesis using cf-g y-notin-span unfolding span-def by auto

next
case False

108



show ?thesis
proof −

have b-in-A: b∈A using False b-in-Ay by simp
have k-le-cardA: ?k<card(A)

using b-in-A and h-k-eq-b and surj-h-A and k-l-card and indexing
unfolding indexing-def and bij-betw-def and inj-on-def
by force

have ld-insert : linear-dependent (insert b (h‘{i . i<?k}))
proof (rule lc1 )

show linear-independent (h‘{i . i<?k})
proof (rule independent-set-implies-independent-subset)

show linear-independent A using li-A .
show h ‘ {i . i < ?k} ⊆ A using surj-h-A k-le-cardA by auto

qed
show b ∈ carrier V using b-in-A cb-A unfolding good-set-def

by auto
show b /∈ h‘{i . i<?k}

using b-in-A and h-k-eq-b and surj-h-A and k-l-card and indexing
unfolding indexing-def and bij-betw-def and inj-on-def
by force

show ∃ f . f ∈ coefficients-function (carrier V ) ∧
linear-combination f (h ‘{i . i<?k})=b
using cf-g and combinacion-anteriores by auto

qed
have linear-dependent (h‘{..<card(A)})
proof (rule linear-dependent-subset-implies-linear-dependent-set)

show insert b (h‘{i . i<?k})⊆ h ‘ {..<card A}
proof −
have igualdad-conjuntos: {i . i<?k} ∪ {?k}={..?k} using atMost-def [of

?k ] ivl-disj-un(2 ) by auto
have insert b (h‘{i . i<?k})=(h‘{i . i<?k}) ∪ {b} by simp
also have ...=h‘{i . i<?k} ∪ h‘ {?k} using h-k-eq-b by auto
also have ...=h‘ ({i . i<?k} ∪ {?k}) by auto
also have ...=h‘{..?k} using igualdad-conjuntos by auto
also have ... ⊆ h ‘ {..<card A} using k-le-cardA by auto
finally show ?thesis .

qed
show good-set (h ‘ {..<card A})

using surj-h-A cb-A by auto
show linear-dependent (insert b (h‘{i . i<?k})) using ld-insert .

qed
— Contradiction: we have linear dependent A and linear independent

A
thus ?thesis using surj-h-A li-A cb-A independent-implies-not-dependent

by auto
qed

qed
qed

qed
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qed

We can unify the concepts of spanning-set, span and basis and illustrate the
relationships that exist among them.

The span of a spanning-set is carrier V.

lemma span-basis-implies-spanning-set :
assumes span-A-V : span A = carrier V
and good-set-A: good-set A
shows spanning-set A
unfolding spanning-set-def
using span-A-V good-set-A
unfolding span-def good-set-def by force

The opposite implication:

lemma spanning-set-implies-span-basis:
assumes sg-A: spanning-set A
shows span A = carrier V
using sg-A and linear-combination-closed
unfolding spanning-set-def and span-def
by fast

Now we present the relationship between spanning-set and span: if span A = carrier V
then A is a spanning set.

lemma span-V-eq-spanning-set :
assumes cb-A: good-set A
shows span A = carrier V ←→ spanning-set A
using span-basis-implies-spanning-set

and spanning-set-implies-span-basis
and cb-A by auto

Now we can introduce in Isabelle a new definition of basis (in the case
of finite dimensional vector spaces). A finite basis will be a set A which
is linear-independent and satisfies span A = carrier V. We use the previ-
ous lemma to check that it is equivalent to basis X = (X ⊆ carrier V ∧
linear-independent-ext X ∧ spanning-set-ext X ).

lemma basis-def ′:
assumes cb-A: good-set A
shows basis A ←→ (linear-independent A ∧ span A = carrier V )
using assms basis-def fin-ind-ext-impl-ind good-set-def

good-set-in-carrier gs-spanning-ext-imp-spanning
independent-imp-independent-ext
span-V-eq-spanning-set spanning-imp-spanning-ext
spanning-set-implies-span-basis by auto

If we have a finite basis, we can forget extended versions of linear indepen-
dence and spanning set:

lemma finite-basis:
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assumes fin-A: finite A
shows basis A ←→ (linear-independent A ∧ spanning-set A)
using assms basis-def basis-def ′ fin-ind-ext-impl-ind

l-ind-good-set span-V-eq-spanning-set spanning-set-implies-span-basis
by metis

end

9.1 Finite Dimensional Vector Space

For working in a finite vector space we need to fix a finite basis.

The definition of finite dimensional vector spaces in Isabelle/HOL is direct.
It consists of a vector space in which we assume that there exists a finite
basis. Note that we have not proved yet that every vector space contains a
basis.

locale finite-dimensional-vector-space = vector-space +
fixes X :: ′c set
assumes finite-X : finite X
and basis-X : basis X

context finite-dimensional-vector-space
begin

From this point the fixed basis is denoted by X.

We add to simplifier both premisses.

lemmas [simp] = finite-X basis-X

It is easy to show that the basis is a good set, is linearly independent and a
spanning set.

lemma good-set-X :
shows good-set X
using basis-X
unfolding basis-def
using finite-X
unfolding good-set-def by simp

lemma linear-independent-X :
shows linear-independent X
using basis-X
unfolding basis-def
unfolding linear-independent-ext-def
using finite-X by simp

lemma spanning-set-X :
shows spanning-set X
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using basis-X good-set-X
unfolding basis-def
using gs-spanning-ext-imp-spanning by fast

We add to simplifier these three lemmas.

lemmas [simp] = good-set-X linear-independent-X spanning-set-X

For all x ∈ carrier V exists a linear combination of elements of the basis
(we can write x ∈ carrier V in combination of the elements of a basis).

lemma exists-combination:
assumes x-in-V : x ∈ carrier V
shows ∃ f . (f ∈ coefficients-function (carrier V ) ∧ x = linear-combination f X )
using x-in-V spanning-set-X
unfolding spanning-set-def
by fast

Next lemma shows us that coordinates of a vector are unique for each basis

lemma unique-coordenates:
assumes x-in-V : x ∈ carrier V
and cf-f : f ∈ coefficients-function (carrier V )
and lc-f : x = linear-combination f X
and cf-g : g ∈ coefficients-function (carrier V )
and lc-g : x = linear-combination g X
shows ∀ x ∈ X . g x = f x

proof −
have linear-combination f X ⊕V 	V linear-combination g X

= x ⊕V 	V x
using lc-f and lc-g by auto

hence 0V = linear-combination f X
⊕V ((	K 1K )· linear-combination g X )
using V .r-neg [OF x-in-V ]

negate-eq [OF linear-combination-closed [OF good-set-X cf-g ]]
by auto

also have . . .=linear-combination f X
⊕V linear-combination (%i . (	K 1K )⊗ g(i)) X
using linear-combination-rdistrib[OF

good-set-X cf-g K .a-inv-closed [OF K .one-closed ]] by auto
also have . . .=linear-combination (%x . f (x ) ⊕K 	Kg(x )) X

unfolding linear-combination-def
proof −

have (
⊕

Vy∈X . f y · y) ⊕V (
⊕

Vy∈X . (	 1 ⊗ g y) · y) =
(
⊕

Vy∈X . (f y ·y)⊕V (	 1 ⊗ g y) · y)
proof (rule finsum-addf [symmetric])

show finite X using finite-X .
show (λy . f y · y) ∈ X → carrier V

using mult-closed and cf-f and good-set-X
unfolding good-set-def and coefficients-function-def and Pi-def by auto

show (λy . (	 1 ⊗ g y) · y) ∈ X → carrier V
proof (unfold Pi-def , auto, rule mult-closed)
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fix y
assume y-in-X : y∈X
hence y∈carrier V using good-set-X unfolding good-set-def by auto
thus y ∈ carrier V .
thus 	 1 ⊗ g y ∈ carrier K

using cf-g and y-in-X unfolding coefficients-function-def
using K .m-closed [OF K .a-inv-closed [OF K .one-closed ] -] by auto

qed
qed
also have . . .=linear-combination (%x . f (x ) ⊕K((	K 1K )⊗ g(x ))) X
proof (unfold linear-combination-def , rule finsum-cong ′)

show X =X ..
show (λy . (f y ⊕ 	 1 ⊗ g y) · y) ∈ X → carrier V
proof (unfold Pi-def , auto, rule mult-closed)

fix y
assume y-in-X : y∈X
thus y-in-V : y ∈ carrier V using good-set-X unfolding good-set-def by

auto
show f y ⊕ 	 1 ⊗ g y ∈ carrier K

using fx-in-K [OF y-in-V cf-f ]
using fx-in-K [OF y-in-V cf-g ]
using K .m-closed [OF K .a-inv-closed [OF K .one-closed ] -] and K .a-closed

by blast
qed
show

∧
i . i ∈ X =⇒ f i · i ⊕V (	 1 ⊗ g i) · i = (f i ⊕ 	 1 ⊗ g i) · i

proof −
fix y
assume y-in-X : y ∈ X
hence y-in-V : y ∈ carrier V using good-set-X unfolding good-set-def

by auto
thus f y · y ⊕V (	 1 ⊗ g y) · y = (f y ⊕ 	 1 ⊗ g y) · y
proof (rule add-mult-distrib2 [symmetric])

show f y ∈ carrier K using cf-f and y-in-V
unfolding coefficients-function-def by auto

show 	 1 ⊗ g y ∈ carrier K
using cf-g and y-in-V unfolding coefficients-function-def
using K .m-closed [OF K .a-inv-closed [OF K .one-closed ] -] by auto

qed
qed

qed
also have . . .=linear-combination (%x . f (x ) ⊕K 	Kg(x )) X
proof (unfold linear-combination-def , rule finsum-cong ′,auto)

fix y
assume y-in-X : y∈X
hence y-in-V : y∈carrier V using good-set-X unfolding good-set-def by

auto
show (f y ⊕K 	K g y) · y ∈ carrier V
proof (rule mult-closed)

show y ∈ carrier V using y-in-V .

113



show f y ⊕K 	K g y ∈ carrier K
using fx-in-K [OF y-in-V cf-f ]
using fx-in-K [OF y-in-V cf-g ]

unfolding coefficients-function-def using K .a-inv-closed using K .a-closed
by auto

qed
have fy-in-K : f (y)∈ carrier K

using cf-f and y-in-V unfolding coefficients-function-def by auto
have gy-in-K : g(y)∈ carrier K

using cf-g and y-in-V unfolding coefficients-function-def by auto
show (f y ⊕ 	 1 ⊗ g y) · y = (f y ⊕K 	K g y) · y
proof −

have (f y ⊕ 	 1 ⊗ g y) = (f y ⊕K 	K g y) using K .l-minus-one[OF
gy-in-K ] by auto

thus ?thesis by auto
qed

qed
finally show (

⊕
Vy∈X . f y · y) ⊕V (

⊕
Vy∈X . (	 1 ⊗ g y) · y) = (

⊕
Vy∈X .

(f y ⊕ 	 g y) · y)
unfolding linear-combination-def by auto

qed
finally have

lc-fg : 0V=linear-combination (%x . f (x ) ⊕K 	Kg(x )) X
by simp

have cf-fg : (%x . (f (x ) ⊕K 	K g(x )))
∈ coefficients-function (carrier V )

proof (unfold coefficients-function-def , auto)
fix x
assume x-in-V : x ∈ carrier V
show f x ⊕ 	 g x ∈ carrier K

using fx-in-K [OF x-in-V cf-f ] fx-in-K [OF x-in-V cf-g ] by fast
next

fix x
assume x-notin-V : x /∈ carrier V
show f x ⊕ 	 g x = 0 using cf-f cf-g unfolding coefficients-function-def using

x-notin-V by simp
qed
hence fg-0 :∀ x∈X . f (x ) ⊕K 	K g(x )=0K

using linear-independent-X and lc-fg [symmetric]
unfolding linear-independent-def by auto

show ∀ x ∈ X . g(x )=f (x )
proof

fix y
assume y-in-X : y∈X
hence y-in-V : y∈carrier V

using good-set-X unfolding good-set-def
by auto

have fg-y0 : f y ⊕ 	 g y = 0
using y-in-X and fg-0 by auto
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have fy-in-K : f (y)∈ carrier K
using cf-f and y-in-V
unfolding coefficients-function-def by auto

have gy-in-K : g(y)∈ carrier K
using cf-g and y-in-V
unfolding coefficients-function-def by auto

hence 	K(	K g y)=f y
using K .minus-equality
[OF fg-y0 K .a-inv-closed [OF gy-in-K ] fy-in-K ]
by auto

thus g(y)=f (y) using K .minus-minus[OF gy-in-K ] by auto
qed

qed

We have fixed a finite basis and now we can prove some theorems about the
span. Note that the concept of finitude of the basis is very important in the
proofs.

The span of a basis is the total, so it’s easy to prove that carrier V ⊆
span X. The other implication is also easy: we have only to unfold the
definition and use [[good-set ?X ; ?f ∈ coefficients-function (carrier V )]] =⇒
linear-combination ?f ?X ∈ carrier V.

lemma span-basis-is-V : span X = carrier V
proof

show span X ⊆ carrier V
unfolding span-def
using linear-combination-closed by auto

show carrier V ⊆ span X
unfolding span-def
using spanning-set-X unfolding spanning-set-def by auto

qed

The span of every set joined with a basis is the total. Before proving this
theorem, we make two auxiliar lemmas.

First one:

lemma exists-linear-combination-union-basis:
assumes fin-A: finite A
and A-in-V : A ⊆ carrier V
and x-in-V : x ∈ carrier V
shows ∃ g . g ∈ coefficients-function (carrier V ) ∧ x = linear-combination g (A
∪ X )
proof −
from spanning-set-X obtain f where cf-f : f ∈ coefficients-function (carrier V )

and x-lc-fX : x=linear-combination f X
unfolding spanning-set-def using x-in-V by auto

let ?g=(%x . if x ∈ X then f (x ) else 0K)
have cf-g : ?g∈coefficients-function (carrier V )
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using coefficients-function-g-f-null [OF cf-f ] .
have good-set-A: good-set A

using fin-A A-in-V unfolding good-set-def by auto
have linear-combination ?g (A ∪ X )=linear-combination ?g (X ∪ A)

— It is easier apply [[?a = ?b; ?c = ?d ]] =⇒ ?f ?a ?c = ?f ?b ?d than [[?A =
?B ; ?g ∈ ?B → carrier V ;

∧
i . i ∈ ?B =⇒ ?f i = ?g i ]] =⇒ finsum V ?f ?A =

finsum V ?g ?B, the unique different is in the arguments of the function.
by (rule arg-cong2 [of ?g ?g - - linear-combination], auto)

also have ...=linear-combination f X
using eq-lc-when-out-of-set-is-zero[OF good-set-A good-set-X cf-f ] .

also have ... = x using x-lc-fX [symmetric] .
finally have x-lc-g-AX : x = linear-combination ?g (A∪X ) by (rule sym)
hence ?g ∈ coefficients-function (carrier V ) ∧ x = linear-combination ?g (A ∪

X )
using cf-g by auto

thus ?thesis by (rule exI [of - ?g ])
qed

Second one

lemma span-union-basis-eq :
assumes fin-A: finite A
and A-in-V : A ⊆ carrier V
shows span (A ∪ X ) = span X
using span-basis-is-V

proof (unfold span-def ,auto)
fix x
assume x-in-V : x∈carrier V
show ∃ g∈coefficients-function (carrier V ). x = linear-combination g (A ∪ X )

using exists-linear-combination-union-basis[OF fin-A A-in-V x-in-V ] by auto
next

fix g
assume cf-g : g∈ coefficients-function (carrier V )
show linear-combination g (A ∪ X ) ∈ carrier V
proof (rule linear-combination-closed)

show good-set (A ∪ X )
using good-set-X and fin-A and A-in-V
unfolding good-set-def by auto

show g ∈ coefficients-function (carrier V ) using cf-g .
qed

qed

Finally the theorem: the span of every set joined with a basis is the total

corollary span-union-basis-is-V :
assumes fin-A: finite A
and A-in-V : A ⊆ carrier V
shows span (A ∪ X ) = carrier V
using assms span-union-basis-eq and span-basis-is-V
by auto
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9.2 Theorem 1.

From this, we are going to center into the proof that every linearly indepen-
dent set can be extended to a basis.

The function remove-ld takes an element of type ′a iset and returns other
element of that type in which in the set has been removed the first element
that is a combination of the preceding ones, and the indexation has removed
the corresponding index.

In the next definition, making use of previous theorem:

[[linear-dependent Xa; 0V /∈ Xa]] =⇒ ∃ y∈Xa. ∃ g k . ∃ f ∈{i . i < card Xa}
→ Xa. f ‘ {i . i < card Xa} = Xa ∧ g ∈ coefficients-function (carrier V )
∧ 1 ≤ k ∧ k < card Xa ∧ f k = y ∧ y = linear-combination g (f ‘ {i . i
< k}), we remove the least element that verifies the property that it can
be expressed as a linear combination of the preceding ones. The existence
of this element is guaranteed by the fact that the set is linearly dependent.
If we iterate the function remove-ld we can be sure that it will terminate
because sooner or later we will achieve a linearly independent set.

It is important to note that we have to provide a fixed indexation f for the
elements to be removed are uniquely determined.

The function remove-ld must be only applied to an indexation of a linearly
dependent set that does not contain 0V, since these are the uniques con-
ditions where we have ensured the existence of the element to be removed
using:

linear-dependent-set-contains-linear-combination: [[linear-dependent Xa; 0V
/∈ Xa]] =⇒ ∃ y∈Xa. ∃ g k . ∃ f ∈{i . i < card Xa} → Xa. f ‘ {i . i < card Xa}
= Xa ∧ g ∈ coefficients-function (carrier V ) ∧ 1 ≤ k ∧ k < card Xa ∧ f
k = y ∧ y = linear-combination g (f ‘ {i . i < k}).
definition remove-ld :: ′c iset => ′c iset

where remove-ld A =
(let n = (LEAST k ::nat . ∃ y∈(fst A). ∃ g .
g ∈ coefficients-function (carrier V )
∧ (1 ::nat) ≤ k ∧ k < (card (fst A))
∧ (snd A) k = y
∧ y = linear-combination g ( (snd A) ‘ {i ::nat . i<k}))
in remove-iset A n)

Next lemma expresses another notation for remove-ld ?A = Let (LEAST k .
∃ y∈fst ?A. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ k ∧ k < card
(fst ?A) ∧ snd ?A k = y ∧ y = linear-combination g (snd ?A ‘ {i . i < k}))
(remove-iset ?A).

lemma remove-ld-def ′:

117



remove-ld (A, f ) = (let n = (LEAST k ::nat . ∃ y∈A. ∃ g .
g ∈ coefficients-function (carrier V ) ∧ (1 ::nat) ≤ k
∧ k < (card A) ∧ f k = y ∧ y = linear-combination g (f‘{i ::nat . i<k}))

in (A − {f n}, (λk . if k < n then f k else f (Suc k))))
unfolding remove-ld-def
unfolding Let-def
unfolding remove-iset-def ′ by simp

Now we can prove some properties of the function remove-ld : it preserves
the carrier, is monotone and decrease the cardinality.

lemma remove-ld-preserves-carrier :
assumes b: B ⊆ carrier V
shows fst (remove-ld (B , h)) ⊆ carrier V
using b
unfolding remove-ld-def ′

unfolding Let-def by auto

lemma remove-ld-monotone:
assumes b: B ⊆ carrier V
shows fst (remove-ld (B , h)) ⊆ B
using b
unfolding remove-ld-def ′

unfolding Let-def by auto

lemma remove-ld-decr-card :
assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A
and indexing-A-f : indexing (A, f )
shows card (fst (remove-ld (A, f ))) = card A − 1

proof −
let ?P = (λk . ∃ y∈A. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ k ∧

k < card A ∧ f k = y ∧ y = linear-combination g (f ‘ {i . i < k}))
have fin-A: finite A

using l-dep-good-set [OF ld-A]
unfolding good-set-def by fast

have exK : (∃ k . ?P k)
using linear-dependent-set-sorted-contains-linear-combination [

OF ld-A not-zero indexing-A-f ] by auto
have ex-LEAST : ?P (LEAST k . ?P k)

using LeastI-ex [OF exK ] .
let ?k = (LEAST k . ?P k)
have ∃ y∈A. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ ?k ∧

?k < card A ∧ f ?k = y ∧ y = linear-combination g (f ‘ {i . i < ?k})
using ex-LEAST by simp

then obtain y
where one-le-k : 1 ≤ ?k and k-l-card : ?k < card A and f-k-eq-y : f ?k = y
by auto

then have rem-eq : fst (remove-ld (A, f )) = (A − {y}) and y-in-A: y ∈ A
using indexing-equiv-img [OF indexing-A-f ]
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unfolding Pi-def unfolding remove-ld-def ′ by auto
show ?thesis

unfolding rem-eq
using card-Diff-singleton fin-A y-in-A by auto

qed

corollary remove-ld-decr-card2 :
assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A
and indexing-A-f : indexing (A, f )
shows card (fst (remove-ld (A, f ))) < card A

proof −
have card-A-g-zero: card A > 0
proof −

have not-empty : A 6={} using dependent-not-empty [OF ld-A] .
have finite-A: finite A using l-dep-good-set [OF ld-A] unfolding good-set-def

by simp
show ?thesis using card-gt-0-iff [of A] and not-empty and finite-A by auto

qed
have card (fst (remove-ld (A, f ))) = card A − 1

using remove-ld-decr-card [OF ld-A not-zero indexing-A-f ] .
also have ...<card A using card-A-g-zero by auto
finally show ?thesis .

qed

This is an indispensable result: our function remove-ld preserves the propi-
ety of span. For this proof is very important the theorem span-minus:
[[good-set ?A; ?a ∈ ?A; ∃ g . g ∈ coefficients-function (carrier V ) ∧ ?a =
linear-combination g (?A − {?a})]] =⇒ span ?A = span (?A − {?a}).
lemma remove-ld-preserves-span:

assumes ld-A: linear-dependent A
and not-zero: 0V /∈ A
and indexing-A-f : indexing (A, f )
shows span (fst (remove-ld (A, f ))) = span A

proof −
let ?P = (λk . ∃ y∈A. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ k ∧

k < card A ∧ f k = y ∧ y = linear-combination g (f ‘ {i . i < k}))
have fin-A: finite A

using l-dep-good-set [OF ld-A]
unfolding good-set-def by fast

have exK : (∃ k . ?P k)
using linear-dependent-set-sorted-contains-linear-combination [

OF ld-A not-zero indexing-A-f ] by auto
have ex-LEAST : ?P (LEAST k . ?P k)

using LeastI-ex [OF exK ] .
let ?k = (LEAST k . ?P k)
def k == ?k — I introduce a new constant named k to make some goals more

legible. When we want to unfold it we will have to use k-def.
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have ∃ y ∈ A. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ ?k ∧
?k < card A ∧ f ?k = y ∧ y = linear-combination g (f ‘ {i . i < ?k})
using ex-LEAST by simp

then
obtain y g

where one-le-k : 1 ≤ k and k-l-card : k < card A and f-k-eq-y : f k = y
and cf-g : g ∈ coefficients-function (carrier V )
and y-lc-gf : y = linear-combination g (f ‘ {i . i < k}) and y-in-A: y ∈ A
unfolding k-def by auto

have rem-eq : fst (remove-ld (A, f )) = (A − {y}) and y-in-A: y ∈ A
using indexing-equiv-img [OF indexing-A-f ] and one-le-k and k-l-card and

f-k-eq-y
unfolding Pi-def unfolding k-def remove-ld-def ′ by auto
— I have to prove that this y is a linear combination of A − {y}.

have contenido: f ‘ {i . i < k} ⊆ A − {y}
proof −

have bb: bij-betw f {i . i ≤ k} (f ‘ {i . i ≤ k})
proof (rule bij-betw-subset [of f {..<card A} A {i . i ≤ k}])

show bij-betw f {..<card A} A
using indexing-A-f unfolding indexing-def by simp

show {i . i ≤ k} ⊆ {..<card A}
using k-l-card unfolding k-def by auto

qed
have f ‘ ({i . i < k}) = f ‘ ({i . i ≤ k} − {k}) by auto
also have f ‘ ({i . i ≤ k} − {k}) = f ‘ {i . i ≤ k} − {f k}

by (rule bij-betw-image-minus, rule bb, simp)
finally have f ‘ ({i . i < k}) = f ‘ {i . i ≤ k} − {f k} by fast
thus ?thesis

using indexing-equiv-img [OF indexing-A-f ]
unfolding f-k-eq-y
using k-l-card by auto

qed
hence union: (f‘{i . i < k} ∪ (A − {y})) = A − {y} by auto
have good-set-A: good-set A

using l-dep-good-set [OF ld-A] .
hence good-set-Ay : good-set (A − {y})

using y-in-A unfolding good-set-def by auto
hence good-set-f : good-set (f‘{i . i < k})

using contenido unfolding good-set-def by auto
let ?h=(%y . if y ∈ f ‘ {i . i < k} then g y else 0K)
have cf-h: ?h ∈ coefficients-function (carrier V )

using coefficients-function-g-f-null [OF cf-g ] .
have linear-combination g (f ‘ {i . i < k}) =

linear-combination ?h (f‘{i . i < k} ∪ (A − {y}))
using eq-lc-when-out-of-set-is-zero[OF good-set-Ay good-set-f cf-g , symmetric]

by fast
also have ...=linear-combination ?h (A − {y})
using arg-cong2 [of ?h ?h (f‘{i . i < ?k} ∪ (A − {y})) (A − {y}) linear-combination]
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using union by presburger
finally have y = linear-combination ?h (A − {y}) using y-lc-gf by fastsimp
hence exists-h: ∃ h. h ∈ coefficients-function (carrier V ) ∧ y = linear-combination

h (A − {y})
using cf-h by fast

have span A = span (A − {y})
using span-minus[OF good-set-A y-in-A exists-h] .

also have ... = span (fst (remove-ld (A, f ))) using rem-eq by simp
finally show ?thesis by blast

qed

The next function iterate-remove-ld has done that we have to install Is-
abelle2011. In previous versions we have to make use of function (tailrec),
but this element had some bugs. In particular, we could not use function
(tailrec) in the next definition.

partial-function (tailrec) iterate-remove-ld :: ′c set => (nat => ′c) => ′c set
where iterate-remove-ld A f = (if linear-independent A then A

else iterate-remove-ld (fst (remove-ld (A, f )))
(snd (remove-ld (A, f ))))

declare iterate-remove-ld .simps [simp del ]

Its behaviour is the next: from a set and a indexation of it, we apply recur-
sively the operation remove-ld up to we achieve a linearly independent set.
The reiterated elimination of the linearly dependent elements would have to
keep the span.

If we call to the function iterate-remove-ld with a linearly independent set,
it will return us that set.

lemma iterate-remove-ld-empty [simp]: iterate-remove-ld {} f = {}
unfolding iterate-remove-ld .simps [of {}] by simp

lemma
iterate-remove-ld-li [simp]:
assumes li-A: linear-independent A
shows iterate-remove-ld A f = A
using iterate-remove-ld .simps using li-A by simp

Now we are going to prove some lemmas about indexings and remove-iset.
Note that we can not put this lemmas in the file Indexed-Set .thy because
the axioms good-set and linear-dependent are sometimes in the premises.

The next lemma express that the result of aplying remove-iset preserves the
good set property. In our context we need to prove it for remove-ld...but it
does not cease to be a particular case of remove-iset.

lemma
remove-iset-good-set :
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assumes c: good-set A
and i : indexing (A, h)
shows good-set (fst (remove-iset (A, h) n))
using c
unfolding good-set-def
unfolding remove-iset-def by auto

lemma
remove-ld-good-set :
assumes c: good-set A
and i : indexing (A, h)
shows good-set (fst (remove-ld (A, h)))
unfolding remove-ld-def
unfolding Let-def
by (rule remove-iset-good-set) fact+

Next theorem applies [[indexing (?B , ?h); ?n < card ?B ]] =⇒ indexing
(remove-iset (?B , ?h) ?n) to the function remove-ld. We can omit the good
set condition: it is implicit in the fact that the set is linearly dependent.

theorem indexing-remove-ld :
assumes l : linear-dependent A
and i : indexing (A, f )
and n: 0V /∈ A
shows indexing (remove-ld (A, f ))
unfolding remove-ld-def
unfolding Let-def

proof (rule indexing-remove-iset , unfold fst-conv snd-conv)
show indexing (A, f ) by fact
show (LEAST k . ∃ y∈A. ∃ g . g ∈ coefficients-function (carrier V ) ∧

1 ≤ k ∧
k < card A ∧
f k = y ∧
y = linear-combination g (f ‘ {i . i < k})) < card A

proof −
let ?P = (λk . ∃ y∈A. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ k ∧

k < card A ∧ f k = y ∧ y = linear-combination g (f ‘ {i . i < k}))
have fin-A: finite A

using l-dep-good-set [OF l ]
unfolding good-set-def by fast

have exK : (∃ k . ?P k)
using linear-dependent-set-sorted-contains-linear-combination [

OF l n i ] by auto
have ex-LEAST : ?P (LEAST k . ?P k)

using LeastI-ex [OF exK ] .
let ?k = (LEAST k . ?P k)
have ∃ y∈A. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ ?k ∧

?k < card A ∧ f ?k = y ∧ y = linear-combination g (f ‘ {i . i < ?k})
using ex-LEAST by simp

thus ?thesis by auto
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qed
qed

Next lemma shows us that first element of a indexed set is in the carrier.
Note that we can not put this lemma in the file Indexed Set due to the axiom
A ⊆ carrier V (we have not a structure of carrier in that file).

lemma f0-in-V :
assumes indexing-A: indexing (A,f )
and A-in-V : A ⊆ carrier V
and A-not-empty : A 6={} — Essential to cardinality
shows f 0 ∈ carrier V

proof −
have A6={} using A-not-empty .
hence 0∈ {..<card A}

using card-gt-0-iff and indexing-finite[OF indexing-A]
using card-gt-0-iff lessThan-iff by blast

thus ?thesis
using indexing-A A-in-V unfolding indexing-def bij-betw-def by auto

qed

If A is independent, then its firts element is not zero.

lemma f0-not-zero:
assumes indexing-A: indexing (A,f )
and li-A: linear-independent A
and A-not-empty : A 6={}
shows f 0 6= 0V

proof −
have zero-not-in-A: 0V /∈ A using zero-not-in-linear-independent-set [OF li-A] .
have 0∈ {..<card A} using A-not-empty and indexing-finite[OF indexing-A]

using card-gt-0-iff lessThan-iff by blast
thus ?thesis using indexing-A and zero-not-in-A unfolding indexing-def bij-betw-def

by force
qed

We can also prove that apply the function insert-iset return us a good set.

lemma insert-iset-good-set :
assumes a-notin-A: a /∈ A
and indexing : indexing (A,f )
and a-in-V : a ∈ carrier V
and cb-A: good-set A
shows good-set (fst(insert-iset (A,f ) a n))
unfolding insert-iset-def using a-in-V cb-A unfolding good-set-def by simp

Remove an element and after that insert it is a good set

lemma good-set-insert-remove:
assumes B-in-V : B ⊆ carrier V
and A-in-V : A ⊆ carrier V
and A-not-empty : A 6= {}
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and indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and a-in-B : a ∈ B
shows good-set (fst (insert-iset (remove-iset (B , g) (obtain-position a (B , g)))

a n))
proof −

have cb-A: good-set A using A-in-V indexing-finite[OF indexing-A] unfolding
good-set-def by simp

have cb-B : good-set B using B-in-V indexing-finite[OF indexing-B ] unfolding
good-set-def by simp

have good-set (fst (insert-iset ((fst(remove-iset (B , g)
(obtain-position a (B , g))),snd(remove-iset (B , g) (obtain-position a (B , g)))))

a n))
proof (rule insert-iset-good-set)
show a /∈ fst (remove-iset (B , g) (obtain-position a (B , g))) using a-notin-remove-iset [OF

a-in-B indexing-B ] .
show indexing

(fst (remove-iset (B , g) (obtain-position a (B , g))),
snd (remove-iset (B , g) (obtain-position a (B , g))))

using indexing-remove-iset [OF indexing-B obtain-position-less-card [OF a-in-B
indexing-B ]] by simp

show a ∈ carrier V using a-in-B B-in-V by fast
show good-set (fst (remove-iset (B , g) (obtain-position a (B , g))))

using remove-iset-good-set [OF cb-B indexing-B ] .
qed
thus ?thesis by simp

qed

The result of applying the function iterate-remove-ld to any finite set in
carrier V will be always independent (the function finishes).

We are going to make the proof firstly by dividing in cases (with respect to
the condiction linear-independent A) and after that by total induction over
the cardinal of the set: (

∧
x . (

∧
y . f y < f x =⇒ P y) =⇒ P x ) =⇒ P a.

With respect to the induction, it is important to note that we can not make
induction over the structure of the set, with the following induction rule for
indexed set that we have introduced in section ??:

indexed-set-induct2 : [[indexing (A, f ); finite A;
∧

f . indexing ({}, f ) =⇒ P
{} f ;

∧
a A f n. [[a /∈ A; indexing (A, f ) =⇒ P A f ; finite (insert a A);

indexing (insert a A, indexing-ext (A, f ) a n); 0 ≤ n; n ≤ card A]] =⇒ P
(insert a A) (indexing-ext (A, f ) a n)]] =⇒ P A f

If we make induction over the structure, we will have to prove the case
insert a A and the induction hypothesis will say that the result is true for
A. However, independently of in what position of the indexation we place
the element a, we can not know if remove-ld (insert a A, indexing-ext (A,
f ) a n) will return the same set A or it will return another set. In other
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words: the result of inserting the element a in any position of the A set and
after that removing the least element which is a linear combination of the
preceding ones (remove-ld does it) is not equal to the original set. We can
not ensure it even when we insert the element a in the least position that it
can be expressed as a linear combination of the preceding ones: we can not
be sure that remove-ld will remove that element. For example, in the set
{(1 , 0 ), (2 , 0 ), (0 , 1 )}, if we insert the element (0 , 2 ) in the least position
where it is a linear combination of the preceding ones we achieve the set
{(1 , 0 ), (2 , 0 ), (0 , 1 ), (0 , 2 )}. However, if we apply remove-ld to this set,
it will return {(1 , 0 ), (0 , 1 ), (0 , 2 )} and this is not equal to the original
set.

lemma
linear-independent-iterate-remove-ld :
assumes A-in-V : A ⊆ carrier V
and not-zero: 0V /∈ A
and indexing-A-f : indexing (A, h)
shows linear-independent (iterate-remove-ld A h)

proof (cases linear-independent A)
case True
show ?thesis using True by simp

next
case False
have fin-A: finite A using indexing-finite[OF indexing-A-f ] .
have ld-A: linear-dependent A

using not-independent-implies-dependent [OF - False]
unfolding good-set-def using fin-A A-in-V by fast

show ?thesis
using fin-A ld-A A-in-V not-zero indexing-A-f
— HERE WE APPLY THE INDUCTION RULE:

proof (induct A arbitrary : h rule:
measure-induct-rule [where f = card ])

case (less B h)
show linear-independent (iterate-remove-ld B h)
proof (cases B = {})

case True
thus ?thesis by simp

next
case False
have not-lin-indep: ¬ linear-independent B

using dependent-implies-not-independent
[OF less.prems (2 )] .

obtain Y where Y-def : Y = fst (remove-ld (B , h))
and card-less: card Y < card B
using False
using remove-ld-decr-card2
[OF less.prems (2 ) less.prems (4 ) less.prems (5 )]
by fast

def h ′ == snd (remove-ld (B , h))
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have i-Y-h ′: indexing (Y , h ′)
unfolding Y-def h ′-def pair-collapse
by (rule indexing-remove-ld) fact+

show ?thesis
proof (cases linear-independent (fst (remove-ld (B , h))))

case True
show ?thesis

apply (subst iterate-remove-ld .simps)
apply (subst iterate-remove-ld .simps)
using not-lin-indep using True by simp

next
case False
show ?thesis
proof −

have linear-independent (iterate-remove-ld Y h ′)
proof (rule less.hyps)

show card Y < card B
using card-less .

show finite Y
using Y-def good-set-finite l-dep-good-set

less(3 ) less(6 ) remove-ld-good-set by presburger
show linear-dependent Y

unfolding Y-def
apply (rule not-independent-implies-dependent

[OF - False])
apply (rule remove-ld-good-set)
apply (unfold good-set-def , intro conjI )
by (rule less.prems (1 ), rule less.prems (3 ),

rule less.prems (5 ))
show Y ⊆ carrier V

unfolding Y-def
using remove-ld-preserves-carrier
[OF less.prems (3 ), of h] .

show 0V /∈ Y
unfolding Y-def
using remove-ld-monotone [OF less.prems (3 ), of h]
using less.prems (4 ) by auto

show indexing (Y , h ′)
unfolding Y-def h ′-def pair-collapse
by (rule indexing-remove-ld) fact+

qed
thus ?thesis

unfolding Y-def h ′-def
by (subst iterate-remove-ld .simps,

simp add : not-lin-indep)
qed

qed
qed

qed
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qed

Similarly to the previous theorem, we can prove that the function iterate-remove-ld
preserves the span.

lemma iterate-remove-ld-preserves-span:
assumes A-in-V : A ⊆ carrier V
and indexing-A-f : indexing (A,h)
and not-zero: 0V /∈ A
shows span (iterate-remove-ld A h) = span A

proof (cases linear-independent A)
case True
show ?thesis using True by simp

next
case False
have fin-A: finite A using indexing-finite[OF indexing-A-f ] .
have ld-A: linear-dependent A

using not-independent-implies-dependent [OF - False]
unfolding good-set-def using fin-A A-in-V by fast

show ?thesis
using fin-A ld-A A-in-V not-zero indexing-A-f

proof (induct A arbitrary : h rule: measure-induct-rule [where f = card ])
case (less B h)
show span (iterate-remove-ld B h) = span B
proof (cases B = {})

case True
thus ?thesis by simp

next
case False
have not-lin-indep: ¬ linear-independent B

using dependent-implies-not-independent [OF less.prems (2 )] .
obtain Y where Y-def : Y = fst (remove-ld (B , h))

and card-less: card Y < card B
using False
using remove-ld-decr-card2 [OF less.prems (2 ) less.prems (4 ) less.prems

(5 )] by fast
def h ′ == snd (remove-ld (B , h))
have i-Y-h ′: indexing (Y , h ′)

unfolding Y-def h ′-def pair-collapse
by (rule indexing-remove-ld) fact+

show ?thesis
proof (cases linear-independent (fst (remove-ld (B , h))))

case True
show ?thesis

apply (subst iterate-remove-ld .simps)
apply (subst iterate-remove-ld .simps)
using not-lin-indep using True
apply simp
proof (rule remove-ld-preserves-span)

show linear-dependent B using less(3 ) .
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show 0V /∈ B using less(5 ) .
show indexing (B , h) using less(6 ) .

qed
next

case False
show ?thesis
proof −

have span (iterate-remove-ld Y h ′) = span Y
proof (rule less.hyps)

show card Y < card B
using card-less .

show finite Y
using Y-def less(2 ) less(4 ) remove-ld-monotone rev-finite-subset by

metis
show linear-dependent Y

unfolding Y-def
proof (rule not-independent-implies-dependent)
show good-set (fst (remove-ld (B , h)))

using remove-ld-good-set less.prems(1 ) less.prems(3 ) less.prems(5 )
unfolding good-set-def by auto

show ¬ linear-independent (fst (remove-ld (B , h))) using False .
qed

show Y ⊆ carrier V
unfolding Y-def

using remove-ld-preserves-carrier [OF less.prems (3 ), of h] using
A-in-V by auto

show 0V /∈ Y
unfolding Y-def
using remove-ld-monotone [OF less.prems (3 ), of h]
using less.prems (4 ) by auto

show indexing (Y , h ′)
unfolding Y-def h ′-def pair-collapse
by (rule indexing-remove-ld) fact+

qed
thus ?thesis

unfolding Y-def h ′-def
using iterate-remove-ld .simps less(3 ) less(5 ) less(6 ) not-lin-indep

remove-ld-preserves-span by auto
qed

qed
qed

qed
qed

If we have an indexing (A ∪ B , h) where elements of an independent set
A are in its first positions and after those the elements of a set B, then A
will be in remove-ld (A ∪ B , h) (we will have removed an element of B).
The premisse of A ∩ B = {} is indispensable in order to avoid the notion of
multisets. In the book, Halmos doesn’t worry about this: he simply create
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a set with all elements of A in the first positions and after that all elements
of B...but what does it happen if a element of B are in A? we will have a
multiset because we have the same element in two positions. However, this
is not a limitation for our theorem if we make a trick like these: A∪B =
A∪(B−A). Using that we avoid the problem.

lemma A-in-remove-ld :
assumes indexing : indexing (A∪B ,h)
and ld-AB : linear-dependent (A∪B)
and surj-h-A:h‘ {..<card(A)}= A

and li-A: linear-independent A
and zero-not-in: 0V /∈ (A∪B)
and disjuntos: A∩B={}
shows A ⊆ fst (remove-ld ((A∪B),h))

proof −
have cb-A: good-set A and cb-B : good-set B

using l-dep-good-set [OF ld-AB ] unfolding good-set-def by auto
let ?P = (λk . ∃ y∈A∪B . ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ k ∧

k < card (A∪B) ∧ h k = y ∧ y = linear-combination g (h ‘ {i . i < k}))
have exK : (∃ k . ?P k)

using linear-dependent-set-sorted-contains-linear-combination [
OF ld-AB zero-not-in indexing ] by auto

have ex-LEAST : ?P (LEAST k . ?P k)
using LeastI-ex [OF exK ] .

let ?k = (LEAST k . ?P k)
have ∃ y∈A∪B . ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ ?k ∧

?k < card (A∪B) ∧ h ?k = y ∧ y = linear-combination g (h ‘ {i . i < ?k})
using ex-LEAST by simp

then obtain y s
where one-le-k : 1 ≤ ?k and k-l-card : ?k < card (A∪B) and h-k-eq-y : h ?k =

y
and cf-s: s∈ coefficients-function (carrier V ) and
combinacion-anteriores: y = linear-combination s (h ‘ {i . i < ?k})
by auto

have rem-eq : fst (remove-ld (A∪B , h)) = ((A∪B) − {y}) and y-in-AB : y ∈
A∪B

using indexing-equiv-img [OF indexing ] one-le-k k-l-card h-k-eq-y
unfolding Pi-def unfolding remove-ld-def ′ by auto

show ?thesis
proof (cases y∈B)

case True thus ?thesis using rem-eq and disjuntos by auto
next

case False show ?thesis
proof −

have y-in-A: y∈A using False and y-in-AB by simp
have k-le-cardA: ?k<card(A) — It takes about a seconds

using y-in-A and h-k-eq-y and surj-h-A and k-l-card and indexing
unfolding indexing-def and bij-betw-def and inj-on-def
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by force
have ld-insert : linear-dependent (insert y (h‘{i . i<?k}))
proof (rule lc1 )

show linear-independent (h‘{i . i<?k})
proof (rule independent-set-implies-independent-subset)

show linear-independent A using li-A .
show h ‘ {i . i < ?k} ⊆ A using surj-h-A k-le-cardA by auto

qed
show y∈ carrier V using y-in-A cb-A unfolding good-set-def

by auto
show y /∈ h‘{i . i<?k}

using y-in-A and h-k-eq-y and surj-h-A and k-l-card and indexing
unfolding indexing-def and bij-betw-def and inj-on-def
by force

show ∃ f . f ∈ coefficients-function (carrier V ) ∧
linear-combination f (h ‘{i . i<?k})=y
using cf-s and combinacion-anteriores by auto

qed
have linear-dependent (h‘{..<card(A)})
proof (rule linear-dependent-subset-implies-linear-dependent-set)

show insert y (h‘{i . i<?k})⊆ h ‘ {..<card A}
proof −

have igualdad-conjuntos: {i . i<?k} ∪ {?k}={..?k} using atMost-def [of
?k ] ivl-disj-un(2 ) by auto

have insert y (h‘{i . i<?k})=(h‘{i . i<?k}) ∪ {y} by simp
also have ...=h‘{i . i<?k} ∪ h‘ {?k} using h-k-eq-y by auto
also have ...=h‘ ({i . i<?k} ∪ {?k}) by auto
also have ...=h‘{..?k} using igualdad-conjuntos by auto
also have ... ⊆ h ‘ {..<card A} using k-le-cardA by auto
finally show ?thesis .

qed next
show good-set (h ‘ {..<card A})

using surj-h-A cb-A by auto
show linear-dependent (insert y (h‘{i . i<?k})) using ld-insert .

qed
— Contradiction: we have linear dependent A and linear independent A
thus ?thesis using surj-h-A li-A cb-A independent-implies-not-dependent by

auto
qed

qed
qed

This lemma is an extended version of previous one. It shows that we are
removing one element of the second set and preserving the indexation.

lemma descomposicion-remove-ld :
assumes indexing : indexing (A∪B ,h)
and B-not-empty : B 6={} — Due to cardinality, it is indispensable.
and surj-h-A:h‘ {..<card(A)}= A
and surj-h-B :h‘ ({..<(card(A)+card(B))}−{..<card(A)})=B

130



and li-A: linear-independent A
and zero-not-in: 0V /∈ (A∪B)
and ld-AB : linear-dependent (A∪B)
and disjuntos: A∩B={}

shows ∃ y . fst (remove-ld ((A∪B),h))=A∪(B−{y}) ∧ y∈B
∧ (snd (remove-ld (A∪B , h))) ‘ ({..<card A + card (B−{y})} − {..<card A})

= (B−{y})
∧ snd (remove-ld((A∪B), h)) ‘ {..<card A}=A ∧ indexing (A ∪ (B−{y}), snd

(remove-ld (A∪B , h)))
proof −
have cb-AB : good-set (A∪B) using l-dep-good-set [OF ld-AB ] unfolding good-set-def

by auto
have cb-A: good-set A and cb-B :good-set B

using l-dep-good-set [OF ld-AB ] unfolding good-set-def by auto
let ?P = (λk . ∃ y∈A∪B . ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ k ∧

k < card (A∪B) ∧ h k = y ∧ y = linear-combination g (h ‘ {i . i < k}))
have exK : (∃ k . ?P k)

using linear-dependent-set-sorted-contains-linear-combination [
OF ld-AB zero-not-in indexing ] by auto

have ex-LEAST : ?P (LEAST k . ?P k)
using LeastI-ex [OF exK ] .

let ?k = (LEAST k . ?P k)
have ∃ y∈A∪B . ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ ?k ∧

?k < card (A∪B) ∧ h ?k = y ∧ y = linear-combination g (h ‘ {i . i < ?k})
using ex-LEAST by simp

then obtain y s
where one-le-k : 1 ≤ ?k and k-l-card : ?k < card (A∪B) and h-k-eq-y : h ?k =

y
and cf-s: s∈ coefficients-function (carrier V ) and
combinacion-anteriores: y = linear-combination s (h ‘ {i . i < ?k})
by auto

have rem-eq : fst (remove-ld (A∪B , h)) = ((A∪B) − {y}) and y-in-AB : y ∈
A∪B

using indexing-equiv-img [OF indexing ] one-le-k k-l-card h-k-eq-y
unfolding Pi-def unfolding remove-ld-def ′ by auto

show ?thesis
proof (cases y∈B)

case True thus ?thesis
proof −

have y-notin-A: y /∈A using True disjuntos y-in-AB by blast
have k-in-conjunto:?k∈{..<card(A)+card(B)}−{..<card(A)}
proof −

have card(A∪B)=card(A)+card(B) using disjuntos
card-Un-disjoint cb-A cb-B unfolding good-set-def by blast

hence k-in-cardAB : ?k∈{..<card(A)+card(B)} using k-l-card by auto
have ?k /∈{..<card(A)} using h-k-eq-y True surj-h-A y-notin-A by auto
thus ?thesis using k-in-cardAB by simp

qed
have 1 : fst (remove-ld (A ∪ B , h)) = A ∪ (B−{y})
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using rem-eq and disjuntos True by auto
have 2 : (snd (remove-ld (A∪B , h))) ‘ ({..<card A + card (B−{y})} −

{..<card A}) = (B−{y})
∧ snd (remove-ld((A∪B), h)) ‘ {..<card A}=A
∧ indexing (A ∪ (B−{y}), snd (remove-ld (A∪B , h)))

proof −
have eq-card : card(fst(remove-iset((A∪B),h) ?k))=card(A)+card(B−{y})
proof −

have cardB-g-zero: card B > 0 using B-not-empty cb-B unfolding
good-set-def by auto

hence finite-B : finite B using cb-B unfolding good-set-def by simp
have 1 : card(B−{y})=card(B)−Suc 0 using card-Diff-singleton[OF

finite-B True] by simp
have card (fst (remove-ld ((A∪B), h))) = card (A∪B) − Suc 0
using remove-ld-decr-card indexing-remove-ld indexing ld-AB zero-not-in

by auto
also have ...=card(A)+card(B)−Suc 0 using disjuntos card-Un-disjoint

cb-A cb-B
unfolding good-set-def by force

also have ...=card(A)+(card(B)−Suc 0 ) using cardB-g-zero by auto
finally have card (fst (remove-ld (A ∪ B , h))) = card A + (card B −

Suc 0 ) .
thus ?thesis using 1 unfolding remove-ld-def by auto

qed
have eq : snd (remove-ld (A ∪ B , h)) = snd (remove-iset ((A∪B),h) ?k)

unfolding remove-ld-def using snd-conv using remove-iset-def [of
(A∪B ,h) ?k ] by auto

have surj-rmiset-A: snd (remove-iset((A∪B), h) ?k) ‘ {..<card A}=A
proof −

have ?k≥card A
proof (cases ?k<card A)

case False thus ?thesis by simp
next

case True thus ?thesis using surj-h-A h-k-eq-y y-notin-A by auto
qed

hence snd (remove-iset((A∪B), h) ?k) ‘ {..<card A}=h‘{..<card A}
unfolding remove-iset-def by auto

thus ?thesis using surj-h-A by simp
qed
have indexing2 : indexing (A ∪ (B−{y}), snd (remove-ld (A∪B , h)))
proof −

have indexing (A ∪ (B−{y}), snd (remove-ld (A∪B , h)))
=indexing (fst(remove-ld (A∪B ,h)), snd (remove-ld (A∪B , h)))
using eq 1 by auto

also have ...=indexing (remove-ld (A∪B ,h)) by auto
finally show ?thesis using indexing-remove-ld [OF ld-AB indexing

zero-not-in] by auto
qed
have snd (remove-iset ((A∪B),h) ?k) ‘{..<card(fst(remove-iset((A∪B),h)
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?k))}=fst(remove-iset ((A∪B),h) ?k)
using indexing-remove-iset [OF indexing k-l-card ]
unfolding indexing-def and bij-betw-def by auto

also have ...=(A∪B)−{h ?k} unfolding remove-iset-def by auto
also have ...=A∪(B−{y}) using h-k-eq-y y-notin-A by auto

finally have eq-final : snd (remove-iset ((A∪B),h) ?k) ‘{..<card(fst(remove-iset((A∪B),h)
?k))}=A∪(B−{y}) .

have (snd (remove-ld (A∪B , h))) ‘ ({..<card A + card (B−{y})} − {..<card
A})

= (snd (remove-ld (A∪B , h))) ‘ {..<card A + card (B−{y})}
− (snd (remove-ld (A∪B , h))) ‘ {..<card A}

proof (rule inj-on-image-set-diff [of - {..<card A + card (B−{y})}],auto)
show inj-on (snd (remove-ld (A ∪ B , h))) {..<card A + card (B − {y})}

using eq and eq-card
using indexing-remove-iset [OF indexing k-l-card ]
unfolding indexing-def and bij-betw-def by auto

qed
also have ...=snd (remove-iset ((A∪B),h) ?k) ‘ {..<card A + card (B−{y})}

− snd (remove-iset ((A∪B),h) ?k) ‘{..<card(A)}
using eq by auto

also have ...=(A∪(B−{y}))−A using eq-final surj-rmiset-A eq eq-card by
auto

also have ...=B−{y} using disjuntos y-notin-A True by auto
finally show ?thesis using surj-rmiset-A eq indexing2 by auto

qed
show ?thesis using 1 2 True by auto

qed
next

case False show ?thesis
proof −

have y-in-A: y∈A using False and y-in-AB by simp
have k-le-cardA: ?k<card(A) — It takes about a seconds

using y-in-A and h-k-eq-y and surj-h-A and k-l-card and indexing
unfolding indexing-def and bij-betw-def and inj-on-def
by force

have ld-insert : linear-dependent (insert y (h‘{i . i<?k}))
proof (rule lc1 )

show linear-independent (h‘{i . i<?k})
proof (rule independent-set-implies-independent-subset)

show linear-independent A using li-A .
show h ‘ {i . i < ?k} ⊆ A using surj-h-A k-le-cardA by auto

qed
show y∈ carrier V using y-in-A cb-A unfolding good-set-def

by auto
show y /∈ h‘{i . i<?k}

using y-in-A and h-k-eq-y and surj-h-A and k-l-card and indexing
unfolding indexing-def and bij-betw-def and inj-on-def
by force
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show ∃ f . f ∈ coefficients-function (carrier V ) ∧
linear-combination f (h ‘{i . i<?k})=y
using cf-s and combinacion-anteriores by auto

qed
have linear-dependent (h‘{..<card(A)})
proof (rule linear-dependent-subset-implies-linear-dependent-set)

show insert y (h‘{i . i<?k})⊆ h ‘ {..<card A}
proof −

have igualdad-conjuntos: {i . i<?k} ∪ {?k}={..?k} using atMost-def [of
?k ] ivl-disj-un(2 ) by auto

have insert y (h‘{i . i<?k})=(h‘{i . i<?k}) ∪ {y} by simp
also have ...=h‘{i . i<?k} ∪ h‘ {?k} using h-k-eq-y by auto
also have ...=h‘ ({i . i<?k} ∪ {?k}) by auto
also have ...=h‘{..?k} using igualdad-conjuntos by auto
also have ... ⊆ h ‘ {..<card A} using k-le-cardA by auto
finally show ?thesis .

qed
show good-set (h ‘ {..<card A})

using surj-h-A cb-A by auto
show linear-dependent (insert y (h‘{i . i<?k})) using ld-insert .

qed
— Contradiction: we have linear dependent A and linear independent A

thus ?thesis using surj-h-A li-A cb-A independent-implies-not-dependent by
auto

qed
qed

qed

Finally an important lemma proved using (
∧

x . (
∧

y . ?f y < ?f x =⇒ ?P y)
=⇒ ?P x ) =⇒ ?P ?a such as we do in linear-independent-iterate-remove-ld
and in iterate-remove-ld-preserves-span. We need above lemmas to prove
it. It shows us that iterate-remove-ld does not remove any element of A if
elements of A are in first positions and A is linearly independent.

lemma A-in-iterate-remove-ld :
assumes indexing : indexing (A∪B ,h)
and B-in-V : B ⊆ carrier V
and surj-h-A:h‘ {..<card(A)}= A
and surj-h-B :h‘ ({..<(card(A)+card(B))}−{..<card(A)})=B
and li-A: linear-independent A
and zero-not-in: 0V /∈ (A∪B)
and disjuntos: A∩B={}
shows A ⊆ (iterate-remove-ld (A∪B) h)

proof (cases linear-dependent (A∪B))
have cb-A: good-set A using l-ind-good-set [OF li-A] .
have cb-B : good-set B using indexing-finite[OF indexing ] B-in-V unfolding

good-set-def by fast
case False thus ?thesis
proof −
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have linear-independent (A∪B)
using cb-A cb-B not-dependent-implies-independent [OF - False]
unfolding good-set-def by auto

hence iterate-remove-ld (A∪B) h=A∪B
using iterate-remove-ld-li by simp

thus ?thesis by simp
qed

next
case True
have cb-B : good-set B using indexing-finite[OF indexing ] B-in-V unfolding

good-set-def by fast
show ?thesis
using cb-B and True and surj-h-A and surj-h-B and zero-not-in and disjuntos

and indexing
proof (induct B arbitrary : h rule: measure-induct-rule [where f = card ])

case (less B h)
show A ⊆ iterate-remove-ld (A∪B) h
proof (cases B={})

case True
thus ?thesis

using Int-lower1 Un-absorb2 disjuntos iterate-remove-ld-li li-A subset-refl
by force

next
case False
have ∃ y . fst (remove-ld ((A∪B),h))=A∪(B−{y}) ∧ y∈B
∧ (snd (remove-ld (A∪B , h))) ‘ ({..<card A + card (B−{y})} − {..<card

A}) = (B−{y})
∧ snd (remove-ld((A∪B), h)) ‘ {..<card A}=A ∧ indexing (A ∪ (B−{y}),

snd (remove-ld (A∪B , h)))
proof (rule descomposicion-remove-ld)

show indexing (A ∪ B , h) using less.prems(7 ) .
show linear-dependent (A ∪ B) using less(3 ) .
show 0V /∈ A ∪ B using less.prems(5 ) .
show A ∩ B = {} using less.prems(6 ) .
show linear-independent A using li-A .
show h ‘ {..<card A} = A using less.prems(3 ) .
show h ‘ ({..<card A + card B} − {..<card A}) = B using less.prems(4 ) .
show B 6={} using False .

qed
from this obtain y

where descomposicion: fst (remove-ld ((A∪B),h))=A∪(B−{y})
and y-in-B : y∈B
and h ′-B : (snd (remove-ld (A∪B , h))) ‘ ({..<card A + card (B−{y})} −

{..<card A}) = (B−{y})
and h ′-A: snd (remove-ld((A∪B), h)) ‘ {..<card A}=A
and indexing2 : indexing (A ∪ (B−{y}), snd (remove-ld (A∪B , h)))
by auto

have card-less: card(B−{y})<card(B) using y-in-B and less(2 )
unfolding good-set-def using card-Diff1-less[of B y ] by auto
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have By-subset-B : (B−{y})⊆B by blast
have not-lin-indep: ¬ linear-independent (A∪B)

using dependent-implies-not-independent [OF less.prems (2 )] .
def h ′ == snd (remove-ld (A∪B , h))
show ?thesis
proof (cases linear-independent (fst (remove-ld (A∪B , h))))

case True
show ?thesis

apply (subst iterate-remove-ld .simps)
apply (subst iterate-remove-ld .simps)
using not-lin-indep and True
apply simp

using A-in-remove-ld [OF less.prems(7 ) less(3 ) less.prems(3 ) li-A less.prems(5 )
less.prems(6 )] by simp

next
case False
show ?thesis
proof −

have cb-By : good-set (B−{y}) using less.prems(1 ) y-in-B unfolding
good-set-def by auto

have A⊆iterate-remove-ld (A∪(B−{y})) h ′

proof (cases linear-dependent (A∪(B−{y})))
case False
show ?thesis
using cb-By iterate-remove-ld-li not-dependent-implies-independent [OF

- False]
using l-ind-good-set [OF li-A]
unfolding good-set-def by auto

next
case True show ?thesis
proof (rule less.hyps)

show card (B−{y}) < card B
using card-less .

show good-set (B−{y}) using cb-By .
show linear-dependent (A∪(B−{y})) using True .
show h ′ ‘ {..<card A} = A using h ′-A h ′-def by auto
show h ′ ‘ ({..<card A + card (B−{y})} − {..<card A}) = (B−{y})

using h ′-B h ′-def by simp
show 0V /∈ A ∪ (B−{y}) using By-subset-B less.prems(5 ) by auto
show A ∩ (B−{y}) = {} using By-subset-B less.prems(6 ) by auto
show indexing (A ∪ (B−{y}), h ′) using indexing2 h ′-def by simp

qed
qed
thus ?thesis

using descomposicion h ′-def iterate-remove-ld .simps not-lin-indep by
simp

qed
qed

qed
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qed
qed

Now we are in position to prove that every independent set can be extended
to a basis. First we prove it for any non-empty set.

lemma extend-not-empty-independent-set-to-a-basis:
assumes li-A: linear-independent A
and A-not-empty : A 6={}
shows ∃B . basis B ∧ A ⊆ B

proof −
have cb-A: good-set A using l-ind-good-set [OF li-A] .
def C ≡X−A
have igualdad-conjuntos: A∪X =A∪C using C-def by auto
have finite-C : finite C using finite-X and cb-A C-def unfolding good-set-def

by auto
have disjuntos: A∩C ={} using C-def by auto
have ∃ h. indexing (A ∪ C , h) ∧ h ‘ {..<card A} = A ∧ h ‘ ({..<card A + card

C} − {..<card A}) = C
using indexing-union [OF disjuntos - A-not-empty finite-C ]
using cb-A unfolding good-set-def by auto

from this obtain h where indexing-AC-h: indexing ((A∪C ),h) and
surj-h-A: h ‘ {..<card A} = A and surj-h-B : h ‘ ({..<card A + card C} −

{..<card A}) = C by auto
have li-iterate: linear-independent(iterate-remove-ld (A∪C ) h)
proof (rule linear-independent-iterate-remove-ld)

show A ∪ C ⊆ carrier V
using l-ind-good-set [OF li-A] good-set-in-carrier C-def good-set-X
unfolding good-set-def by auto

show 0V /∈ A ∪ C
using li-A zero-not-in-linear-independent-set C-def by auto

show indexing (A ∪ C , h) using indexing-AC-h .
qed
have span(iterate-remove-ld (A∪C ) h)=span(A∪C )
proof (rule iterate-remove-ld-preserves-span)

show A ∪ C ⊆ carrier V
using l-ind-good-set [OF li-A] good-set-in-carrier C-def good-set-X
unfolding good-set-def by auto

show indexing (A ∪ C , h) using indexing-AC-h .
show 0V /∈ A ∪ C using li-A zero-not-in-linear-independent-set C-def by auto

qed
also have ...=carrier V

using span-union-basis-is-V cb-A igualdad-conjuntos
unfolding good-set-def by force

finally have span-iterate-remove-V :
span(iterate-remove-ld (A∪C ) h)=carrier V .

have basis-iterate: basis (iterate-remove-ld (A∪C ) h)
proof (unfold basis-def , rule conjI3 )

show iterate-remove-ld (A ∪ C ) h ⊆ carrier V
using igualdad-conjuntos l-ind-good-set li-iterate
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unfolding good-set-def
by presburger
show linear-independent-ext (iterate-remove-ld (A ∪ C ) h)
unfolding linear-independent-ext-def
using li-iterate good-set-finite l-ind-good-set C-def
using independent-set-implies-independent-subset by blast

show spanning-set-ext (iterate-remove-ld (A ∪ C ) h)
using l-ind-good-set li-iterate span-V-eq-spanning-set
span-basis-implies-spanning-set [OF span-iterate-remove-V ] spanning-imp-spanning-ext

by presburger
qed
have A-in-iterate: A ⊆ (iterate-remove-ld (A∪C ) h)
proof (rule A-in-iterate-remove-ld)

show indexing (A ∪ C , h) using indexing-AC-h .
show C ⊆ carrier V using cb-A C-def good-set-X

unfolding good-set-def by auto
show h ‘ {..<card A} = A using surj-h-A .
show h ‘ ({..<card A + card C} − {..<card A}) = C using surj-h-B .
show linear-independent A using li-A .
show 0V /∈ A ∪ C using li-A zero-not-in-linear-independent-set C-def by auto
show A ∩ C = {} using disjuntos .

qed
show ?thesis using A-in-iterate and basis-iterate by auto

qed

And finally the theorem (case empty is trivial since we add all elements of
our fixed basis X to it.

theorem extend-independent-set-to-a-basis:
assumes li-A: linear-independent A
shows ∃B . basis B ∧ A ⊆ B

proof (cases A={})
case True show ?thesis

using basis-X True empty-subsetI by fast
next
case False show ?thesis

using extend-not-empty-independent-set-to-a-basis[OF li-A False] .
qed

We have proved that any independent set can be extended to a basis, but
in anywhere we have proved that there exists a basis (we have supposed it
as a premisse in the case of finite dimensional vector spaces). The proof
that every vector space has a basis is not made in Halmos: some addi-
tional results as Zorn’s lemma, chains or well-ordering are required. See
http://planetmath.org/encyclopedia/EveryVectorSpaceHasABasis.html for
a detailed proof.

However, we can prove the existence of a basis in a particular case: when
carrier V is finite.
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To prove this result, we are going to apply the function iterate-remove-ld to
carrier V − {0V}. This function requires that 0V doesn’t belong to the set
where we apply it, so we will not apply it to carrier V, but to carrier V −
{0V}. This function will return us a linearly independent set which span is
the same as the span of carrier V − {0V}. Proving that span (carrier V
− {0V}) = carrier V we will obtain the result (because carrier V − {0V}
is a spanning set).

Let’s see the proof. Firstly, we can see that the set V is a spanning-set. It
is trivial.

lemma spanning-set-V :
assumes finite-V : finite (carrier V )
shows spanning-set (carrier V )
using Un-absorb2 assms good-set-X good-set-def

span-union-basis-is-V span-basis-implies-spanning-set
subset-refl by metis

Thanks to that, the span of V is itself (trivially).

lemma span-V-is-V :
assumes finite-V : finite (carrier V )
shows span (carrier V ) = carrier V
using assms good-set-def spanning-set-V span-V-eq-spanning-set

subset-refl by simp

Now we need to prove that spanning-set (carrier V − {0V}).
lemma spanning-set-V-minus-zero:

assumes finite-V : finite (carrier V−{0V})
shows spanning-set (carrier V−{0V})

proof (unfold spanning-set-def ,auto)
show good-set (carrier V − {0V})

using finite-V unfolding good-set-def by blast
next
fix x
assume x-in-V : x ∈ carrier V
let ?g=(λa. if a=x then 1K else 0K)
show (∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f (carrier V − {0V}) = x )

proof (cases x=0V)
case True
let ?f =(λa. 0K) show ?thesis
proof (rule exI [of - ?f ])

have cf-f : ?f ∈ coefficients-function (carrier V )
unfolding coefficients-function-def by auto

have lc: linear-combination ?f (carrier V − {0V}) = x
proof −

have linear-combination ?f (carrier V − {0V})
= (

⊕
Vy :: ′c∈(carrier V − {0V}). 0K · y)

unfolding linear-combination-def by simp
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also have ...=(
⊕

Vy :: ′c∈(carrier V − {0V}). 0V)
proof (rule finsum-cong ′,auto)

fix i
assume i-in-V : i∈ carrier V
show 0 · i = 0V

using zeroK-mult-V-is-zeroV [OF i-in-V ] .
qed
also have ...=0V using finsum-zero finite-V by auto
finally show ?thesis using True by simp

qed
show ?f ∈ coefficients-function (carrier V )
∧ linear-combination ?f (carrier V − {0V}) = x
using cf-f and lc by auto

qed
next

case False show ?thesis
proof (rule exI [of - ?g ])

have cf-g : ?g ∈ coefficients-function (carrier V )
unfolding coefficients-function-def using x-in-V
by simp

have lc: linear-combination ?g (carrier V − {0V}) = x
proof −

have x-not-zero: x 6=0V using False by simp
have disjuntos: {x}∩ ((carrier V − {0V})−{x})={} by auto

have igualdad-conjuntos: carrier V − {0V}=({x}∪ ((carrier V − {0V})−{x}))
using x-in-V x-not-zero by auto

hence linear-combination ?g (carrier V − {0V})=linear-combination ?g
({x}∪ ((carrier V − {0V})−{x}))

by auto
also have ...=linear-combination ?g {x} ⊕V linear-combination ?g ((carrier

V − {0V})−{x})
unfolding linear-combination-def

proof (rule finsum-Un-disjoint)
show finite {x} by simp
show finite (carrier V − {0V} − {x}) using finite-V by auto
show {x} ∩ (carrier V − {0V} − {x}) = {} using disjuntos .

show (λy . (if y = x then 1 else 0) · y) ∈ {x} → carrier V using
mult-closed [OF x-in-V -] by auto

show (λy . (if y = x then 1 else 0) · y) ∈ carrier V − {0V} − {x} →
carrier V

unfolding Pi-def using zeroK-mult-V-is-zeroV by auto
qed
also have ...=1·x ⊕V 0V
proof −
have linear-combination ?g (carrier V − {0V} − {x})=(

⊕
Vy :: ′c∈(carrier

V − {0V}−{x}). 0V)
proof (unfold linear-combination-def ,rule finsum-cong ′,auto)

fix i
assume i-in-V : i ∈ carrier V
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show 0 · i = 0V using zeroK-mult-V-is-zeroV [OF i-in-V ] .
qed
also have ...=0V using finsum-zero finite-V by auto
finally show ?thesis using linear-combination-singleton[OF cf-g x-in-V ]

by auto
qed
also have ...= x

using V .add .r-one mult-1 x-in-V by presburger
finally show ?thesis .

qed
show ?g ∈ coefficients-function (carrier V ) ∧ linear-combination ?g (carrier

V − {0V}) = x
using cf-g and lc by auto

qed
qed

qed

As a corollary we have that span (carrier V − {0V}) = carrier V

corollary span-V-minus-zero-is-V :
assumes finite-V : finite (carrier V−{0V})
shows span (carrier V−{0V})=carrier V
using assms spanning-set-V-minus-zero

spanning-set-implies-span-basis by blast

Finally, the theorem:

theorem finite-V-implies-ex-basis:
assumes finite-V : finite (carrier V )
shows ∃B . basis B

proof −
have finite-V-zero: finite (carrier V − {0V})

using finite-V by simp
from finite-V-zero obtain f

where indexing : indexing (carrier V−{0V},f )
using obtain-indexing by auto

have 1 :span (iterate-remove-ld (carrier V−{0V}) f )=carrier V
using iterate-remove-ld-preserves-span[OF - indexing -]

and span-V-minus-zero-is-V [OF finite-V-zero]
by auto

have 2 :
linear-independent (iterate-remove-ld (carrier V−{0V}) f )
using DiffE Diff-subset indexing insertI1

linear-independent-iterate-remove-ld by metis
have 3 :good-set (iterate-remove-ld (carrier V−{0V}) f )

using 2 l-ind-good-set by fast
have basis (iterate-remove-ld (carrier V−{0V}) f )

using 1 and 2 and 3 using basis-def ′ by auto
thus ?thesis

by (rule exI [of - iterate-remove-ld (carrier V−{0V}) f ])
qed
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A similar result than spanning-set-V-minus-zero is the next. We will use
this theorem in the future.

lemma spanning-set-minus-zero:
assumes finite-B : finite B
and B-in-V : B ⊆ carrier V
and sg-B : spanning-set B
shows spanning-set (B−{0V})

proof (unfold spanning-set-def ,auto)
show good-set (B − {0V})

unfolding good-set-def using finite-B B-in-V by fast
show

∧
x . x ∈ carrier V =⇒ ∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination

f (B − {0V}) = x
proof (cases 0V ∈ B)

case False
fix x
assume x-in-V : x ∈ carrier V
from this obtain f where cf-f : f ∈ coefficients-function (carrier V ) and lc-B :

linear-combination f B = x
using sg-B unfolding spanning-set-def by blast

show ∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f (B −
{0V}) = x

using Diff-idemp Diff-insert-absorb False cf-f lc-B by auto
next

case True
fix x
assume x-in-V : x ∈ carrier V
from this obtain f where cf-f : f ∈ coefficients-function (carrier V ) and lc-B :

linear-combination f B = x
using sg-B unfolding spanning-set-def by blast

show ∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f (B −
{0V}) = x

proof −
have lc-B0 : linear-combination f (B − {0V}) = x
proof −

have igualdad-conjuntos: (insert 0V (B−{0V}))=B using True by fast
have x=linear-combination f B using lc-B by simp
also have ...=linear-combination f (insert 0V (B−{0V}))

using arg-cong2 [OF - igualdad-conjuntos, of f f linear-combination] by
simp

also have ... = (f 0V) · 0V ⊕V linear-combination f (B−{0V})
proof (rule linear-combination-insert ,auto)
show good-set (B − {0V}) using B-in-V finite-B unfolding good-set-def

by fast
show f ∈ coefficients-function (carrier V ) using cf-f .

qed
also have ...=0V ⊕Vlinear-combination f (B−{0V})

using scalar-mult-zeroV-is-zeroV [of f 0V] cf-f zero-closed
unfolding coefficients-function-def by force

also have ...=linear-combination f (B−{0V})
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using l-zero[OF linear-combination-closed [OF - cf-f ]] B-in-V finite-B
unfolding good-set-def by blast

finally show ?thesis by simp
qed
thus ?thesis using cf-f by fast

qed
qed

qed

Every finite or infinite vector space contains a spanning-set-ext (in particu-
lar, carrier V fullfills this condition):

lemma spanning-set-ext-carrier-V :
shows spanning-set-ext (carrier V )

proof (unfold spanning-set-ext-def , auto)
fix x
assume x-in-V : x ∈ carrier V
show ∃A. good-set A ∧ A ⊆ carrier V ∧ (∃ f . f ∈ coefficients-function (carrier

V ) ∧ linear-combination f A = x )
proof (rule exI [of - {x}], rule conjI3 )

show good-set {x} unfolding good-set-def using x-in-V by fast
show {x} ⊆ carrier V using x-in-V by fast
show ∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f {x} = x
proof (rule exI [of - (λy . if y=x then 1 else 0)], rule conjI )

show cf : (λy . if y = x then 1 else 0) ∈ coefficients-function (carrier V )
unfolding coefficients-function-def using x-in-V by simp

show linear-combination (λy . if y = x then 1 else 0) {x} = x
proof −

have linear-combination (λy . if y = x then 1 else 0) {x}= (λy . if y = x
then 1 else 0) x · x

using linear-combination-singleton[OF cf x-in-V ] .
also have ...= 1 · x by simp
also have ...= x using mult-1 [OF x-in-V ] .
finally show ?thesis .

qed
qed

qed
qed

lemma vector-space-contains-spanning-set-ext :
shows ∃A. spanning-set-ext A ∧ A ⊆ carrier V
using spanning-set-ext-carrier-V by blast

end
end
theory Dimension

imports Basis
begin
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10 Dimension

context finite-dimensional-vector-space
begin

Now we are going to prove that every basis of a finite vector space has the
same cardinality than any other basis.

First of all, we are going to define a function that remove the first element of
an iset. We will use the function remove-iset. Note that this redefinition is
essential: we can not iterate remove-iset because is remove-iset : : iset×N→
iset

definition remove-iset-0 :: ′e iset => ′e iset
where remove-iset-0 A = remove-iset A 0

A property about this function and the empty set:

lemma remove-iset-empty :
shows fst (remove-iset-0 ({},f ))={}
unfolding remove-iset-0-def remove-iset-def
by simp

Now the definition of the function by means of we are going to prove the
theorem.

definition swap-function :: ( ′c iset × ′c iset)
=> ( ′c iset × ′c iset)
where swap-function A = (remove-iset-0 (fst A),
if (((snd(fst A) 0 )) ∈ fst(snd A) ) then
insert-iset (remove-iset (snd A)
(obtain-position ((snd(fst A) 0 )) (snd A))) (snd(fst A) 0 ) 0
else
remove-ld (insert-iset (snd A) ((snd(fst A) 0 )) 0 ))

From this, we will prove some basic properties that swap-function satisfies.

The set of the first component of the result is finite:

lemma finite-fst-swap-function:
assumes indexing-A: indexing (A,f )
shows finite (iset-to-set(fst(swap-function ((A,f ),(B ,g)))))

proof −
have finite-A: finite A using indexing-finite[OF indexing-A] .
thus ?thesis unfolding swap-function-def remove-iset-0-def remove-iset-def by

simp
qed

The set of the first component of the result is in the carrier:

lemma swap-function-fst-in-carrier :
assumes A-in-V : A ⊆ carrier V
shows iset-to-set(fst(swap-function ((A,f ),(B ,g)))) ⊆ carrier V
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using A-in-V
unfolding swap-function-def remove-iset-0-def remove-iset-def by auto

If the first set is not empty, then the set of the first component of the result
is contained (strictly) in it.

lemma fst-swap-function-subset-fst :
assumes indexing-A: indexing (A,f )
and A-not-empty : A 6={} — INDISPENSABLE: IF NOT THE EMPTY CASE

WILL NOT BE STRICT
shows iset-to-set(fst(swap-function ((A,f ),(B ,g)))) ⊂ A

proof −
have 0∈{..<card A} using A-not-empty and indexing-finite[OF indexing-A]

by (metis card-gt-0-iff lessThan-iff )
hence f 0 ∈ A using indexing-A unfolding indexing-def bij-betw-def by auto
thus ?thesis

unfolding swap-function-def remove-iset-0-def remove-iset-def
by auto

qed

If we not demand that content be strict, then the result is trivial.

lemma fst-swap-function-subseteq-fst :
shows iset-to-set(fst(swap-function ((A,f ),(B ,g)))) ⊆ A
unfolding swap-function-def remove-iset-0-def remove-iset-def
by auto

We are goint to prove that the set of the second component of the result is a
good-set. To prove it we will make use of [[B ⊆ carrier V ; A ⊆ carrier V ; A
6= {}; indexing (A, f ); indexing (B , g); a ∈ B ]] =⇒ good-set (fst (insert-iset
(remove-iset (B , g) (obtain-position a (B , g))) a n)).

lemma swap-function-snd-good-set :
assumes B-in-V : B ⊆ carrier V
and A-in-V : A ⊆ carrier V
and A-not-empty : A 6={}
and indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
shows good-set (iset-to-set(snd(swap-function ((A,f ),(B ,g)))))

proof (unfold swap-function-def , simp, rule conjI )
have cb-A: good-set A using A-in-V indexing-finite[OF indexing-A] unfolding

good-set-def by simp
have cb-B : good-set B using B-in-V indexing-finite[OF indexing-B ] unfolding

good-set-def by simp
show f 0 ∈ B −→ good-set (fst (insert-iset (remove-iset (B , g) (obtain-position

(f 0 ) (B , g))) (f 0 ) 0 ))
proof

assume f0-in-B : f 0 ∈ B
show good-set (fst (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B ,

g))) (f 0 ) 0 ))
using good-set-insert-remove[OF B-in-V A-in-V A-not-empty indexing-A

indexing-B f0-in-B ] .
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qed
show f 0 /∈ B −→ good-set (fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )))
proof

assume f0-notin-B : f 0 /∈ B
have good-set (fst (remove-ld ((fst(insert-iset (B , g) (f 0 ) 0 )), snd (insert-iset

(B , g) (f 0 ) 0 ))))
proof (rule remove-ld-good-set)

show good-set (fst (insert-iset (B , g) (f 0 ) 0 ))
proof (rule insert-iset-good-set)

show f 0 /∈ B using f0-notin-B .
show indexing (B , g) using indexing-B .
show f 0 ∈ carrier V using f0-in-V [OF indexing-A A-in-V A-not-empty ] .
show good-set B using cb-B .

qed
show indexing (fst (insert-iset (B , g) (f 0 ) 0 ), snd (insert-iset (B , g) (f 0 )

0 ))
using insert-iset-indexing [OF indexing-B f0-notin-B -] by auto

qed
thus good-set (fst (remove-ld (insert-iset (B , g) (f 0 ) 0 ))) by simp

qed
qed

corollary swap-function-snd-in-carrier :
assumes B-in-V : B ⊆ carrier V
and A-in-V : A ⊆ carrier V
and A-not-empty : A 6={}
and indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
shows (iset-to-set(snd(swap-function ((A,f ),(B ,g))))) ⊆ carrier V
using swap-function-snd-good-set assms unfolding good-set-def by simp

If the first set is independent, our function will preserve it.

lemma fst-swap-function-preserves-li :
assumes li-A: linear-independent A
shows linear-independent (iset-to-set(fst(swap-function ((A,f ),(B ,g)))))
unfolding swap-function-def remove-iset-0-def and remove-iset-def
using independent-set-implies-independent-subset [of A−{f 0},OF - li-A] by auto

If the first element of the iset (A,f) is in B, the function will preserve the
second set (but it will have changed the indexation, putting that element in
first position of B).

lemma swap-function-preserves-B-if-fst-element-of-A-in-B :
assumes f0-in-B : f 0 ∈B
and indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
shows iset-to-set(snd(swap-function ((A,f ),(B ,g))))=B
unfolding swap-function-def using f0-in-B apply simp
unfolding insert-iset-def remove-iset-def obtain-position-def apply auto

proof −
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assume gn-not-f0 : g (THE n. g n = f 0 ∧ n < card B) 6= f 0
let ?P = (λn. g n = f 0 ∧ n < card B)
have exK : (∃ !k . ?P k) using exists-n-and-is-unique-obtain-position[OF f0-in-B

indexing-B ] .
have ex-THE : ?P (THE k . ?P k)

using theI ′ [OF exK ] .
def n≡(THE k . ?P k)
have g n = f 0 unfolding n-def

by (metis ex-THE )
thus False using gn-not-f0 unfolding n-def by contradiction

qed

This is an auxiliar lemma which says that if we insert an element into a
spanning set, the result will be a linearly dependent set. We will need this
result to assure the existence of the element to remove of the second set using
the function swap-function through the theorem [[linear-dependent A; 0V /∈
A; indexing (A, f )]] =⇒ ∃ y∈A. ∃ g k . g ∈ coefficients-function (carrier V )
∧ 1 ≤ k ∧ k < card A ∧ f k = y ∧ y = linear-combination g (f ‘ {i . i <
k})
lemma linear-dependent-insert-spanning-set :

assumes f0-notin-B : f 0 /∈ B
and indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6= {} — Essential to cardinality
and sg-B : spanning-set B
shows linear-dependent (iset-to-set (insert-iset (B ,g) (f 0 ) 0 ))

proof (cases linear-dependent B)
case True show ?thesis
proof (rule linear-dependent-subset-implies-linear-dependent-set)

show B ⊆ iset-to-set (insert-iset (B , g) (f (0 )) 0 ) unfolding insert-iset-def
iset-to-set-def by auto

show good-set (iset-to-set (insert-iset (B , g) (f (0 )) 0 ))
unfolding insert-iset-def iset-to-set-def good-set-def

using A-in-V B-in-V indexing-finite[OF indexing-A] indexing-finite[OF indexing-B ]

and f0-in-V [OF indexing-A A-in-V A-not-empty ] by simp
show linear-dependent B using True .

qed
next

case False show ?thesis unfolding insert-iset-def apply simp
proof (rule lc1 )

show li-B : linear-independent B
using not-dependent-implies-independent [OF - False]
unfolding good-set-def
using B-in-V indexing-finite[OF indexing-B ] by simp

show f 0 ∈ carrier V using f0-in-V [OF indexing-A A-in-V A-not-empty ] .
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show f 0 /∈ B using f0-notin-B .
show ∃ fa. fa ∈ coefficients-function (carrier V ) ∧ linear-combination fa B =

f 0
using sg-B and f0-in-V [OF indexing-A A-in-V A-not-empty ]
unfolding spanning-set-def by blast

qed
qed

This result is similar to linear-dependent-insert-spanning-set but using sets
directly, not isets.

lemma spanning-set-insert :
assumes sg-B : spanning-set B
and finite-B : finite B
and B-in-V : B ⊆ carrier V
and a-in-V : a ∈ carrier V
shows spanning-set (insert a B)

proof (unfold spanning-set-def , auto)
show good-set (insert a B) using finite-B B-in-V a-in-V unfolding good-set-def

by fast
next
fix x
assume x-in-V : x ∈ carrier V
from this obtain f where cf-f : f ∈ coefficients-function (carrier V ) and lc-B :

linear-combination f B = x
using sg-B unfolding spanning-set-def by blast

show ∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination f (insert a
B) = x

proof −
def g≡(λx . if x ∈ B then f x else 0)
have linear-combination f B = linear-combination g (B ∪ {a})
proof (unfold g-def , rule eq-lc-when-out-of-set-is-zero[symmetric])

show good-set {a} using a-in-V unfolding good-set-def by fast
show good-set B using finite-B B-in-V unfolding good-set-def by blast
show f ∈ coefficients-function (carrier V ) using cf-f .

qed
also have ...=linear-combination g (insert a B) using arg-cong2 by simp
finally have lc-Ba: x=linear-combination g (insert a B) using lc-B by simp

have g ∈ coefficients-function (carrier V ) unfolding g-def using coefficients-function-g-f-null [of
f B ] cf-f by auto

thus ?thesis using lc-Ba by auto
qed

qed

Our function will preserve that the second term is a spanning-set.

lemma swap-function-preserves-sg :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and B-in-V : B⊆carrier V
and A-not-empty : A 6={} — Essential to cardinality
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and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows spanning-set (iset-to-set(snd(swap-function ((A,f ),(B ,g)))))

proof (cases f 0 ∈ B)
case True show ?thesis

using swap-function-preserves-B-if-fst-element-of-A-in-B [OF True indexing-A
indexing-B ] sg-B

by simp
next

case False thus ?thesis
proof (unfold swap-function-def , simp)

have A-in-V : A ⊆ carrier V
by (metis good-set-def li-A linear-independent-def )

show spanning-set (fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )))
proof −

have span (fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )))=span (iset-to-set
(insert-iset (B , g) (f 0 ) 0 ))

proof −
have 1 : linear-dependent (fst (insert-iset (B , g) (f 0 ) 0 ))
using linear-dependent-insert-spanning-set [OF False indexing-A indexing-B

A-in-V B-in-V A-not-empty sg-B ]
by simp

have 2 : 0V /∈ fst (insert-iset (B , g) (f 0 ) 0 ) using f0-not-zero[OF indexing-A
li-A A-not-empty ] zero-notin-B

unfolding insert-iset-def by simp
have 3 :indexing (fst (insert-iset (B , g) (f 0 ) 0 ), snd (insert-iset (B , g) (f

0 ) 0 ))
unfolding insert-iset-def apply simp
using surjective-pairing
and insert-iset-indexing [OF indexing-B False -] unfolding insert-iset-def

by auto
show ?thesis

using remove-ld-preserves-span[of fst (insert-iset (B , g) (f 0 ) 0 ) snd
(insert-iset (B , g) (f 0 ) 0 ) ]

using surjective-pairing [of insert-iset (B , g) (f 0 ) 0 ] 1 2 3 by auto
qed
also have ...=carrier V
proof (rule spanning-set-implies-span-basis)

show spanning-set(iset-to-set (insert-iset (B , g) (f 0 ) 0 ))
unfolding insert-iset-def
using spanning-set-insert [OF sg-B indexing-finite[OF indexing-B ] B-in-V

f0-in-V [OF indexing-A A-in-V A-not-empty ]] by simp
qed
finally have span (fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )))=carrier V .
thus ?thesis
proof (rule span-basis-implies-spanning-set)

show good-set (fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )))
by (metis A-in-V A-not-empty B-in-V f0-in-V finite.insertI finite-subset
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fst-conv good-set-def indexing-A indexing-B indexing-finite insert-iset-def
insert-subset iset-to-set-def remove-ld-monotone remove-ld-preserves-carrier)

qed
qed

qed
qed

swap-function preserves the cardinality of the second iset.

lemma snd-swap-function-preserves-card :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6= {}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows card (iset-to-set (snd (swap-function ((A,f ),(B ,g))))) = card B

proof (cases f 0 ∈ B)
case True thus ?thesis

using swap-function-preserves-B-if-fst-element-of-A-in-B [OF True indexing-A
indexing-B ] by presburger
next

case False thus ?thesis
proof (unfold swap-function-def , simp)

have A-in-V : A ⊆ carrier V
by (metis good-set-in-carrier l-ind-good-set li-A)

have eq-card : card (iset-to-set (insert-iset (B , g) (f 0 ) 0 ))= card B + 1
using insert-iset-increase-card [OF indexing-B False] .

have zero-notin-insert : 0V /∈ (iset-to-set (insert-iset (B , g) (f 0 ) 0 ))
using f0-not-zero[OF indexing-A li-A A-not-empty ] and zero-notin-B
unfolding insert-iset-def by simp
have card (fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )))= card (iset-to-set

(insert-iset (B , g) (f 0 ) 0 )) − 1
using surjective-pairing
using remove-ld-decr-card [OF linear-dependent-insert-spanning-set
[OF False indexing-A indexing-B A-in-V B-in-V A-not-empty sg-B ] zero-notin-insert

]
by (metis eq-card False Suc-eq-plus1 diff-Suc-1 fst-conv

indexing-B insert-iset-def insert-iset-indexing iset-to-set-def le0 )
also have ...= (card B + 1 ) − 1 using eq-card

by presburger
finally show card (fst (remove-ld (insert-iset (B , g) (f 0 ) 0 ))) = card B by

simp
qed

qed

Next lemmas shows us how our function decreases the cardinality of the first
term.

lemma fst-swap-function-decr-card :
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assumes indexing-A: indexing (A,f )
shows card (iset-to-set(fst(swap-function ((A,f ),(B ,g))))) = card A − 1

proof (cases A={})
case True show ?thesis unfolding swap-function-def remove-iset-0-def remove-iset-def

using True by auto
next

case False note A-not-empty=False
show ?thesis
proof (unfold swap-function-def , unfold remove-iset-0-def , unfold remove-iset-def ,

simp)
have card A > 0 using A-not-empty indexing-finite[OF indexing-A] card-gt-0-iff

by metis
hence 0∈{..<card A} by fast
hence f 0 ∈ A using indexing-A unfolding indexing-def bij-betw-def by auto
thus card (A − {f 0}) = card A − Suc 0
by (metis One-nat-def 〈0 < card A〉 card-Diff-singleton card-infinite less-zeroE )

qed
qed

Now we are going to prove that exists an element of the second iset such
that if we apply the swap-function, the second term will be able to be writen
as the second set removing that element and adding the first element of the
first set.

We will prove it by cases, first the case that B is not empty

lemma swap-function-exists-y-in-B-not-empty :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6= {}
and B-not-empty : B 6= {}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows ∃ y∈B . iset-to-set (snd(swap-function ((A,f ),(B ,g)))) = (insert (f 0 )

(B−{y}))
unfolding swap-function-def

proof (simp,auto)
show f 0 ∈ B =⇒ ∃ y∈B . fst (insert-iset (remove-iset (B , g) (obtain-position (f

0 ) (B , g))) (f 0 ) 0 )
= insert (f 0 ) (B − {y})

using swap-function-preserves-B-if-fst-element-of-A-in-B [OF - indexing-A indexing-B ]

unfolding swap-function-def by auto
show f 0 /∈ B =⇒ ∃ y∈B . fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )) = insert

(f 0 ) (B − {y})
proof −

assume f0-notin-B : f 0 /∈ B
— Usar el teorema: thm descomposicion-remove-ld
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have finite-B : finite B using indexing-finite[OF indexing-B ] .
have A-in-V : A ⊆ carrier V

by (metis good-set-in-carrier l-ind-good-set li-A)
have insert-iset (B , g) (f 0 ) 0 =(fst (insert-iset (B , g) (f 0 ) 0 ,snd (insert-iset

(B , g) (f 0 ) 0 )))
using surjective-pairing by simp

also have ...=({f 0} ∪ B ,snd (insert-iset (B , g) (f 0 ) 0 )) unfolding insert-iset-def
by simp

finally have eq-pairing : insert-iset (B , g) (f 0 ) 0 = ({f 0} ∪ B , snd (insert-iset
(B , g) (f 0 ) 0 )) .

hence fst (remove-ld (insert-iset (B , g) (f 0 ) 0 ))=fst(remove-ld ({f 0} ∪ B ,
snd (insert-iset (B , g) (f 0 ) 0 )))

by simp
hence indexing-insert : indexing ({f 0} ∪ B , snd (insert-iset (B , g) (f 0 ) 0 ))

using insert-iset-indexing [OF indexing-B f0-notin-B -] using eq-pairing by
auto

have ∃ y . fst (remove-ld ({f 0} ∪ B , snd (insert-iset (B , g) (f 0 ) 0 ))) = {f 0}
∪ (B − {y}) ∧ y ∈ B ∧

snd (remove-ld ({f 0} ∪ B , snd (insert-iset (B , g) (f 0 ) 0 ))) ‘ ({..<card {f
0} + card (B − {y})} − {..<card {f 0}})

= B − {y} ∧ snd (remove-ld ({f 0} ∪ B , snd (insert-iset (B , g) (f 0 ) 0 ))) ‘
{..<card {f 0}} = {f 0}

∧ indexing ({f 0} ∪ (B − {y}), snd (remove-ld ({f 0} ∪ B , snd (insert-iset
(B , g) (f 0 ) 0 ))))

proof (rule descomposicion-remove-ld)
show indexing ({f 0} ∪ B , snd (insert-iset (B , g) (f 0 ) 0 )) using indexing-insert

.
show B 6= {} using B-not-empty .
show snd (insert-iset (B , g) (f 0 ) 0 ) ‘ {..<card {f 0}} = {f 0} unfolding

insert-iset-def indexing-ext-def by auto
show snd (insert-iset (B , g) (f 0 ) 0 ) ‘ ({..<card {f 0} + card B} − {..<card

{f 0}}) = B
unfolding insert-iset-def indexing-ext-def
unfolding image-def

proof (auto)
show

∧
xa. [[xa < Suc (card B); g (xa − Suc 0 ) /∈ B ]] =⇒ xa = 0

proof (rule FalseE )
fix xa
assume xa-l-cardB1 : xa < Suc (card B) and gx-notin-B : g (xa − Suc 0 )

/∈ B
have surj : g ‘{..<card B}=B using indexing-B unfolding indexing-def

bij-betw-def by simp
have (xa − Suc 0 ) ∈ {..< card B} using xa-l-cardB1
by (metis B-not-empty card-eq-0-iff diff-Suc-less finite-B gr0I lessThan-iff

less-antisym less-imp-diff-less)
hence g (xa − Suc 0 ) ∈ B using surj by fast
thus False using gx-notin-B by contradiction

qed
show

∧
x . x ∈ B =⇒ ∃ xa∈{..<Suc (card B)} − {..<Suc 0}. x = g (xa −
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Suc 0 )
proof −

fix x
assume x-in-B : x∈B
have surj : g ‘{..<card B}=B using indexing-B unfolding indexing-def

bij-betw-def by simp
hence ∃ y∈{..<card B}. g y = x using x-in-B unfolding image-def by

force
from this obtain y where y-l-card : y ∈ {..<card B} and gy-x : g y = x

by fast
show ∃ xa∈{..<Suc (card B)} − {..<Suc 0}. x = g (xa − Suc 0 )
proof (rule bexI [of - y + Suc 0 ])

show x = g (y + Suc 0 − Suc 0 ) using gy-x by simp
show y + Suc 0 ∈ {..<Suc (card B)} − {..<Suc 0} using y-l-card by

simp
qed

qed
qed
show linear-independent {f 0}

using unipuntual-is-li [OF f0-in-V [OF indexing-A A-in-V A-not-empty ]
f0-not-zero[OF indexing-A li-A A-not-empty ]] .

show 0V /∈ {f 0} ∪ B using f0-not-zero[OF indexing-A li-A A-not-empty ]
and zero-notin-B by simp

show linear-dependent ({f 0} ∪ B)
proof −
have eq-iset : iset-to-set (insert-iset (B , g) (f 0 ) 0 )= {f 0} ∪ B apply simp

by (metis fst-conv insert-iset-def iset-to-set-def )
have linear-dependent (iset-to-set (insert-iset (B , g) (f 0 ) 0 ))

using linear-dependent-insert-spanning-set [OF f0-notin-B indexing-A
indexing-B A-in-V B-in-V

A-not-empty sg-B ] .
thus ?thesis using eq-iset by simp

qed
show {f 0} ∩ B = {} using f0-notin-B by fast

qed
from this obtain y where

eq-remove: fst (remove-ld ({f 0} ∪ B , snd (insert-iset (B , g) (f 0 ) 0 ))) = {f
0} ∪ (B − {y}) and y-in-B : y ∈ B

by metis
show ?thesis using eq-remove and y-in-B eq-pairing by auto

qed
qed

And now the case that B is empty. It is an inconsistent case: if B is
empty and a spanning set, then the vector space is {0V}. A is not empty,
so A={0V}. However, we will have a contradiction: A will be dependent
({0V} is dependent) and also independent (by hypothesis).

lemma swap-function-exists-y-in-B-empty :
assumes indexing-A: indexing (A,f )
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and A-not-empty : A 6={}
and B-empty : B={}
and li-A: linear-independent A
and sg-B : spanning-set B
shows ∃ y∈B . iset-to-set (snd(swap-function ((A,f ),(B ,g)) ))=(insert (f 0 ) (B−{y}))
by (metis A-not-empty B-empty Un-absorb1 Un-empty-right good-set-in-carrier
empty-set-is-linearly-independent l-ind-good-set li-A sg-B span-V-eq-spanning-set

span-empty subset-insert zero-not-in-linear-independent-set)

lemma swap-function-exists-y-in-B :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows ∃ y∈B . iset-to-set (snd(swap-function ((A,f ),(B ,g)) ))=(insert (f 0 ) (B−{y}))

proof (cases B={})
case True show ?thesis using swap-function-exists-y-in-B-empty [OF indexing-A

A-not-empty True li-A sg-B ] .
next

case False show ?thesis
using swap-function-exists-y-in-B-not-empty [OF indexing-A indexing-B B-in-V

A-not-empty False li-A sg-B zero-notin-B ] .
qed

From this we can obtain a corollary: 0V is not in the second term of the
result of applying swap-function to a spanning-set.

corollary zero-notin-snd-swap-function:
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows 0V /∈ iset-to-set (snd(swap-function ((A,f ),(B ,g))))
using swap-function-exists-y-in-B [OF indexing-A indexing-B B-in-V A-not-empty

li-A sg-B zero-notin-B ]
using f0-not-zero[OF indexing-A li-A A-not-empty ] using zero-notin-B by force

The first term of the result of applying swap-function is an indexing.

lemma fst-swap-function-indexing :
assumes indexing-A: indexing (A,f )
and A-in-V : A ⊆ carrier V
shows indexing (fst(swap-function ((A,f ),(B ,g))))
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proof (cases A={})
case True show ?thesis using True unfolding swap-function-def remove-iset-0-def

remove-iset-def
using indexing-empty by auto

next
case False note A-not-empty=False
show ?thesis
proof (unfold swap-function-def ,unfold remove-iset-0-def , simp, rule indexing-remove-iset)

have finite-A: finite Ausing indexing-finite[OF indexing-A] .
show indexing (A, f ) using indexing-A .
show 0 < card A using finite-A A-not-empty by fastsimp

qed
qed

Similarly with the second term:

lemma snd-swap-function-indexing :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows indexing (snd(swap-function ((A,f ),(B ,g))))

proof (unfold swap-function-def , simp, rule conjI )
show f 0 ∈ B −→ indexing (insert-iset (remove-iset (B , g) (obtain-position (f

0 ) (B , g))) (f 0 ) 0 )
proof

assume f0-in-B : f 0 ∈ B
show indexing (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))

(f 0 ) 0 )
proof −

have indexing (insert-iset (fst (remove-iset (B , g) (obtain-position (f 0 ) (B ,
g))),

snd (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))) (f 0 ) 0 )
proof (rule insert-iset-indexing)

have indexing (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))
proof (rule indexing-remove-iset)

show indexing (B , g) using indexing-B .
show obtain-position (f 0 ) (B , g) < card B using obtain-position-less-card [OF

f0-in-B indexing-B ] .
qed
thus indexing

(fst (remove-iset (B , g) (obtain-position (f 0 ) (B , g))),
snd (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))) by simp

show f 0 /∈ fst (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) unfolding
remove-iset-def

using obtain-position-element [OF f0-in-B indexing-B ] by simp
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show 0 ≤ card (fst (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))) by
fast

qed
thus ?thesis by simp

qed
qed
show f 0 /∈ B −→ indexing (remove-ld (insert-iset (B , g) (f 0 ) 0 ))
proof

assume f0-notin-B : f 0 /∈ B
show indexing (remove-ld (insert-iset (B , g) (f 0 ) 0 ))
proof −

have indexing (remove-ld ((fst (insert-iset (B , g) (f 0 ) 0 ), snd (insert-iset
(B , g) (f 0 ) 0 )) ))

proof (rule indexing-remove-ld)
show linear-dependent (fst (insert-iset (B , g) (f 0 ) 0 ))

using linear-dependent-insert-spanning-set [OF f0-notin-B indexing-A
indexing-B A-in-V

B-in-V A-not-empty sg-B ] by simp
show indexing (fst (insert-iset (B , g) (f 0 ) 0 ), snd (insert-iset (B , g) (f 0 )

0 ))
using insert-iset-indexing [OF indexing-B f0-notin-B -] by auto

show 0V /∈ fst (insert-iset (B , g) (f 0 ) 0 )
by (metis A-not-empty f0-not-zero fst-conv indexing-A insertE insert-iset-def

iset-to-set-def li-A zero-notin-B)
qed
thus ?thesis by simp

qed
qed

qed

If the first argument is an empty iset, then swap-function will also return
the empty set (in first component).

lemma swap-function-empty :
shows iset-to-set(fst(swap-function (({},f ),(B ,g))))={}
unfolding swap-function-def
unfolding remove-iset-0-def
unfolding remove-iset-def by simp

lemma swap-function-empty2 :
assumes A-empty : A={}
shows iset-to-set(fst(swap-function ((A,f ),(B ,g))))={}
using A-empty
unfolding swap-function-def
unfolding remove-iset-0-def
unfolding remove-iset-def by simp

end
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Up to now we have proved properties of swap-function. However, we want to
iterate it a specific number of times (compose with itself several times). We
need to implement the power of a function because (surprisingly) it is not
in the library. We are interpreting the power of a function as a composition
with itself.

We will have to be careful with the types: we can not iterate (compose)
every function: a function can be composed with itself if the result and the
arguments are of the same type (and the number of arguments is the same
as the number of arguments of the result).

We can do the instantiation out of our context, since it is more general:

instantiation fun :: (type, type) power
begin

definition one-fun :: ′a => ′a
where one-fun-def : one-fun = id

definition times-fun :: ( ′a => ′a) => ( ′a => ′a) => ′a => ′a
where times-fun f g = (%x . f (g x ))

instance
proof
qed

end

Once we have finished the instatiation, we can prove some general properties
about the power of a function.

For example: the power of the identity function is also the identity.

lemma id-n: shows id ˆ n = id
apply (induct n)
apply auto
unfolding one-fun-def times-fun-def
unfolding id-def
apply auto
done

Any function power to zero is the identity.

lemma power-zero-id : fˆ0 =id
by (metis one-fun-def power-0 )

A corollary of this lemma will be indispensable for the proofs by induction.

lemma fun-power-suc: shows fˆ(Suc n)= f ◦ (fˆn)
unfolding power .simps [of f ]
apply (rule ext)
unfolding times-fun-def by simp
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corollary fun-power-suc-eq :
shows (fˆ(Suc n)) x = f ((fˆn) x )
using fun-power-suc by (metis id-o o-eq-id-dest)

context finite-dimensional-vector-space
begin

Now we will begin with the proofs of properties that swap-function iterated
several times satisfies. In general, we have proved a property in the case
n = 1 and now we are going to generalize it for any n by induction.

Most properties are invariants of the swap-function, so we will have proved a
property in case n = 1. To generalize it we will apply induction: we suppose
that a property is true for fn and we want to prove it for f (Suc(n)). By in-
duction hypothesis, fn satisfies the property and thanks to fun-power-suc-eq
we can write f Suc n x = f (f n x ). As we have the property proved in case
n = 1, we will obtain the result generalized.

For example, we have proved swap-function-empty : iset-to-set (fst (swap-function
(({}, f ), B , g))) = {} and now we will generalize it.

lemma swap-function-power-empty :
shows iset-to-set(fst((swap-functionˆn) (({},f ),(B ,g))))={}

proof (induct n)
show iset-to-set (fst ((swap-function ˆ 0 ) (({}, f ), B , g))) = {} using id-apply

power-zero-id
by (metis bot-nat-def fst-conv iset-to-set-def )

case Suc
fix n
assume hip-induct : iset-to-set (fst ((swap-function ˆ n) (({}, f ), B , g))) = {}
show iset-to-set (fst ((swap-function ˆ Suc n) (({}, f ), B , g))) = {}
proof −

have iset-to-set(fst((swap-function ˆ Suc n) (({}, f ), B , g)))
=iset-to-set(fst((swap-function ((swap-function ˆ n) (({}, f ), B , g)))))
using fun-power-suc-eq by metis

also have ...= iset-to-set
(fst (swap-function
((iset-to-set (fst ((swap-function ˆ n) (({}, f ), B , g))),
iset-to-index (fst ((swap-function ˆ n) (({}, f ), B , g)))),
iset-to-set (snd ((swap-function ˆ n) (({}, f ), B , g))),
iset-to-index (snd ((swap-function ˆ n) (({}, f ), B , g)))))) by auto

also have ...={}
using hip-induct swap-function-empty2 [of iset-to-set (fst ((swap-function ˆ

n) (({}, f ), B , g)))
(iset-to-index (fst ((swap-function ˆ n) (({}, f ), B , g))))
(iset-to-set (snd ((swap-function ˆ n) (({}, f ), B , g))))
(iset-to-index (snd ((swap-function ˆ n) (({}, f ), B , g))))] by simp

finally show ?thesis .
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qed
qed

lemma swap-function-power-empty2 :
assumes A-empty : A={}
shows iset-to-set(fst((swap-functionˆn) ((A,f ),(B ,g))))={}
by (metis A-empty swap-function-power-empty)

The generalized lemma for swap-function-fst-in-carrier.

lemma swap-function-power-fst-in-carrier :
assumes A-in-V : A ⊆ carrier V
shows iset-to-set(fst((swap-functionˆn) ((A,f ),(B ,g)))) ⊆ carrier V

proof (induct n)
show iset-to-set (fst ((swap-function ˆ 0 ) ((A, f ), B , g))) ⊆ carrier V

using power-zero-id id-apply A-in-V
by (metis iset-to-set-def fst-conv)

case Suc
fix n
assume hip-induct : iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))) ⊆ carrier

V
show iset-to-set (fst ((swap-function ˆ Suc n) ((A, f ), B , g))) ⊆ carrier V
proof −

have (swap-function ˆ Suc n) ((A, f ), B , g)
=swap-function ((swap-function ˆ n) ((A, f ), B , g)) using fun-power-suc-eq

by metis
thus ?thesis
using swap-function-fst-in-carrier [of iset-to-set (fst ((swap-function ˆ n) ((A,

f ), B , g)))
iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g)))
iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g)))
iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g)))] hip-induct by simp

qed
qed

Iterating the function the independence (in first argument) is preserved.

lemma fst-swap-function-power-preserves-li :
assumes li-A: linear-independent A
shows linear-independent (iset-to-set(fst(((swap-functionˆ(n))) ((A,f ),(B ,g)))))

proof (induct n)
case 0 show linear-independent (iset-to-set (fst ((swap-function ˆ 0 ) ((A, f ),

B , g))))
proof −

have iset-to-set (fst ((swap-function ˆ 0 ) ((A, f ), B , g)))=
iset-to-set (fst ((id) ((A, f ), B , g)))
using power-zero-id by metis

also have ...=A using id-apply by simp
finally show ?thesis using li-A by presburger

qed
next
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case Suc
fix n
assume hip-induct : linear-independent (iset-to-set (fst ((swap-function ˆ n) ((A,

f ), B , g))))
show linear-independent (iset-to-set (fst ((swap-function ˆ Suc n) ((A, f ), B ,

g))))
proof −

have (swap-function ˆ Suc n) ((A, f ), B , g)
= swap-function ((swap-function ˆ n) ((A, f ), B , g)) using fun-power-suc-eq

by metis
thus ?thesis using fst-swap-function-preserves-li [OF hip-induct ,

of (iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))))] by simp

qed
qed

The first term is always an indexing. This is the generalization of fst-swap-function-indexing.

lemma fst-swap-function-power-indexing :
assumes indexing-A: indexing (A,f )
and A-in-V : A ⊆ carrier V
shows indexing (fst((swap-functionˆn) ((A,f ),(B ,g))))

proof (induct n)
show indexing(fst ((swap-function ˆ 0 ) ((A, f ), B , g)))

using power-zero-id id-apply indexing-A
by (metis fst-conv)

case Suc
fix n
assume hip-induct : indexing (fst ((swap-function ˆ n) ((A, f ), B , g)))
show indexing (fst ((swap-function ˆ Suc n) ((A, f ), B , g)))
proof −

have (swap-function ˆ Suc n) ((A, f ), B , g)
=swap-function ((swap-function ˆ n) ((A, f ), B , g)) using fun-power-suc-eq

by metis
thus ?thesis

using fst-swap-function-indexing [of iset-to-set (fst ((swap-function ˆ n) ((A,
f ), B , g)))

iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g)))
iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g)))
iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g)))]
swap-function-power-fst-in-carrier [OF A-in-V ]

using hip-induct by simp
qed

qed

Now we can prove that if we compose n-times swap-function, the cardinality
of the set of the first term will be decreased in n. Note that to use the induc-
tion hypothesis, we have to have proved previously fst-swap-function-power-indexing
(and obviously also fst-swap-function-decr-card).
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lemma fst-swap-function-power-decr-card :
assumes indexing-A: indexing (A, f )
and A-in-V : A ⊆ carrier V
shows card (iset-to-set (fst ((swap-functionˆn) ((A, f ), B , g)))) = card A − n

proof (induct n)
show card (iset-to-set (fst ((swap-function ˆ 0 ) ((A, f ), B , g)))) = card A − 0

using power-zero-id id-apply
by (metis fst-conv iset-to-set-def minus-nat .diff-0 )

case Suc
fix n
assume hip-induct : card (iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))))

= card A − n
show card (iset-to-set (fst ((swap-function ˆ Suc n) ((A, f ), B , g)))) = card A
− Suc n

proof (cases A={})
case True show ?thesis
proof −
have card (iset-to-set (fst ((swap-function ˆ Suc n) ((A, f ), B , g))))=card {}

using swap-function-power-empty2 [OF True] by (metis True card .empty
card-eq-0-iff )

thus ?thesis using True by simp
qed

next
case False note A-not-empty=False
show ?thesis
proof −

have (swap-function ˆ Suc n) ((A, f ), B , g)
=swap-function ((swap-function ˆ n) ((A, f ), B , g)) using fun-power-suc-eq

by metis
thus ?thesis

using fst-swap-function-power-indexing [OF indexing-A A-in-V ]
using fst-swap-function-decr-card [of (iset-to-set (fst ((swap-function ˆ n)

((A, f ), B , g))))
(iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))))

(iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))))] using hip-induct
by simp

qed
qed

qed

The generalization of finite-fst-swap-function:

lemma finite-fst-swap-function-power :
assumes indexing-A: indexing (A,f )
and A-in-V : A ⊆ carrier V
shows finite (iset-to-set(fst((swap-functionˆn) ((A,f ),(B ,g)))))

proof (induct n)
show finite (iset-to-set (fst ((swap-function ˆ 0 ) ((A, f ), B , g))))

using power-zero-id id-apply indexing-finite[OF indexing-A]
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by (metis fst-conv iset-to-set-def )
case Suc
fix n
assume hip-induct : finite (iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))))
show finite (iset-to-set (fst ((swap-function ˆ Suc n) ((A, f ), B , g))))
proof −

have indexing : indexing
(iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))),
iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g))))
using fst-swap-function-power-indexing [OF indexing-A A-in-V , of n] by auto

have finite: finite (iset-to-set
(fst (swap-function
((iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))),
iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g)))),
iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))),
iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g)))))))
using finite-fst-swap-function[of iset-to-set (fst ((swap-functionˆn) ((A, f ),

B , g)))
iset-to-index (fst ((swap-functionˆn) ((A, f ), B , g)))
iset-to-set (snd ((swap-functionˆ n) ((A, f ), B , g)))
iset-to-index (snd ((swap-functionˆn) ((A, f ), B , g)))]

using indexing
using hip-induct
by simp

have iset-to-set (fst ((swap-function ˆ Suc n) ((A, f ), B , g)))
=iset-to-set (fst (swap-function ((swap-function ˆ n) ((A, f ), B , g)))) using

fun-power-suc-eq by metis
also have ...=(iset-to-set

(fst (swap-function
((iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))),
iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g)))),
iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))),
iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))))))) by auto

finally have eq : iset-to-set (fst ((swap-function ˆ Suc n) ((A, f ), B , g))) =
iset-to-set(fst (swap-function ((iset-to-set (fst ((swap-function ˆ n) ((A, f ),

B , g))),
iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g)))),
iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))),
iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g)))))) .

thus ?thesis using finite by presburger
qed

qed

If we iterate cardinality of A times the function, where A is the set of the
first argument, then the first term of the result will be the empty set (we
have removed card A elements in A).

corollary swap-function-power-card-fst-empty :
assumes indexing-A: indexing (A,f )
and A-in-V : A ⊆ carrier V
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shows iset-to-set(fst((swap-functionˆ(card A)) ((A,f ),(B ,g))))={}
proof −

have finite: finite (iset-to-set(fst((swap-functionˆ(card A)) ((A,f ),(B ,g)))))
using finite-fst-swap-function-power [OF indexing-A A-in-V ] by simp

have card (iset-to-set (fst ((swap-function ˆ (card A)) ((A, f ), B , g)))) = card
A − card A

using fst-swap-function-power-decr-card [OF indexing-A A-in-V ] .
also have ...= 0 by fastsimp
finally show ?thesis using finite

by (metis card-gt-0-iff le0 less-le-not-le)
qed

And if we iterate a number of times less than card A, then the (first) result
set will not be empty:

corollary swap-function-power-fst-not-empty-if-n-l-cardA:
assumes indexing-A: indexing (A,f )
and A-in-V : A ⊆ carrier V
and n-l-card : n < card A
shows iset-to-set(fst((swap-functionˆn) ((A,f ),(B ,g)))) 6={}

proof −
have card (iset-to-set (fst ((swap-functionˆn) ((A, f ), B , g)))) = card A − n

using fst-swap-function-power-decr-card [OF indexing-A A-in-V ] .
thus ?thesis using n-l-card by auto

qed

This is a very important property which shows us how is the result of ap-
plying the function remove-iset-0 a specific number of times.

lemma remove-iset-0-eq :
assumes i : indexing (A,f )
and k-l-card : k<card A
shows (remove-iset-0ˆk) (A,f )=(f‘{k ..<card A},λn. f (n+k))
using k-l-card

proof (induct k)
case 0 show ?case unfolding power-zero-id unfolding id-apply using i un-

folding indexing-def bij-betw-def
by fastsimp

next
case (Suc k)
hence k-l-card : k<card A and hyp: (remove-iset-0 ˆ k) (A, f ) = (f ‘ {k ..<card

A}, λn. f (n + k)) by auto
show ?case
proof −

have (remove-iset-0 ˆ Suc k) (A, f ) =remove-iset-0 ((remove-iset-0 ˆ k) (A,
f )) using fun-power-suc-eq by metis

also have ...=remove-iset-0 (f ‘ {k ..<card A}, λn. f (n + k)) unfolding hyp
..

also have ...=(f ‘ {Suc k ..<card A}, λn. f (n + Suc k)) unfolding remove-iset-0-def
remove-iset-def

unfolding snd-conv fst-conv
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proof (rule, rule conjI )
show (λn. if n < 0 then f (n + k) else f (Suc n + k)) = (λn. f (n + Suc

k)) by simp
next

show f ‘ {k ..<card A} − {f (0 + k)} = f ‘ {Suc k ..<card A}
proof (auto)

fix xa
assume fxa-notin: f xa /∈ f ‘ {Suc k ..<card A} and k-le-xa: k ≤ xa and

xa-l-card : xa < card A
have xa < Suc k using fxa-notin xa-l-card by fastsimp
hence k=xa using k-le-xa by presburger
thus f xa = f k by simp

next
fix xa
assume fxa-eq-fk : f xa = f k and suc-k-le-xa: Suc k ≤ xa and xa-l-cardA:

xa < card A
have f xa 6= f k
proof (rule inj-on-contraD [of f {..<card A}])

show inj-on f {..<card A} using i unfolding indexing-def bij-betw-def
by simp

show xa 6= k using suc-k-le-xa by fastsimp
show xa ∈ {..<card A} using xa-l-cardA by simp
show k ∈ {..<card A} using suc-k-le-xa xa-l-cardA by simp

qed
thus False using fxa-eq-fk by contradiction

qed
qed
finally show ?thesis .

qed
qed

corollary corollary-remove-iset-0-eq :
assumes i : indexing (A,f )
and n-l-card : n < card A
shows snd ((remove-iset-0ˆn) (A,f )) 0 = f n
using remove-iset-0-eq [OF i n-l-card ] by simp

In the next lemma we prove some properties at same the time. We have
done like that because in the induction case the properties need each oth-
ers. We can not prove one separately: for example, to prove that 0V /∈
iset-to-set (snd (swap-functionSuc n ((A, f ), B , g))) we would write that
swap-functionSuc n ((A, f ), B , g) = swap-function (swap-functionn ((A,
f ), B , g)) and we would apply the theorem zero-notin-snd-swap-function:

[[indexing (A, f ); indexing (B , g); B ⊆ carrier V ; A 6= {}; linear-independent
A; spanning-set B ; 0V /∈ B ]] =⇒ 0V /∈ iset-to-set (snd (swap-function ((A,
f ), B , g)))

However, to apply this theorem we need that spanning-set (iset-to-set (snd
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(swap-functionn ((A, f ), B , g)))). To prove that we would need to use
swap-function-preserves-sg :

[[indexing (A, f ); indexing (B , g); B ⊆ carrier V ; A 6= {}; linear-independent
A; spanning-set B ; 0V /∈ B ]] =⇒ spanning-set (iset-to-set (snd (swap-function
((A, f ), B , g))))

And a premise would be that 0V /∈ iset-to-set (snd (swap-functionn ((A,
f ), B , g)))...but this is what we want to prove. Bringing all together in the
same theorem we will have everything we need like induction hypothesis, so
we can prove it. Next we will separate the properties.

lemma zeronotin-sg-carrier-indexing :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n < card A
shows 0V /∈ iset-to-set (snd ((swap-functionˆn) ((A, f ), B , g)))
∧ spanning-set(iset-to-set(snd((swap-functionˆn)((A,f ),(B ,g)))))
∧ (iset-to-set(snd((swap-functionˆn) ((A,f ),(B ,g)))))
⊆ carrier V
∧ indexing (snd((swap-functionˆn) ((A,f ),(B ,g))))
using n-l-cardA

proof (induct n)
show 0V /∈ iset-to-set (snd ((swap-function ˆ 0 ) ((A, f ), B , g))) ∧

spanning-set (iset-to-set (snd ((swap-function ˆ 0 ) ((A, f ), B , g)))) ∧
iset-to-set (snd ((swap-functionˆ0 ) ((A, f ), B , g))) ⊆ carrier V ∧
indexing (snd ((swap-function ˆ 0 ) ((A, f ), B , g)))

proof (rule conjI4 )
show 0V /∈ iset-to-set (snd ((swap-function ˆ 0 ) ((A, f ), B , g))) using

power-zero-id id-apply
by (metis fst-conv iset-to-set-def one-fun-def snd-conv zero-notin-B)

show spanning-set (iset-to-set (snd ((swap-function ˆ 0 ) ((A, f ), B , g)))) using
power-zero-id id-apply

by (metis fst-conv iset-to-set-def one-fun-def sg-B snd-conv)
show iset-to-set (snd ((swap-functionˆ0 ) ((A, f ), B , g))) ⊆ carrier V using

power-zero-id id-apply
by (metis fst-conv iset-to-set-def one-fun-def B-in-V snd-conv)

show indexing (snd ((swap-function ˆ 0 ) ((A, f ), B , g)))
using power-zero-id id-apply
by (metis fst-conv iset-to-set-def one-fun-def indexing-B snd-conv)

qed
case Suc
fix n
assume hip-induct : n < card A =⇒ 0V /∈ iset-to-set (snd ((swap-function ˆ n)
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((A, f ), B , g))) ∧
spanning-set (iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g)))) ∧
iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))) ⊆ carrier V ∧
indexing (snd ((swap-function ˆ n) ((A, f ), B , g))) and Suc-l-card : Suc n <

card A
hence n-l-card : n<card A

by linarith
hence hi-zero: 0V /∈ iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g)))
and hi-sg : spanning-set (iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))))
and hi-carrier : iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))) ⊆ carrier

V
and hi-indexing : indexing (snd ((swap-function ˆ n) ((A, f ), B , g))) using

hip-induct by fast+
show 0V /∈ iset-to-set (snd ((swap-function ˆ Suc n) ((A, f ), B , g))) ∧

spanning-set (iset-to-set (snd ((swap-function ˆ Suc n) ((A, f ), B , g)))) ∧
iset-to-set (snd ((swap-function ˆ Suc n) ((A, f ), B , g))) ⊆ carrier V ∧
indexing (snd ((swap-function ˆ Suc n) ((A, f ), B , g)))

proof (rule conjI4 )
have eq-fi : (swap-function ˆ Suc n) ((A, f ), B , g)

=swap-function ((swap-function ˆ n) ((A, f ), B , g)) using fun-power-suc-eq
by metis

show 0V /∈ iset-to-set (snd ((swap-function ˆ Suc n) ((A, f ), B , g)))
using fst-swap-function-power-indexing [OF indexing-A A-in-V , of n B g ]
using hi-indexing
using hi-carrier
using hi-sg
using hi-zero
using fst-swap-function-power-preserves-li [OF li-A, of n f B g ]
using swap-function-power-fst-not-empty-if-n-l-cardA[OF indexing-A A-in-V

n-l-card , of B g ]
using zero-notin-snd-swap-function[of (iset-to-set (fst ((swap-function ˆ n)

((A, f ), B , g))))
(iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))))] using eq-fi by

simp
show spanning-set (iset-to-set (snd ((swap-function ˆ Suc n) ((A, f ), B , g))))

using fst-swap-function-power-indexing [OF indexing-A A-in-V , of n B g ]
using hi-indexing
using hi-carrier
using hi-sg
using hi-zero
using fst-swap-function-power-preserves-li [OF li-A, of n f B g ]
using swap-function-power-fst-not-empty-if-n-l-cardA[OF indexing-A A-in-V

n-l-card , of B g ]
using swap-function-preserves-sg [of (iset-to-set (fst ((swap-function ˆ n) ((A,

f ), B , g))))
(iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))))
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(iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))))] using eq-fi by
simp

show iset-to-set (snd ((swap-function ˆ Suc n) ((A, f ), B , g))) ⊆ carrier V
using fst-swap-function-power-indexing [OF indexing-A A-in-V , of n B g ]
using hi-indexing
using hi-carrier
using swap-function-power-fst-in-carrier [OF A-in-V , of n f B g ]
using swap-function-power-fst-not-empty-if-n-l-cardA[OF indexing-A A-in-V

n-l-card , of B g ]
using swap-function-snd-in-carrier [of (iset-to-set (snd ((swap-function ˆ n)

((A, f ), B , g))))
(iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))))] using eq-fi by

simp
show indexing (snd ((swap-function ˆ Suc n) ((A, f ), B , g)))

using fst-swap-function-power-indexing [OF indexing-A A-in-V , of n B g ]
using hi-indexing
using swap-function-power-fst-in-carrier [OF A-in-V , of n f B g ]
using hi-carrier
using swap-function-power-fst-not-empty-if-n-l-cardA[OF indexing-A A-in-V

n-l-card , of B g ]
using fst-swap-function-power-preserves-li [OF li-A, of n f B g ]
using hi-sg
using hi-zero
using snd-swap-function-indexing [of (iset-to-set (fst ((swap-function ˆ n)

((A, f ), B , g))))
(iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))))
(iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))))] using eq-fi by

simp
qed

qed

Now we can obtain the properties separately as corollaries.

corollary zero-notin-snd-swap-function-power :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n<card A
shows 0V /∈ iset-to-set (snd ((swap-functionˆn) ((A, f ), B , g)))
using zeronotin-sg-carrier-indexing assms by simp
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corollary swap-function-power-preserves-sg :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n<card A
shows spanning-set (iset-to-set (snd ((swap-functionˆn) ((A, f ), B , g))))
using zeronotin-sg-carrier-indexing assms by simp

corollary swap-function-power-snd-in-carrier :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n<card A
shows iset-to-set (snd ((swap-functionˆn) ((A, f ), B , g))) ⊆ carrier V
using zeronotin-sg-carrier-indexing assms by simp

corollary snd-swap-function-power-indexing :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n<card A
shows indexing (snd ((swap-function ˆ n) ((A, f ), B , g)))
using zeronotin-sg-carrier-indexing assms by simp

Swap-function preserves the cardinality of the second iset.

lemma snd-swap-function-power-preserves-card :
assumes indexing-A: indexing (A, f )
and indexing-B : indexing (B , g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6= {}
and li-A: linear-independent A
and sg-B : spanning-set B
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and zero-notin-B : 0V /∈ B
and n-l-card : n<card A
shows card (iset-to-set (snd ((swap-functionˆn) ((A, f ), B , g)))) = card B

using n-l-card
proof (induct n)

show card (iset-to-set (snd ((swap-function ˆ 0 ) ((A, f ), B , g)))) = card B
using id-apply power-zero-id
by (metis fst-conv iset-to-set-def snd-conv)

case Suc
fix n
assume hip: n < card A =⇒ card (iset-to-set (snd ((swap-function ˆ n) ((A, f ),

B , g)))) = card B
and suc-l-card : Suc n < card A

hence hip-induct : card (iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g))))
= card B

and n-l-card : n<card A by fastsimp+
show card (iset-to-set (snd ((swap-function ˆ Suc n) ((A, f ), B , g)))) = card B
proof −

have (swap-function ˆ Suc n) ((A, f ), B , g)
=swap-function ((swap-function ˆ n) ((A, f ), B , g)) using fun-power-suc-eq

by metis
thus ?thesis

using fst-swap-function-power-indexing [OF indexing-A A-in-V ]
using snd-swap-function-power-indexing [OF indexing-A indexing-B

A-in-V B-in-V A-not-empty li-A sg-B zero-notin-B n-l-card ]
using swap-function-power-snd-in-carrier [OF indexing-A indexing-B

A-in-V B-in-V A-not-empty li-A sg-B zero-notin-B n-l-card ]
using fst-swap-function-power-preserves-li [OF li-A, of n f B g ]
using swap-function-power-fst-not-empty-if-n-l-cardA[OF indexing-A A-in-V

n-l-card , of B g ]
using swap-function-power-preserves-sg [OF indexing-A indexing-B

A-in-V B-in-V A-not-empty li-A sg-B zero-notin-B n-l-card ]
using zero-notin-snd-swap-function-power [OF indexing-A indexing-B

A-in-V B-in-V A-not-empty li-A sg-B zero-notin-B n-l-card ]
using snd-swap-function-preserves-card [of iset-to-set (fst ((swap-function ˆ

n) ((A, f ), B , g)))
iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g)))
iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g)))
iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g)))] hip-induct by simp

qed
qed

The first term of swap-function iterated is the same than remove-iset-0 it-
erated.

lemma fst-swap-function-power-eq :
fst ((swap-function ˆ n) ((A, f ), B , g)) = (remove-iset-0 ˆ n) (A, f )

proof (induct n)
case 0 show ?case using power-zero-id id-apply fst-conv by metis

next
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case (Suc n)
show ?case
proof −

have fst((swap-function ˆ Suc n) ((A, f ), B , g))
=fst(swap-function ((swap-function ˆ n) ((A, f ), B , g))) using fun-power-suc-eq

by metis
also have ...=fst(swap-function (fst((swap-function ˆ n) ((A, f ), B , g)),

snd((swap-function ˆ n) ((A, f ), B , g)))) by simp
also have ...=fst(swap-function ((remove-iset-0 ˆ n) (A, f ), snd((swap-function

ˆ n) ((A, f ), B , g))))
using Suc.hyps by simp

also have ...=remove-iset-0 ((remove-iset-0 ˆ n) (A, f )) unfolding swap-function-def
fst-conv ..

also have ...=(remove-iset-0 ˆ Suc n) (A, f ) using fun-power-suc-eq by metis
finally show ?thesis .

qed
qed

The first element of the result of the first term in the nth iteration is f(n).

lemma snd-fst-swap-function-image-0 :
assumes indexing-A: indexing (A,f )
and c: n < card A
shows snd (fst ((swap-function ˆ n) ((A, f ), B , g))) 0 = f (n)

proof −
have fst ((swap-function ˆ n) ((A, f ), B , g)) = (remove-iset-0ˆn) (A,f )

using fst-swap-function-power-eq [of n A f B g ] .
hence snd (fst ((swap-function ˆ n) ((A, f ), B , g))) 0 = snd ((remove-iset-0ˆn)

(A,f )) 0
by presburger

also have ...= f n using corollary-remove-iset-0-eq [OF indexing-A c] .
finally show ?thesis .

qed

If we compose n times the swap-function, the first term will be the first set
minus the first n elements of it.

lemma swap-function-fst-image-until-n:
assumes indexing-A: indexing (A,f )
and A-not-empty : A 6={}
and n-l-cardA: n<card A
shows iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))) = f ‘ {n..<card A}
using n-l-cardA

proof (induct n)
show iset-to-set (fst ((swap-function ˆ 0 ) ((A, f ), B , g))) = f ‘ {0 ..<card A}

using id-apply power-zero-id
using indexing-A unfolding indexing-def bij-betw-def
by (metis atLeast0LessThan fst-conv iset-to-index-def iset-to-set-def snd-conv)

case Suc
fix n

170



assume n < card A =⇒iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))) =
f ‘ {n..<card A}

and Suc n < card A
hence hip-induct : iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g))) = f ‘
{n..<card A}

and n-l-card : n < card A by auto
show iset-to-set (fst ((swap-function ˆ Suc n) ((A, f ), B , g))) = f ‘ {Suc n..<card

A}
proof −

have fn: snd (fst ((swap-function ˆ n) ((A, f ), B , g))) 0 = f n
using snd-fst-swap-function-image-0 [OF indexing-A n-l-card ] by simp

have iset-to-set (fst((swap-function ˆ Suc n) ((A, f ), B , g)))
=iset-to-set (fst(swap-function ((swap-function ˆ n) ((A, f ), B , g))))
using fun-power-suc-eq by metis

also have ...=iset-to-set (fst(swap-function (fst((swap-function ˆ n) ((A, f ),
B , g)),

snd((swap-function ˆ n) ((A, f ), B , g))))) by simp
also have ...=iset-to-set (fst(swap-function ((fst(fst((swap-function ˆ n) ((A,

f ), B , g))),
snd(fst((swap-function ˆ n) ((A, f ), B , g)))), snd((swap-function ˆ n) ((A,

f ), B , g))))) by auto
also have ...=iset-to-set (fst(swap-function ((f ‘ {n..<card A},

snd(fst((swap-function ˆ n) ((A, f ), B , g)))), snd((swap-function ˆ n) ((A,
f ), B , g)))))

using hip-induct by simp
also have ...=f ‘ {n..<card A} − {f n} unfolding swap-function-def remove-iset-0-def

remove-iset-def
using fn by force

also have ...=f ‘ {n..<card A} − f‘ {n} by fast
also have ...=f‘ ({n..<card A} − {n})
proof (rule inj-on-image-set-diff [symmetric])
show inj-on f {..<card A} using indexing-A unfolding indexing-def bij-betw-def

by simp
show {n..<card A} ⊆ {..<card A}

by (metis Un-upper2 atLeastLessThan-empty ivl-disj-un(8 )
lessThan-0 lessThan-subset-iff less-eq-nat .simps(1 ) nat-le-linear)

show {n} ⊆ {..<card A}
proof −

have card A > 0 using A-not-empty indexing-finite[OF indexing-A] by
fastsimp

thus ?thesis using n-l-card by fast
qed

qed
also have ...=f‘{Suc n..<card A}

by (metis atLeastLessThan-singleton ivl-diff le-Suc-eq le-refl)
finally show ?thesis .

qed
qed

Now an auxiliar and ugly lemma which we will use to prove the swap theo-
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rem. It is very laborious and hard lemma, similar that swap-function-exists-y-in-B
but much more precisse and difficult (over 400 lines). It represents properties
that has the function during the process of iterating.

lemma aux-swap-theorem1 :
assumes indexing-A: indexing (A,f ) — In this set are the elements that we have

not included in second term yet.
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and li-Z : linear-independent Z — Z is the first independent set, the set over we

would apply our function the first time. A is the subset of Z where there are the
elements of Z that we have not added to B yet. The elements that we have added
to B are in C.

and A-union-C : A∪C =Z — Of course, the union of A and C is Z.
and disjoint : A∩C ={} — The sets are disjoints.
and surj-g-C : g‘{..<card C}= C — In first positions of B there are elements of

Z that we have already included. This set will be independent, so when we apply
remove-ld we will delete an element of (B-C)

shows ∃ y∈B . iset-to-set (snd(swap-function ((A,f ),(B ,g))))
=(insert (f 0 ) (B−{y}))
∧ y /∈ C
∧ iset-to-index (snd(swap-function ((A,f ),(B ,g))))
‘ {..<card (C ) + 1} = C ∪ {f 0}

proof (unfold swap-function-def , auto)
have li-A: linear-independent A and li-C : linear-independent C
using independent-set-implies-independent-subset [OF - li-Z ] A-union-C by auto

show f 0 ∈ B =⇒
∃ y∈B . fst (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) (f 0 )

0 ) = insert (f 0 ) (B − {y}) ∧
y /∈ C ∧ snd (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) (f

0 ) 0 ) ‘ {..<Suc (card C )} =
insert (f 0 ) C

proof −
assume f0-in-B : f 0 ∈ B
show ∃ y∈B . fst (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))

(f 0 ) 0 ) = insert (f 0 ) (B − {y}) ∧
y /∈ C ∧
snd (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) (f 0 ) 0 ) ‘

{..<Suc (card C )} =
insert (f 0 ) C

proof (rule bexI [of - f 0 ], rule conjI )
show fst (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) (f 0 )

0 ) = insert (f 0 ) (B − {f 0})
unfolding insert-iset-def remove-iset-def
using f0-in-B indexing-B obtain-position-element by force

show f 0 /∈ C ∧
snd (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) (f 0 ) 0 )

172



‘ {..<Suc (card C )}
= insert (f 0 ) C

proof (rule conjI )
have 0 ∈ {..< card A} using A-not-empty

by (metis card-gt-0-iff indexing-A indexing-finite lessThan-iff )
hence f 0 ∈ A using indexing-A unfolding indexing-def bij-betw-def by

auto
thus f0-notin-C : f 0 /∈ C using disjoint by fast
show snd (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) (f

0 ) 0 ) ‘ {..<Suc (card C )}
= insert (f 0 ) C

proof −
have snd (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))

(f 0 ) 0 ) ‘ {..<Suc (card C )}=
snd (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) (f 0 )

0 ) ‘ {0} ∪
snd (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) (f 0 )

0 ) ‘ {0<..<Suc (card C )}
proof −

have {..<Suc (card C )}={0}∪{0<..<Suc (card C )} by fastsimp
thus ?thesis by blast

qed
also have ...=snd (insert-iset (remove-iset (B , g) (obtain-position (f 0 )

(B , g))) (f 0 ) 0 ) ‘ {0} ∪ C
proof −
have snd (insert-iset (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))

(f 0 ) 0 ) ‘ {0<..<Suc (card C )} = C
proof −

have cardC-le-obt-pos: card C ≤ obtain-position (f 0 ) (B , g)
by (metis f0-in-B f0-notin-C indexing-B insert-image insert-subset leI

lessThan-iff mem-def obtain-position-element subset-refl surj-g-C )
have image-C : snd (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))

‘ {..<(card C )} = C
unfolding remove-iset-def

proof (auto)
show

∧
k . [[ k < card C ; k < obtain-position (f 0 ) (B , g)]] =⇒ g k ∈

C
by (metis imageI lessThan-iff surj-g-C )
show

∧
k . [[k < card C ; ¬ k < obtain-position (f 0 ) (B , g)]] =⇒ g

(Suc k) ∈ C
using cardC-le-obt-pos by simp

show
∧

x . [[x ∈ C ; x /∈ (λk . g (Suc k)) ‘ ({..<card C} ∩ {k . ¬ k <
obtain-position (f 0 ) (B , g)})]]

=⇒ x ∈ g ‘ ({..<card C} ∩ {k . k < obtain-position (f 0 ) (B , g)})
using surj-g-C cardC-le-obt-pos by force

qed
show ?thesis unfolding insert-iset-def indexing-ext-def using image-C
proof (auto)

fix x
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assume x-in-C : x∈C
show x ∈ (λk . snd (remove-iset (B , g) (obtain-position (f 0 ) (B ,

g))) (k − Suc 0 )) ‘
({0<..<Suc (card C )} ∩ Collect (op < 0 ))

proof (unfold image-def , auto)
have ∃ xa∈{..<card C}. x = snd (remove-iset (B , g) (obtain-position

(f 0 ) (B , g))) xa
using image-C x-in-C unfolding image-def by auto

from this obtain xa where xa-in-l-card : xa∈{..<card C}
and x-eq : x = snd (remove-iset (B , g) (obtain-position (f 0 ) (B ,

g))) xa by blast
show ex-xa: ∃ xa∈{0<..<Suc (card C )} ∩ Collect (op < 0 ).

x = snd (remove-iset (B , g) (obtain-position (f 0 ) (B , g))) (xa −
Suc 0 )

proof (rule bexI [of - xa + 1 ])
show x = snd (remove-iset (B , g) (obtain-position (f 0 ) (B , g)))

(xa + 1 − Suc 0 )
using x-eq by auto

show xa + 1 ∈ {0<..<Suc (card C )} ∩ Collect (op < 0 )
using xa-in-l-card by auto

qed
qed

qed
qed
thus ?thesis by presburger

qed
also have ...={f 0} ∪ C unfolding insert-iset-def indexing-ext-def by

fastsimp
also have ...=insert (f 0 ) C by simp
finally show ?thesis .

qed
qed
show f 0 ∈ B using f0-in-B .

qed
qed
show f 0 /∈ B =⇒
∃ y∈B . fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )) = insert (f 0 ) (B − {y}) ∧
y /∈ C ∧ snd (remove-ld (insert-iset (B , g) (f 0 ) 0 )) ‘ {..<Suc (card C )} =

insert (f 0 ) C
proof −

assume f0-notin-B : f 0 /∈ B
show ∃ y∈B . fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )) = insert (f 0 ) (B −

{y}) ∧
y /∈ C ∧ snd (remove-ld (insert-iset (B , g) (f 0 ) 0 )) ‘ {..<Suc (card C )} =

insert (f 0 ) C
proof −

have A-in-V : A ⊆ carrier V using l-ind-good-set [OF li-Z ] A-union-C un-
folding good-set-def by fast

def P ′≡iset-to-set (insert-iset (B , g) (f 0 ) 0 )

174



def h ′≡iset-to-index (insert-iset (B , g) (f 0 ) 0 )
have ld-P ′:linear-dependent P ′

proof (unfold P ′-def , rule linear-dependent-insert-spanning-set)
show f 0 /∈ B using f0-notin-B .
show indexing (A, f ) using indexing-A .
show indexing (B , g) using indexing-B .
show A ⊆ carrier V using A-in-V .
show B ⊆ carrier V using B-in-V .
show A 6= {} using A-not-empty .
show spanning-set B using sg-B .

qed
have indexing : indexing (P ′,h ′)
unfolding P ′-def h ′-def using insert-iset-indexing [OF indexing-B f0-notin-B

-] by simp
have zero-not-in: 0V /∈ P ′

using P ′-def zero-notin-B f0-not-zero[OF indexing-A li-A A-not-empty ]
unfolding insert-iset-def by simp

let ?P = (λk . ∃ y∈P ′. ∃ g . g∈ coefficients-function (carrier V ) ∧ 1 ≤ k ∧
k < card P ′ ∧ h ′ k = y ∧ y = linear-combination g (h ′ ‘ {i . i < k}))

have exK : (∃ k . ?P k)
using linear-dependent-set-sorted-contains-linear-combination[OF ld-P ′

zero-not-in indexing ] by auto
have ex-LEAST : ?P (LEAST k . ?P k)

using LeastI-ex [OF exK ] .
let ?k = (LEAST k . ?P k)
have ∃ y∈P ′. ∃ g . g ∈ coefficients-function (carrier V ) ∧ 1 ≤ ?k ∧

?k < card P ′ ∧ h ′ ?k = y ∧ y = linear-combination g (h ′ ‘ {i . i < ?k})
using ex-LEAST by simp

then obtain y s
where one-le-k : 1 ≤ ?k and k-l-card : ?k < card P ′ and h ′-k-eq-y : h ′ ?k =

y
and cf-s: s ∈ coefficients-function (carrier V ) and

combinacion-anteriores: y = linear-combination s (h ′ ‘ {i . i < ?k}) by blast
have rem-eq : fst (remove-ld (P ′, h ′)) = P ′ − {y} and y-in-P ′: y ∈ P ′

using indexing-equiv-img [OF indexing ] one-le-k k-l-card h ′-k-eq-y
unfolding Pi-def unfolding remove-ld-def ′ by auto

show ?thesis
proof (rule bexI [of - y ], rule conjI )

show y-in-B : y∈B — WE HAVE TO PROVE THAT y is different to f 0
using y-in-P ′ unfolding P ′-def unfolding insert-iset-def

proof (simp)
assume y-f0-or-in-B : y=f 0 ∨ y ∈ B
show y ∈ B
proof (cases y= f 0 )

case False thus ?thesis using y-f0-or-in-B by fast
next

case True
have inj-on-h ′: inj-on h ′ {..<card P ′} using indexing unfolding

indexing-def bij-betw-def by simp
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have h ′ 0 = f 0 using h ′-def unfolding insert-iset-def indexing-ext-def
by simp

hence h ′ 0 = y using True by simp
hence h ′ 0 = h ′ ?k using h ′-k-eq-y by simp
hence ?k=0

using inj-on-eq-iff [OF inj-on-h ′] using k-l-card by simp
thus ?thesis using one-le-k by presburger — CONTRADICTION, WE

HAVE k=0 and k greater or equal to 1
qed

qed
show fst (remove-ld (insert-iset (B , g) (f 0 ) 0 )) = insert (f 0 ) (B − {y})
proof −

have fst (remove-ld (insert-iset (B , g) (f 0 ) 0 ))
=fst (remove-ld (fst(insert-iset (B , g) (f 0 ) 0 ),snd(insert-iset (B , g) (f

0 ) 0 ))) by simp
also have ...=(insert (f 0 ) B) − {y} using rem-eq unfolding P ′-def

h ′-def insert-iset-def by simp
also have ...=insert (f 0 ) (B − {y}) using f0-notin-B y-in-B by blast
finally show ?thesis .

qed
show y /∈ C ∧ snd (remove-ld (insert-iset (B , g) (f 0 ) 0 )) ‘ {..<Suc (card

C )} = insert (f 0 ) C
proof (rule conjI )

show y /∈ C
proof (cases y /∈C )

case True thus ?thesis .
next

case False note y-in-C =False show ?thesis
proof −

have image-h-C : h ′‘{0<..< Suc (card C )} = C
proof (unfold image-def , unfold h ′-def ,unfold insert-iset-def

, unfold indexing-ext-def , auto)
fix xa
assume 0 < xa and xa < Suc (card C )
thus g (xa − Suc 0 ) ∈ C using surj-g-C by auto

next
fix x
assume x-in-C : x ∈ C

have ∃ xa∈{..<(card C )}. x = g (xa) using surj-g-C x-in-C unfolding
image-def by auto

from this obtain xa where g-xa-x : x = g (xa) and xa-in-set :
xa∈{..<(card C )} by auto

show ∃ xb∈{0<..<Suc (card C )}. x = g (xb − Suc 0 ) — Sera
xb=xa+1

using g-xa-x xa-in-set by force
qed
have image-h-BC : h ′‘{i . Suc (card C )≤i ∧ i<(card P ′)}=B−C
proof (unfold image-def , unfold h ′-def ,unfold insert-iset-def

, unfold indexing-ext-def , auto)

176



fix xa
assume xa < card P ′

hence xa-l-suc-cardB : xa < Suc (card B) unfolding P ′-def
by (metis P ′-def card-insert-if f0-notin-B fst-conv

indexing-B indexing-finite insert-iset-def iset-to-set-def )
have card B > 0 using y-in-B indexing-finite[OF indexing-B ]

by (metis card-gt-0-iff equals0D)
thus g (xa − Suc 0 ) ∈ B

using indexing-B unfolding indexing-def bij-betw-def using
xa-l-suc-cardB by auto

next
fix x
assume x-in-B : x ∈ B and x-notin-C : x /∈ C
show ∃ xa≥Suc (card C ). xa < card P ′ ∧ x = g (xa − Suc 0 ) — El

testigo es a+1
proof −

from x-in-B obtain a where x-eq-ga: x=g a and a-l-cardB :a <
card B

using indexing-B unfolding indexing-def
bij-betw-def by auto

have a-ge-cardC : a≥card C
by (metis imageI lessThan-iff not-leE surj-g-C x-eq-ga x-notin-C )

hence a-plus-one-ge-suc-card-C : a + 1 ≥ Suc (card C ) by simp
have x-eq :x = g (a + 1 − Suc 0 ) using x-eq-ga by simp
have a + 1 < card P ′ using P ′-def
by (metis Suc-eq-plus1 Suc-n-not-n a-l-cardB f0-notin-B indexing-B

insert-iset-increase-card less-trans-Suc linorder-neqE-nat
nat-add-commute not-add-less2 )

thus ?thesis using a-plus-one-ge-suc-card-C and x-eq by fast
qed

next
fix xa
assume suc-C-le-xa: Suc (card C ) ≤ xa and xa-l-cardP : xa < card

P ′

and g-xa0-in-C :g (xa − Suc 0 ) ∈ C — We will obtain a contradiction
thanks to injectivity.

def b≡ g (xa − Suc 0 )
have xa0-l-B :xa − Suc 0 < card B using xa-l-cardP

by (metis One-nat-def P ′-def Suc-less-SucD
Suc-pred add-Suc-shift f0-notin-B gr0I gr-implies-not0
indexing-B insert-iset-increase-card less-eq-Suc-le
nat-add-commute plus-nat .add-0 suc-C-le-xa)

have cardC-le-cardB : card C ≤ card B
by (metis One-nat-def P ′-def Suc-diff-1 Suc-le-lessD

diff-add-inverse f0-notin-B indexing-B
insert-iset-increase-card le-add1 le-trans nat-add-commute
not-less-eq-eq order-less-not-sym suc-C-le-xa xa-l-cardP)
hence C-subset-B : C⊆B using indexing-B surj-g-C unfolding
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indexing-def bij-betw-def
unfolding image-def by fastsimp

have b-in-C : b ∈ C using b-def g-xa0-in-C by auto
from b-in-C obtain a where ga-eq-b: g a = b and a-l-cardC : a <

card C
using surj-g-C unfolding image-def by force

hence a 6= xa − Suc 0 using suc-C-le-xa by auto
thus False using indexing-B ga-eq-b a-l-cardC xa-l-cardP xa0-l-B

cardC-le-cardB
inj-on-eq-iff [of g {..<card B} a xa − Suc 0 ]
unfolding indexing-def bij-betw-def b-def
by fastsimp

qed
hence y /∈ h ′‘{i . Suc (card C )≤i ∧ i<(card P ′)} using y-in-C by

simp
hence k-l-cardC : ?k≤card C using image-h-C h ′-k-eq-y k-l-card by

auto
have image-h-card-in-Z : h ′ ‘ {..<card C} ⊆ Z
proof −

have {..< card C}={0} ∪ {0<..< card C} using one-le-k k-l-cardC
by force

hence h ′ ‘ {..< card C}=h ′ ‘{0} ∪ h ′‘{0<..< card C} by blast
also have ...= {f 0} ∪ h ′‘{0<..< card C}

using h ′-def unfolding insert-iset-def indexing-ext-def by auto
also have ...⊆ Z
proof −

have f 0 ∈ A
using indexing-in-set [OF indexing-A -]

A-not-empty indexing-finite[OF indexing-A] by (metis card-eq-0-iff
gr0I )

thus ?thesis using image-h-C A-union-C by auto
qed
finally show ?thesis .

qed
have ld-insert : linear-dependent (insert y (h ′‘{i . i<?k}))
proof (rule lc1 )

show linear-independent (h ′‘{i . i<?k})
proof (rule independent-set-implies-independent-subset)

show linear-independent Z using li-Z .
next

show h ′ ‘ {i . i < ?k} ⊆ Z using image-h-card-in-Z k-l-cardC by
auto

qed
show y ∈ carrier V by (metis B-in-V subsetD y-in-B)
show y /∈ h ′‘{i . i<?k}

using y-in-C and h ′-k-eq-y and k-l-card and indexing
unfolding indexing-def and bij-betw-def and inj-on-def
by force

show ∃ f . f ∈ coefficients-function (carrier V ) ∧
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linear-combination f (h ′ ‘{i . i<?k})=y
using cf-s and combinacion-anteriores by auto

qed
have linear-dependent Z

proof (rule linear-dependent-subset-implies-linear-dependent-set [of
insert y (h ′‘{i . i<?k})])

show insert y (h ′ ‘ {i . i<?k}) ⊆ Z
proof −

have y∈Z using y-in-C A-union-C by auto
thus ?thesis using image-h-card-in-Z k-l-cardC by auto

qed
show good-set Z

by (metis l-ind-good-set li-Z )
show linear-dependent (insert y (h ′ ‘{i . i<?k})) using ld-insert .

qed
— Contradiction: we have linear dependent Z and linear independent

Z
thus ?thesis using independent-implies-not-dependent [OF li-Z ] by

contradiction
qed

qed
show snd (remove-ld (insert-iset (B , g) (f 0 ) 0 )) ‘ {..<Suc (card C )} =

insert (f 0 ) C
proof −

have eq : snd (remove-ld (insert-iset (B , g) (f 0 ) 0 ))=snd(remove-iset(insert-iset
(B , g) (f 0 ) 0 ) ?k)

unfolding remove-ld-def using snd-conv using remove-iset-def [of
(insert-iset (B , g) (f 0 ) 0 ) ?k ]

unfolding P ′-def h ′-def by force
have {..<Suc (card C )}={0}∪{0<..<Suc (card C )} by auto
hence snd (remove-ld (insert-iset (B , g) (f 0 ) 0 )) ‘ {..<Suc (card C )}

=snd (remove-ld (insert-iset (B , g) (f 0 ) 0 )) ‘ {0}
∪ snd (remove-ld (insert-iset (B , g) (f 0 ) 0 )) ‘{0<..<Suc (card C )}

by blast
also have ...= {f 0} ∪ snd (remove-ld (insert-iset (B , g) (f 0 ) 0 ))

‘{0<..<Suc (card C )}
proof −

have snd (insert-iset (B , g) (f 0 ) 0 ) ‘ {0}={f 0} unfolding
insert-iset-def indexing-ext-def by simp

hence snd (remove-iset(insert-iset (B , g) (f 0 ) 0 ) ?k)‘{0}={f 0}
unfolding remove-iset-def using one-le-k by auto

thus ?thesis using eq by presburger
qed
also have ...= {f 0} ∪ C
proof −

have k-g-cardC : ?k ≥ Suc (card C ) — No puede ser menor porque C
es independiente!

proof (cases ?k ≥ Suc (card C ))
case True thus ?thesis .
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next
case False note k-l-suc-cardC =False
have image-eq :h ′‘{0<..<Suc (card C )}=g‘{..<card C}

unfolding h ′-def insert-iset-def indexing-ext-def
unfolding image-def by force

have image-eq2 : h ′ 0 = f 0 unfolding h ′-def insert-iset-def
indexing-ext-def by simp

have ld-f0-C : linear-dependent ({f 0} ∪ g‘{..<card C})
proof (rule linear-dependent-subset-implies-linear-dependent-set)

show insert (h ′ ?k) (h ′ ‘{..<?k})⊆ {f 0} ∪ g‘{..<card C}
proof −
have igualdad-conjuntos: {..<?k} ∪ {?k}={0} ∪ {0<..?k} using

one-le-k by auto
have insert (h ′ ?k) (h ′‘{..<?k})= h ′‘ {?k} ∪ h ′‘{..<?k} by auto
also have ...=h ′‘ ({..<?k} ∪ {?k}) by auto
also have ...=h ′‘ ({0} ∪ {0<..?k}) using igualdad-conjuntos by

auto
also have ...={h ′ 0} ∪ h ′‘{0<..?k} by auto
also have ... ⊆ {f 0} ∪ g‘{..<card C} using image-eq image-eq2

k-l-suc-cardC by auto
finally show ?thesis .

qed
show good-set ({f 0} ∪ g ‘ {..<card C})

using f0-in-V [OF indexing-A A-in-V A-not-empty ] surj-g-C
l-ind-good-set [OF li-C ]

unfolding good-set-def by simp
show linear-dependent (insert (h ′ ?k) (h ′ ‘{..<?k}))
proof (rule lc1 )

show linear-independent (h ′ ‘{..<?k})
proof (rule independent-set-implies-independent-subset)

have h ′ ‘{..<?k}⊆{f 0} ∪ g ‘ {..<card C} using image-eq
image-eq2 k-l-suc-cardC by force

also have ...⊆ Z
using A-union-C A-not-empty surj-g-C
indexing-in-set [OF indexing-A] indexing-finite[OF indexing-A]
by force

finally show h ′ ‘{..<?k} ⊆ Z .
next

show linear-independent Z using li-Z .
qed
show h ′ ?k ∈ carrier V
proof −

have h ′ ?k ∈ h ′‘{..<card P ′} using k-l-card by blast
also have ...=P ′ using indexing unfolding indexing-def

bij-betw-def by simp
also have ...⊆ carrier V using P ′-def B-in-V f0-in-V [OF

indexing-A A-in-V A-not-empty ]
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unfolding insert-iset-def by simp
finally show ?thesis .

qed
show h ′ ?k /∈ h ′‘ {..<?k}
proof (cases h ′ ?k /∈ h ′‘ {..<?k})

case True thus ?thesis .
next case False

from this obtain s where hk-hs: h ′ ?k = h ′ s and s-in-set :
s∈{..<?k} by auto

hence s-not-k : s 6=?k and s-l-card : s<card P ′ using k-l-card by
auto

have inj-on h ′ {..<card P ′} using indexing unfolding indexing-def
bij-betw-def by auto

hence h ′ ?k 6= h ′ s using inj-on-eq-iff s-not-k s-l-card k-l-card
by fastsimp

thus ?thesis
using hk-hs by contradiction

qed
next
show ∃ f . f ∈ coefficients-function (carrier V ) ∧ linear-combination

f (h ′ ‘ {..<?k}) = h ′ (?k)
proof −

have {i . i<?k}={..<?k} by fast
thus ?thesis

using cf-s and combinacion-anteriores h ′-k-eq-y by auto
qed

qed
qed
have li-f0-C : linear-independent ({f 0} ∪ g‘{..<card C})
proof (rule independent-set-implies-independent-subset)

show {f 0} ∪ g ‘ {..<card C} ⊆ Z
using A-union-C A-not-empty surj-g-C

indexing-in-set [OF indexing-A] indexing-finite[OF indexing-A]
by force

show linear-independent Z using li-Z .
qed
thus ?thesis using dependent-implies-not-independent [OF ld-f0-C ]

by contradiction
— Contradiction

qed
have snd (remove-iset(insert-iset (B , g) (f 0 ) 0 ) ?k) ‘ {0<..<Suc

(card C )}=
snd (insert-iset (B , g) (f 0 ) 0 ) ‘{0<..<Suc (card C )}
unfolding remove-iset-def using k-g-cardC by auto

also have ...=C
proof (unfold insert-iset-def , unfold indexing-ext-def , unfold image-def ,

auto)
fix xa
assume 0 < xa and xa < Suc (card C )
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thus g (xa − Suc 0 ) ∈ C using surj-g-C by force
next

fix x
assume x-in-C : x ∈ C
from this obtain a where x = g a and a < card C using surj-g-C

by blast
thus ∃ xa∈{0<..<Suc (card C )}. x = g (xa − Suc 0 ) using bexI [of

- a+1 ] by force
qed
finally show ?thesis using eq by presburger

qed
also have ...=insert (f 0 ) C by simp
finally show ?thesis .

qed
qed

qed
qed

qed
qed

Another important auxiliary lemma. Applying the swap function n-times
(with n < card(A)) to ((A, f ), B , g), where A is independent and B a span-
ning set, we will have that the first n elements of A will be in the first posi-
tions of the second component of the result. Of course, these elements come
from A and thus they are independent. We make use of aux-swap-theorem1
to prove this lemma.

lemma aux-swap-theorem2 :
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
and n-l-cardA: n < card A
shows f‘{..<n}
= iset-to-index (snd((swap-functionˆ(n)) ((A,f ),(B ,g))))‘{..<n}
∧ iset-to-index (snd((swap-functionˆ(n)) ((A,f ),(B ,g))))‘{..<n}
⊂ A
∧ linear-independent
(iset-to-index (snd((swap-functionˆ(n)) ((A,f ),(B ,g))))‘{..<n})
∧ n = (card (iset-to-index (snd((swap-functionˆ(n))
((A,f ),(B ,g))))‘{..<n}))
using n-l-cardA

proof (induct n)
show f ‘ {..<0} = iset-to-index (snd ((swap-function ˆ 0 ) ((A, f ), B , g))) ‘
{..<0} ∧

iset-to-index (snd ((swap-function ˆ 0 ) ((A, f ), B , g))) ‘ {..<0} ⊂ A ∧
linear-independent (iset-to-index (snd ((swap-function ˆ 0 ) ((A, f ), B , g))) ‘
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{..<0}) ∧
0 = card (iset-to-index (snd ((swap-function ˆ 0 ) ((A, f ), B , g))) ‘ {..<0})

proof −
have iset-to-index (snd ((swap-function ˆ 0 ) ((A, f ), B , g))) ‘ {..<0}={} by

simp
hence li : linear-independent (iset-to-index (snd ((swap-function ˆ 0 ) ((A, f ),

B , g))) ‘ {..<0})
using empty-set-is-linearly-independent by presburger

show ?thesis using li and A-not-empty by auto
qed
case Suc
fix n
assume hip-induct : n < card A =⇒

f ‘ {..<n} = iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))) ‘ {..<n}
∧

iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))) ‘ {..<n} ⊂ A ∧
linear-independent (iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))) ‘

{..<n}) ∧
n = card (iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))) ‘ {..<n})
and suc-n-l-card : Suc n < card A

have n-l-card : n < card A using suc-n-l-card by simp
hence hip: f ‘ {..<n} = iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g)))

‘ {..<n} ∧
iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))) ‘ {..<n} ⊂ A ∧
linear-independent (iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))) ‘

{..<n}) ∧
n = card (iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g))) ‘ {..<n})
using hip-induct by simp

show f ‘ {..<Suc n} = iset-to-index (snd ((swap-function ˆ Suc n) ((A, f ), B ,
g))) ‘ {..<Suc n} ∧

iset-to-index (snd ((swap-function ˆ Suc n) ((A, f ), B , g))) ‘ {..<Suc n} ⊂ A
∧

linear-independent (iset-to-index (snd ((swap-function ˆ Suc n) ((A, f ), B , g)))
‘ {..<Suc n}) ∧

Suc n = card (iset-to-index (snd ((swap-function ˆ Suc n) ((A, f ), B , g))) ‘
{..<Suc n})

proof (rule conjI4 )
have A-in-V : A ⊆ carrier V

by (metis good-set-in-carrier l-ind-good-set li-A)
def C ==iset-to-index (snd ((swap-function ˆ Suc n) ((A, f ), B , g))) ‘ {..<Suc

n}
show image-C : f ‘ {..<Suc n} = C
proof −

def A ′≡iset-to-set (fst ((swap-function ˆ n) ((A, f ), B , g)))
def f ′≡iset-to-index (fst ((swap-function ˆ n) ((A, f ), B , g)))
def B ′≡iset-to-set (snd ((swap-function ˆ n) ((A, f ), B , g)))
def g ′≡iset-to-index (snd ((swap-function ˆ n) ((A, f ), B , g)))
def C ′≡f ‘ {..<n}
have snd ((swap-function ˆ Suc n) ((A, f ), B , g))
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=snd (swap-function ((swap-function ˆ n) ((A, f ), B , g)))
using fun-power-suc-eq by metis

also have ...=snd (swap-function ((A ′,f ′),(B ′,g ′)))
using A ′-def B ′-def f ′-def g ′-def by simp

finally have descomposicion: snd ((swap-function ˆ Suc n) ((A, f ), B , g)) =
snd (swap-function ((A ′, f ′), B ′, g ′)) .

have ∃ y∈B ′. iset-to-set (snd (swap-function ((A ′,f ′),(B ′,g ′))))=(insert (f ′

0 ) (B ′−{y})) ∧ y /∈ C ′ ∧
iset-to-index (snd (swap-function ((A ′, f ′), B ′, g ′)))‘ {..<card (C ′) + 1} =

C ′∪{f ′ 0}
proof (rule aux-swap-theorem1 )

show indexing (A ′, f ′)
using fst-swap-function-power-indexing [OF indexing-A A-in-V , of n B g ]
unfolding A ′-def f ′-def by simp

show indexing (B ′, g ′)
using snd-swap-function-power-indexing

[OF indexing-A indexing-B A-in-V B-in-V A-not-empty li-A sg-B zero-notin-B
n-l-card ]

unfolding B ′-def g ′-def by simp
show B ′ ⊆ carrier V unfolding B ′-def
using swap-function-power-snd-in-carrier [OF indexing-A indexing-B A-in-V

B-in-V
A-not-empty li-A sg-B zero-notin-B n-l-card ] .

show A ′ 6= {}
unfolding A ′-def

using swap-function-power-fst-not-empty-if-n-l-cardA[OF indexing-A A-in-V
n-l-card ]

by presburger
show spanning-set B ′

unfolding B ′-def
using swap-function-power-preserves-sg [OF indexing-A indexing-B A-in-V

B-in-V
A-not-empty li-A sg-B zero-notin-B n-l-card ] .

show 0V /∈ B ′

unfolding B ′-def using zero-notin-snd-swap-function-power [OF indexing-A
indexing-B A-in-V B-in-V

A-not-empty li-A sg-B zero-notin-B n-l-card ] .
show g ′ ‘ {..<card C ′} = C ′

unfolding g ′-def C ′-def using hip by presburger
show A ′ ∪ C ′ = A
proof −

have A ′=f‘{n..<card A} using swap-function-fst-image-until-n[OF
indexing-A A-not-empty n-l-card ]

unfolding A ′-def by auto
hence A ′ ∪ C ′=f‘{n..<card A} ∪ f‘{..<n} unfolding C ′-def by fast
also have ...=f‘{..<card A}

by (metis C ′-def Un-commute 〈A ′ = f ‘ {n..<card A}〉
image-Un ivl-disj-un(8 ) n-l-card nat-less-le)

also have ...=A using indexing-A unfolding indexing-def bij-betw-def by
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simp
finally show ?thesis .

qed
show A ′ ∩ C ′ = {}
proof −

have A ′=f‘{n..<card A}
using swap-function-fst-image-until-n[OF indexing-A A-not-empty

n-l-card ]
unfolding A ′-def by auto

hence A ′ ∩ C ′=f‘{n..<card A} ∩ C ′ by simp
also have ...=f‘{n..<card A} ∩ f‘{..<n} unfolding C ′-def ..
also have ...=f‘ ({n..<card A} ∩ {..<n})
proof (rule inj-on-image-Int [symmetric])

show inj-on f {..<card A} using indexing-A unfolding indexing-def
bij-betw-def by simp

show {n..<card A} ⊆ {..<card A} using n-l-card by fastsimp
show {..<n} ⊆ {..<card A} using n-l-card by simp

qed
also have ...=f‘{} by auto
also have ...={} by simp
finally show ?thesis .

qed
show linear-independent A using li-A .

qed
hence image: iset-to-index (snd (swap-function ((A ′, f ′), B ′, g ′)))‘ {..<card

(C ′) + 1} = C ′∪{f ′ 0}
by fast

have f‘{..<Suc n}=f ‘ {..<n}∪{f ′ 0}
proof −

have f ′0-fn:f ′ 0 =f n unfolding f ′-def
using snd-fst-swap-function-image-0 [OF indexing-A n-l-card , of B g ] by

simp
have f‘{..<Suc n}=f ‘ {..<n}∪{f n}
by (metis C ′-def Un-empty-right Un-insert-right image-insert lessThan-Suc)
also have ...=f ‘ {..<n}∪{f ′ 0} using f ′0-fn by presburger
finally show ?thesis .

qed
also have ...=C ′∪{f ′ 0} using C ′-def by simp
also have ...=iset-to-index (snd (swap-function ((A ′, f ′), B ′, g ′)))‘ {..<card

(C ′) + 1}
using image by fast

also have ...=iset-to-index (snd (swap-function ((A ′, f ′), B ′, g ′)))‘ {..<Suc
n}

proof −
have igualdad-conjuntos: {..<card (C ′) + 1}={..<Suc n}
proof −

have card C ′= card {..<n}
proof (unfold C ′-def , rule card-image)

show inj-on f {..<n}using subset-inj-on indexing-A -n-l-card
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unfolding indexing-def bij-betw-def by fastsimp
qed
also have ...=n by simp
finally show ?thesis by simp

qed
thus ?thesis by presburger

qed
also have ...=iset-to-index (snd ((swap-function ˆ Suc n) ((A, f ), B , g)))‘

{..<Suc n}
using C-def A ′-def B ′-def f ′-def g ′-def descomposicion by presburger

finally show ?thesis using C-def by presburger
qed
show linear-independent C
proof −
have f ‘ {..<Suc n}⊆ A using indexing-A suc-n-l-card unfolding indexing-def

bij-betw-def by fastsimp
thus ?thesis using independent-set-implies-independent-subset using image-C

li-A unfolding C-def by force
qed
show C ⊂ A
proof −

have f‘ {..<Suc n} ⊂ f‘ {..<card A}
proof (rule inj-on-strict-subset)

show inj-on f {..<card A} using indexing-A unfolding indexing-def
bij-betw-def by simp

show {..<Suc n} ⊂ {..<card A} using suc-n-l-card by fastsimp
qed
thus ?thesis using indexing-A image-C unfolding indexing-def bij-betw-def

C-def by auto
qed
show Suc n = card C
proof −

have card C = card (f ‘ {..<Suc n}) using image-C by fast
also have ...= card {..<Suc n}
proof (rule card-image)

show inj-on f {..<Suc n}
using subset-inj-on indexing-A suc-n-l-card
unfolding indexing-def bij-betw-def
by fastsimp

qed
also have ...= Suc n using card-lessThan by simp
finally show ?thesis by presburger

qed
qed

qed

At last, we can prove the swap theorem. We separate it in cases, when A is
empty and when it is not. We use the auxiliar lemma aux-swap-theorem2.

theorem swap-theorem-not-empty :
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assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and A-not-empty : A 6={}
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B

shows card A ≤ card B
proof (cases card A ≤ card B)

case True thus ?thesis .
next

case False
have cardB-l-cardA: card A > card B using False by linarith
def C≡iset-to-index (snd((swap-functionˆ(card B)) ((A,f ),(B ,g))))‘{..<card B}
have C-eq : C =iset-to-set(snd((swap-functionˆ(card B)) ((A,f ),(B ,g))))

using snd-swap-function-power-indexing
[OF indexing-A indexing-B A-in-V B-in-V A-not-empty

li-A sg-B zero-notin-B cardB-l-cardA]
unfolding C-def indexing-def bij-betw-def
using snd-swap-function-power-preserves-card
[OF indexing-A indexing-B A-in-V B-in-V

A-not-empty li-A sg-B zero-notin-B cardB-l-cardA]
by simp

have surjf-B-C : f‘{..<card B}=C
and C-subset-A:C ⊂ A
and li-C :linear-independent C
and cB-eq-cC :card B=card C
using aux-swap-theorem2 assms cardB-l-cardA
unfolding C-def by auto

have spanning-set-C : spanning-set C
using swap-function-power-preserves-sg
[OF indexing-A indexing-B A-in-V B-in-V A-not-empty

li-A sg-B zero-notin-B cardB-l-cardA] C-eq
unfolding C-def by presburger

have linear-dependent A
proof −

have ∃ x . x∈A ∧ x /∈C using C-subset-A by fast
from this obtain x where x-in-A: x∈A and x-notin-C : x /∈C

by blast
show ?thesis
proof (rule linear-dependent-subset-implies-linear-dependent-set

[of insert x C ])
show insert x C ⊆ A using C-subset-A and x-in-A by simp
show good-set A using li-A linear-independent-def by blast
show linear-dependent (insert x C )
proof (rule lc1 )

show linear-independent C using li-C .
show x-in-V : x ∈ carrier V
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by (metis good-set-def li-A linear-independent-def
subsetD x-in-A)

show x /∈ C using x-notin-C .
show ∃ f . f ∈ coefficients-function (carrier V )
∧ linear-combination f C = x
using spanning-set-C x-in-V
unfolding spanning-set-def by blast

qed
qed

qed
hence ¬ linear-independent A

using dependent-implies-not-independent by simp
thus ?thesis using li-A by contradiction

qed

Finally the theorem (every independent set has cardinal less than or equal
to every spanning set) and some corollaries:

theorem swap-theorem:
assumes indexing-A: indexing (A,f )
and indexing-B : indexing (B ,g)
and A-in-V : A ⊆ carrier V
and B-in-V : B ⊆ carrier V
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows card A ≤ card B

proof (cases A={})
case True show ?thesis by (metis True card-eq-0-iff le0 )

next
case False show ?thesis using swap-theorem-not-empty assms False by force

qed

The next corollary omits the need of indexing functions for A and B (these
are obtained through auxiliary lemmas).

corollary swap-theorem2 :
assumes finite-B : finite B
and B-in-V : B ⊆ carrier V
and A-in-V : A ⊆ carrier V
and li-A: linear-independent A
and sg-B : spanning-set B
and zero-notin-B : 0V /∈ B
shows card A ≤ card B

proof −
have ∃ f . indexing (A,f ) using obtain-indexing

by (metis good-set-finite l-ind-good-set li-A)
from this obtain f where indexing-A: indexing (A,f ) by fast
have ∃ g . indexing (B ,g) using obtain-indexing [OF finite-B ] .
from this obtain g where indexing-B : indexing (B ,g) by fast
show ?thesis using swap-theorem
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[OF indexing-A indexing-B A-in-V B-in-V
li-A sg-B zero-notin-B ] .

qed

Now we can prove that the number of elements in any (finite) basis (of a
finite-dimensional vector space) is the same as in any other (finite) basis.

theorem eq-cardinality-basis:
assumes basis-B : basis B
and finite-B : finite B
shows card X = card B

proof −
have ∃ f . indexing (X ,f ) using obtain-indexing [OF finite-X ] .
from this obtain f where indexing-X : indexing (X ,f ) by fast
have ∃ g . indexing (B ,g) using obtain-indexing [OF finite-B ] .
from this obtain g where indexing-B : indexing (B ,g) by fast
have li-X : linear-independent X and sg-X : spanning-set X

using linear-independent-X and spanning-set-X by fast+
have gs-B : good-set B

using finite-basis-implies-good-set [OF basis-B finite-B ] .
have li-B : linear-independent B and sg-B : spanning-set B

using basis-B finite-B unfolding basis-def
using fin-ind-ext-impl-ind

gs-spanning-ext-imp-spanning gs-B by blast+
have cardX-le-cardB : card X ≤ card B
proof (rule swap-theorem)

show indexing (X , f ) using indexing-X .
show indexing (B , g) using indexing-B .
show X ⊆ carrier V

using finite-basis-implies-good-set [OF basis-X finite-X ]
unfolding good-set-def by simp

show B ⊆ carrier V
using finite-basis-implies-good-set [OF basis-B finite-B ]
unfolding good-set-def by simp

show linear-independent X using li-X .
show spanning-set B using sg-B .
show 0V /∈ B

using zero-not-in-linear-independent-set [OF li-B ] .
qed
have cardX-ge-cardB : card X ≥ card B
proof (rule swap-theorem)

show indexing (B , g) using indexing-B .
show indexing (X , f ) using indexing-X .
show X ⊆ carrier V

using finite-basis-implies-good-set [OF basis-X finite-X ]
unfolding good-set-def by simp

show B ⊆ carrier V
using finite-basis-implies-good-set [OF basis-B finite-B ]
unfolding good-set-def by simp

show linear-independent B using li-B .
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show spanning-set X using sg-X .
show 0V /∈ X

using zero-not-in-linear-independent-set [OF li-X ] .
qed
show ?thesis

using cardX-le-cardB and cardX-ge-cardB by presburger
qed

corollary eq-cardinality-basis2 :
assumes basis-A: basis A
and finite-A: finite A
and basis-B : basis B
and finite-B : finite B
shows card A = card B
by (metis basis-A basis-B eq-cardinality-basis finite-A finite-B)

We can make the definicion of dimension of a vector space and relationate
the concept with above theorems.

The dimension of a vector space is the cardinality of one of its basis. We
have fixed X as a basis, so the definition is trivial:

definition dimension :: nat
where dimension = card X

If we have another basis, the dimension is equal to its cardinality.

lemma eq-dimension-basis:
assumes basis-A: basis A
and finite-A: finite A
shows dimension = card A
by (metis basis-A dimension-def eq-cardinality-basis finite-A)

Whenever we have an independent set, we will know that its cardinality is
less than the dimension of the vector space.

lemma card-li-le-dim:
assumes li-A: linear-independent A
shows card A ≤ dimension

proof −
have ∃ f . indexing (X ,f ) using obtain-indexing [OF finite-X ] .
from this obtain f where indexing-X : indexing (X ,f ) by fast
have finite-A: finite A

by (metis assms good-set-finite l-ind-good-set)
have ∃ g . indexing (A,g) using obtain-indexing [OF finite-A] .
from this obtain g where indexing-A: indexing (A,g) by fast
have li-X : linear-independent X and sg-X : spanning-set X

by auto
show ?thesis
proof (unfold dimension-def , rule swap-theorem)

show indexing (A, g) using indexing-A .
show indexing (X , f ) using indexing-X .
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show A ⊆ carrier V
by (metis assms good-set-in-carrier l-ind-good-set)

show X ⊆ carrier V
by (metis good-set-X good-set-in-carrier)

show linear-independent A using li-A .
show spanning-set X using sg-X .
show 0V /∈ X by (metis li-X zero-not-in-linear-independent-set)

qed
qed

Whenever the cardinality of a set is greater (strictly) than the dimension of
V then the set is dependent.

corollary card-g-dim-implies-ld :
assumes card-g-dim: card A > dimension
and A-in-V : A ⊆ carrier V
shows linear-dependent A

proof −
have finite-A: finite A

using card-g-dim finite-X unfolding dimension-def
by (metis card .empty card-g-dim

card-infinite card-li-le-dim dimension-def
empty-set-is-linearly-independent linorder-not-le)

hence cb-A: good-set A
using A-in-V unfolding good-set-def by fast

thus ?thesis using card-li-le-dim
by (metis card-g-dim dependent-if-only-if-not-independent

dimension-def less-not-refl xt1 (8 ))
qed

The following lemma proves that the cardinality of any spanning set is
greater than the dimension. In the infinite case (when A is not finite but is a
spanning-set-ext) it would be trivial, but Isabelle assigns 0 as the cardinality
of an infinite set.

We will use swap-theorem, so 0V must not be in the spanning-set over we
apply it.

lemma card-sg-ge-dim:
assumes sg-A: spanning-set A
shows card A ≥ dimension

proof −
have finite-A: finite A and A-in-V : A ⊆ carrier V

using sg-A unfolding spanning-set-def and good-set-def
by fast+

have ∃ f . indexing (X ,f ) using obtain-indexing [OF finite-X ] .
from this obtain f where indexing-X : indexing (X ,f ) by fast
have ∃ g . indexing (A−{0V},g) using obtain-indexing finite-A

by blast
from this obtain g where indexing-A: indexing (A−{0V},g)

by fast
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have li-X : linear-independent X and sg-X : spanning-set X
by auto

have card (A−{0V}) ≥ dimension
proof (unfold dimension-def , rule swap-theorem)

show indexing (A−{0V}, g) using indexing-A .
show indexing (X , f ) using indexing-X .
show (A−{0V}) ⊆ carrier V using A-in-V by blast
show linear-independent X by simp
show X ⊆ carrier V

by (metis good-set-X good-set-in-carrier)
show spanning-set (A−{0V})

by (metis A-in-V finite-A sg-A spanning-set-minus-zero)
show 0V /∈ (A−{0V}) by fast

qed
thus ?thesis by (metis card-Diff1-le finite-A le-trans)

qed

There not exists a spanning-set with cardinality less than the dimension.

corollary card-less-dim-implies-not-sg :
assumes cardA-l-dim: card A < dimension
shows ¬ spanning-set A
by (metis assms card-sg-ge-dim dimension-def

less-not-refl3 xt1 (8 ))

If we have a set which cardinality is equal to the dimension of a finite vector
space, then it is a finite set. We have to assume that the basis is not empty:
if X is empty, then card(X) = 0 = card(A). However and due to the
implementation of cardinality in Isabelle (giving 0 as the cardinality of an
infinite set), we could only prove that either A is infinite or empty.

lemma card-eq-not-empty-basis-implies-finite:
assumes cardA-dim: card A = dimension
and X-not-empty : X 6={}
shows finite A
by (metis X-not-empty cardA-dim card-eq-0-iff

card-infinite dimension-def finite-X )

Assuming that A is in V , the problem is solved.

lemma card-eq-basis-implies-finite:
assumes cardA-dim: card A = dimension
and A-in-V : A ⊆ carrier V
shows finite A

proof (cases X ={})
case True show ?thesis

by (metis A-in-V True finite.insertI finite-X
finite-subset span-basis-is-V span-empty)

next
case False show ?thesis

using card-eq-not-empty-basis-implies-finite
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[OF cardA-dim False] .
qed

If a set has cardinality equal to the dimension, if it is a basis then is inde-
pendent.

lemma card-eq-basis-imp-li :
assumes cardA-dim: card A = dimension
shows basis A =⇒ linear-independent A

proof −
assume basis-A: basis A
hence A-in-V : A ⊆ carrier V unfolding basis-def by fast
show linear-independent A
proof (cases X ={})

case False show ?thesis
using card-eq-not-empty-basis-implies-finite
[OF cardA-dim False]

and basis-A
unfolding basis-def linear-independent-ext-def
by (metis subset-refl)

next
case True
have A={} using A-in-V True

unfolding basis-def spanning-set-def
by (metis all-not-in-conv assms card .empty

card-eq-0-iff dimension-def finite.emptyI
finite.insertI finite-subset mem-def
span-basis-is-V span-empty)

thus ?thesis
using empty-set-is-linearly-independent by simp

qed
qed

If we have an independent set with cardinality equal to the dimension, then
this set is a basis.

lemma card-li-set-eq-basis-imp-li :
assumes card-eq-dim: card A = dimension
shows linear-independent A =⇒ basis A

proof −
assume li-A: linear-independent A
have finite-A: finite A

by (metis good-set-finite l-ind-good-set li-A)
have cb-A: good-set A using l-ind-good-set [OF li-A] .
show ?thesis
proof (unfold basis-def , rule conjI3 )

show A ⊆ carrier V
using cb-A unfolding good-set-def by fast

show linear-independent-ext A
using independent-imp-independent-ext [OF li-A] .

show spanning-set-ext A
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proof (cases spanning-set A)
case True thus ?thesis

using spanning-imp-spanning-ext by fast
next

case False
show ?thesis
proof −

have ∃ y . y ∈ (carrier V − span A)
using False cb-A
unfolding span-def spanning-set-def by fast

from this obtain y
where y-in-V-minus-span: y ∈ (carrier V − span A)
by fast

hence linear-independent (insert y A)
using insert-y-notin-span-li [OF - - li-A]

y-in-V-minus-span by fast
hence card (insert y A) ≤ dimension

using card-li-le-dim by simp
hence card A + 1 ≤ dimension

using y-in-V-minus-span card-insert-if [OF finite-A]
not-in-span-impl-not-in-set [OF - cb-A]

by simp
thus ?thesis using card-eq-dim by linarith

— Contradiction: we have proved that card(A+1)≤dimension and
card(A)=dimension.

qed
qed

qed
qed

If a spanning set has cardinality equal to the dimension, then is independent
(so a basis).

lemma card-sg-set-eq-basis-imp-li :
assumes card-eq-dim: card A = dimension
shows spanning-set A =⇒ linear-independent A

proof−
assume sg-A: spanning-set A
hence A-in-V : A ⊆ carrier V

unfolding spanning-set-def good-set-def by fast
show ?thesis
proof (cases linear-independent A)

case True thus ?thesis .
next

case False
show ?thesis
proof (cases X ={})

case True
have A={}

by (metis A-in-V True bot-apply card-eq-0-iff card-eq-dim
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dimension-def ext finite.emptyI finite.insertI
rev-finite-subset span-basis-is-V span-empty)

thus ?thesis using empty-set-is-linearly-independent by simp
next

case False
have finite-A: finite A

by (metis False card-eq-dim
card-eq-not-empty-basis-implies-finite dimension-def )

have ld-A: linear-dependent A
by (metis A-in-V 〈¬ linear-independent A〉 good-set-def

dependent-if-only-if-not-independent finite-A)
have ∃ y∈A. ∃ g . g ∈ coefficients-function (carrier V )
∧ y = linear-combination g (A − {y})
using exists-x-linear-combination2 [OF ld-A] .

from this obtain y g where y-in-A: y∈A
and cf-g : g ∈ coefficients-function (carrier V )
and y-lc-Ay : y = linear-combination g (A − {y}) by blast

have span A = span (A−{y})
proof (rule span-minus)

show good-set A
by (metis l-dep-good-set ld-A)

show y ∈ A using y-in-A .
show ∃ g . g ∈ coefficients-function (carrier V )
∧ y = linear-combination g (A − {y})
by (metis cf-g y-lc-Ay)

qed
hence sg-Ay : spanning-set (A−{y}) using sg-A

by (metis A-in-V Diff-subset finite-A finite-Diff
good-set-def span-V-eq-spanning-set
spanning-set-implies-span-basis subset-trans)

have ¬ spanning-set (A−{y})
proof (rule card-less-dim-implies-not-sg)

show card (A − {y}) < dimension
by (metis False card-Diff-singleton-if card-eq-dim

card-gt-0-iff diff-less dimension-def finite-A
finite-X y-in-A zero-less-one)

qed
thus ?thesis using sg-Ay by contradiction

— CONTRADICTION: we have proved that the set A minus the element y
is a spanning-set and at the same time that it is not.

qed
qed

qed

corollary card-sg-set-eq-basis-imp-basis:
assumes card-eq-dim: card A = dimension
shows spanning-set A =⇒ basis A
by (metis assms card-li-set-eq-basis-imp-li

card-sg-set-eq-basis-imp-li)
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lemma basis-iff-linear-independent :
assumes card-eq : card A = dimension
shows basis A ←→ linear-independent A
by (metis assms card-eq-basis-imp-li

card-li-set-eq-basis-imp-li)

We can remove from eq-cardinality-basis2 the premises about finiteness: we
can prove that in a finite dimensional vector space there not exist infinite
bases.

lemma
not-finite-A-contains-empty-set :
assumes A: ¬ finite A
shows {} ⊆ A
using empty-subsetI [of A] .

lemma not-finite-diff :
assumes A: ¬ finite A
shows ¬ finite (A − {x})
using A by auto

lemma not-finite-diff-set :
assumes A: ¬ finite A
and B : finite B
shows ¬ finite (A − B)
using A B by auto

We can obtain a subset with the number of elements that we want from an
infinite set:

lemma subset-card-n:
assumes A: ¬ finite A
shows ∀ k ::nat . ∃B . B ⊆ A ∧ card B = k

proof (rule allI )
fix k
show ∃B⊆A. card B = k
proof (induct k)

let ?P = (λk C . C ⊆ A ∧ card C = k)
case 0
show ?case

by (rule exI [of ?P 0 {}], intro conjI )
(rule not-finite-A-contains-empty-set [OF A], simp)

next
case (Suc k)
show ?case
proof −

obtain B where b: B ⊆ A and card-b: card B = k
using Suc.hyps by auto

show ?thesis
using b and card-b
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proof (cases k = 0 )
case True
obtain x where x : x ∈ A

using A by (metis ex-in-conv finite.emptyI )
hence {x} ⊆ A and card {x} = Suc 0 by simp-all
thus ?thesis unfolding True by auto

next
case False
have fin-B : finite B using card-b False by (metis card-eq-0-iff )
hence nfin-A-B : ¬ finite (A − B)

using A by auto
then obtain x where x : x ∈ A − B by (metis ex-in-conv finite.emptyI )
show ?thesis

apply (rule exI [of - insert x B ])
using x card-b b
by auto (metis card-b card-insert-disjoint fin-B)

qed
qed

qed
qed

Every basis of a finite dimensional vector space is finite (because each set of
cardinality greater than the dimension is linearly dependent (card-g-dim-implies-ld),
so we can not have an infinite basis).

lemma basis-not-infinite:
assumes basis-A: basis A
shows finite A

proof (rule classical)
assume not-finite: ¬ finite A
from not-finite obtain B where card : card B = dimension + 1

and B-in-A: B ⊆ A using subset-card-n by blast
have li-ext-A: linear-independent-ext A by (metis assms basis-def )
have linear-dependent-ext A
proof (unfold linear-dependent-ext-def , rule exI [of - B ], rule conjI )

show linear-dependent B
proof (rule card-g-dim-implies-ld)

show dimension < card B using card by simp
show B ⊆ carrier V using B-in-A basis-A unfolding basis-def by fast

qed
show B⊆A using B-in-A .

qed
thus ?thesis using independent-ext-implies-not-dependent-ext [OF li-ext-A] by

contradiction
qed

Finally the theorem:

lemma eq-cardinality-basis ′:
assumes A: basis A and B : basis B
shows card A = card B
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by (metis A B basis-not-infinite eq-cardinality-basis)

end
end

theory Isomorphism
imports Dimension

begin

11 Isomorphism

The types keyword seems to be replaced by type-synonym in the Isabelle
2011 release.

The following definition of vector has been obtained from the AFP, where a
similar one is defined over real, instead of ′a, for defining the Cauchy-Schwarz
Inequality http://afp.sourceforge.net/entries/Cauchy.shtml.

22-07-2011: JE: For some time I thought that many of the proofs required
the vector spaces to be non empty (not of dimension zero). This is why one
can meet a lot of premises of the type (0 :: ′a) < n or about the dimension
being non zero (all these premises are now enclosed between comments). Af-
ter a closer look I could remove each of these premises and make everything
general for every finite dimension.

types ′a vector = (nat => ′a) ∗ nat

definition
ith :: ′a vector => nat => ′a

where ith v i = fst v i

definition
vlen :: ′a vector => nat
where vlen v = snd v

Before getting into the definition of the vector space Kn, we introduce a
generic lemma that states that the decomposition of an element x ∈ carrier
V as a linear combination of the elements of a given basis is unique.

The lemma requires the basis X to be finite, because otherwise there would
be a linear combination of the infinite number of elements of the basis equal
to zero, but the finsum of an infinite set is undefined, and thus we cannot
complete the proof.

context abelian-group
begin

Some previous lemmas about addition in abelian monoids.
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lemma
add-minus-add-minus:
assumes a: a ∈ carrier G
and b: b ∈ carrier G
and c: c ∈ carrier G
shows a ⊕ b 	 c = a ⊕ (b 	 c)

proof −
have a ⊕ b 	 c = a ⊕ b ⊕ 	 c

using minus-eq [OF a-closed [OF a b] c] .
also have ... = a ⊕ (b ⊕ 	 c)

using a-assoc [OF a b a-inv-closed [OF c]] .
also have ... = a ⊕ (b 	 c)

unfolding minus-eq [symmetric, OF b c] ..
finally show ?thesis .

qed

lemma
minus-add-minus-minus:
assumes a: a ∈ carrier G
and b: b ∈ carrier G
and c: c ∈ carrier G
shows a 	 (b ⊕ c) = a 	 b 	 c

proof −
have a 	 (b ⊕ c) = a ⊕ 	 (b ⊕ c)

using minus-eq [OF a a-closed [OF b c]] .
thm minus-add
also have ... = a ⊕ (	 b ⊕ 	 c)

unfolding minus-add [OF b c] ..
also have ... = a ⊕ 	 b ⊕ 	 c

using a-assoc [symmetric, OF a a-inv-closed [OF b] a-inv-closed [OF c]] .
also have ... = a 	 b ⊕ 	 c

unfolding minus-eq [symmetric, OF a b] ..
also have ... = a 	 b 	 c

using minus-eq [symmetric, OF minus-closed [OF a b] c] .
finally show ?thesis .

qed

lemma
add-minus-add-minus-add-minus:
assumes a: a ∈ carrier G
and b: b ∈ carrier G
and c: c ∈ carrier G
and d : d ∈ carrier G
shows a ⊕ b 	 (c ⊕ d) = a 	 c ⊕ (b 	 d)

proof −
have a ⊕ b 	 (c ⊕ d) = a ⊕ b ⊕ 	 (c ⊕ d)

using minus-eq [OF a-closed [OF a b] a-closed [OF c d ]] .
also have ... = a ⊕ (b ⊕ 	 (c ⊕ d))

using a-assoc [OF a b a-inv-closed [OF a-closed [OF c d ]]] .
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also have ... = a ⊕ (b 	 (c ⊕ d))
unfolding minus-eq [symmetric, OF b a-closed [OF c d ]] ..

also have ... = a ⊕ (b 	 c 	 d)
unfolding minus-add-minus-minus [OF b c d ] ..

also have ... = a ⊕ (b ⊕ 	 c ⊕ 	 d)
unfolding minus-eq [OF minus-closed [OF b c] d ]
unfolding minus-eq [OF b c] ..

also have ... = a ⊕ (	 c ⊕ b ⊕ 	 d)
unfolding a-comm [OF b a-inv-closed [OF c]] ..

also have ... = a ⊕ (	 c ⊕ (b ⊕ 	 d))
unfolding a-assoc [OF a-inv-closed [OF c] b a-inv-closed [OF d ]] ..

also have ... = a ⊕ 	 c ⊕ (b ⊕ 	 d)
unfolding a-assoc [OF a a-inv-closed [OF c] a-closed [OF b a-inv-closed [OF

d ]]] ..
also have ... = a 	 c ⊕ (b 	 d)

unfolding minus-eq [OF a c]
unfolding minus-eq [OF b d ] ..

finally show ?thesis .
qed

corollary add-minus-add-minus-add-minus-comm:
assumes a: a ∈ carrier G
and b: b ∈ carrier G
and c: c ∈ carrier G
and d : d ∈ carrier G
shows a ⊕ b 	 (c ⊕ d) = b 	 d ⊕ (a 	 c)

proof −
have a ⊕ b 	 (c ⊕ d) = a 	 c ⊕ (b 	 d)

using add-minus-add-minus-add-minus [OF a b c d ] .
also have ... = (b 	 d) ⊕ (a 	 c)

unfolding a-comm [OF minus-closed [OF a c] minus-closed [OF b d ]] ..
finally show ?thesis .

qed

lemma finsum-minus-eq :
assumes fin-A: finite A
and f-PI : f ∈ A → carrier G
shows 	 finsum G f A = finsum G (λx . 	 f x ) A
using fin-A f-PI proof (induct)
case empty
show ?case by simp

next
case (insert a A)
have f-PI : f ∈ A → carrier G

and fa: f a ∈ carrier G
and minus-f-PI : (λx . 	 f x ) ∈ A → carrier G
and minus-fa: 	 f a ∈ carrier G
using insert (4 ) unfolding Pi-def by simp-all

have fG : finsum G f A ∈ carrier G
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by (rule finsum-closed [OF insert (1 ) f-PI ])
show ?case

unfolding finsum-insert [OF insert (1 , 2 ) f-PI , OF fa]
unfolding finsum-insert [OF insert (1 , 2 ) minus-f-PI , OF minus-fa]
unfolding minus-add [OF fa fG ]
unfolding insert .hyps (3 ) [OF f-PI ] ..

qed

end

context vector-space
begin

The following function should replace to coefficients-function; the problem
with coefficients-function is that it does not impose any condition over func-
tions out of their domain, carrier V ; thus, we cannot prove that two coeffi-
cient functions which are equal over their corresponding domain (the basis
X ) are equal. We have to impose an additional restriction that the function
out of its domain is equal to 0

end

11.1 Definition of Kn

context field
begin

The following definition represents the carrier set of the vector space. Note
that the type variable is now ′a, so we define only the following concepts
over the field of the coefficients.

— Seleccionamos un representante cannico para cada elemento, haciendo que todas
las coordenadas sean cero por encima de la dimensin del espacio vectorial

— Adems, debemos asegurar que la dimensin del vector, o la longitud del mismo,
sea igual al nmero de componenetes en el que estamos interesados; sino perderamos
la inyectividad de algunas operaciones

— Hay que tener en cuenta que en una lista de 1 elemento (por ejemplo, los ele-
mentos del carrier de K1) nos interesa nicamente el elemento en la posicin 0, de ah
que nos interesen los elementos con vlen = n - 1;

Para los elementos en K-n-carrier A (0 :: ′d) debemos observar que su primera
componente ser 0 y su segunda componente ser tambin 0, lo que nos deja
con un K0 cuyo nico elemento es el 0 :: ′c de la estructura correspondiente
(Kn).

definition K-n-carrier :: ′a set => nat => ( ′a vector) set
where K-n-carrier A n = {v . ((∀ i<n. ith v i ∈ A)) ∧
(∀ i≥n. ith v i = 0) ∧ (vlen v = (n − 1 ))}
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lemma ith-closed :
assumes k : k ∈ K-n-carrier A n and i : i ∈ {..<n}
shows ith k i ∈ A
using k
unfolding K-n-carrier-def using i by fast

lemma K-n-carrier-zero:
K-n-carrier A 0 = {v . (ith v 0 = 0) ∧ (∀ i>0 . ith v i = 0) ∧ (vlen v = 0 )}
unfolding K-n-carrier-def
by rule (auto, case-tac i , force+)

lemma K-n-carrier-zero-ext : K-n-carrier A 0 = {(λi . 0, 0 )}
unfolding K-n-carrier-zero ith-def vlen-def
by auto (rule ext , metis gr0I )

lemma K-n-carrier-one:
K-n-carrier A 1 = {v . ith v 0 ∈ A ∧ (∀ i≥1 . ith v i = 0) ∧ (vlen v = 0 )}
unfolding K-n-carrier-def by auto

definition
K-n-add :: nat => ′a vector => ′a vector => ′a vector (infixr ⊕ı 65 )
where K-n-add n = (λv w . ((λi . ith v i ⊕R ith w i), n − 1 ))

lemma K-n-add-zero:
shows K-n-add 0 = (λv w . ((λi . ith v i ⊕R ith w i), 0 ))
using K-n-add-def [of 0 ] by simp

definition K-n-mult :: nat => ′a vector => ′a vector => ′a vector
where K-n-mult n = (λv w . ((λi . ith v i ⊗R ith w i), n − 1 ))

lemma K-n-mult-zero:
shows K-n-mult 0 = (λv w . ((λi . ith v i ⊗R ith w i), 0 ))
using K-n-mult-def by auto

definition K-n-zero :: nat => ′a vector
where K-n-zero n = ((λi . 0R), n − 1 )

lemma K-n-zero-zero:
shows K-n-zero 0 = ((λi . 0R), 0 )
using K-n-zero-def by auto

definition K-n-one :: nat => ′a vector
where K-n-one n = ((λi . 1R), n − 1 )

Actually, in the following case, one should be equal to zero

lemma K-n-one-zero:
shows K-n-one 0 = ((λi . 1R), 0 )
using K-n-one-def by auto

We are now forced to define also operations K-n-mult and K-n-one for our
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abelian group Kn. This is due to the fact that the abelian group predicate
in the Algebra Library is defined over rings, and even if we have no interest
in using that operations (they are not required to prove that an algebraic
structure is an abelian group), they must be defined somehow. In our case
this is not a major problem, since they can be defined just following the
previous definitions of K-n-zero and K-n-add.

definition K-n :: nat => ′a vector ring
where
K-n n = (| carrier = K-n-carrier (carrier R) n,

mult = (λv w . K-n-mult n v w),
one = K-n-one n,
zero = K-n-zero n,
add = (λv w . K-n-add n v w)|)

lemma abelian-group-K-n:
shows abelian-group (K-n n)
unfolding K-n-def

proof (intro abelian-groupI )
let ?K-n = (| carrier = K-n-carrier (carrier R) n,

mult = (λv w . K-n-mult n v w),
one = K-n-one n,
zero = K-n-zero n,
add = (λv w . K-n-add n v w)|)

fix x y
assume x : x ∈ carrier ?K-n and y : y ∈ carrier ?K-n
show x ⊕?K-n y ∈ carrier ?K-n

using x y
unfolding K-n-carrier-def
unfolding K-n-add-def
unfolding ith-def vlen-def by auto

next
let ?K-n = (| carrier = K-n-carrier (carrier R) n,

mult = (λv w . K-n-mult n v w),
one = K-n-one n,
zero = K-n-zero n,
add = (λv w . K-n-add n v w)|)

show 0?K-n ∈ carrier ?K-n
unfolding K-n-carrier-def
unfolding K-n-zero-def
unfolding ith-def vlen-def by auto

next
let ?K-n = (| carrier = K-n-carrier (carrier R) n,

mult = (λv w . K-n-mult n v w),
one = K-n-one n,
zero = K-n-zero n,
add = (λv w . K-n-add n v w)|)

fix x y z
assume x : x ∈ carrier ?K-n and y : y ∈ carrier ?K-n and z : z ∈ carrier ?K-n
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show x ⊕?K-n y ⊕?K-n z = x ⊕?K-n (y ⊕?K-n z )
using x y z
unfolding K-n-carrier-def
unfolding K-n-add-def
unfolding ith-def vlen-def

proof (auto)
assume x1 : ∀ i<n. fst x i ∈ carrier R and y1 : ∀ i<n. fst y i ∈ carrier R

and z1 : ∀ i<n. fst z i ∈ carrier R
assume x2 : ∀ i≥n. fst x i = 0 and y2 : ∀ i≥n. fst y i = 0 and z2 : ∀ i≥n. fst

z i = 0
show (λi . fst x i ⊕ fst y i ⊕ fst z i) = (λi . fst x i ⊕ (fst y i ⊕ fst z i))
proof (rule ext)

fix i
show fst x i ⊕ fst y i ⊕ fst z i = fst x i ⊕ (fst y i ⊕ fst z i)
proof (cases i < n)

case True
show ?thesis using x1 y1 z1 using True by (metis a-assoc)

next
case False
show ?thesis using x2 y2 z2 using False

by (metis add .one-closed cring .cring-simprules(16 )
is-cring less-or-eq-imp-le linorder-neqE-nat)

qed
qed

qed
next

let ?K-n = (| carrier = K-n-carrier (carrier R) n,
mult = (λv w . K-n-mult n v w),
one = K-n-one n,
zero = K-n-zero n,
add = (λv w . K-n-add n v w)|)

fix x y
assume x : x ∈ carrier ?K-n and y : y ∈ carrier ?K-n
show x ⊕?K-n y = y ⊕?K-n x

using x y
unfolding K-n-carrier-def
unfolding K-n-add-def
unfolding ith-def vlen-def apply auto

proof (rule ext)
fix i
assume x1 : ∀ i<n. fst x i ∈ carrier R and y1 : ∀ i<n. fst y i ∈ carrier R
assume x2 : ∀ i≥n. fst x i = 0 and y2 : ∀ i≥n. fst y i = 0
show fst x i ⊕ fst y i = fst y i ⊕ fst x i
proof (cases i < n)

case True
show ?thesis using x1 y1 using True by (metis a-comm)

next
case False
show ?thesis using x2 y2 using False
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by (metis less-or-eq-imp-le linorder-neqE-nat)
qed

qed
next

let ?K-n = (| carrier = K-n-carrier (carrier R) n,
mult = (λv w . K-n-mult n v w),
one = K-n-one n,
zero = K-n-zero n,
add = (λv w . K-n-add n v w)|)

fix x
assume x : x ∈ carrier ?K-n
show 0?K-n ⊕?K-n x = x

using x
unfolding K-n-carrier-def
unfolding K-n-add-def
unfolding K-n-zero-def
unfolding ith-def vlen-def
apply auto
apply (subst (2 ) surjective-pairing [of x ])
apply simp
apply (rule ext)
by (metis add .l-one add .one-closed le-eq-less-or-eq linorder-neqE-nat)

next
let ?K-n = (| carrier = K-n-carrier (carrier R) n,

mult = (λv w . K-n-mult n v w),
one = K-n-one n,
zero = K-n-zero n,
add = (λv w . K-n-add n v w)|)

fix x
assume x : x ∈ carrier ?K-n
show ∃ y∈carrier ?K-n. y ⊕?K-n x = 0?K-n

apply (rule bexI [of - ((λi . 	 (fst x i)), n − Suc 0 )])
using x
unfolding K-n-carrier-def
unfolding K-n-add-def
unfolding K-n-zero-def
unfolding ith-def vlen-def
apply auto
apply (rule ext)
by (metis add .l-inv add .one-closed le-eq-less-or-eq linorder-neqE-nat)

qed

corollary abelian-monoid-K-n:
shows abelian-monoid (K-n n)
using abelian-group-K-n [of n]
unfolding abelian-group-def ..

We are later to consider K-n like one abelian group over which R gives
place to a vector space. We must define first the scalar product between
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both structures.

definition
K-n-scalar-product :: ′a => ′a vector => ′a vector
(infixr � 65 )
where a � b = (λn::nat . a ⊗R ith b n, vlen b)

lemma K-n-scalar-product-closed :
assumes a: a ∈ carrier R
and b: b ∈ carrier (K-n n)
shows a � b ∈ carrier (K-n n)
unfolding K-n-scalar-product-def
using a b
unfolding ith-def vlen-def K-n-def K-n-carrier-def by simp

lemma field-R: field R
by (metis cring-fieldI field-Units)

lemma
vector-space-K-n:
shows vector-space R (K-n n) (op �)
unfolding K-n-def

proof (intro vector-spaceI )
show field R using field-R .
show abelian-group (|carrier = K-n-carrier (carrier R) n,

mult = K-n-mult n, one = K-n-one n,
zero = K-n-zero n, add = K-n-add n|)

using abelian-group-K-n [of n]
unfolding K-n-def .

next
let ?K-n = (|carrier = K-n-carrier (carrier R) n,

mult = K-n-mult n, one = K-n-one n,
zero = K-n-zero n, add = K-n-add n|)

fix x :: ′a vector and a :: ′a
assume x : x ∈ carrier ?K-n
assume a: a ∈ carrier R
show a � x ∈ carrier ?K-n

using x a
unfolding K-n-scalar-product-def
unfolding K-n-carrier-def
unfolding vlen-def ith-def by simp

next
let ?K-n = (|carrier = K-n-carrier (carrier R) n,

mult = K-n-mult n, one = K-n-one n,
zero = K-n-zero n, add = K-n-add n|)

fix x a b
assume x : x ∈ carrier ?K-n
assume a: a ∈ carrier R and b: b ∈ carrier R
show a ⊗ b � x = a � b � x

using x a b
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unfolding K-n-scalar-product-def
unfolding K-n-carrier-def
unfolding vlen-def ith-def apply auto apply (rule ext)
by (metis add .one-closed le-refl linorder-neqE-nat m-assoc nat-less-le)

next
let ?K-n = (|carrier = K-n-carrier (carrier R) n,

mult = K-n-mult n, one = K-n-one n,
zero = K-n-zero n, add = K-n-add n|)

fix x
assume x : x ∈ carrier ?K-n
show 1 � x = x

using x
unfolding K-n-scalar-product-def
unfolding K-n-carrier-def
unfolding vlen-def ith-def
apply (subst (3 ) surjective-pairing [of x ])
apply auto
apply (rule ext)
by (metis add .one-closed l-one less-or-eq-imp-le linorder-neqE-nat)

next
let ?K-n = (|carrier = K-n-carrier (carrier R) n,

mult = K-n-mult n, one = K-n-one n,
zero = K-n-zero n, add = K-n-add n|)

fix x y a
assume x : x ∈ carrier ?K-n and y : y ∈ carrier ?K-n
assume a: a ∈ carrier R
show a � (x ⊕?K-n y) = (a � x ) ⊕?K-n (a � y)

using x y a
unfolding K-n-scalar-product-def
unfolding K-n-carrier-def
unfolding K-n-add-def
unfolding vlen-def ith-def
apply auto
apply (rule ext)
by (metis add .one-closed less-or-eq-imp-le linorder-neqE-nat r-distr)

next
let ?K-n = (|carrier = K-n-carrier (carrier R) n,

mult = K-n-mult n, one = K-n-one n,
zero = K-n-zero n, add = K-n-add n|)

fix x a b
assume x : x ∈ carrier ?K-n
assume a: a ∈ carrier R and b: b ∈ carrier R
show (a ⊕ b) � x = (a � x ) ⊕?K-n (b � x )

using x a b
unfolding K-n-scalar-product-def
unfolding K-n-carrier-def
unfolding K-n-add-def
unfolding vlen-def ith-def apply auto apply (rule ext)
by (metis add .one-closed l-distr le-eq-less-or-eq linorder-neqE-nat)
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qed

11.2 Canonical basis of Kn:

In the following section we introduce the elements that generate the canon-
ical basis of the vector space K-n n and prove some properties of them.

The elements of the canonical basis of K-n are the following ones:

definition x-i :: nat => nat => ′a vector
where x-i j n = ((λi . if i = j then 1 else 0), n − 1 )

The elements x-i are part of the carrier (K-n n).

lemma
x-i-closed :
assumes j-l-n: j < n
shows x-i j n ∈ carrier (K-n n)
unfolding K-n-def
unfolding K-n-carrier-def
unfolding ith-def vlen-def x-i-def using j-l-n by auto

Any two elements of the basis are different:

lemma x-i-ne-x-j :
assumes i-ne-j : i 6= j
shows x-i i n 6= x-i j n

proof (rule ccontr , simp)
assume eq : x-i i n = x-i j n
have fst (x-i i n) i = 1

unfolding x-i-def by simp
moreover have fst (x-i j n) i = 0

unfolding x-i-def using i-ne-j by force
ultimately show False using eq by simp

qed

In the following lemma we can even omit the premise of i being smaller than
n, so the result is also true for vectors which are not part of the canonical
basis. It claims that an element of the canonical basis is not equal to 0K-n n

lemma x-i-ne-zero:
shows x-i i n 6= 0K-n n

proof (rule ccontr , simp)
assume eq : x-i i n = 0K-n n
have fst (x-i i n) i = 1

unfolding x-i-def by simp
moreover have fst (0K-n n) i = 0

unfolding K-n-def K-n-zero-def by force
ultimately show False using eq by simp

qed

end
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context vector-space
begin

lemma
coefficients-function-Pi :
assumes x : x ∈ carrier V
and cf-f : f ∈ coefficients-function A
shows f x ∈ carrier K
using cf-f
unfolding coefficients-function-def by auto

end

context abelian-group
begin

lemma
finsum-twice:
assumes f : f ∈ {i ,j} → carrier G
and i-ne-j : i 6= j
shows finsum G f {i , j} = f i ⊕ f j

proof −
have finsum G f {i , j} = f i ⊕ finsum G f {j}

apply (rule finsum-insert) using i-ne-j f by auto
also have ... = f i ⊕ (f j ⊕ finsum G f {})

using finsum-insert [of {} j f ] using f by fastsimp
also have ... = f i ⊕ f j

unfolding finsum-empty using f by force
finally show ?thesis .

qed

end

context comm-monoid
begin

lemma mult-if :
shows (λk . x ⊗ (if k = i then y else z )) = (λk . if k = i then x ⊗ y else x ⊗ z )
by (rule ext , auto)

end

lemma
fun-eq-contr :
assumes fg : f = g
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and x : f x 6= g x
shows False by (metis fg x )

context abelian-monoid
begin

lemma
finsum-singleton-set :
assumes f : f a ∈ carrier G
shows finsum G f {a} = f a
using finsum-insert [of {} a f ]
using finsum-empty using f by force

end

context field
begin

lemma comm-monoid-R: comm-monoid R by intro-locales

lemma abelian-monoid-R: abelian-monoid R by intro-locales

Some previous about the linear independece of the elements of the canonical
basis:

lemma x-i-li :
assumes j-l-n: j < n
shows vector-space.linear-independent R (K-n n) (op �) {(x-i j n)}

proof (unfold vector-space.linear-independent-def [OF vector-space-K-n], intro conjI )
interpret vector-space R K-n n op � using vector-space-K-n .
show good-set {x-i j n}

unfolding good-set-def
using x-i-closed [OF j-l-n] by blast

show ∀ f . f ∈ coefficients-function (carrier (K-n n)) ∧
linear-combination f {x-i j n} = 0K-n n −→ (∀ x∈{x-i j n}. f x = 0)

proof (rule+, erule conjE )
fix f x
assume f : f ∈ coefficients-function (carrier (K-n n))

and f1 : linear-combination f {x-i j n} = 0K-n n
and x ∈ {x-i j n}

hence x : x = x-i j n by fast
have 0K-n n = linear-combination f {x-i j n}

using f1 [symmetric] .
also have linear-combination f {x-i j n} = f (x-i j n) � (x-i j n)

unfolding linear-combination-def
apply (rule abelian-monoid .finsum-singleton-set [OF abelian-monoid-K-n [of

n]])
apply (rule K-n-scalar-product-closed)
using f x-i-closed [OF j-l-n]
unfolding coefficients-function-def by fast+
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finally have zero: 0K-n n = f (x-i j n) � (x-i j n) .
show f x = 0
proof (rule mult-zero-uniq [OF x-i-closed [OF j-l-n]])

show x-i j n 6= 0K-n n
by (rule x-i-ne-zero [of j n])

show f x ∈ carrier R unfolding x using f x-i-closed [OF j-l-n]
unfolding coefficients-function-def by fast+

show f x � x-i j n = 0K-n n unfolding x by (rule zero [symmetric])
qed

qed
qed

Any two different elements of the canonical basis are linearly independent:

lemma x-i-x-j-li :
assumes j-l-n: j < n
and i-l-n: i < n
and i-ne-j : i 6= j
shows vector-space.linear-independent R (K-n n) (op �) {(x-i i n), (x-i j n)}

proof −
interpret vector-space R K-n n op � using vector-space-K-n .
show ?thesis
proof (unfold linear-independent-def , rule)

show vector-space.good-set (K-n n) {x-i i n, x-i j n}
unfolding good-set-def
using x-i-closed [OF j-l-n] x-i-closed [OF i-l-n] by blast

show ∀ f . f ∈ coefficients-function (carrier (K-n n)) ∧
linear-combination f {x-i i n, x-i j n} = 0K-n n −→ (∀ x∈{x-i i n, x-i j n}. f

x = 0)
proof auto

fix f
assume f : f ∈ coefficients-function (carrier (K-n n))

and lc: linear-combination f {x-i i n, x-i j n} = 0K-n n
have fxii : f (x-i i n) ∈ carrier R and fxij : f (x-i j n) ∈ carrier R

using fx-in-K [OF x-i-closed [OF i-l-n] f ]
using fx-in-K [OF x-i-closed [OF j-l-n] f ] by fast+

show f (x-i i n) = 0
proof (rule ccontr)

assume xii : f (x-i i n) 6= 0
have 0K-n n = linear-combination f {x-i i n, x-i j n}

by (rule lc [symmetric])
also have linear-combination f {x-i i n, x-i j n} =

(f (x-i i n) � (x-i i n)) ⊕K-n n (f (x-i j n) � (x-i j n))
unfolding linear-combination-def
apply (rule finsum-twice [of (λi . f i � i) x-i i n x-i j n])
using fx-x-in-V [OF - f ]
using x-i-closed [OF i-l-n] x-i-closed [OF j-l-n]
using x-i-ne-x-j [OF i-ne-j , of n]
unfolding x-i-def by simp-all

also have ... = ((λk . if k = i then f (x-i i n) else 0) , n − 1 ) ⊕n
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((λk . if k = j then f (x-i j n) else 0), n − 1 )
apply (subst (2 4 ) x-i-def )
apply (unfold K-n-scalar-product-def )
unfolding ith-def vlen-def apply simp
unfolding K-n-def apply auto
unfolding comm-monoid .mult-if [OF comm-monoid-R]
unfolding r-one [OF fxii ] r-one [OF fxij ] r-null [OF fxii ] r-null [OF fxij ]

..
also have ... = ((λk . if k = i then f (x-i i n)

else if k = j then f (x-i j n) else 0) , n − 1 )
unfolding K-n-add-def ith-def
unfolding fst-conv
apply rule+ using i-ne-j apply auto
unfolding abelian-monoid .r-zero [OF abelian-monoid-R fxii ]
unfolding abelian-monoid .l-zero [OF abelian-monoid-R fxij ] by fast+

finally have 0K-n n = ((λk . if k = i then f (x-i i n)
else if k = j then f (x-i j n) else 0) , n − 1 ) by fast

thus False
unfolding K-n-def
unfolding K-n-zero-def
using xii i-ne-j
apply simp
apply (rule fun-eq-contr [of (λi . 0) (λk . if k = i

then f (x-i i n) else if k = j then f (x-i j n) else 0) i ])
by simp-all

qed
next

fix f
assume f : f ∈ coefficients-function (carrier (K-n n))

and lc: linear-combination f {x-i i n, x-i j n} = 0K-n n
have fxii : f (x-i i n) ∈ carrier R and fxij : f (x-i j n) ∈ carrier R

using fx-in-K [OF x-i-closed [OF i-l-n] f ]
using fx-in-K [OF x-i-closed [OF j-l-n] f ] by fast+

show f (x-i j n) = 0
proof (rule ccontr)

assume xii : f (x-i j n) 6= 0
have 0K-n n = linear-combination f {x-i i n, x-i j n}

by (rule lc [symmetric])
also have linear-combination f {x-i i n, x-i j n} =

(f (x-i i n) � (x-i i n)) ⊕K-n n (f (x-i j n) � (x-i j n))
unfolding linear-combination-def
apply (rule finsum-twice [of (λi . f i � i) x-i i n x-i j n])
using fx-x-in-V [OF - f ]
using x-i-closed [OF i-l-n] x-i-closed [OF j-l-n]
using x-i-ne-x-j [OF i-ne-j , of n]
unfolding x-i-def by simp-all

also have ... = ((λk . if k = i then f (x-i i n) else 0) , n − 1 )
⊕n ((λk . if k = j then f (x-i j n) else 0), n − 1 )
apply (subst (2 4 ) x-i-def )
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apply (unfold K-n-scalar-product-def )
unfolding ith-def vlen-def apply simp
unfolding K-n-def apply auto
unfolding comm-monoid .mult-if [OF comm-monoid-R]
unfolding r-one [OF fxii ] r-one [OF fxij ] r-null [OF fxii ] r-null [OF fxij ]

..
also have ... = ((λk . if k = i then f (x-i i n)

else if k = j then f (x-i j n) else 0) , n − 1 )
unfolding K-n-add-def ith-def
unfolding fst-conv
apply rule+ using i-ne-j apply auto
unfolding abelian-monoid .r-zero [OF abelian-monoid-R fxii ]

abelian-monoid .l-zero [OF abelian-monoid-R fxij ] by fast+
finally have 0K-n n = ((λk . if k = i then f (x-i i n)

else if k = j then f (x-i j n) else 0) , n − 1 ) by fast
thus False

unfolding K-n-def
unfolding K-n-zero-def
using xii i-ne-j
apply simp
apply (rule fun-eq-contr [

of (λi . 0)
(λk . if k = i then f (x-i i n) else if k = j then f (x-i j n) else 0) j ])

by simp-all
qed

qed
qed

qed

We did not find a better way to define the elements of the canonical basis
than accumulating them iteratively. In order to define them as a range,
from x-i 0 n up to x-i (n − 1 ) n, the underlying type, in this case ′a vector,
should be of sort “order” (which in general is not, only the elements of the
basis have some notion of order.)

The following fuction iteratively joins all the elements of the form x-i k n in
order to create the canonical basis of K-n n.

We have considered as a special case the situation where both indexes are
equal to 0. This case will give us the basis of K-n 0, which is the empty set.
Note that a linear combination over an empty set is equal to (λi . 0K, 0 ),
which is the only element in carrier (K-n 0 ).

fun canonical-basis-acc :: nat => nat => ′a vector set
where
canonical-basis-acc 0 0 = {}
| canonical-basis-acc 0 n = {x-i 0 n}
| canonical-basis-acc (Suc i) n
= (if (Suc i < n) then
insert (x-i (Suc i) n) (canonical-basis-acc i n) else {})
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We now prove some lemmas trying to establish the relation between the
elements of the form x-i i n and the ones in canonical-basis-acc.

lemma
finite-canonical-basis-acc:
shows finite (canonical-basis-acc k n)
by (induct k , induct n, auto)

lemma
canonical-basis-acc-closed :
assumes i-l-j : i < j
shows canonical-basis-acc i j ⊆ carrier (K-n j )
using i-l-j using x-i-closed by (induct i , induct j , auto)

The canonical basis in dimension n is given by all elements ranging from x-i
0 n up to x-i (n − 1 ) n

definition canonical-basis-K-n :: nat => ′a vector set where
canonical-basis-K-n n = canonical-basis-acc (n − 1 ) n

lemma
canonical-basis-acc-insert :
assumes j-l-k : j < k
and k-l-n: k < n
shows x-i k n /∈ canonical-basis-acc j n
using j-l-k k-l-n proof (induct j )
case 0
show ?case

unfolding canonical-basis-acc.simps
using 0 .prems (1 ) using x-i-ne-x-j [of 0 k n] by (cases n, auto)

next
case (Suc j )
show ?case
proof (cases j < k)

case True
show ?thesis

apply (subst canonical-basis-acc.simps)
using Suc.hyps [OF True Suc.prems (2 )]
using Suc.prems
using x-i-ne-x-j [of Suc j k n]
using x-i-ne-x-j [of j k n] by force

next
case False
with Suc.prems have False by linarith
thus ?thesis by fast

qed
qed

lemma
card-canonical-basis-acc:
assumes k-le-n: k < n
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shows card (canonical-basis-acc k n) = Suc k
using k-le-n

proof (induct k)
case 0
show ?case using 0 by (cases n, auto)

next
case (Suc k)
have k-l-n: k < n using Suc.prems by presburger
show ?case

apply (subst canonical-basis-acc.simps)
using Suc.prems
using canonical-basis-acc-insert [OF - Suc.prems, of k ]
using card .insert [OF finite-canonical-basis-acc [of k n],

of x-i (Suc k) n]
using Suc.hyps [OF k-l-n] by simp

qed

end

lemma
n-minus-one-l-n:
assumes n-g-0 : 0 < n
shows n − (1 ::nat) < n
by (metis assms diff-Suc-1 gr0-implies-Suc lessI )

context field
begin

The following lemma is true for dimension 0 thanks to the special case
canonical-basis-acc 0 0 = {} previously introduced:

lemma
canonical-basis-K-n-closed :

shows canonical-basis-K-n n ⊆ carrier (K-n n)
proof (cases n)

case 0
show ?thesis

unfolding 0
unfolding canonical-basis-K-n-def by simp

next
case (Suc n)
show ?thesis

unfolding Suc canonical-basis-K-n-def
by (rule canonical-basis-acc-closed [OF n-minus-one-l-n], fast)

qed

The following lemma is true for dimension 0 thanks to the special case
canonical-basis-acc 0 0 = {} previously introduced:

lemma
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card-canonical-basis-K-n:

shows card (canonical-basis-K-n n) = n
proof (cases n)

case 0
show ?thesis unfolding 0
unfolding canonical-basis-K-n-def by simp

next
case (Suc n)
show ?thesis unfolding Suc

unfolding canonical-basis-K-n-def
using card-canonical-basis-acc [OF n-minus-one-l-n [of Suc n]] by fastsimp

qed

The following lemma does not even require to have a dimension greater than
0.

lemma
finite-canonical-basis-K-n:

shows finite (canonical-basis-K-n n)
by (metis canonical-basis-K-n-def finite-canonical-basis-acc)

lemma
canonical-basis-acc-insert2 :
assumes j-le-k : j ≤ k
and k-l-n: k < n
shows x-i j n ∈ canonical-basis-acc k n
using j-le-k k-l-n proof (induct k)
case 0
show ?case using 0 .prems by (cases n, auto)

next
case (Suc k)
show ?case
proof (cases j = Suc k)

case False
hence j-le-k : j ≤ k using Suc.prems (1 ) by presburger
have k-l-n: k < n using Suc.prems (2 ) by presburger
show ?thesis

using Suc.hyps [OF j-le-k k-l-n]
using Suc.prems (2 ) by simp

next
case True
show ?thesis

apply (subst canonical-basis-acc.simps)
using True
using Suc.prems (2 )
using x-i-ne-x-j [of k Suc k n] by (cases k , auto)

qed
qed
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lemma
canonical-basis-K-n-elements:
assumes j-in-n: j ∈ {..<n}
shows x-i j n ∈ canonical-basis-K-n n

proof (cases n)
case 0
show ?thesis using j-in-n unfolding 0 by fast

next
case (Suc n)
show ?thesis

using j-in-n
unfolding Suc
unfolding canonical-basis-K-n-def
using canonical-basis-acc-insert2 [of j Suc n − 1 Suc n] by simp

qed

lemma
canonical-basis-K-n-good-set :

shows vector-space.good-set (K-n n) (canonical-basis-K-n n)
proof (unfold vector-space.good-set-def [OF vector-space-K-n ], rule)

show finite (canonical-basis-K-n n)
unfolding canonical-basis-K-n-def
by (rule finite-canonical-basis-acc [of n − 1 n])

show canonical-basis-K-n n ⊆ carrier (K-n n)
by (rule canonical-basis-K-n-closed)

qed

end

JE: I have moved this definition to Finite-Vector-Space, so I remove it from
here. This is to be checked with the other files.

11.3 Theorem on bijection

context abelian-monoid
begin

We need to prove the following lemma which is a generic version of the
theorem finsum-cong :

[[A = B ; (f ∈ B → carrier G) = True;
∧

i . i ∈ B =simp=> f i = g i ]] =⇒
finsum G f A = finsum G g B in the case where finite sums are defined over
sets of different type, but isomorphic (in finsum-cong only the case where
both sets of both finite sums are equal is considered).

lemma finsum-cong ′′:
assumes fB : finite B
and bb: bij-betw h B A
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and f : f : A −> carrier G and g : g : B −> carrier G
and eq : (

∧
x . x ∈ B =simp=> g x = f (h x ))

shows finsum G f A = finsum G g B
proof −

have finsum G g B = finsum G (f ◦ h) B
by (rule finsum-cong , simp-all add : g) (rule eq)

also have ... = (
⊕

x∈B . f (h x ))
proof (rule finsum-cong)

show B = B ..
show

∧
i . i ∈ B =simp=> (f ◦ h) i = f (h i) by simp

show (f ◦ h ∈ B → carrier G) = True
using bij-betw-imp-funcset [OF bb] using f by auto

qed
also have ... = finsum G f (h ‘ B)
proof (rule finsum-reindex [symmetric])

show finite B by fact
show f ∈ h ‘ B → carrier G

using f using bij-betw-imp-funcset [OF bb] by auto
show inj-on h B using bb unfolding bij-betw-def by fast

qed
also have ... = finsum G f A
proof (rule finsum-cong)

show h ‘B = A using bb unfolding bij-betw-def by fast
show (f ∈ A → carrier G) = True using f by fast
show

∧
i . i ∈ A =simp=> f i = f i by simp

qed
finally show ?thesis by simp

qed

end

lemma n-notin-lessThan-n: (n::nat) /∈ {..<n}
by (metis lessThan-iff less-not-refl3 )

context field
begin

lemma
snd-in-carrier :
assumes x : x ∈ carrier (K-n n)
shows snd x = n − 1
using x
unfolding K-n-def K-n-carrier-def unfolding vlen-def by auto

The following lemma gives a different representation of the elements of K-n
n; this representation will be later used to prove that the elements of K-n n
can be expressed as linear combinations of the elements of canonical-basis-K-n
n.

lemma

218



x-in-carrier :
assumes x : x ∈ carrier (K-n n)
shows x = (λi . if i ∈ {..<n} then fst x i else 0, n − 1 )
using x
unfolding K-n-def K-n-carrier-def
unfolding ith-def vlen-def
apply (subst surjective-pairing)
unfolding snd-in-carrier [OF x ] apply simp
apply (rule ext)
by (metis less-Suc-eq-le not-less-eq)

The following lemma was later unused; every element can be “embedded”
into a smaller dimension by means of “forgetful” function (we forget the last
position of the vector).

lemma
K-n-carrier-embed :
assumes x : x ∈ carrier (K-n (Suc k))
shows ((λn. if n ∈ {..<k} then fst x n else 0), k − 1 ) ∈ carrier (K-n k)
using x
unfolding K-n-def K-n-carrier-def ith-def vlen-def by auto

Functions with only a single nonzero element can be expressed as scalar
products of x-i elements.

lemma
singleton-function-x-i :
assumes x : x ∈ carrier R
shows (λi . if i = j then x else 0, n − 1 ) = x � x-i j n
unfolding K-n-scalar-product-def
unfolding x-i-def ith-def vlen-def fst-conv snd-conv
apply (rule, rule conjI )
apply (rule ext) using x by auto

The following lemma is rather important, since it shows how to express any
element in carrier (K-n k) in a canonical way: it proves that any element
in carrier (K-n k) can be expressed as a finite sum of the elements x-i j k.

It is important to note that in the proof we have introduced an extra natural
variable n, with n ≤ k, which permits to prove the result by induction in n
over the field K-n k.

If we do not use the extra variable n and we apply induction directly over
k, the induction step will produce two different algebraic structures, K-n k,
where the property holds, and K-n (Suc k), where the property must be
proved, but then the induction hypothesis cannot be used.

lemma
lambda-finsum:
assumes cl : ∀ i∈{..<n}. x i ∈ carrier R
and n-le-k : n ≤ k
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shows (λi . if i ∈ {..<n} then x i else 0, k − 1 ) =
finsum (K-n k) (λi . x i � x-i i k) {..<n}
using cl n-le-k proof (induct n)
case 0
show ?case

unfolding lessThan-0
unfolding abelian-monoid .finsum-empty [OF abelian-monoid-K-n

[of k ]]
unfolding K-n-def K-n-zero-def by simp

next
case (Suc n)
have prem: ∀ i∈{..<n}. x i ∈ carrier R and prem2 : n ≤ k

and x-n: x n ∈ carrier R
and hypo: (λi . if i ∈ {..<n} then x i else 0, k − 1 )
= (

⊕
K-n ki∈{..<n}. x i � x-i i k)

using Suc.prems Suc.hyps by simp-all
show ?case
proof −

have (
⊕

K-n ki∈{..<Suc n}. x i � x-i i k)
= (

⊕
K-n ki∈(insert n {..<n}). x i � x-i i k)

unfolding lessThan-Suc ..
also have ... = (x n � x-i n k)
⊕K-n k (

⊕
K-n ki∈{..<n}. x i � x-i i k)

proof (rule abelian-monoid .finsum-insert
[OF abelian-monoid-K-n])

show finite {..<n} by simp
show n /∈ {..<n} by simp
show (λi . x i � x-i i k) ∈ {..<n} → carrier (K-n k)
proof

fix xa assume xa: xa ∈ {..<n}
show x xa � x-i xa k ∈ carrier (K-n k)

unfolding K-n-def K-n-carrier-def
unfolding K-n-scalar-product-def ith-def vlen-def x-i-def
using xa prem Suc.prems (2 ) by fastsimp

qed
show x n � x-i n k ∈ carrier (K-n k)

unfolding K-n-def K-n-carrier-def
unfolding K-n-scalar-product-def ith-def vlen-def x-i-def
using Suc.prems (1 ) Suc.prems (2 ) by simp

qed
also have ... = (x n � x-i n k)
⊕K-n k (λi . if i ∈ {..<n} then x i else 0, k − 1 )
unfolding Suc.hyps [symmetric, OF prem prem2 ] ..

also have ... = (λi . if i = n then x n else 0, k − 1 )
⊕K-n k (λi . if i ∈ {..<n} then x i else 0, k − 1 )
unfolding x-i-def [of n k ]
unfolding K-n-scalar-product-def ith-def

vlen-def fst-conv snd-conv
unfolding mult-if unfolding r-null [OF x-n] r-one [OF x-n] ..
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also have ... = (λi . (if i = n then x n else 0)
⊕ (if i < n then x i else 0), k − Suc 0 )
unfolding K-n-def K-n-add-def ith-def by simp

also have ... = ((λi . if i < (Suc n) then x i else 0), k − 1 )
proof (rule, intro conjI )

show k − Suc 0 = k − 1 by simp
show (λi . (if i = n then x n else 0)
⊕ (if i < n then x i else 0)) =
(λi . if i < Suc n then x i else 0)

proof (rule ext)
fix i :: nat
show (if i = n then x n else 0)
⊕ (if i < n then x i else 0) =
(if i < Suc n then x i else 0)

proof (cases i < Suc n)
case False
thus ?thesis by simp

next
case True
show ?thesis using True using Suc.prems (1 )

by (cases i = n, auto)
qed

qed
qed
finally show ?thesis by simp

qed
qed

Now, as a corollary of the previous result, we obtain that any element of
K-n n can be expressed as a finite sum of the elements of the form x-i j n.

lemma lambda-finsum-n:
assumes cl : ∀ i∈{..<n}. x i ∈ carrier R
shows (λi . if i ∈ {..<n} then x i else 0, n − 1 ) =
finsum (K-n n) (λi . x i � x-i i n) {..<n}
using lambda-finsum [OF cl , of n] by fast

Finally, we get the lemma that states tha any element of the set K-n-carrier
n is a linear combination of elements of canonical-basis-K-n n:

lemma
K-n-carrier-finsum-x-i :
assumes x : x ∈ carrier (K-n n)
shows x = finsum (K-n n) (λj . fst x j � x-i j n) {..<n}
apply (subst x-in-carrier [OF x ])
apply (rule lambda-finsum-n)
using x unfolding K-n-def K-n-carrier-def ith-def vlen-def
by force
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11.4 Bijection between basis:

In the following lemmas we try to establish an explicit bijection between
the sets X, which is a basis of V, and the set canonical-basis-K-n n. This
bijection will be later extended, by linearity, to a bijection between carrier
V and carrier (K-n n)

lemma canonical-basis-acc-eq-x-i :
assumes x : x ∈ canonical-basis-acc k n
and k-l-n: k < n
shows ∃ j∈{..<Suc k}. x-i j n = x
using x k-l-n

proof (induct k)
case 0 thus ?case unfolding canonical-basis-acc.simps by (cases n, auto)

next
case (Suc k)
show ?case
proof (cases x = x-i (Suc k) n)

case False
have k-l-n: k < n and cb: x ∈ canonical-basis-acc k n

and hypo: ∃ j∈{..<(Suc k)}. x-i j n = x
using Suc.prems Suc.hyps False by simp-all

thus ?thesis by fastsimp
next

case True
show ?thesis

using True by fast
qed

qed

corollary
canonical-basis-acc-isom-x-i :
assumes x : x ∈ canonical-basis-acc k n
and k-l-n: k < n
shows ∃ !j∈{..<Suc k}. x = x-i j n

proof −
obtain j :: nat where j : j ∈ {..<Suc k} and x : x = x-i j n

using canonical-basis-acc-eq-x-i [OF x k-l-n] by blast
show ?thesis
proof (rule ex1I [of - j ], rule conjI )

show j ∈ {..<Suc k} by fact
show x = x-i j n by (rule x )
fix ja
assume ja: ja ∈ {..<Suc k} ∧ x = x-i ja n
show ja = j

using x ja unfolding x-i-def
by (metis ja x x-i-ne-x-j )

qed
qed
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corollary
canonical-basis-acc-isom-x-i2 :
assumes x : x ∈ canonical-basis-acc k n
and k-l-n: k < n
shows ∃ !j∈{..<n}. x = x-i j n

proof −
obtain j :: nat where j : j ∈ {..<Suc k} and x : x = x-i j n

using canonical-basis-acc-eq-x-i [OF x k-l-n] by blast
show ?thesis
proof (rule ex1I [of - j ], rule conjI )

show j ∈ {..<n} using j k-l-n by fastsimp
show x = x-i j n by (rule x )
fix ja
assume ja: ja ∈ {..<n} ∧ x = x-i ja n
show ja = j

using x ja unfolding x-i-def
by (metis ja x x-i-ne-x-j )

qed
qed

lemma
canonical-basis-is-x-i :
assumes x : x ∈ canonical-basis-K-n n

shows ∃ j∈{..<n}. x = x-i j n
using x
unfolding canonical-basis-K-n-def
using canonical-basis-acc-eq-x-i [of x n − 1 n] by (cases n, auto)

corollary
canonical-basis-isom-x-i :
assumes x : x ∈ canonical-basis-K-n n

shows ∃ !j∈{..<n}. x = x-i j n
proof −

obtain j :: nat where j : j ∈ {..<n} and x : x = x-i j n
using canonical-basis-is-x-i [OF x ] by blast

show ?thesis
proof (rule ex1I [of - j ], rule conjI )

show j ∈ {..<n} by fact
show x = x-i j n by fact
fix ja
assume ja: ja ∈ {..<n} ∧ x = x-i ja n
show ja = j

using x ja unfolding x-i-def
by (metis ja x x-i-ne-x-j )

qed
qed

The function preim maps vectors of the basis canonical-basis-K-n n to their

223



index.

definition
preim :: ′a vector => nat => nat
where preim x n = (THE j . j ∈ {..<n} ∧ x = x-i j n)

lemma
preim-x-i-x-eq-x :
assumes x-l-n: x < n

shows preim (x-i x n) n = x
unfolding preim-def

proof
show x ∈ {..<n} ∧ x-i x n = x-i x n

using x-l-n by fast
fix j :: nat
assume j : j ∈ {..<n} ∧ x-i x n = x-i j n
show j = x

using j
unfolding x-i-def by (metis j x-i-ne-x-j )

qed

lemma
preim-eq-x-i-acc:
assumes x : x ∈ canonical-basis-acc k n
and k-l-n: k < n
shows x-i (preim x n) n = x
unfolding preim-def
using theI ′ [OF canonical-basis-acc-isom-x-i2 [OF x k-l-n]] by presburger

lemma
preim-eq-x-i :
assumes x : x ∈ canonical-basis-K-n n

shows x-i (preim x n) n = x
unfolding preim-def
using theI ′ [OF canonical-basis-isom-x-i [OF x ]] by presburger

lemma
preim-lessThan:
assumes x : x ∈ canonical-basis-K-n n

shows preim x n ∈ {..<n}
unfolding preim-def
using theI ′ [OF canonical-basis-isom-x-i [OF x ]] by fast

11.5 Properties of canonical-basis-K-n n:

The following lemma proves that two different ways of writing down an
element of K-n n as a linear combination of the elements of the basis
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canonical-basis-K-n n are equivalent.:

lemma
finsum-canonical-basis-acc-finsum-card :
assumes k-l-n: k < n
and f : f ∈ carrier (K-n n) → carrier R
shows (

⊕
K-n nx∈canonical-basis-acc k n. f x � x )

= (
⊕

K-n nk∈{..<Suc k}. f (x-i k n) � x-i k n)
proof (rule abelian-monoid .finsum-cong ′′ [of - - (λk . x-i k n)])

show abelian-monoid (K-n n)
using abelian-monoid-K-n .

show finite {..<Suc k} using finite-lessThan .
show bij-betw (λk . x-i k n) {..<Suc k} (canonical-basis-acc k n)
proof (rule bij-betwI [of - - - (λj . preim j n) ])

show (λk . x-i k n) ∈ {..<Suc k} → canonical-basis-acc k n
using canonical-basis-acc-insert2 [OF - k-l-n] by force

show (λj . preim j n) ∈ canonical-basis-acc k n → {..<Suc k}
proof

fix x assume x : x ∈ canonical-basis-acc k n
obtain j where x-i-x : x-i j n = x and j-lessThan: j < Suc k

using canonical-basis-acc-eq-x-i [OF x k-l-n] by blast
show preim x n ∈ {..<Suc k}

unfolding x-i-x [symmetric]
using preim-x-i-x-eq-x [of j n] k-l-n j-lessThan by force

qed
fix x assume x : x ∈ {..<Suc k}
show preim (x-i x n) n = x

using preim-x-i-x-eq-x [of x n] k-l-n x by simp
next

fix y assume y : y ∈ canonical-basis-acc k n
show x-i (preim y n) n = y

using preim-eq-x-i-acc [OF y k-l-n] .
qed
show (λx . f x � x ) ∈ canonical-basis-acc k n → carrier (K-n n)
proof

fix x assume x : x ∈ canonical-basis-acc k n
obtain j where xi : x-i j n = x and j : j ∈ {..<Suc k}

using canonical-basis-acc-eq-x-i [OF x k-l-n] by fast
show f x � x ∈ carrier (K-n n)

apply (rule K-n-scalar-product-closed)
unfolding xi [symmetric] using f using x-i-closed j k-l-n by auto

qed
show (λk . f (x-i k n) � x-i k n) ∈ {..<Suc k} → carrier (K-n n)
proof

fix x assume x : x ∈ {..<Suc k}
show f (x-i x n) � x-i x n ∈ carrier (K-n n)

apply (rule K-n-scalar-product-closed)
using f using x-i-closed x k-l-n by auto

qed
show

∧
x . x ∈ {..<Suc k} =simp=> f (x-i x n) � x-i x n = f (x-i x n) � x-i x
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n
by presburger

qed

lemma
finsum-canonical-basis-K-n-finsum-card :
assumes f : f ∈ carrier (K-n n) → carrier R
shows (

⊕
K-n nx∈(canonical-basis-K-n n). f x � x )

= (
⊕

K-n nk∈{..<n}. f (x-i k n) � x-i k n)
proof (cases n)

case 0
interpret vector-space R K-n 0 op � using vector-space-K-n .
show ?thesis

unfolding 0
unfolding canonical-basis-K-n-def by simp

next
case (Suc n)
interpret vector-space R K-n (Suc n) op � using vector-space-K-n .
show ?thesis

using f
unfolding Suc canonical-basis-K-n-def
using finsum-canonical-basis-acc-finsum-card [of Suc n − 1 Suc n f ]
by simp

qed

The space generated by the vector-space.span of canonical-basis-K-n n is
equal to the vector space K-n n.

lemma
span-canonical-basis-K-n-carrier-K-n:

shows vector-space.span R (K-n n) (op �) (canonical-basis-K-n n) = carrier
(K-n n)
proof

interpret vector-space R K-n n op � using vector-space-K-n .
show span (canonical-basis-K-n n) ⊆ carrier (K-n n)
proof

fix x
assume x : x ∈ span (canonical-basis-K-n n)
obtain g :: (nat ⇒ ′a) × nat => ′a

where g : g ∈ coefficients-function (carrier (K-n n))
and gx : x = linear-combination g (canonical-basis-K-n n)
using x unfolding span-def by blast

show x ∈ carrier (K-n n)
unfolding gx
by (rule linear-combination-closed ,

rule canonical-basis-K-n-good-set ,
rule g)

qed
show carrier (K-n n) ⊆ span (canonical-basis-K-n n)
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proof
fix x
assume x : x ∈ carrier (K-n n)
def lc ≡ finsum (K-n n) (λj . fst x j � x-i j n) {..<n}
def reindex ≡ (λt . if t ∈ (canonical-basis-K-n n) then fst x (preim t n) else 0)
have x = lc

using K-n-carrier-finsum-x-i [OF x ]
unfolding lc-def .

also have lc ∈ span (canonical-basis-K-n n)
unfolding lc-def
unfolding span-def
unfolding coefficients-function-def
unfolding linear-combination-def
apply auto
apply (rule exI [of - reindex ])
apply (rule conjI3 )

proof −
show (

⊕
K-n nj∈{..<n}. fst x j � x-i j n)

= (
⊕

K-n ny∈canonical-basis-K-n n. reindex y � y)
proof (rule abelian-monoid .finsum-cong ′′ [

symmetric, OF abelian-monoid-K-n [of n], of - (λj . x-i j n)])
show finite {..<n} by simp
show bij-betw (λj . x-i j n) {..<n} (canonical-basis-K-n n)
proof (rule bij-betwI [of (λj . x-i j n) {..<n} canonical-basis-K-n n (λx .

preim x n)])
show (λj . x-i j n) ∈ {..<n} → canonical-basis-K-n n

using canonical-basis-K-n-elements [OF ] by fast
next

show (λx . preim x n) ∈ canonical-basis-K-n n → {..<n}
using preim-lessThan [OF - ] by blast

next
fix x assume x : x ∈ {..<n}
show preim (x-i x n) n = x

using preim-x-i-x-eq-x [OF - , of x ]
using x by fast

next
fix y assume y : y ∈ canonical-basis-K-n n
show x-i (preim y n) n = y

by (rule preim-eq-x-i [OF y ])
qed
show (λy . reindex y � y) ∈ canonical-basis-K-n n → carrier (K-n n)
proof

fix xa
assume xa: xa ∈ canonical-basis-K-n n
hence xa2 : xa ∈ carrier (K-n n)

using canonical-basis-K-n-closed [OF ] by fast
have xa-l-n: preim xa n ∈ {..<n}

by (rule preim-lessThan [OF xa ])
hence f : fst x (preim xa n) ∈ carrier R
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using x unfolding K-n-def K-n-carrier-def ith-def by auto
show reindex xa � xa ∈ carrier (K-n n)

unfolding reindex-def
using xa
using K-n-scalar-product-closed [OF f xa2 ] by presburger

qed
show (λj . fst x j � x-i j n) ∈ {..<n} → carrier (K-n n)
proof

fix xa assume xa: xa ∈ {..<n}
hence f : fst x xa ∈ carrier R using x

unfolding K-n-def K-n-carrier-def ith-def by auto
have x-i : x-i xa n ∈ carrier (K-n n)

using x-i-closed [of xa n] xa by fast
show fst x xa � x-i xa n ∈ carrier (K-n n)

by (rule K-n-scalar-product-closed , rule f , rule x-i)
qed
show

∧
xa. xa ∈ {..<n} =simp=>

fst x xa � x-i xa n = reindex (x-i xa n) � x-i xa n
unfolding reindex-def
using canonical-basis-K-n-elements [of - n]
using preim-x-i-x-eq-x [OF -, of -] by force

qed
show reindex ∈ carrier (K-n n) → carrier R
proof

fix xa
assume xa: xa ∈ carrier (K-n n)
show reindex xa ∈ carrier R

unfolding reindex-def
using preim-lessThan [of xa n]
using x unfolding K-n-def K-n-carrier-def ith-def by fastsimp

qed
show ∀ a b. (a, b) /∈ carrier (K-n n) −→ reindex (a, b) = 0
proof (rule+)

fix a b assume notin-carrier : (a,b) /∈ carrier (K-n n)
have (a,b) /∈ canonical-basis-K-n n

using canonical-basis-K-n-closed [of n] notin-carrier
by fast

thus reindex (a, b) = 0 unfolding reindex-def by presburger
qed

qed
finally show x ∈ span (canonical-basis-K-n n) .

qed
qed

lemma
canonical-basis-K-n-spanning-set :

shows vector-space.spanning-set R (K-n n) (op �) (canonical-basis-K-n n)
apply (unfold vector-space.spanning-set-def [OF vector-space-K-n], auto)
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apply (metis canonical-basis-K-n-good-set)
using span-canonical-basis-K-n-carrier-K-n [OF ]
using vector-space.span-def [OF vector-space-K-n] by force

The elements of canonical-basis-acc j n are linearly independent.

lemma
canonical-basis-acc-linear-independent-ext :
assumes j-l-n: j < n
shows vector-space.linear-independent-ext R (K-n n) (op �) (canonical-basis-acc

j n)
proof −

— We first produce the interpretation of the locale vector-space
interpret vector-space R (K-n n) (op �)

using vector-space-K-n [of n] .
have linear-independent-ext (canonical-basis-acc j n) =

linear-independent (canonical-basis-acc j n)
unfolding linear-independent-ext-def
using finite-canonical-basis-acc [of j n]
by (metis independent-set-implies-independent-subset subset-refl)

also have linear-independent (canonical-basis-acc j n)
proof (rule ccontr)

assume n: ¬ linear-independent (canonical-basis-acc j n)
have ld : linear-dependent (canonical-basis-acc j n)
proof (rule not-independent-implies-dependent)

show ¬ linear-independent (canonical-basis-acc j n) by (rule n)
show good-set (canonical-basis-acc j n)

unfolding good-set-def
using finite-canonical-basis-acc [of j n]
using canonical-basis-acc-closed [OF j-l-n] by fast

qed
then obtain f where f : f ∈ coefficients-function (carrier (K-n n))

and lc: linear-combination f (canonical-basis-acc j n) = 0K-n n
and nzero: ¬ (∀ x∈(canonical-basis-acc j n). f x = 0)
unfolding linear-dependent-def by fast

have 0K-n n = linear-combination f (canonical-basis-acc j n)
by (rule lc [symmetric])

also have linear-combination f (canonical-basis-acc j n) =
finsum (K-n n) (λx . f x � x ) (canonical-basis-acc j n)
unfolding linear-combination-def ..

also have ... = finsum (K-n n) (λk . f (x-i k n) � x-i k n) {..<(Suc j )}
apply (rule finsum-canonical-basis-acc-finsum-card , rule j-l-n)
using f unfolding coefficients-function-def by fast

also have ... = (λk . if k ∈ {..<Suc j} then f (x-i k n) else 0, n − 1 )
apply (rule lambda-finsum [symmetric])
using f unfolding coefficients-function-def using x-i-closed [of - n]
using j-l-n by auto

finally have 0K-n n = (λk . if k ∈ {..<Suc j} then f (x-i k n) else 0, n − 1 ) .
hence p: (λi . 0) = (λk . if k ∈ {..<Suc j} then f (x-i k n) else 0)

unfolding K-n-def K-n-zero-def by auto
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have j-zero: ∀ k∈{..<Suc j}. f (x-i k n) = 0
using fun-cong [OF p] by metis

have ∀ x∈(canonical-basis-acc (Suc j ) n). f x = 0
proof

fix x assume x : x ∈ canonical-basis-acc (Suc j ) n
obtain k where xi : x = x-i k n and k : k ∈ {..<Suc j}

by (metis assms canonical-basis-acc-eq-x-i j-zero nzero)
show f x = 0 unfolding xi using j-zero k by blast

qed
hence ∀ x∈(canonical-basis-acc j n). f x = 0

by (metis assms canonical-basis-acc-eq-x-i j-zero)
thus False

using nzero by fast
qed
finally show ?thesis .

qed

end

context vector-space
begin

The following lemma should be moved to the place where linear-independent-ext
has been defined, like a simp rule:

lemma linear-independent-ext-empty [simp]:
shows linear-independent-ext {}
unfolding linear-independent-ext-def
using empty-set-is-linearly-independent by simp

end

context field
begin

lemma
canonical-basis-K-n-linear-independent-ext :

shows vector-space.linear-independent-ext R (K-n n) (op �) (canonical-basis-K-n
n)

unfolding canonical-basis-K-n-def
using canonical-basis-acc-linear-independent-ext [of n − 1 n]
using vector-space.linear-independent-ext-empty [OF vector-space-K-n]
by (cases n, auto)

We finally prove that canonical-basis-K-n n is a basis for K-n.

lemma
canonical-basis-K-n-basis:

shows vector-space.basis R (K-n n) (op �) (canonical-basis-K-n n)
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unfolding vector-space.basis-def [OF vector-space-K-n]
using canonical-basis-K-n-linear-independent-ext [OF ]
using canonical-basis-K-n-spanning-set [OF ]
by (metis canonical-basis-K-n-closed vector-space.spanning-imp-spanning-ext vector-space-K-n)

corollary
canonical-basis-K-n-basis-card-n:

shows vector-space.basis R (K-n n) (op �) (canonical-basis-K-n n) ∧
card (canonical-basis-K-n n) = n
using canonical-basis-K-n-basis [OF ]

and card-canonical-basis-K-n [OF ] by fastsimp

end

context finite-dimensional-vector-space
begin

After proving the most relevant properties of field .K-n K n, we fix one
indexing of the basis elements (of X ) that will allow us to define later the
function which given any element of the carrier set decomposes it into the
coefficients for each term if the indexation.

The theorem obtain-indexing : finite A =⇒ ∃ f . indexing (A, f ) and the
premise that the vector space is finite, and so is it basis X, ensures that the
following definition is sound.

definition indexing-X :: nat => ′c
where indexing-X-def : indexing-X = (SOME f . indexing (X , f ))

Relying in the fact that at least one indexing of the basis X exists, we can
prove that indexing-X satisfies the properties of every indexing.

lemma indexing-X-is-indexing :
shows indexing (X , indexing-X )
using obtain-indexing [OF finite-X ]
using some-eq-ex [of (λf . indexing (X , f ))]
unfolding indexing-X-def by auto

The following function is to be used as the inverse function of field .preim;
this function and field .preim will be defined to prove an isomorphism be-
tween field .canonical-basis-K-n K (card X ) and {..<card X }.
definition iso-nat-can :: nat => ′a vector

where iso-nat-can n = (x-i n (dimension))

The composition of the functions field .preim K and iso-nat-can over the set
{..<dimension} is equal to the identity.

lemma preim-iso-nat-can-id :
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assumes x : x ∈ {..<dimension}
shows preim (iso-nat-can x ) (dimension) = x
unfolding iso-nat-can-def
using preim-x-i-x-eq-x [of x dimension]
unfolding x-i-def using x by blast

In a very similar way, the composition of field .preim K and iso-nat-can over
the set field .canonical-basis-K-n K dimension is equal to the identity:

lemma iso-nat-can-preim-id :
assumes y : y ∈ canonical-basis-K-n (dimension)
shows iso-nat-can (preim y (dimension)) = y
using preim-eq-x-i [OF y ]
unfolding x-i-def iso-nat-can-def .

lemma
bij-betw-iso-nat-can:
shows bij-betw iso-nat-can {..<dimension}
(canonical-basis-K-n (dimension))

proof (intro bij-betwI [of - - - (λi . preim i (dimension))])
interpret field K by intro-locales
show iso-nat-can
∈ {..<dimension} → field .canonical-basis-K-n K (dimension)

proof
fix x
assume x : x ∈ {..<(dimension)}
show iso-nat-can x
∈ field .canonical-basis-K-n K (dimension)
unfolding iso-nat-can-def
using canonical-basis-K-n-elements [OF x ]
unfolding x-i-def .

qed
show (λi . preim i (dimension))
∈ canonical-basis-K-n (dimension) → {..<dimension}

proof
fix x
assume x : x ∈ canonical-basis-K-n (dimension)
show preim x (dimension) ∈ {..<dimension}

by (rule preim-lessThan [OF x ])
qed
fix x
assume x : x ∈ {..<dimension}
show preim (iso-nat-can x ) (dimension) = x

by (rule preim-iso-nat-can-id [OF x ])
next

interpret field K by intro-locales
fix y
assume y : y ∈ canonical-basis-K-n (dimension)
show iso-nat-can (preim y (dimension)) = y

by (rule iso-nat-can-preim-id [OF y ])
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qed

lemma
bij-betw-preim:
shows bij-betw (λi . preim i (dimension))
(canonical-basis-K-n (dimension)) {..<dimension}

proof (intro bij-betwI [of - - - iso-nat-can])
interpret field K by intro-locales
show iso-nat-can
∈ {..<dimension} → canonical-basis-K-n (dimension)

proof
fix x
assume x : x ∈ {..<(dimension)}
show iso-nat-can x ∈ canonical-basis-K-n (dimension)

unfolding iso-nat-can-def
using canonical-basis-K-n-elements [OF x ]
unfolding x-i-def .

qed
show (λi . preim i (dimension))
∈ canonical-basis-K-n (dimension) → {..<dimension}

proof
fix x
assume x : x ∈ canonical-basis-K-n (dimension)
show preim x (dimension) ∈ {..<dimension}

by (rule preim-lessThan [OF x ])
qed
fix x
assume x : x ∈ {..<dimension}
show preim (iso-nat-can x ) (dimension) = x

by (rule preim-iso-nat-can-id [OF x ])
next

interpret field K by intro-locales
fix y
assume y : y ∈ canonical-basis-K-n (dimension)
show iso-nat-can (preim y (dimension)) = y

by (rule iso-nat-can-preim-id [OF y ])
qed

The following function will be used to define an isomorphism between the
sets {..<dimension} and X, which inverse will be the inverse of the indexing
function indexing-X.

definition
iso-nat-X :: nat => ′c
where iso-nat-X n = indexing-X n

The inverse function of the previous iso-nat-X is the following function,
which properties we are to prove first:

definition
preim2 :: ′c => nat
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where preim2 x = (THE j . j ∈ {..<dimension} ∧ x = indexing-X j )

The preim2 function needs to be completed, since otherwise we can not
ensure for the elements out of the basis X that their value preim2 x is not
in the set {..<dimension}. If the value preim2 x could be in {..<dimension}
for elements out of X, then the function fst x (preim2 y), for y /∈ X could
take values different from 0.

The way to complete it is a bit artificial, since we can not use 0 to complete
it, but some element a with dimension ≤ a, which are the natural numbers
that are mapped to 0 by coefficients-function. In particular, we have chosen
a = dimension.

definition
preim2-comp :: ′c => nat
where preim2-comp x = (if x ∈ X then (THE j . j ∈ {..<dimension} ∧ x =

indexing-X j ) else dimension)

lemma
indexing-X-bij :
shows bij-betw indexing-X {..<dimension} X

proof −
have f1 : finite X and f2 : finite {..<dimension} by (metis finite-X , simp)
have ex : ∃ f . bij-betw f {..<dimension} X

using BIJ [OF f2 f1 ] unfolding dimension-def by simp
thus ?thesis

using some-eq-ex [of (λf . bij-betw f {..<dimension} X )]
unfolding indexing-X-def indexing-def dimension-def by simp

qed

lemma
indexing-X-preimage:
assumes x : x ∈ X
shows ∃ j . j ∈ {..<dimension} ∧ x = indexing-X j

proof −
obtain j where j ∈ {..<dimension} and indexing-X j = x

using x using indexing-X-bij
unfolding bij-betw-def unfolding image-def by force

thus ?thesis by fast
qed

corollary
indexing-X-preimage-unique:
assumes x : x ∈ X
shows ∃ !j . j ∈ {..<dimension} ∧ x = indexing-X j

proof −
obtain j :: nat where j : j ∈ {..<dimension} and x : x = indexing-X j

using indexing-X-preimage [OF x ] by fast
show ?thesis
proof (rule ex1I [of - j ], rule conjI )
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show j ∈ {..<dimension} by fact
show x = indexing-X j by (rule x )
fix ja
assume ja: ja ∈ {..<dimension} ∧ x = indexing-X ja
show ja = j

using x j ja indexing-X-bij
unfolding bij-betw-def
by (metis inj-onD)

qed
qed

lemma
preim2-in-dimension:
assumes x : x ∈ X
shows preim2 x ∈ {..<dimension}
unfolding preim2-def
using theI ′ [OF indexing-X-preimage-unique [OF x ]] by fast

lemma
preim2-comp-in-dimension:
assumes x : x ∈ X
shows preim2-comp x ∈ {..<dimension}
using preim2-in-dimension [OF x ] x
unfolding preim2-comp-def preim2-def by simp

lemma
preim2-is-indexing-X :
assumes x : x ∈ X
shows x = indexing-X (preim2 x )
unfolding preim2-def
using theI ′ [OF indexing-X-preimage-unique [OF x ]] by fast

The functions preim2-comp and iso-nat-X are inverse of each other, over
the sets X and {..<dimension}
lemma

preim2-comp-is-indexing-X :
assumes x : x ∈ X
shows x = indexing-X (preim2-comp x )
using preim2-is-indexing-X [OF x ] x
unfolding preim2-def preim2-comp-def by presburger

lemma iso-nat-X-preim2-id :
assumes x : x ∈ X
shows iso-nat-X (preim2 x ) = x
using theI ′ [OF indexing-X-preimage-unique [OF x ]]
unfolding preim2-def
unfolding iso-nat-X-def by presburger

lemma iso-nat-X-preim2-comp-id :
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assumes x : x ∈ X
shows iso-nat-X (preim2-comp x ) = x
using iso-nat-X-preim2-id [OF x ]
unfolding preim2-def preim2-comp-def using x by presburger

lemma preim2-iso-nat-X-id :
assumes n: n ∈ {..<dimension}
shows preim2 (iso-nat-X n) = n

proof −
have i : iso-nat-X n ∈ X

unfolding iso-nat-X-def iso-nat-X-def
using indexing-X-is-indexing using n
unfolding indexing-def dimension-def unfolding bij-betw-def image-def by

auto
show ?thesis

unfolding preim2-def iso-nat-X-def
apply (rule the1-equality)
using indexing-X-preimage-unique [OF i ] n
unfolding iso-nat-X-def by fast+

qed

lemma preim2-comp-iso-nat-X-id :
assumes n: n ∈ {..<dimension}
shows preim2-comp (iso-nat-X n) = n

proof −
have i : iso-nat-X n ∈ X

unfolding iso-nat-X-def iso-nat-X-def
using indexing-X-is-indexing using n
unfolding indexing-def dimension-def unfolding bij-betw-def image-def by

auto
show ?thesis

using preim2-iso-nat-X-id [OF n] using i
unfolding preim2-comp-def preim2-def by presburger

qed

Therefore, we can prove that there exists a bijection between them:

lemma
bij-betw-iso-nat-X :
shows bij-betw iso-nat-X {..<dimension} X

proof (intro bij-betwI [of - - - preim2 ])
show iso-nat-X ∈ {..<dimension} → X
proof

fix x assume x : x ∈ {..<dimension}
show iso-nat-X x ∈ X

unfolding iso-nat-X-def
using indexing-X-is-indexing using x
unfolding indexing-def bij-betw-def image-def dimension-def by auto

qed
show preim2 ∈ X → {..<dimension}
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proof
fix x assume x : x ∈ X
show preim2 x ∈ {..<dimension}

using theI ′ [OF indexing-X-preimage-unique [OF x ]]
unfolding preim2-def by fast

qed
fix x assume x : x ∈ {..<dimension}
show preim2 (iso-nat-X x ) = x

by (rule preim2-iso-nat-X-id [OF x ])
next

fix y assume y : y ∈ X
show iso-nat-X (preim2 y) = y

by (rule iso-nat-X-preim2-id [OF y ])
qed

lemma
bij-betw-preim2 :
shows bij-betw preim2 X {..<dimension}

proof (intro bij-betwI [of - - - iso-nat-X ])
show preim2 ∈ X → {..<dimension}
proof

fix x assume x : x ∈ X
show preim2 x ∈ {..<dimension}

using theI ′ [OF indexing-X-preimage-unique [OF x ]]
unfolding preim2-def by fast

qed
show iso-nat-X ∈ {..<dimension} → X
proof

fix x assume x : x ∈ {..<dimension}
show iso-nat-X x ∈ X

unfolding iso-nat-X-def
using indexing-X-is-indexing using x
unfolding indexing-def bij-betw-def image-def dimension-def by auto

qed
fix y assume y : y ∈ X
show iso-nat-X (preim2 y) = y

by (rule iso-nat-X-preim2-id [OF y ])
next

fix x assume x : x ∈ {..<dimension}
show preim2 (iso-nat-X x ) = x

by (rule preim2-iso-nat-X-id [OF x ])
qed

end

11.6 Linear maps.

In this section we are going to introduce the notion of linear map between
vector spaces. This is a previous step for the definition of an isomorphism
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between vector spaces. Then, we will have to prove the existence of an
isomorphism between the vector spaces K-n dimension and V.

The definition between comments would be the expected and desired one.
Unfortunately, it introduces changes in the namespace that are really in-
convenient. The second locale hides the names of constants in vector space,
demanding long names for the first locale constanst. We do not know how to
control this behaviour: thus, we preferred the long version, in which locale
interpretation has to be done later by hand:

locale linear-map =
fixes K :: ( ′a, ′b) ring-scheme
and V :: ( ′c, ′d) ring-scheme
and W :: ( ′e, ′f ) ring-scheme
and scalar-product1 :: ′a => ′c => ′c (infixr ·V 70 )
and scalar-product2 :: ′a => ′e => ′e (infixr ·W 70 )
assumes V : vector-space K V (op ·V)
and W : vector-space K W (op ·W)

context linear-map
begin

Linear maps, as characterised in ”Linear Algebra Done Right”, have to
satisfy the additivity and homogeneity properties:

definition additivity :: ( ′c => ′e) => bool
where additivity T = (∀ x∈carrier V . ∀ y ∈ carrier V . T (x ⊕V y) = T x ⊕W

T y)

definition homogeneity :: ( ′c => ′e) => bool
where homogeneity T = (∀ k∈carrier K . ∀ x∈carrier V . T (k ·V x ) = k ·W T

x )

definition linear-map :: ( ′c => ′e) => bool
where linear-map T = (additivity T ∧ homogeneity T )

end

We introduce a new locale for finite dimensional vector spaces, just imposing
that there is a finite basis for one ot the vector spaces.

locale linear-map-fin-dim = linear-map +
fixes X
assumes fin-dim: finite-dimensional-vector-space K V (op ·V) X

We produce two different sublocales, or interpretations, of the locale linear-map-fin-dim
by means of the locale finite-dimensional-vector-space. They allow us to later
define linear maps from V to K-n and also the opposite way, from K-n to
V. The system forces us to make them named interpretations, just to avoid
colliding names.
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sublocale finite-dimensional-vector-space <
V-K-n: linear-map-fin-dim K V K-n dimension op · K-n-scalar-product X

proof (unfold linear-map-fin-dim-def , intro conjI )
show linear-map K V (field .K-n K dimension) op · (field .K-n-scalar-product K )
proof (unfold linear-map-def , intro conjI )

show vector-space K (K-n dimension) K-n-scalar-product
using vector-space-K-n .

show vector-space K V op · by (intro-locales)
qed

next
show linear-map-fin-dim-axioms K V op · X
proof (unfold linear-map-fin-dim-axioms-def finite-dimensional-vector-space-def ,

intro conjI )
show vector-space K V op ·by intro-locales
show finite-dimensional-vector-space-axioms K V op · X
proof

show finite X by (rule finite-X )
show basis X by (rule basis-X )

qed
qed

qed

sublocale finite-dimensional-vector-space < K-n-V : linear-map-fin-dim K K-n di-
mension V

K-n-scalar-product op · canonical-basis-K-n dimension
proof (intro-locales)

interpret K : field K by intro-locales
interpret V : vector-space K V op · by intro-locales
interpret K-n: vector-space K K-n dimension K-n-scalar-product using vector-space-K-n

.
show Isomorphism.linear-map K (K-n dimension) V (K-n-scalar-product) op ·

by unfold-locales
show linear-map-fin-dim-axioms K (K-n dimension)

(K-n-scalar-product) (canonical-basis-K-n dimension)
proof unfold-locales

show finite (canonical-basis-K-n dimension)
by (rule finite-canonical-basis-K-n)

show K-n.basis (canonical-basis-K-n dimension)
using canonical-basis-K-n-basis [of dimension] by fast

qed
qed

11.7 Defining the isomorphism between Kn and V .

context finite-dimensional-vector-space
begin

Some properties proving that there exists a unique function of coefficients
for each element in the carrier set of V ; this unique function is the one that
decomposes any element into its linear combination over the elements of the
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basis:

lemma
basis-implies-linear-combination:
assumes x : (x :: ′c) ∈ carrier V
shows ∃ f . f ∈ coefficients-function (carrier V ) ∧ x = linear-combination f X
using spanning-set-X
unfolding spanning-set-def
using x by blast

In order to ensure the uniqueness of the coefficients function we have to use
coefficients-function, which is mapped to 0 out of its domain.

lemma
basis-implies-coeff-function-comp-linear-combination:
assumes x : (x :: ′c) ∈ carrier V
shows ∃ f . f ∈ coefficients-function X ∧ x = linear-combination f X

proof −
obtain f where f : f ∈ coefficients-function (carrier V )

and x : x = linear-combination f X
using basis-implies-linear-combination [OF x ] by force

let ?g = (λx . if x ∈ X then f x else 0)
show ?thesis
proof (rule exI [of - ?g ], intro conjI )

show (λy . if y ∈ X then f y else 0) ∈ coefficients-function X
using f
unfolding coefficients-function-def
using good-set-X unfolding good-set-def by fastsimp

show x = linear-combination (λy . if y ∈ X then f y else 0) X
unfolding x
unfolding linear-combination-def

proof (rule finsum-cong ′)
show X = X ..
show (λy . (if y ∈ X then f y else 0) · y) ∈ X → carrier V
proof

fix x assume x : x ∈ X
show (if x ∈ X then f x else 0) · x ∈ carrier V

apply (cases x ∈ X )
using fx-x-in-V [of x f ]
using f x good-set-X
unfolding good-set-def by auto

qed
fix i assume i : i ∈ X
thus f i · i = (if i ∈ X then f i else 0) · i by fastsimp

qed
qed

qed

Firstly we prove a theorem similar to unique-coordenates: [[x ∈ carrier
V ; f ∈ coefficients-function (carrier V ); x = linear-combination f X ; g ∈
coefficients-function (carrier V ); x = linear-combination g X ]] =⇒ ∀ x∈X .
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g x = f x. It claims that the coordinates are unique in a basis.

lemma
linear-combination-unique:
assumes x : x ∈ carrier V
shows ∃ !f . f ∈ coefficients-function X & linear-combination f X = x

proof −
obtain f-cf where cf-fc: f-cf ∈ coefficients-function (carrier V )

and lc-cf : linear-combination f-cf X = x
using x using spanning-set-X
unfolding spanning-set-def by (metis mem-def )

def f == (λx . if x ∈ X then f-cf x else 0)
have cf : f ∈ coefficients-function X

and lc: linear-combination f X = x
using cf-fc lc-cf
unfolding coefficients-function-def
unfolding linear-combination-def
unfolding f-def using good-set-X unfolding good-set-def apply auto
apply (rule finsum-cong ′)
apply auto by (rule mult-closed) auto

show ?thesis
proof (rule ex1I [of - f ])

show f ∈ coefficients-function X & linear-combination f X = x using cf lc ..
fix g
assume g ∈ coefficients-function X & linear-combination g X = x
hence cfg : g ∈ coefficients-function X and lcg : linear-combination g X = x by

fast+
have f-y-y-Pi : (λy . f y · y) ∈ X → carrier V

and f-y-Pi : (λy . f y) ∈ X → carrier K
and g-y-Pi : (λy . g y) ∈ X → carrier K
and g-y-y-Pi : (λy . g y · y) ∈ X → carrier V

and f-minus-g-Pi : (λy . f y · y 	V g y · y) ∈ X → carrier V

unfolding coefficients-function-def
unfolding Pi-def
using coefficients-function-Pi [OF - cfg ]
using coefficients-function-Pi [OF - cf ]
using good-set-X unfolding good-set-def by (auto simp add : mult-closed)
show g = f
proof −

have 0V = linear-combination f X 	V linear-combination g X
unfolding lc lcg using x by (metis local .r-neg ′)

also have linear-combination f X 	V linear-combination g X =
(
⊕

Vy∈X . f y · y) 	V (
⊕

Vy∈X . g y · y)
unfolding linear-combination-def ..

also have (
⊕

Vy∈X . f y · y) 	V (
⊕

Vy∈X . g y · y) = (
⊕

Vy∈X . f y · y)
⊕V 	V (

⊕
Vy∈X . g y · y)

unfolding minus-eq [OF finsum-closed [OF finite-X f-y-y-Pi ]
finsum-closed [OF finite-X g-y-y-Pi ]] ..

also have (
⊕

Vy∈X . f y · y) ⊕V 	V (
⊕

Vy∈X . g y · y) = (
⊕

Vy∈X . f y
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· y ⊕V 	V (g y · y))
unfolding finsum-minus-eq [OF finite-X g-y-y-Pi ]
apply (rule finsum-addf [symmetric, OF finite-X f-y-y-Pi ])
using a-inv-closed g-y-y-Pi by auto

also have (
⊕

Vy∈X . f y · y ⊕V 	V (g y · y)) = (
⊕

Vy∈X . f y · y 	V
(g y · y))

proof (rule finsum-cong ′, rule, rule f-minus-g-Pi)
fix i assume x : i ∈ X
show f i · i ⊕V 	V (g i · i) = f i · i 	V g i · i

by (rule minus-eq [symmetric], rule funcset-mem [OF f-y-y-Pi x ],
rule funcset-mem [OF g-y-y-Pi x ])

qed
also have (

⊕
Vy∈X . f y · y 	V g y · y) = (

⊕
Vy∈X . (f y 	 g y) · y)

proof (rule finsum-cong ′ [symmetric], rule, rule f-minus-g-Pi)
show

∧
i . i ∈ X =⇒ (f i 	 g i) · i = f i · i 	V g i · i

proof −
fix i assume i : i ∈ X
hence iV : i ∈ carrier V using good-set-X unfolding good-set-def

by auto
show (f i 	 g i) · i = f i · i 	V g i · i

by (rule diff-mult-distrib2 , fact)
(rule funcset-mem [OF f-y-Pi i ], rule funcset-mem [OF g-y-Pi i ])

qed
qed
also have ... = linear-combination (λx . f x 	 g x ) X

unfolding linear-combination-def ..
finally have linear-combination (λx . f x 	 g x ) X = 0V ..
— A linear combination of elements of the basis X equal to zero means that

every coefficient must be zero:
moreover have (λx . f x 	 g x ) ∈ coefficients-function (carrier V )

using coefficients-function-Pi [OF - cf ]
using coefficients-function-Pi [OF - cfg ]
unfolding coefficients-function-def
apply (auto simp add : minus-closed)
proof −

fix x
assume x-notin-V : x /∈ carrier V
hence f x 	 g x = 0 	 0

using cfg cf good-set-X unfolding coefficients-function-def good-set-def
by fastsimp

also have ...=0
by (metis K .add .inv-one K .add .one-closed a-minus-def
abelian-monoid .r-zero abelian-monoid-R insertI1 insert-absorb mem-def )

finally show f x 	 g x = 0 .
qed

ultimately have lin-comb-X-eq-0 : ∀ x∈X . (λx . f x 	 g x ) x = 0
using linear-independent-X
unfolding linear-independent-def by auto
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have f-eq-g-X : ∀ x∈X . f x = g x
proof (rule ballI )

fix x assume x : x ∈ X
have fx : f x ∈ carrier K and gx : g x ∈ carrier K

using x using good-set-X unfolding good-set-def
using cf
using cfg
unfolding coefficients-function-def by auto

have f x 	 g x ⊕ g x = g x
using lin-comb-X-eq-0 fx gx x by simp

hence f x = g x using fx gx
by (metis plus-minus-cancel cring .cring-simprules(16 ) is-cring lin-comb-X-eq-0

x )
thus f x = g x .

qed
show g = f
proof (rule ext , case-tac x ∈ X )

fix x assume x : x ∈ X show g x = f x
using f-eq-g-X x by simp

next
fix x assume x : x /∈ X show g x = f x

using cf cfg unfolding coefficients-function-def
using x by simp

qed
qed

qed
qed

The previous lemma ensures the existence of only one function f satisfying
to be a linear combination and a coefficients function which generates any
x belonging to carrier V

definition lin-comb :: ′c => ( ′c => ′a)
where lin-comb x = (THE f . f ∈ coefficients-function X
∧ linear-combination f X = x )

lemma
lin-comb-is-coefficients-function:
assumes x : x ∈ carrier V
shows lin-comb x ∈ coefficients-function X
using theI ′ [OF linear-combination-unique [OF x ]]
unfolding lin-comb-def by fast

lemma
lin-comb-is-the-linear-combination:
assumes x : x ∈ carrier V
shows x = linear-combination (lin-comb x ) X
unfolding lin-comb-def
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using theI ′ [OF linear-combination-unique [OF x ]] by simp

lemma
indexing-X-n-in-X :
assumes n-dimension: n < dimension
shows indexing-X n ∈ X
using indexing-X-is-indexing
unfolding indexing-def
using bij-betw-imp-funcset
using n-dimension unfolding dimension-def by auto

corollary
indexing-X-n-in-carrier-V :
assumes n-dimension: n < dimension
shows indexing-X n ∈ carrier V
using indexing-X-n-in-X [OF n-dimension]
using good-set-X unfolding good-set-def by auto

A lemma stating that every element of the carrier set can be expressed as a
finite sum over the elements of the set {..<dimension} thanks to the function
lin-comb.

lemma
lin-comb-is-the-linear-combination-indexing :
assumes x : x ∈ carrier V
shows x = finsum V (λi . lin-comb x (indexing-X i) · indexing-X i) {..<dimension}

proof −
have x = linear-combination (lin-comb x ) X

by (rule lin-comb-is-the-linear-combination [OF x ])
also have ... = finsum V (λy . lin-comb x y · y) X

unfolding linear-combination-def ..
also have ... = finsum V (λi . lin-comb x (indexing-X i) · indexing-X i) {..<dimension}
proof (rule finsum-cong ′′ [of - indexing-X ])

show finite {..<dimension} by fast
show bij-betw indexing-X {..<dimension} X by (rule indexing-X-bij )
show (λy . lin-comb x y · y) ∈ X → carrier V
proof

fix xa assume xa: xa ∈ X
show lin-comb x xa · xa ∈ carrier V

apply (rule mult-closed)
using xa using good-set-X
using lin-comb-is-coefficients-function [OF x ]
unfolding good-set-def coefficients-function-def by fast+

qed
show (λi . lin-comb x (indexing-X i) · indexing-X i) ∈ {..<dimension} → carrier

V
proof

fix xa assume xa: xa ∈ {..<dimension}
show lin-comb x (indexing-X xa) · indexing-X xa ∈ carrier V

apply (rule mult-closed)
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using indexing-X-n-in-carrier-V [of xa] xa
using lin-comb-is-coefficients-function [OF x ]
using coefficients-function-Pi [of indexing-X xa lin-comb x ]
unfolding coefficients-function-def by auto

qed
show

∧
xa. xa ∈ {..<dimension} =simp=>

lin-comb x (indexing-X xa) · indexing-X xa =
lin-comb x (indexing-X xa) · indexing-X xa by simp

qed
finally show ?thesis .

qed

A lemma on how the elements of the basis are mapped by lin-comb:

lemma
lin-comb-basis:
assumes x : x ∈ X
shows lin-comb x = (λi . if i = x then 1 else 0)
unfolding lin-comb-def

proof (rule the1-equality)
have x1 : x ∈ carrier V

using good-set-X x
unfolding good-set-def by fast

show ∃ !f . f ∈ coefficients-function X ∧ linear-combination f X = x
using linear-combination-unique [OF x1 ] .

show (λi . if i = x then 1 else 0) ∈ coefficients-function X ∧
linear-combination (λi . if i = x then 1 else 0) X = x

proof (rule conjI )
show (λi . if i = x then 1 else 0) ∈ coefficients-function X

unfolding coefficients-function-def using x by fastsimp
show linear-combination (λi . if i = x then 1 else 0) X = x
proof −

thm linear-combination-def
have linear-combination (λi . if i = x then 1 else 0) X =

(
⊕

Vy∈X . (if y = x then 1 else 0) · y) unfolding linear-combination-def
..

also have ... = (
⊕

Vy∈X . (if x = y then 1 · y else 0V))
apply (rule finsum-cong ′, auto)
using good-set-X
unfolding good-set-def
apply (metis mult-1 x1 )
by (metis good-set-X good-set-in-carrier subsetD zeroK-mult-V-is-zeroV )

also have ... = 1 · x
proof (rule finsum-singleton [OF x finite-X , of (λx . 1 · x )], rule)

fix x assume x : x ∈ X hence xx : x ∈ carrier V
using good-set-X
unfolding good-set-def by fast

show 1 · x ∈ carrier V
by (rule mult-closed [OF xx one-closed ])

qed
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also have ... = x
by (rule mult-1 [OF x1 ])

finally show ?thesis .
qed

qed
qed

end

context vector-space
begin

The following lemma is a minor modification of [[finite ?X ; ?X ⊆ carrier
V ; ?a ∈ carrier K ; ?f ∈ ?X → carrier K ]] =⇒ ?a · (

⊕
Vy∈?X . ?f y · y)

= (
⊕

Vy∈?X . ?a · ?f y · y), but with a bit more general statement. In
particular, it removes a premise stating that X ⊆ carrier V, which is never
used in the proof of [[finite ?X ; ?X ⊆ carrier V ; ?a ∈ carrier K ; ?f ∈ ?X
→ carrier K ]] =⇒ ?a · (

⊕
Vy∈?X . ?f y · y) = (

⊕
Vy∈?X . ?a · ?f y · y)

and also generalizes the inner expression of the finite sum. It may either
replace [[finite ?X ; ?X ⊆ carrier V ; ?a ∈ carrier K ; ?f ∈ ?X → carrier
K ]] =⇒ ?a · (

⊕
Vy∈?X . ?f y · y) = (

⊕
Vy∈?X . ?a · ?f y · y) in the file

Vector-Space or added besides it in the same file.

lemma finsum-aux2 :
[[finite X ; a ∈ carrier K ; f ∈ X → carrier K ; g ∈ X → carrier V ]]
=⇒ a · (

⊕
Vy∈X . f y · g y)=(

⊕
Vy∈X . a · (f y · g y))

proof (induct set : finite)
case empty thus ?case

using scalar-mult-zeroV-is-zeroV by auto
next

case (insert x X )
show ?case
proof −

have sum-closed : (
⊕

Vy∈X . f y · g y) ∈ carrier V
proof (rule finsum-closed)

show finite X using insert .hyps (1 ) .
show (λy . f y · g y) ∈ X → carrier V

using insert .prems (1 ,2 ,3 ) and mult-closed by auto
qed
have fx-gx-in-V : f x · g x ∈ carrier V

using insert .prems (1 ,2 ,3 ) and mult-closed by auto
have (

⊕
Vy∈insert x X . f y · g y)= f x · g x ⊕V(

⊕
Vy∈X . f y · g y)

proof (rule finsum-insert)
show finite X using insert .hyps (1 ) .
show x /∈ X using insert .hyps (2 ) .
show f x · g x ∈ carrier V using fx-gx-in-V .
show (λy . f y · g y) ∈ X → carrier V

using insert .prems (1 ,2 ,3 ) and mult-closed by auto
qed
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hence a · (
⊕

Vy∈insert x X . f y · g y) = a · f x · g x ⊕V a · (
⊕

Vy∈X . f y
· g y)

using add-mult-distrib1 [
OF fx-gx-in-V sum-closed insert .prems (1 )] by auto

also have . . . = a · f x · g x ⊕V (
⊕

Vy∈X . a· f y · g y)
proof −

have f1 : f ∈ X → carrier K using insert .prems(2 ) by auto
have g1 : g ∈ X → carrier V using insert .prems(3 ) by auto
show ?thesis

unfolding insert .hyps (3 ) [OF insert .prems (1 ) f1 g1 ] ..
qed
also have . . . = (

⊕
Vy∈insert x X . a · f y · g y)

proof (rule finsum-insert [symmetric])
show finite X using insert .hyps(1 ) .
show x /∈ X using insert .hyps(2 ) .
show (λy . a · f y · g y) ∈ X → carrier V
proof (unfold Pi-def , auto)

fix y
assume y-in-X : y∈ X
show a · f y · g y ∈ carrier V
proof (rule mult-closed)

show f y · g y ∈ carrier V
using y-in-X and insert .prems(1 , 2 , 3 ) and mult-closed
by auto

show a ∈ carrier K by (rule insert .prems(1 ))
qed

qed
show a · f x · g x ∈ carrier V
proof (rule mult-closed)

show f x · g x ∈ carrier V
using insert .prems (1 , 2 , 3 ) and mult-closed by auto

show a ∈ carrier K by (rule insert .prems(1 ))
qed

qed
finally show ?thesis .

qed
qed

end

context finite-dimensional-vector-space
begin

The following functions are the candidates to be proved to define the iso-
morphism between the vector spaces V and field .K-n K dimension. They
have to be proved to be linear maps between the vector spaces, and inverse
one of each other.

definition iso-K-n-V :: ′a vector => ′c
where iso-K-n-V x = finsum V (λi . fst x i · indexing-X i) {..<dimension}
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definition iso-V-K-n :: ′c => ′a vector
where iso-V-K-n x =
finsum (K-n dimension) (λi . (K-n-scalar-product (lin-comb (x ) (indexing-X i))

(x-i i dimension))) {..<dimension}

We prove that iso-K-n-V is a linear map, this means both additive and
homogeneous:

lemma linear-map-iso-K-n-V : K-n-V .linear-map iso-K-n-V
proof (unfold K-n-V .linear-map-def , intro conjI )

show additivity iso-K-n-V
proof (unfold additivity-def , rule ballI , rule ballI )

fix x y
assume x : x ∈ carrier (K-n dimension)

and y : y ∈ carrier (K-n dimension)
show iso-K-n-V (x ⊕K-n dimension y) =

iso-K-n-V x ⊕V iso-K-n-V y
proof −

have iso-K-n-V (x ⊕field .K-n K dimension y) =

(
⊕

Vi∈{..<dimension}. fst (x ⊕K-n dimension y) i · indexing-X i)
unfolding iso-K-n-V-def ..

also have ... = (
⊕

Vi∈{..<dimension}. (ith x i ⊕ ith y i) · indexing-X i)
unfolding K-n-def K-n-add-def by force

also have ... = (
⊕

Vi∈{..<dimension}. (ith x i) · indexing-X i ⊕V
(ith y i) · indexing-X i)

proof (rule finsum-cong ′)
show {..<dimension} = {..<dimension} by fastsimp
show (λi . ith x i · indexing-X i ⊕V ith y i · indexing-X i)
∈ {..<dimension} → carrier V

proof
fix xa assume xa: xa ∈ {..<dimension}
find-theorems ith ?x ?i ∈ -
show ith x xa · indexing-X xa ⊕V ith y xa · indexing-X xa ∈ carrier V
proof (rule V .a-closed)

show ith x xa · indexing-X xa ∈ carrier V
proof (rule mult-closed)

show indexing-X xa ∈ carrier V
using indexing-X-n-in-carrier-V [of xa] xa by fastsimp

show ith x xa ∈ carrier K
apply (rule ith-closed [of - - dimension])
using x xa unfolding K-n-def by simp-all

qed
show ith y xa · indexing-X xa ∈ carrier V
proof (rule mult-closed)

show indexing-X xa ∈ carrier V
using indexing-X-n-in-carrier-V [of xa] xa by fastsimp

show ith y xa ∈ carrier K
apply (rule ith-closed [of - - dimension])
using y xa unfolding K-n-def by simp-all
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qed
qed

qed
fix xa assume xa: xa ∈ {..<dimension}
show (ith x xa ⊕ ith y xa) · indexing-X xa =

ith x xa · indexing-X xa ⊕V ith y xa · indexing-X xa
proof (rule add-mult-distrib2 )

show indexing-X xa ∈ carrier V
using indexing-X-n-in-carrier-V [of xa] xa by fastsimp

show ith x xa ∈ carrier K
apply (rule ith-closed [of - - dimension])
using x xa unfolding K-n-def by simp-all

show ith y xa ∈ carrier K
apply (rule ith-closed [of - - dimension])
using y xa unfolding K-n-def by simp-all

qed
qed
also have ... = (

⊕
Vi∈{..<dimension}. fst x i · indexing-X i ⊕V fst y i ·

indexing-X i)
unfolding ith-def ..

also have ... = (
⊕

Vi∈{..<dimension}. fst x i · indexing-X i) ⊕V
(
⊕

Vi∈{..<dimension}. fst y i · indexing-X i)
proof (cases dimension)

case 0 show ?thesis unfolding 0 by simp
next

case (Suc n)
show ?thesis

unfolding Suc
unfolding lessThan-Suc-atMost

proof (rule V .finsum-add [of (λi . fst x i · indexing-X i) n
(λi . fst y i · indexing-X i)])

show (λi . fst x i · indexing-X i) ∈ {..n} → carrier V
proof

fix xa assume xa: xa ∈ {..n}
show fst x xa · indexing-X xa ∈ carrier V
proof (rule mult-closed)

show indexing-X xa ∈ carrier V
using indexing-X-n-in-carrier-V [of xa] xa using Suc by fastsimp

show fst x xa ∈ carrier K
apply (unfold ith-def [symmetric])
apply (rule ith-closed [of - - dimension])
using x xa unfolding K-n-def using Suc by simp-all

qed
qed
show (λi . fst y i · indexing-X i) ∈ {..n} → carrier V
proof

fix xa assume xa: xa ∈ {..n}
show fst y xa · indexing-X xa ∈ carrier V
proof (rule mult-closed)
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show indexing-X xa ∈ carrier V
using indexing-X-n-in-carrier-V [of xa] xa using Suc by fastsimp

show fst y xa ∈ carrier K
apply (unfold ith-def [symmetric])
apply (rule ith-closed [of - - dimension])
using y xa unfolding K-n-def using Suc by simp-all

qed
qed

qed
qed
also have ... = iso-K-n-V x ⊕V iso-K-n-V y

unfolding iso-K-n-V-def ..
finally show ?thesis .

qed
qed
show homogeneity iso-K-n-V
proof (unfold homogeneity-def , rule ballI , rule ballI )

fix k x
assume k : k ∈ carrier K and x : x ∈ carrier (K-n dimension)
show iso-K-n-V (K-n-scalar-product k x ) = k · iso-K-n-V x
proof −

have iso-K-n-V (K-n-scalar-product k x ) =
(
⊕

Vi∈{..<dimension}. (k ⊗ fst x i) · indexing-X i)
unfolding iso-K-n-V-def K-n-scalar-product-def fst-conv ith-def ..

also have ... = (
⊕

Vi∈{..<dimension}. k · (fst x i) · indexing-X i)
proof (rule finsum-cong ′)

show {..<dimension} = {..<dimension} ..
show (λi . k · fst x i · indexing-X i) ∈ {..<dimension} → carrier V
proof

fix xa assume xa: xa ∈ {..<dimension}
hence fst : fst x xa ∈ carrier K

and i : indexing-X xa ∈ carrier V using x xa
using indexing-X-n-in-carrier-V [of xa] xa
unfolding K-n-def K-n-carrier-def ith-def by auto

show k · fst x xa · indexing-X xa ∈ carrier V
unfolding mult-assoc [symmetric, OF i k fst ]
by (rule mult-closed [OF i m-closed [OF k fst ]])

qed
fix xa assume xa: xa ∈ {..<dimension}
hence fst : fst x xa ∈ carrier K

and i : indexing-X xa ∈ carrier V using x xa
using indexing-X-n-in-carrier-V [of xa] xa
unfolding K-n-def K-n-carrier-def ith-def by auto

show (k ⊗ fst x xa) · indexing-X xa = k · fst x xa · indexing-X xa
by (rule mult-assoc [OF i k fst ])

qed
also have ... = k · (

⊕
Vi∈{..<dimension}. (fst x i) · indexing-X i)

proof (rule finsum-aux2 [symmetric])
show finite {..<dimension} by simp
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show k ∈ carrier K by (rule k)
show fst x ∈ {..<dimension} → carrier K

using x
unfolding K-n-def K-n-carrier-def ith-def by auto

show indexing-X ∈ {..<dimension} → carrier V
using indexing-X-n-in-carrier-V by auto

qed
also have ... = k · iso-K-n-V x

unfolding iso-K-n-V-def ..
finally show ?thesis .

qed
qed

qed

The following lemma states that the function lin-comb satisfies the additivity
condition. It will be later used to prove that the function iso-V-K-n is also
an additive function.

lemma
lin-comb-additivity :
assumes x : x ∈ carrier V
and y : y ∈ carrier V
shows lin-comb (x ⊕V y) = (λi . lin-comb x i ⊕ lin-comb y i)
apply (subst lin-comb-def )

proof (rule the1-equality)
show ∃ !f . f ∈ coefficients-function X ∧ linear-combination f X = x ⊕V y

using linear-combination-unique [OF V .a-closed [OF x y ]] .
next

show (λi . lin-comb x i ⊕ lin-comb y i) ∈ coefficients-function X ∧
linear-combination (λi . lin-comb x i ⊕ lin-comb y i) X = x ⊕V y

proof (rule conjI )
show (λi . lin-comb x i ⊕ lin-comb y i) ∈ coefficients-function X

using lin-comb-is-coefficients-function [OF x ]
using lin-comb-is-coefficients-function [OF y ]
unfolding coefficients-function-def by auto

show linear-combination (λi . lin-comb x i ⊕ lin-comb y i) X = x ⊕V y
proof −

have linear-combination (λi . lin-comb x i ⊕ lin-comb y i) X =
(
⊕

Vya∈X . (lin-comb x ya ⊕ lin-comb y ya) · ya)
unfolding linear-combination-def ..

also have ... = (
⊕

Vya∈X . (lin-comb x ya · ya) ⊕V (lin-comb y ya · ya))
proof (rule finsum-cong ′)

show X = X ..
show (λya. lin-comb x ya · ya ⊕V lin-comb y ya · ya) ∈ X → carrier V

using lin-comb-is-coefficients-function [OF x ]
using lin-comb-is-coefficients-function [OF y ]
unfolding coefficients-function-def
using mult-closed using good-set-X
unfolding good-set-def by blast

fix i
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assume i : i ∈ X
show (lin-comb x i ⊕ lin-comb y i) · i = lin-comb x i · i ⊕V lin-comb y i · i

using add-mult-distrib2
using lin-comb-is-coefficients-function [OF x ]
using lin-comb-is-coefficients-function [OF y ]
unfolding coefficients-function-def
using mult-closed i using good-set-X
unfolding good-set-def by blast

qed
also have ... = (

⊕
Vya∈X . (lin-comb x ya · ya)) ⊕V (

⊕
Vya∈X . (lin-comb

y ya · ya))
using V .finsum-addf [OF finite-X ,

of (λi . lin-comb x i · i) (λi . lin-comb y i · i)]
using lin-comb-is-coefficients-function [OF x ]
using lin-comb-is-coefficients-function [OF y ]
unfolding coefficients-function-def
using mult-closed using good-set-X
unfolding good-set-def by blast
also have ... = linear-combination (lin-comb x ) X ⊕V linear-combination

(lin-comb y) X
unfolding linear-combination-def [symmetric] ..

also have ... = x ⊕V y
unfolding lin-comb-is-the-linear-combination [symmetric, OF x ]
unfolding lin-comb-is-the-linear-combination [symmetric, OF y ] ..

finally show ?thesis .
qed

qed
qed

end

context vector-space
begin

lemma
finsum-mult-assocf :
assumes x1 : X ⊆ carrier V
and x2 : finite X
and k : k ∈ carrier K
and f : f ∈ X → carrier K
and g : g ∈ X → carrier V
shows (

⊕
Vy∈X . (k ⊗ f y) · g y) = k · (

⊕
Vy∈X . f y · g y)

using x2 x1 f g proof (induct X )
case empty
show ?case

using scalar-mult-zeroV-is-zeroV [OF k ] by simp
next

case (insert x F )
have F : F ⊆ carrier V using insert .prems (1 ) by simp
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have f : f ∈ F → carrier K and g : g ∈ F → carrier V
and kfg : (λy . (k ⊗ f y) · g y) ∈ F → carrier V
and fg : (λy . f y · g y) ∈ F → carrier V
and kfgx : (k ⊗ f x ) · g x ∈ carrier V
and fgx : f x · g x ∈ carrier V
and fx : f x ∈ carrier K and gx : g x ∈ carrier V
using insert .prems (2 ,3 ) k
using mult-closed by blast+

have finsum-closed : (
⊕

Vy∈F . (f y · g y)) ∈ carrier V
by (rule finsum-closed [OF insert .hyps (1 ) fg ])

have hypo :(
⊕

Vy∈F . (k ⊗ f y) · g y) = k · (
⊕

Vy∈F . f y · g y)
using insert .hyps (3 ) [OF F f g ] .

show ?case thm insert .hyps (2 )
unfolding finsum-insert [OF insert .hyps (1 ,2 ) kfg , OF kfgx ]
unfolding finsum-insert [OF insert .hyps (1 ,2 ) fg , OF fgx ]
unfolding add-mult-distrib1 [OF fgx finsum-closed k ]
unfolding mult-assoc [OF gx k fx ]
unfolding hypo ..

qed

lemma
finsum-mult-assoc:
assumes k : k ∈ carrier K
and f : f ∈ {..n} → carrier K
and g : g ∈ {..n} → carrier V
shows (

⊕
Vy∈{..n::nat}. (k ⊗ f y) · g y) = k · (

⊕
Vy∈{..n}. f y · g y)

using f g proof (induct n)
case 0
show ?case
proof −

have (
⊕

Vy∈{..0}. (k ⊗ f y) · g y) = (
⊕

Vy∈{0}. (k ⊗ f y) · g y) by simp
also have ... = (k ⊗ f 0 ) · g 0 ⊕V (

⊕
Vy∈{}. (k ⊗ f y) · g y)

apply (rule finsum-insert [of {} 0 ::nat (λi . (k ⊗ f i) · g i)])
using 0 .prems k using mult-closed [of g 0 k ⊗ f 0 ] by auto

also have ... = (k ⊗ f 0 ) · g 0
unfolding finsum-empty
using r-zero [OF mult-closed [of g 0 k ⊗ f 0 ]]
using 0 .prems k by auto

finally have lhs: (
⊕

Vy∈{..0}. (k ⊗ f y) · g y) = (k ⊗ f 0 ) · g 0 .
have k · (

⊕
Vy∈{..0}. f y · g y) = k · (

⊕
Vy∈{0}. f y · g y) by simp

also have ... = k · (f 0 · g 0 ⊕V (
⊕

Vy∈{}. f y · g y))
using finsum-insert [of {} 0 ::nat (λi . f i · g i)]
using 0 .prems k using mult-closed [of g 0 f 0 ] by fastsimp

also have ... = k · (f 0 · g 0 ⊕V 0V)
unfolding finsum-empty ..

also have ... = k · (f 0 · g 0 )
using r-zero [OF mult-closed [of g 0 f 0 ]]
using 0 .prems by force

also have ... = (k ⊗ f 0 ) · g 0
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using mult-assoc [symmetric]
using 0 .prems k using mult-closed [of g 0 f 0 ] by auto

finally have rhs: k · (
⊕

Vy∈{..0}. f y · g y) = (k ⊗ f 0 ) · g 0 .
show ?case

unfolding lhs rhs ..
qed

next
case (Suc n)
have f : f ∈ {..n} → carrier K and g : g ∈ {..n} → carrier V

and fSuc: f (Suc n) ∈ carrier K and gSuc: g (Suc n) ∈ carrier V
and fgSuc: f (Suc n) · g (Suc n) ∈ carrier V
using Suc.prems using mult-closed by auto

have fg : (λi . f i · g i) ∈ {..n} → carrier V
and kfg : (λi . (k ⊗ f i) · g i) ∈ {..n} → carrier V
and kfgSuc: (k ⊗ f (Suc n)) · g (Suc n) ∈ carrier V
using Suc.prems f g k using mult-closed by blast+

have finsum-closed : (
⊕

Vy∈{..n}. (f y · g y)) ∈ carrier V
using finsum-closed [OF - fg ] by fast

have hypo :(
⊕

Vy∈{..n}. (k ⊗ f y) · g y) = k · (
⊕

Vy∈{..n}. f y · g y)
by (rule Suc.hyps [OF f g ])

show ?case
proof −

have (
⊕

Vy∈{..Suc n}. (k ⊗ f y) · g y) = (
⊕

Vy∈insert (Suc n) {..n}. (k ⊗
f y) · g y)

unfolding atMost-Suc ..
also have ... = (k ⊗ f (Suc n)) · g (Suc n) ⊕V (

⊕
Vy∈{..n}. (k ⊗ f y) · g y)

using finsum-insert [OF - - kfg , of Suc n] using kfgSuc by fastsimp
finally have lhs: (

⊕
Vy∈{..Suc n}. (k ⊗ f y) · g y) =

(k ⊗ f (Suc n)) · g (Suc n) ⊕V (
⊕

Vy∈{..n}. (k ⊗ f y) · g y) .
have k · (

⊕
Vy∈{..Suc n}. f y · g y) = k · (

⊕
Vy∈insert (Suc n) {..n}. (f y

· g y))
unfolding atMost-Suc ..

also have ... = k · (f (Suc n) · g (Suc n) ⊕V (
⊕

Vy∈{..n}. (f y · g y)))
using finsum-insert [OF - - fg , of Suc n] using fgSuc by fastsimp

also have ... = k · f (Suc n) · g (Suc n) ⊕V k · (
⊕

Vy∈{..n}. (f y · g y))
unfolding add-mult-distrib1 [OF fgSuc finsum-closed k ] ..

also have ... = (k ⊗ f (Suc n)) · g (Suc n) ⊕V k · (
⊕

Vy∈{..n}. (f y · g y))
unfolding mult-assoc [OF gSuc k fSuc] ..

also have ... = (k ⊗ f (Suc n)) · g (Suc n) ⊕V (
⊕

Vy∈{..n}. (k ⊗ f y) · g y)
unfolding hypo ..

finally have rhs: k · (
⊕

Vy∈{..Suc n}. f y · g y) =
(k ⊗ f (Suc n)) · g (Suc n) ⊕V (

⊕
Vy∈{..n}. (k ⊗ f y) · g y) .

show ?case unfolding lhs rhs ..
qed

qed

lemma
finsum-mult-assoc-le:
assumes k : k ∈ carrier K
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and f : f ∈ {..<n} → carrier K
and g : g ∈ {..<n} → carrier V
shows (

⊕
Vy∈{..<n::nat}. (k ⊗ f y) · g y) = k · (

⊕
Vy∈{..<n}. f y · g y)

proof (cases n)
case 0
show ?thesis unfolding 0 using scalar-mult-zeroV-is-zeroV [OF k ] by simp

next
case (Suc k)
have f : f ∈ {..k} → carrier K and g : g ∈ {..k} → carrier V

using f g
unfolding Suc lessThan-Suc-atMost by fast+

show ?thesis
unfolding Suc
unfolding lessThan-Suc-atMost
using finsum-mult-assoc [OF k f g ] .

qed

end

context finite-dimensional-vector-space
begin

The following lemma states that the function lin-comb satisfies the homo-
geneous property. It will be later used to prove that the function iso-V-K-n
is homogeneous:

lemma
lin-comb-homogeneity :
assumes k : k ∈ carrier K
and x : x ∈ carrier V
shows lin-comb (k · x ) = (λi . k ⊗ lin-comb x i)
apply (subst lin-comb-def )

proof (rule the1-equality)
show ∃ !f . f ∈ coefficients-function X ∧ linear-combination f X = k · x

using linear-combination-unique [OF mult-closed [OF x k ]] .
next

show (λi . k ⊗ lin-comb x i) ∈ coefficients-function X ∧
linear-combination (λi . k ⊗ lin-comb x i) X = k · x

proof (rule conjI )
show (λi . k ⊗ lin-comb x i) ∈ coefficients-function X

using lin-comb-is-coefficients-function [OF x ]
unfolding coefficients-function-def
using k by auto

show linear-combination (λi . k ⊗ lin-comb x i) X = k · x
proof −

have linear-combination (λi . k ⊗ lin-comb x i) X =
(
⊕

Vy∈X . (k ⊗ lin-comb x y) · y)
unfolding linear-combination-def ..

also have ... = k · (
⊕

Vy∈X . (lin-comb x y) · y)
apply (rule finsum-mult-assocf [OF - finite-X k ])
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using lin-comb-is-coefficients-function [OF x ]
using good-set-X
unfolding good-set-def coefficients-function-def by blast+

also have ... = k · x
unfolding linear-combination-def [symmetric]
unfolding lin-comb-is-the-linear-combination [symmetric, OF x ] ..

finally show ?thesis .
qed

qed
qed

end

context abelian-monoid
begin

lemma finsum-add ′:
assumes f : f ∈ {..<n} → carrier G
and g : g ∈ {..<n} → carrier G
shows (

⊕
i∈{..<n::nat}. f i ⊕ g i) = finsum G f {..<n} ⊕ finsum G g {..<n}

proof (cases n)
case 0
show ?thesis

unfolding 0 by force
next

case (Suc n)
show ?thesis

using f g unfolding Suc
unfolding lessThan-Suc-atMost
using finsum-add [of f n g ] by fast

qed

end

context finite-dimensional-vector-space
begin

The following lemma proves that the application iso-V-K-n is a linear map
between V and field .K-n K dimension.

lemma linear-map-iso-V-K-n: V-K-n.linear-map iso-V-K-n
proof (unfold V-K-n.linear-map-def , intro conjI )

interpret field K by intro-locales
interpret K-n: vector-space K K-n dimension K-n-scalar-product

using vector-space-K-n .
show V-K-n.additivity iso-V-K-n
proof (unfold V-K-n.additivity-def , rule ballI , rule ballI )

fix x y assume x : x ∈ carrier V and y : y ∈ carrier V
show iso-V-K-n (x ⊕V y) = iso-V-K-n x ⊕K-n dimension iso-V-K-n y
proof −
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have iso-V-K-n (x ⊕V y) =
(
⊕

K-n dimensioni∈{..<dimension}. (λn. lin-comb (x ⊕V y) (indexing-X i)
⊗

(if n = i then 1 else 0), dimension − 1 ))
unfolding iso-V-K-n-def K-n-scalar-product-def

ith-def vlen-def fst-conv snd-conv x-i-def ..
also have ... =

(
⊕

K-n dimensioni∈{..<dimension}.
(λn. lin-comb x (indexing-X i) ⊗

(if n = i then 1 else 0), dimension − 1 )
⊕K-n dimension
(λn. lin-comb y (indexing-X i) ⊗

(if n = i then 1 else 0), dimension − 1 ))
proof (rule K-n.finsum-cong ′)

show {..<dimension} = {..<dimension} ..
show (λi . (λn. lin-comb x (indexing-X i) ⊗

(if n = i then 1 else 0), dimension − 1 )
⊕K-n dimension

(λn. lin-comb y (indexing-X i) ⊗
(if n = i then 1 else 0), dimension − 1 ))

∈ {..<dimension} → carrier (K-n dimension)
proof

fix xa assume xa: xa ∈ {..<dimension}
show (λn. lin-comb x (indexing-X xa) ⊗ (if n = xa then 1 else 0),

dimension − 1 )
⊕K-n dimension

(λn. lin-comb y (indexing-X xa) ⊗ (if n = xa then 1 else 0), dimension
− 1 )

∈ carrier (K-n dimension)
proof (rule K-n.a-closed)

have lx : lin-comb x (indexing-X xa) ∈ carrier K
and ly : lin-comb y (indexing-X xa) ∈ carrier K
using lin-comb-is-coefficients-function [OF x ]
using lin-comb-is-coefficients-function [OF y ]
using indexing-X-n-in-carrier-V [of xa] xa
unfolding coefficients-function-def by auto
show (λn. lin-comb x (indexing-X xa) ⊗ (if n = xa then 1 else 0),

dimension − 1 )
∈ carrier (K-n dimension)
unfolding K-n-def K-n-carrier-def ith-def vlen-def
using xa lx by auto
show (λn. lin-comb y (indexing-X xa) ⊗ (if n = xa then 1 else 0),

dimension − 1 )
∈ carrier (K-n dimension)
unfolding K-n-def K-n-carrier-def ith-def vlen-def
using xa ly by auto

qed
qed
fix i
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assume i : i ∈ {..<dimension}
show (λn. lin-comb (x ⊕V y) (indexing-X i) ⊗ (if n = i then 1 else 0),

dimension − 1 ) =
(λn. lin-comb x (indexing-X i) ⊗ (if n = i then 1 else 0), dimension − 1 )

⊕K-n dimension
(λn. lin-comb y (indexing-X i) ⊗ (if n = i then 1 else 0), dimension − 1 )
proof (unfold K-n-def K-n-add-def ith-def , simp, rule)

fix n
have lx : lin-comb x (indexing-X i) ∈ carrier K

and ly : lin-comb y (indexing-X i) ∈ carrier K
and lxy : lin-comb (x ⊕V y) (indexing-X i) ∈ carrier K
using lin-comb-is-coefficients-function [OF x ]
using lin-comb-is-coefficients-function [OF y ]
using lin-comb-is-coefficients-function [OF V .a-closed [OF x y ]]
using indexing-X-n-in-carrier-V [of i ] i
unfolding coefficients-function-def by auto

show lin-comb (x ⊕V y) (indexing-X i) ⊗ (if n = i then 1 else 0) =
lin-comb x (indexing-X i) ⊗ (if n = i then 1 else 0) ⊕
lin-comb y (indexing-X i) ⊗ (if n = i then 1 else 0)

proof (cases n = i)
case False
show ?thesis using False lx ly lxy by simp

next
case True
show ?thesis using True lx ly lxy

apply simp
using lin-comb-additivity [OF x y ] by presburger

qed
qed

qed
also have ... = (

⊕
K-n dimensioni∈{..<dimension}.

(λn. lin-comb x (indexing-X i) ⊗ (if n = i then 1 else 0), dimension − 1 ))
⊕K-n dimension
(
⊕

K-n dimensioni∈{..<dimension}. (λn. lin-comb y (indexing-X i)
⊗ (if n = i then 1 else 0), dimension − 1 ))

proof (rule K-n.finsum-add ′)
show (λi . (λn. lin-comb x (indexing-X i) ⊗ (if n = i then 1 else 0),

dimension − 1 ))
∈ {..<dimension} → carrier (field .K-n K dimension)

proof
fix xa assume xa: xa ∈ {..<dimension}
have i : indexing-X xa ∈ carrier V

using indexing-X-n-in-carrier-V xa by fast
have lin-comb x ∈ coefficients-function (carrier V )

using lin-comb-is-coefficients-function [OF x ]
unfolding coefficients-function-def using good-set-X unfolding

good-set-def by auto
thus (λn. lin-comb x (indexing-X xa) ⊗ (if n = xa then 1 else 0), dimension

− 1 )
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∈ carrier (field .K-n K dimension)
using i xa
unfolding dimension-def
unfolding coefficients-function-def
unfolding K-n-def K-n-carrier-def ith-def vlen-def by force

qed
show (λi . (λn. lin-comb y (indexing-X i) ⊗ (if n = i then 1 else 0),

dimension − 1 ))
∈ {..<dimension} → carrier (field .K-n K dimension)

proof
fix xa assume xa: xa ∈ {..<dimension}
have i : indexing-X xa ∈ carrier V

using indexing-X-n-in-carrier-V xa by fast
have cf-lc: lin-comb x ∈ coefficients-function (carrier V )

using lin-comb-is-coefficients-function [OF x ]
unfolding coefficients-function-def using good-set-X unfolding

good-set-def by auto
thus (λn. lin-comb y (indexing-X xa) ⊗ (if n = xa then 1 else 0), dimension

− 1 )
∈ carrier (field .K-n K dimension)
using i xa
unfolding dimension-def
unfolding coefficients-function-def
unfolding K-n-def K-n-carrier-def ith-def vlen-def

proof (auto)
show lin-comb y (indexing-X xa) ⊗ 1 ∈ carrier K

by (metis coefficients-function-Pi i
lin-comb-is-coefficients-function m-closed one-closed y)

show lin-comb y (indexing-X xa) ⊗ 0 ∈ carrier K
by (metis K .add .one-closed coefficients-function-Pi i

lin-comb-is-coefficients-function m-closed y)
show lin-comb y (indexing-X xa) ⊗ 0 = 0

by (metis coefficients-function-Pi i
lin-comb-is-coefficients-function r-null y)

qed
qed

qed
also have ... = iso-V-K-n x ⊕field .K-n K dimension iso-V-K-n y

unfolding iso-V-K-n-def K-n-scalar-product-def
ith-def vlen-def fst-conv snd-conv x-i-def ..

finally show ?thesis .
qed

qed
show V-K-n.homogeneity iso-V-K-n
proof (unfold V-K-n.homogeneity-def , rule ballI , rule ballI )

fix k x
assume k : k ∈ carrier K and x : x ∈ carrier V
show iso-V-K-n (k · x ) = K-n-scalar-product k (iso-V-K-n x )
proof −
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have iso-V-K-n (k · x ) =
(
⊕

K-n dimensioni∈{..<dimension}. K-n-scalar-product
(lin-comb (k · x ) (indexing-X i)) (x-i i dimension))

unfolding iso-V-K-n-def ..
also have ... = (

⊕
K-n dimensioni∈{..<dimension}. K-n-scalar-product

(k ⊗ (lin-comb x (indexing-X i))) (x-i i dimension))
proof (rule K-n.finsum-cong ′)

show {..<dimension} = {..<dimension} ..
show (λi . K-n-scalar-product (k ⊗ lin-comb x (indexing-X i)) (x-i i dimen-

sion))
∈ {..<dimension} → carrier (K-n dimension)

proof
fix xa assume xa: xa ∈ {..<dimension}
show K-n-scalar-product (k ⊗ lin-comb x (indexing-X xa)) (x-i xa dimen-

sion)
∈ carrier (K-n dimension)

proof (rule K-n-scalar-product-closed)
show k ⊗ lin-comb x (indexing-X xa) ∈ carrier K

using k lin-comb-is-coefficients-function [OF x ]
unfolding coefficients-function-def
using indexing-X-n-in-carrier-V [of xa] xa by auto

show x-i xa dimension ∈ carrier (K-n dimension)
using x-i-closed xa by simp

qed
qed
fix i
assume i : i ∈ {..<dimension}
show K-n-scalar-product (lin-comb (k · x ) (indexing-X i)) (x-i i dimension)

=
K-n-scalar-product (k ⊗ lin-comb x (indexing-X i)) (x-i i dimension)

unfolding lin-comb-homogeneity [OF k x ] ..
qed

also have ... = K-n-scalar-product k (
⊕

K-n dimensioni∈{..<dimension}.
K-n-scalar-product

(lin-comb x (indexing-X i)) (x-i i dimension))
apply (rule K-n.finsum-mult-assoc-le [OF k ])
using k lin-comb-is-coefficients-function [OF x ]
using indexing-X-n-in-carrier-V x-i-closed
unfolding coefficients-function-def by auto

also have ... = K-n-scalar-product k (iso-V-K-n x )
unfolding iso-V-K-n-def [symmetric] ..

finally show ?thesis .
qed

qed
qed

end

lemma
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lessThan-remove:
assumes i : (i ::nat) ∈ {..<k}
shows {..<k} = ({..<k} − {i}) ∪ {i}
using i by blast

context finite-dimensional-vector-space
begin

The functions iso-K-n-V and iso-V-K-n behave correctly in their respective
domains:

lemma iso-V-K-n-Pi : iso-V-K-n ∈ carrier V → carrier (K-n dimension)
proof −
interpret K-n: vector-space K K-n dimension K-n-scalar-product using vector-space-K-n

.
show ?thesis
proof

fix x assume x : x ∈ carrier V
show iso-V-K-n x ∈ carrier (K-n dimension)

unfolding iso-V-K-n-def
proof (rule K-n.finsum-closed)

show finite {..<dimension} by simp
show (λi . K-n-scalar-product (lin-comb x (indexing-X i)) (field .x-i K i di-

mension))
∈ {..<dimension} → carrier (K-n dimension)

proof
fix xa assume xa: xa ∈ {..<dimension}
show K-n-scalar-product (lin-comb x (indexing-X xa)) (x-i xa dimension)
∈ carrier (K-n dimension)

proof (rule K-n-scalar-product-closed)
show lin-comb x (indexing-X xa) ∈ carrier K

using lin-comb-is-coefficients-function [OF x ]
using indexing-X-n-in-carrier-V xa
unfolding coefficients-function-def by auto

show x-i xa dimension ∈ carrier (K-n dimension)
using x-i-closed xa by simp

qed
qed

qed
qed

qed

lemma iso-K-n-V-Pi : shows iso-K-n-V ∈ carrier (K-n dimension) → carrier V
proof −
interpret K-n: vector-space K K-n dimension K-n-scalar-product using vector-space-K-n

.
show ?thesis
proof

fix x assume x : x ∈ carrier (K-n dimension)
show iso-K-n-V x ∈ carrier V
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proof (unfold iso-K-n-V-def )
show (

⊕
Vi∈{..<dimension}. fst x i · indexing-X i) ∈ carrier V

proof (rule finsum-closed)
show finite {..<dimension} by simp
show (λi . fst x i · indexing-X i) ∈ {..<dimension} → carrier V

using mult-closed
using indexing-X-n-in-carrier-V
using x unfolding K-n-def K-n-carrier-def ith-def vlen-def by auto

qed
qed

qed
qed

lemma
lin-comb-fimsum-candidate:
assumes x : x ∈ carrier (K-n dimension)
shows (

⊕
Vy∈X . fst x (preim2-comp y) · y) = (

⊕
Vi∈{..<dimension}. fst x i

· indexing-X i)
proof (rule finsum-cong ′′ [of - indexing-X ])

show finite {..<dimension} by simp
show bij-betw indexing-X {..<dimension} X by (metis indexing-X-bij )
show (λy . fst x (preim2-comp y) · y) ∈ X → carrier V
proof

fix xa assume xa: xa ∈ X
show fst x (preim2-comp xa) · xa ∈ carrier V
proof (rule mult-closed)
show xa ∈ carrier V using xa using good-set-X unfolding good-set-def by

fast
show fst x (preim2-comp xa) ∈ carrier K

using preim2-comp-in-dimension [OF xa] x
unfolding K-n-def K-n-carrier-def ith-def vlen-def by auto

qed
qed
show (λi . fst x i · indexing-X i) ∈ {..<dimension} → carrier V
proof

fix xa assume xa: xa ∈ {..<dimension}
show fst x xa · indexing-X xa ∈ carrier V
proof (rule mult-closed)
show indexing-X xa ∈ carrier V using indexing-X-n-in-carrier-V xa by simp

show fst x xa ∈ carrier K using x xa
unfolding K-n-def K-n-carrier-def ith-def vlen-def by auto

qed
qed
show

∧
xa. xa ∈ {..<dimension} =simp=>

fst x xa · indexing-X xa =
fst x (preim2-comp (indexing-X xa)) · indexing-X xa
using preim2-comp-iso-nat-X-id
unfolding iso-nat-X-def by simp
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qed

The following lemma expresses how to write down the lin-comb of a finite
sum of the elements of the basis:

lemma
lin-comb-linear-combination-candidate:
assumes x : x ∈ carrier (K-n dimension)
shows lin-comb (

⊕
Vi∈{..<dimension}. fst x i · indexing-X i) = (λy . fst x

(preim2-comp y))
unfolding lin-comb-def

proof (rule the1-equality)
have finsum-closed : (

⊕
Vi∈{..<dimension}. fst x i · indexing-X i) ∈ carrier V

proof (rule finsum-closed)
show finite {..<dimension} by simp
show (λi . fst x i · indexing-X i) ∈ {..<dimension} → carrier V
proof

fix xa assume xa: xa ∈ {..<dimension}
show fst x xa · indexing-X xa ∈ carrier V
proof (rule mult-closed)

show indexing-X xa ∈ carrier V using indexing-X-n-in-carrier-V xa by
simp

show fst x xa ∈ carrier K using x xa
unfolding K-n-def K-n-carrier-def ith-def vlen-def by auto

qed
qed

qed
show ∃ !f . f ∈ coefficients-function X ∧

linear-combination f X = (
⊕

Vi∈{..<dimension}. fst x i · indexing-X i)
by (rule linear-combination-unique [OF finsum-closed ])

show (λy . fst x (preim2-comp y)) ∈ coefficients-function X ∧
linear-combination (λy . fst x (preim2-comp y)) X = (

⊕
Vi∈{..<dimension}.

fst x i · indexing-X i)
proof (rule conjI )

show linear-combination (λy . fst x (preim2-comp y)) X =
(
⊕

Vi∈{..<dimension}. fst x i · indexing-X i)
using lin-comb-fimsum-candidate [OF x ]
unfolding linear-combination-def .

show (λy . fst x (preim2-comp y)) ∈ coefficients-function X
unfolding coefficients-function-def
using preim2-comp-in-dimension
using x
unfolding K-n-def K-n-carrier-def ith-def vlen-def
unfolding preim2-comp-def by auto

qed
qed

With the previous lemmas, we can now prove that iso-V-K-n is a bijection
between the correspoding carrier sets:

lemma iso-V-K-n-bij : shows bij-betw iso-V-K-n (carrier V ) (carrier (K-n dimen-
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sion))
proof (rule bij-betwI [of - - - iso-K-n-V ])
interpret K-n: vector-space K K-n dimension K-n-scalar-product using vector-space-K-n

.
show iso-V-K-n ∈ carrier V → carrier (K-n dimension) by (rule iso-V-K-n-Pi)
show iso-K-n-V ∈ carrier (K-n dimension)→ carrier V by (rule iso-K-n-V-Pi)
fix x assume x : x ∈ carrier V
show iso-K-n-V (iso-V-K-n x ) = x

apply (subst (2 ) lin-comb-is-the-linear-combination-indexing [OF x ])
unfolding iso-K-n-V-def

proof (rule finsum-cong ′)
show {..<dimension} = {..<dimension} by simp

show (λi . lin-comb x (indexing-X i) · indexing-X i) ∈ {..<dimension} → carrier
V

proof
fix xa assume xa: xa ∈ {..<dimension}
show lin-comb x (indexing-X xa) · indexing-X xa ∈ carrier V

apply (rule mult-closed)
using indexing-X-n-in-carrier-V [of xa] xa
using lin-comb-is-coefficients-function [OF x ]
unfolding coefficients-function-def by auto

qed
fix i assume i : i ∈ {..<dimension}
show fst (iso-V-K-n x ) i · indexing-X i =

lin-comb x (indexing-X i) · indexing-X i
proof −
have fst (iso-V-K-n x ) i = fst (

⊕
K-n dimensioni∈{..<dimension}. K-n-scalar-product

(lin-comb x (indexing-X i)) (x-i i dimension)) i
unfolding iso-V-K-n-def ..

also have ... = fst (λi . if i ∈ {..<dimension} then (lin-comb x (indexing-X
i)) else 0, dimension − 1 ) i

proof −
have (

⊕
K-n dimensioni∈{..<dimension}. K-n-scalar-product (lin-comb x

(indexing-X i)) (x-i i dimension)) =
(λi . if i ∈ {..<dimension} then (lin-comb x (indexing-X i)) else 0, dimension

− 1 )
apply (rule lambda-finsum [symmetric, of dimension (λi . lin-comb x

(indexing-X i)) dimension])
using lin-comb-is-coefficients-function [OF x ]
using indexing-X-n-in-carrier-V
unfolding coefficients-function-def by auto

thus ?thesis by simp
qed
also have ... = (lin-comb x (indexing-X i)) using i by fastsimp
finally show ?thesis by simp

qed
qed

next
fix y
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assume y : y ∈ carrier (K-n dimension)
show iso-V-K-n (iso-K-n-V y) = y
proof −
have iso-V-K-n (iso-K-n-V y) = (

⊕
K-n dimensioni∈{..<dimension}. K-n-scalar-product

(lin-comb (iso-K-n-V y) (indexing-X i)) (x-i i dimension)) unfolding iso-V-K-n-def
..

also have ... = (λi . if i ∈ {..<dimension} then lin-comb (iso-K-n-V y)
(indexing-X i) else 0,

dimension − 1 )
proof (rule lambda-finsum [

symmetric, of dimension (λi . (lin-comb (iso-K-n-V y) (indexing-X i)))
dimension])

show dimension ≤ dimension by fast
show ∀ i∈{..<dimension}. lin-comb (iso-K-n-V y) (indexing-X i) ∈ carrier K
proof (rule ballI )

fix i assume i : i ∈ {..<dimension}
have lin-comb (iso-K-n-V y) ∈ {f . f ∈ carrier V → carrier K}

using lin-comb-is-coefficients-function [of iso-K-n-V y ]
using iso-K-n-V-Pi y
unfolding coefficients-function-def
using good-set-X unfolding good-set-def by force

thus lin-comb (iso-K-n-V y) (indexing-X i) ∈ carrier K
using indexing-X-n-in-carrier-V i by auto

qed
qed
also have ... = (λi . if i ∈ {..<dimension} then fst y i else 0, dimension − 1 )
proof (rule, rule conjI )

show dimension − 1 = dimension − 1 by (rule refl)
show (λi . if i ∈ {..<dimension} then lin-comb (iso-K-n-V y) (indexing-X i)

else 0) =
(λi . if i ∈ {..<dimension} then fst y i else 0)

proof
fix i
show (if i ∈ {..<dimension} then lin-comb (iso-K-n-V y) (indexing-X i)

else 0) =
(if i ∈ {..<dimension} then fst y i else 0)

proof (cases i ∈ {..<dimension})
case False show ?thesis using False by simp

next
case True
have lin-comb (iso-K-n-V y) (indexing-X i) = fst y i

unfolding iso-K-n-V-def
unfolding lin-comb-linear-combination-candidate [OF y ]
using preim2-comp-iso-nat-X-id [OF True]
unfolding iso-nat-X-def by simp

thus ?thesis by simp
qed

qed
qed
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also have ... = y
unfolding x-in-carrier [symmetric, OF y ] by (rule refl)

finally show ?thesis by fast
qed

qed

lemma iso-K-n-V-bij : shows bij-betw iso-K-n-V (carrier (K-n dimension)) (carrier
V )
proof (rule bij-betwI [of - - - iso-V-K-n])
interpret K-n: vector-space K K-n dimension K-n-scalar-product using vector-space-K-n

.
show iso-V-K-n ∈ carrier V → carrier (K-n dimension) by (rule iso-V-K-n-Pi)
show iso-K-n-V ∈ carrier (K-n dimension)→ carrier V by (rule iso-K-n-V-Pi)
fix x assume x : x ∈ carrier V
show iso-K-n-V (iso-V-K-n x ) = x

apply (subst (2 ) lin-comb-is-the-linear-combination-indexing [OF x ])
unfolding iso-K-n-V-def

proof (rule finsum-cong ′)
show {..<dimension} = {..<dimension} by simp

show (λi . lin-comb x (indexing-X i) · indexing-X i) ∈ {..<dimension} → carrier
V

proof
fix xa assume xa: xa ∈ {..<dimension}
show lin-comb x (indexing-X xa) · indexing-X xa ∈ carrier V

apply (rule mult-closed)
using indexing-X-n-in-carrier-V [of xa] xa
using lin-comb-is-coefficients-function [OF x ]
unfolding coefficients-function-def by auto

qed
fix i assume i : i ∈ {..<dimension}
show fst (iso-V-K-n x ) i · indexing-X i =

lin-comb x (indexing-X i) · indexing-X i
proof −
have fst (iso-V-K-n x ) i = fst (

⊕
K-n dimensioni∈{..<dimension}. K-n-scalar-product

(lin-comb x (indexing-X i)) (x-i i dimension)) i
unfolding iso-V-K-n-def ..

also have ... = fst (λi . if i ∈ {..<dimension} then (lin-comb x (indexing-X
i)) else 0, dimension − 1 ) i

proof −
have (

⊕
K-n dimensioni∈{..<dimension}. K-n-scalar-product (lin-comb x

(indexing-X i)) (x-i i dimension)) =
(λi . if i ∈ {..<dimension} then (lin-comb x (indexing-X i)) else 0, dimension

− 1 )
apply (rule lambda-finsum [symmetric, of dimension (λi . lin-comb x

(indexing-X i)) dimension])
using lin-comb-is-coefficients-function [OF x ]
using indexing-X-n-in-carrier-V
unfolding coefficients-function-def by auto

thus ?thesis by simp
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qed
also have ... = (lin-comb x (indexing-X i)) using i by fastsimp
finally show ?thesis by simp

qed
qed

next
fix y
assume y : y ∈ carrier (K-n dimension)
show iso-V-K-n (iso-K-n-V y) = y
proof −
have iso-V-K-n (iso-K-n-V y) = (

⊕
K-n dimensioni∈{..<dimension}. K-n-scalar-product

(lin-comb (iso-K-n-V y) (indexing-X i)) (x-i i dimension)) unfolding iso-V-K-n-def
..

also have ... = (λi . if i ∈ {..<dimension} then lin-comb (iso-K-n-V y)
(indexing-X i) else 0,

dimension − 1 )
proof (rule lambda-finsum [

symmetric, of dimension (λi . (lin-comb (iso-K-n-V y) (indexing-X i)))
dimension])

show dimension ≤ dimension by fast
show ∀ i∈{..<dimension}. lin-comb (iso-K-n-V y) (indexing-X i) ∈ carrier K
proof (rule ballI )

fix i assume i : i ∈ {..<dimension}
show lin-comb (iso-K-n-V y) (indexing-X i) ∈ carrier K

using iso-K-n-V-Pi using y
using lin-comb-is-coefficients-function [of iso-K-n-V y ]
unfolding coefficients-function-def
using indexing-X-n-in-carrier-V i by force

qed
qed
also have ... = (λi . if i ∈ {..<dimension} then fst y i else 0, dimension − 1 )
proof (rule, rule conjI )

show dimension − 1 = dimension − 1 by (rule refl)
show (λi . if i ∈ {..<dimension} then lin-comb (iso-K-n-V y) (indexing-X i)

else 0) =
(λi . if i ∈ {..<dimension} then fst y i else 0)

proof
fix i
show (if i ∈ {..<dimension} then lin-comb (iso-K-n-V y) (indexing-X i)

else 0) =
(if i ∈ {..<dimension} then fst y i else 0)

proof (cases i ∈ {..<dimension})
case False show ?thesis using False by simp

next
case True
have lin-comb (iso-K-n-V y) (indexing-X i) = fst y i

unfolding iso-K-n-V-def
unfolding lin-comb-linear-combination-candidate [OF y ]
using preim2-comp-iso-nat-X-id [OF True]
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unfolding iso-nat-X-def by simp
thus ?thesis by simp

qed
qed

qed
also have ... = y

unfolding x-in-carrier [symmetric, OF y ] by (rule refl)
finally show ?thesis by fast

qed
qed

end

context linear-map
begin

definition vector-space-isomorphism :: ( ′c => ′e) => bool
where vector-space-isomorphism f == bij-betw f (carrier V ) (carrier W ) ∧

linear-map f

end

context finite-dimensional-vector-space
begin

Finally, the two following lemmas state the isomorphism (in both directions
actually) between field .K-n K dimension and V :

lemma V-K-n.vector-space-isomorphism iso-V-K-n
using iso-V-K-n-bij using linear-map-iso-V-K-n
unfolding V-K-n.vector-space-isomorphism-def by rule

lemma vector-space-isomorphism iso-K-n-V
using iso-K-n-V-bij using linear-map-iso-K-n-V
unfolding vector-space-isomorphism-def by rule

end

end
theory Subspaces

imports Isomorphism
begin

12 Subspaces

context vector-space
begin

definition subspace :: ′b set => bool
where subspace M == ((M ⊆ carrier V ) ∧ M 6= {}
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∧ (∀α∈carrier K . ∀β∈carrier K . ∀ x∈M . ∀ y∈M .
α · x ⊕V β · y ∈ M ))

lemma
zero-in-subspace:
assumes s: subspace M
shows 0V ∈ M

proof −
obtain x where x : x ∈ M using s

unfolding subspace-def by fast
hence xV : x ∈ carrier V

using s unfolding subspace-def by fast
have one: 1K ∈ carrier K

and minus-one: 	 1K ∈ carrier K by simp+
hence 1K · x ⊕V (	 1K · x ) ∈ M

using s x unfolding subspace-def by blast
thus ?thesis

unfolding mult-1 [OF xV ] negate-eq [OF xV ]
unfolding V .r-neg [OF xV ] .

qed

In the following statement we can observe the operation of field updating
for records:

lemma
subspace-is-vector-space:
assumes s: subspace M
shows vector-space K (V (|carrier := M |)) (op ·)

proof (unfold-locales, auto)
show 0V ∈ M

by (metis assms zero-in-subspace)
fix x and y and z
assume x-in-M : x ∈ M

and y-in-M : y ∈ M
and z-in-M : z ∈ M

hence x-in-V : x ∈ carrier V
and y-in-V : y ∈ carrier V
and z-in-V : z ∈ carrier V
by (metis assms mem-def subsetD subspace-def )+

show x ⊕V y ∈ M
proof −

have x ⊕V y = 1·x ⊕V 1·y
by (metis assms insert-absorb insert-subset

mult-1 subspace-def x-in-M y-in-M )
also have ... ∈ M

using s one-closed x-in-M y-in-M
unfolding subspace-def by fast

finally show x ⊕V y ∈ M .
qed
show 0V ⊕V x = x
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by (metis V .add .l-one assms mem-def
subsetD subspace-def x-in-M )

show x ⊕V 0V = x
by (metis V .add .r-one assms mem-def

subsetD subspace-def x-in-M )
show x ⊕V y = y ⊕V x

by (metis V .a-comm x-in-V y-in-V )
show x ⊕V y ⊕V z = x ⊕V (y ⊕V z )

using a-assoc[OF x-in-V y-in-V z-in-V ] .
show 1 · x = x using mult-1 [OF x-in-V ] .
show x ∈ Units (|carrier = M , mult = op ⊕V, one = 0V|)
proof −

have ∃ y ∈ M . x ⊕V y = 0V ∧ y ⊕V x = 0V
proof (rule bexI [of - 	Vx ], rule conjI )

show x ⊕V 	V x = 0V using r-neg [OF x-in-V ] .
show 	V x ⊕V x = 0V

by (metis V .add .l-inv x-in-V )
show 	V x ∈ M
proof −

have 	V x = 0K · x ⊕V (	K1)· x
by (metis K .a-inv-closed K .add .l-one

K .add .one-closed add-mult-distrib2
negate-eq one-closed x-in-V )

also have ... ∈ M
by (metis K .add .one-closed

abelian-group.a-inv-closed assms is-abelian-group
one-closed subspace-def x-in-M )

finally show ?thesis .
qed

qed
thus ?thesis using x-in-M unfolding Units-def by force

qed
fix a and b
assume a-in-K : a ∈ carrier K and b-in-K : b ∈ carrier K
show (a ⊗ b) · x = a · b · x

using mult-assoc[OF x-in-V a-in-K b-in-K ] .
show a · x ∈ M
proof −

have a · x = a · x ⊕V a · 0V
by (metis V .add .one-closed V .add .r-one

a-in-K add-mult-distrib1 x-in-V )
also have ... ∈ M

by (metis 〈0V ∈ M 〉 a-in-K assms subspace-def x-in-M )
finally show ?thesis .

qed
show a · (x ⊕V y) = a · x ⊕V a · y

using add-mult-distrib1 [OF x-in-V y-in-V a-in-K ] .
show (a ⊕ b) · x = a · x ⊕V b · x

using add-mult-distrib2 [OF x-in-V a-in-K b-in-K ] .

270



qed

lemma
subspace-zero:
shows subspace {0V}
unfolding subspace-def
by (simp, metis mult-zero-descomposition

scalar-mult-zeroV-is-zeroV )

lemma subspace-V :
shows subspace (carrier V )
unfolding subspace-def
by (simp, metis V .a-closed V .add .one-closed

ex-in-conv mult-closed)

As one would expect, a subspace is closed under addition:

lemma subspace-add-closed :
assumes s: subspace S
and x : x ∈ S and y : y ∈ S
shows x ⊕V y ∈ S

proof −
have xv : x ∈ carrier V and yv : y ∈ carrier V

using x y s unfolding subspace-def by auto
have x ⊕V y = 1 · x ⊕V 1 · y

using mult-1 [OF xv ] mult-1 [OF yv ] by simp
thus ?thesis

using s unfolding subspace-def by (metis one-closed x y)
qed

The definition of finsum (see finsum ?G = finprod (|carrier = carrier ?G ,
mult = op ⊕?G, one = 0?G|)) is done in such a way hat for any infinite
set it returns undefined and otherwise the result of a folding operator over
the finite set. Under these circumstances it seems rather hard to prove
properties of subspaces considering infinite sums:

lemma subspace-finsum-closed :
assumes s: subspace S
and f : finite S
and y : Y ⊆ S
and c: f ∈ Y → carrier K
shows finsum V (λi . f i · i) Y ∈ S

proof −
have fY : finite Y by (rule finite-subset [OF y f ])
show ?thesis

using fY y c proof (induct Y )
case empty
show ?case

using zero-in-subspace [OF s] by simp
next
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— Nice Isabelle feature: we can even interpret the locale vector space with the
same vector space where only the carrier set has been modified. I thought that
this may not be possible because it could produce some problems, but it worked
smoothly:

interpret S : vector-space K V (|carrier := S |) op ·
using subspace-is-vector-space [OF s] .

case (insert x F )
have finsum-S : (

⊕
Vi∈F . f i · i) ∈ S

using insert .hyps (3 ) insert .prems by fast
have fxS : f x · x ∈ S

using insert .prems
using s using S .mult-closed by auto
have lambda: (λi . f i · i) ∈ F → carrier V

and fx : f x · x ∈ carrier V
using insert .prems

using insert .hyps
using s unfolding subspace-def using mult-closed by blast+

show ?case
unfolding finsum-insert [OF insert .hyps (1 ,2 ) lambda, OF fx ]
by (rule subspace-add-closed [OF s fxS finsum-S ])

qed
qed

lemma subspace-finsum-closed ′:
assumes s: subspace S
and f : finite Y
and y : Y ⊆ S
and c: f ∈ Y → carrier K
shows finsum V (λi . f i · i) Y ∈ S

using f y c
proof (induct Y )

case empty
show ?case

using zero-in-subspace [OF s] by simp
next

interpret S : vector-space K V (|carrier := S |) op ·
using subspace-is-vector-space [OF s] .

case (insert x F )
have finsum-S : (

⊕
Vi∈F . f i · i) ∈ S

using insert .hyps (3 ) insert .prems by fast
have fxS : f x · x ∈ S

using insert .prems
using s using S .mult-closed by auto

have lambda: (λi . f i · i) ∈ F → carrier V
and fx : f x · x ∈ carrier V
using insert .prems
using insert .hyps
using s unfolding subspace-def using mult-closed by blast+

show ?case
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unfolding finsum-insert [OF insert .hyps (1 ,2 ) lambda, OF fx ]
by (rule subspace-add-closed [OF s fxS finsum-S ])

qed

corollary subspace-linear-combination-closed :
assumes s: subspace S
and f : finite Y
and y : Y ⊆ S
and c: f ∈ coefficients-function Y
shows linear-combination f Y ∈ S
proof (unfold linear-combination-def ,

rule subspace-finsum-closed ′)
show subspace S using s .
show finite Y using f .
show Y ⊆ S using y .
show f ∈ Y → carrier K

using c unfolding coefficients-function-def by blast
qed

end

end

theory Calculus-of-Subspaces
imports Subspaces Ideal

begin

13 Calculus of Subspaces

The theory Ideal is imported in order to use the definition of the sum of two
sets, given by the operation set-add ′

context vector-space
begin

lemma
subspace-inter-closed :
assumes s: subspace M
and sm: subspace M ′

shows subspace (M ∩ M ′)
proof (unfold subspace-def , rule conjI3 )

show M ∩ M ′ ⊆ carrier V using s sm unfolding subspace-def by blast
show M ∩ M ′ 6= {} using zero-in-subspace s sm by blast
show ∀α∈carrier K . ∀β∈carrier K . ∀ x∈M ∩ M ′. ∀ y∈M ∩ M ′. α · x ⊕V β ·

y ∈ M ∩ M ′

using s sm unfolding subspace-def by blast
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qed

13.1 Theorem 1

In the following result we have to avoid empty intersections, since the empty
intersection is defined to be equal to UNIV. UNIV is not a subspace, since
it is not (in general, it could be in some cases) a subset of carrier V.

Nevertheless, this does not mean any limitation in practice, since any set
will be always a subset of the subspace carrier V (see subspace (carrier V ))

We need to prove that intersection of subspaces is a subspace to define later
the subspace spanned by any set as the intersection of every subspace in
which the set is contained. Thus, assuming that the intersection will be not
empty (carrier V will be always a member of such intersection) is natural.

lemma subspace-finite-inter-closed :
assumes a: finite A
and ne: A 6= {}
and kj : ∀ j∈A. subspace (P j )
shows subspace (

⋂
j∈A. P j )

using a kj ne proof (induct A)
case empty
show ?case using empty .prems by simp

next
case (insert x F )
have Px : subspace (P x ) using insert .prems (1 ) by blast
show ?case
proof (cases F = {})

case True
show ?thesis

unfolding True using Px by fastsimp
next

case False
have sF : subspace (

⋂
a∈F . P a)

using insert .hyps (3 ) using False using insert .prems (1 ) by blast
show ?thesis

unfolding INT-insert
by (rule subspace-inter-closed [OF Px sF ])

qed
qed

The same lemma than [[finite ?A; ?A 6= {}; ∀ j∈?A. subspace (?P j )]] =⇒
subspace (

⋂
j∈?A ?P j ) but for collections indexed by the natural numbers:

lemma subspace-finite-inter-index-closed :
assumes smn: ∀ j∈{..(n::nat)}. subspace (M j )
shows subspace (

⋂
j∈{..n}. M j )

using smn proof (induct n)
case 0
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show ?case using 0 by simp
next

case (Suc n)
have prem: ∀ j∈{..n}. subspace (M j ) and prem2 : subspace (M (Suc n))

using Suc.prems by simp-all
hence prem1 : subspace (

⋂
a≤n. M a)

using Suc.hyps by fast
show ?case

unfolding atMost-Suc
unfolding INT-insert [of Suc n {..n}]
by (rule subspace-inter-closed , rule prem2 , rule prem1 )

qed

We now remove the requisite of the collection of subspaces being finite.
Thus, the proof cannot be longer carried out by induction in the structure
of the set.

lemma subspace-infinite-inter-closed :
assumes ne: A 6= {}
and kj : ∀ j∈A. subspace (P j )
shows subspace (

⋂
j∈A. P j )

proof (unfold subspace-def , rule)
show INTER A P ⊆ carrier V

unfolding INTER-def
using ne using kj unfolding subspace-def by blast

show INTER A P 6= {} ∧
(∀α∈carrier K . ∀β∈carrier K . ∀ x∈INTER A P . ∀ y∈INTER A P . α · x ⊕V

β · y ∈ INTER A P)
proof (rule conjI )

show INTER A P 6= {}
proof (unfold INTER-def , auto, rule exI [of - 0V], rule)

fix x assume x : x ∈ A
show 0V ∈ P x

using zero-in-subspace [of P x ]
using kj using x by fast

qed
show ∀α∈carrier K . ∀β∈carrier K . ∀ x∈INTER A P . ∀ y∈INTER A P . α · x

⊕V β · y ∈ INTER A P
proof (rule ballI )+

fix x y a b
assume x : x ∈ INTER A P and y : y ∈ INTER A P

and a: a ∈ carrier K and b: b ∈ carrier K
show a · y ⊕V b · x ∈ INTER A P
proof

fix xa assume xa: xa ∈ A
have xp: x ∈ P xa and yp: y ∈ P xa using x y xa by auto
thus a · y ⊕V b · x ∈ P xa

using kj xa a b unfolding subspace-def by force
qed

qed
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qed
qed

It is now clear than the previous results for finite intersections ∀ j∈{..?n}.
subspace (?M j ) =⇒ subspace (

⋂
j ≤ ?n ?M j ) and [[finite ?A; ?A 6= {};

∀ j∈?A. subspace (?P j )]] =⇒ subspace (
⋂

j∈?A ?P j ) can be proved as a
corollary of [[?A 6= {}; ∀ j∈?A. subspace (?P j )]] =⇒ subspace (

⋂
j∈?A ?P

j ), but we prefer to leave their induction proofs since they illustrate different
ways of proving similar results depending on the context or the premises.

Here Halmos introduces the definition of the span of a set S ⊆ carrier V as
the interection of all the subsets in which S is contained. We already have
a notion of the span of a set in our setting, as the set of all the elements
which are equal to the linear combinations of the elements of this set. We
will name this new notion subspace-span, and then prove that they both are
equal:

We introduce an auxiliar definition of the set of subspaces in which one set
is enclosed:

definition subspace-encloser :: ( ′b => bool) => ( ′b => bool) set
where subspace-encloser A = {M . subspace M ∧ A ⊆ M }

A trivial lemma stating that a set is always enclosed in the subspace carrier
V :

lemma
assumes m: M ⊆ carrier V
shows carrier V ∈ subspace-encloser M
unfolding subspace-encloser-def
using subspace-V m by fast

The definition of the subspace spanned by a set, following Halmos:

definition subspace-span :: ( ′b ⇒ bool) ⇒ ′b ⇒ bool
where subspace-span A = (

⋂
B∈(subspace-encloser A). B)

The previous lemma [[finite ?A; ?A 6= {}; ∀ j∈?A. subspace (?P j )]] =⇒
subspace (

⋂
j∈?A ?P j ) is now used to prove that subspace-span is a subspace

itself.

lemma
subspace-span-monotone:
assumes s: S ⊆ carrier V
shows S ⊆ subspace-span S
unfolding subspace-span-def
unfolding subspace-encloser-def by fast

lemma
subspace-subspace-span:
assumes s: S ⊆ carrier V

276



shows subspace (subspace-span S )
unfolding subspace-span-def subspace-encloser-def

proof (rule subspace-infinite-inter-closed)
show {M . subspace M ∧ S ⊆ M } 6= {}

using subspace-V s by blast
show Ball {M . subspace M ∧ S ⊆ M } subspace by fast

qed

13.2 Theorem 2.

The definition of finsum in Isabelle relies on the notion of finiteness of the
set which elements are added up. Working in a finite dimensional vector
space does not mean that every subset is finite, and thus the elements in
the span of such a set cannot be written as finite sums of its elements.

The previous point is not explicit is Halmos, where it is never explained how
to deal with infinite sums (or sums over not finite sets).

lemma
subspace-span-empty :
subspace-span {} = {0V}

proof
show {0V} ⊆ subspace-span {}

unfolding subspace-span-def subspace-encloser-def
using zero-in-subspace by blast

show subspace-span {} ⊆ {0V}
unfolding subspace-span-def subspace-encloser-def
using subspace-zero by force

qed

lemma theorem-2 :
assumes f : finite S
and s: S ⊆ carrier V
shows span S = subspace-span S

proof
show span S ⊆ subspace-span S

using f s proof (induct S )
case empty
show ?case unfolding span-empty subspace-span-empty ..

next
case (insert x F )

show ?case unfolding subspace-span-def subspace-encloser-def unfolding
span-def apply auto

proof −
fix xa and g
assume cf-g : g ∈ coefficients-function (carrier V )

and s-xa: subspace xa
and x-in-xa: x ∈ xa and F-subset-xa: F ⊆ xa

have gs-insert : good-set (insert x F )
by (metis finite.insertI good-set-def insert(1 ) insert .prems)
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show linear-combination g (insert x F ) ∈ xa
proof (rule subspace-linear-combination-closed)

show subspace xa using s-xa .
show finite (insert x F ) using insert .hyps(1 ) by fast
show insert x F ⊆ xa using x-in-xa F-subset-xa by fast
show g ∈ coefficients-function (insert x F ) sorry

qed
qed

qed
show subspace-span S ⊆ span S

unfolding subspace-span-def subspace-encloser-def unfolding span-def apply
auto

sorry
qed

13.3 Theorem 3.

The following theorem appears in Halmos as an easy consequence of the
previous one; probably it should be proved based on the fact that any linear
combination can be written down as the sum of two elements, being one in
the first set and the other in the second one.

term I <+>R J
find-theorems - <+>?F -
lemma theorem-3 :

assumes I : subspace I
and J : subspace J
shows subspace-span (I ∪ J ) = I <+>V J
unfolding AbelCoset .set-add-def ′

proof
show subspace-span (I ∪ J ) ⊆ (

⋃
h∈I .

⋃
k∈J . {h ⊕V k})

sorry
show (

⋃
h∈I .

⋃
k∈J . {h ⊕V k}) ⊆ subspace-span (I ∪ J )

sorry
qed

The following definition is simply a rewriting rule, it may be skipped; note
also that produces ambiguous parse trees when parsing deducing types from
expressions, so it could be avoided if it produces any clashes:

definition set-add2 :: ′b set => ′b set => ′b set (infixl + 60 )
where set-add2 A B = subspace-span (A ∪ B)

corollary set-add2-set-add ′:
assumes I : subspace I
and J : subspace J
shows I + J = I <+>V J
unfolding set-add2-def using theorem-3 [OF I J ] .

The following definition is applied only to subspaces:
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definition complement :: ′b set => ′b set => bool
where complement I J = ((I ∩ J = {0V}) ∧ (I + J = carrier V ))

end

end
theory Dimension-of-a-Subspace

imports Calculus-of-Subspaces
begin

14 Dimension of a Subspace

context finite-dimensional-vector-space
begin

14.1 Theorem 1.

The theorem states that the subspace is itself a vector space and that its
dimesion is less than or equal to the one of V. We split both conclusions in
two different lemmas that later will be merged.

The first part of the theorem has been already proved:

lemma theorem-1-part-1 :
assumes m: subspace M
shows vector-space K (V (|carrier :=M |)) (op ·)
using subspace-is-vector-space [OF m] .

The second part of the theorem requires a definition of dimension. The
dimension of a (finite) vector space should be defined as the cardinal of any
of its basis, once we have proved that every basis has the same cardinal (file
Finite-Vector-Space.thy). In the meanwhile, I use dim

Its proof should be direct by reduction ad absurdum, following the one in
Halmos.

lemma theorem-1-part-2 :
assumes m: subspace M
shows dim (V (|carrier :=M |)) ≤ dimension
sorry

14.2 Theorem 2.

The notation in the following statement might be a bit confusing. The
indexing f is just necessary to later select the first m elements of a base,
with m being the dimension of the subspace M. These m elements can be
completed up to a basis of V.

The proof should be done using that M is a vector space of dimension less
or equal to the one of V. Therefore we can find a basis of it which cardinal
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is less than or equal to dimension. This basis is a collection of linearly
independent vectors, and therefore can be completed up to a basis of V,
thanks to one of the lemmas proved in Finite-Vector-Space.thy.

lemma theorem-2 :
assumes m: subspace M
shows (∃B f . (basis B) ∧ indexing (B , f ) ∧
(vector-space.basis K (V (|carrier :=M |)) (op ·) (f ‘ {..dim (V (|carrier :=M |))})))

proof −
interpret M : vector-space K (V (|carrier :=M |)) (op ·)

using subspace-is-vector-space [OF m] .
show ?thesis
sorry

qed

end

end
theory Dual-Spaces

imports Dimension-of-a-Subspace
begin

15 Dual Spaces

context vector-space
begin

This definition can be found also on Bauer’s development, taking as the
scalar field the set of real numbers, and with the name of linear form. We
follow linear functional as Halmos’ text

We split the definition of linear form into its multiplicative and additive
components:

definition additive-functional :: ( ′b => ′a) => bool
where additive-functional f
≡ (∀ x∈carrier V . ∀ y∈carrier V . f (x ⊕V y) = f x ⊕K f y)

definition multiplicative-functional :: ( ′b => ′a) => bool
where multiplicative-functional f
≡ (∀ k∈carrier K . ∀ x∈carrier V . f (k · x ) = k ⊗K (f x ))

definition linear-functional :: ( ′b => ′a) => bool
where linear-functional f ≡ additive-functional f
∧ multiplicative-functional f

The following lemma appears in Halmos (as the homogeneous property)
and also in Bauer’s files; in Bauer there are also some properties about the
difference anf lineal functionals.
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lemma linear-functional-zero:
assumes linear-functional f
shows f 0V = 0
sorry

We introduce the definition of the dual space of the vector space V. We have
to provide a carrier set, a zero operation and an addition. As the definition
of abelian groups in Isabelle is done omver the ring type, we also have to
provide some definition of unit and multiplication, that will be useless.

The dual space is also denoted in Halmos V ′

definition dual-space :: ( ′b => ′a) ring (V ′)
where dual-space = (| carrier = linear-functional ,

mult = undefined ,
one = undefined ,
zero = (λx . 0),
add = (λy1 .λy2 .λx . y1 x ⊕ y2 x )|)

We create a synonim for the previous definition to ease readability:

lemmas V ′-def = dual-space-def

term vector-space K V ′

term (λx f y . x ⊗ f y)

I guess it is not necessary to go down to finite dimensional vector spaces to
prove the following lemma. If it is necessary, the context should be changed
accordingly:

lemma vector-space-V ′: vector-space K V ′ (λx f y . x ⊗ f y)

sorry

end

end
theory Brackets

imports Dual-Spaces
begin

16 Brackets

context vector-space
begin

The following notation is not working properly: 1. I do not know how to
invert the order of the parameters, in such a a way that <x ,f> denotes f x ;
2. Even in the right order, where <f ,x> denotes f x, the notation <f ,x>
produces problems when trying to use it.
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A couple of notes on the following notation; it is done trying to mimic the
similar ideas in Halmos. First of all, we have chosen the symbols < - >
instead of [ - ] since brackets would produce ambiguous inputs with lists,
forcing us to write explicitly in a lot of scenarios the type of each of the
components of the pair.

Second, the input annotation of abbreviation makes the special syntax pro-
posed to work only in the input mode, i.e., when we write something. Wi-
htout this annotation, the output would be also changed, but that would
affect to every function application in our setting, which is not our intention
and apparently makes the pretty printer loop. For more details see https:
//lists.cam.ac.uk/pipermail/cl-isabelle-users/2011-August/msg00007.html

abbreviation (input)
app :: ′b => ( ′b => ′a) => ′a (<(-),(-)> 90 )
where <x , f> == f x

term <x , f> ⊕ <y , f>

end

end
theory Dual-Bases

imports Brackets
begin

17 Dual Bases

context finite-dimensional-vector-space
begin

17.1 Theorem 1.

We recall here that X is a basis for the vector space V and indexing-X is a
way to provide the basis with coordinates.

The definition of indexing is polymorphic, and in this lemma will be used
both for the basis X and also for the set of scalars.

In this lemma will be useful the results in file Vector-Space-K-n.thy, for in-
stance ?x ∈ carrier V =⇒ ∃ !f . f ∈ coefficients-function X ∧ linear-combination
f X = ?x and ?x ∈ carrier V =⇒ ?x = (

⊕
Vi∈{..<dimension}. lin-comb

?x (indexing-X i) · indexing-X i), where it is proved that any element in
carrier V can be expressed in a unique way as a linear combination of the
elements in X.

thm lin-comb-is-the-linear-combination-indexing
find-theorems (∃ !f . -)

282

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2011-August/msg00007.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2011-August/msg00007.html


lemma theorem-1 :
assumes ia: indexing ((A:: ′a set), fA)
and c: card A = dimension
shows (∃ !y . linear-functional y ∧ (∀ i∈{..<dimension}. <indexing-X i , y> = fA

i))
proof −

def y == (λx . (
⊕

Ki∈{..<dimension}. (lin-comb x ) (indexing-X i) ⊗ (fA i)))
show ?thesis
proof (rule ex1I [of - y ], rule conjI )

show linear-functional y
unfolding y-def
unfolding linear-functional-def additive-functional-def

multiplicative-functional-def
sorry

show ∀ i∈{..<dimension}. y (indexing-X i) = fA i
proof (rule ballI )

fix i assume i : i ∈ {..<dimension}
show y (indexing-X i) = fA i

unfolding y-def
using lin-comb-basis
sorry

qed
next

show
∧

ya. linear-functional ya ∧ (∀ i∈{..<dimension}. ya (indexing-X i) =
fA i) =⇒ ya = y

sorry
qed

qed

17.2 Theorem 2.

term linear-functional

definition delta :: nat => nat => ′a
where delta i j = (if i = j then 1 else 0)

definition linear-functional-basis :: nat => ( ′c => ′a)
where linear-functional-basis n = (λx . delta (preim2 x ) n)

definition linear-functional-basis-set :: ( ′c => ′a) set
where linear-functional-basis-set = {(λx . delta (preim2 x ) n) | n. n ∈ {..<dimension}}

lemma theorem-2 :
shows vector-space.basis K V ′ (λx f y . x ⊗ f y) linear-functional-basis-set

proof −
interpret V ′: vector-space K V ′ (λx f y . x ⊗ f y) using vector-space-V ′ .
show ?thesis
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sorry
qed

17.3 Theorem 3.

lemma theorem-3 :
assumes x-ne-0 : x 6= 0V
shows ∃ y . linear-functional y ∧ <x ,y> 6= 0K
sorry

corollary theorem-3-c:
assumes x-ne-0 : u 6= v
shows ∃ y . linear-functional y ∧ <u,y> 6= <v ,y>
sorry

end

end
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