
VERIFIED COMPUTER LINEAR ALGEBRA

JESÚS ARANSAY AND JOSE DIVASÓN

Abstract. We present the execution tests and benchmarks of some Linear Algebra pro-
grams generated from their veri�ed formalisation in Isabelle/HOL; more concretely, the
Gauss-Jordan algorithm and the QR decomposition, together with the techniques used to
improve the performance of the extracted code, are described.

Introduction

Computer Algebra systems are commonly seen as black boxes in which one has to trust,
but they are no error-free [6]. Theorem provers are designed to prove the correctness of
algorithms and mathematical results, but this task is far from trivial and it has a signi�cant
cost in terms of performance. One of the most accepted techniques to verify a program is
to describe the algorithm within the language of the proof checker, then extract code and
run it independently. Following this strategy, we have formalised some well-known Linear
Algebra algorithms in Isabelle/HOL and then code is extracted to SML and Haskell. In this
paper, we brie�y present the techniques that we followed to improve the performance of the
generated code, as well as some execution tests. This code cannot compete with Computer
Algebra systems in terms of e�ciency, but it pays o� in feasibility and the results also show
the code to be useful for matrices of considerable size.

1. Verified Computing

Isabelle is a generic interactive theorem prover, in the sense that di�erent logics can be
implemented on top of it. The most widespread logic is HOL (Higher-Order Logic, whose
Isabelle implementation is referred to as Isabelle/HOL), which includes interesting features
such as code generation. The HOL Multivariate Analysis (or HMA for short) library is a
set of Isabelle/HOL theories which contains theoretical results in mathematical �elds such
as Analysis and Linear Algebra. It is based on the work by Harrison in HOL Light and
one of the fundamentals of the library is the representation of n-dimensional vectors (type
vec) by means of functions from a �nite type [7]. We have formalised several algorithms
and their applications (Gauss-Jordan algorithm, QR decomposition. . . ) based on the HMA

library [4, 5], all of them are de�ned making use of the representation based on vec (functions
over �nite domains). Following the data re�nement strategy, we have re�ned the algorithms
to the more e�cient representation iarray, which is later code-generated to its corresponding
implementation in SML (Vector.vector) and Haskell (IArray.array). This representation
de�nes polymorphic vectors, immutable sequences with constant-time access. Furthermore,
serialisations are a process to map Isabelle types and operations to the corresponding ones in
the target languages. They are common practice to avoid Isabelle generating from scratch.
We focus our work on Z2, Q, and R (types bit, rat, and real in Isabelle). We serialised them

1



2 JESÚS ARANSAY AND JOSE DIVASÓN

to their corresponding structures in SML and Haskell (see [3] for further details). Let us
note that real can be serialised to both fractions of integers (obtaining arbitrary precision)
and �oating-point numbers in the target languages. In the latter case, although the original
algorithm is formalised, the computations cannot be trusted.

2. Experimental Outcomes

Let us present the performance tests that we have carried out to our veri�ed programs
obtained from the formalisation of the Gauss-Jordan algorithm [4] and the QR decom-
position [5]. The times presented throughout the tables are expressed in seconds. The
benchmarks have been carried out in a laptop with an Intel Core i5-3360M processor, 4 GB
of RAM, Poly/ML 5.6, Ubuntu 14.04, GHCi 7.6.3, and Isabelle2016. We have noticed that
Poly/ML, which is an interpreter, performs as well as an optimiser compiler as MLton when
executing our generated code (times are similar, so we just present here the Poly/ML ones).

2.1. The Gauss-Jordan algorithm. We have formalised a version of the well-known
Gauss-Jordan algorithm to compute the reduced row echelon form (from here on, rref) of a
matrix in Isabelle/HOL, as well as its applications such as the computation of ranks and
determinants. The algorithm has been formalised over an arbitrary �eld. Some preliminary
experiments had been already carried out in Poly/ML [8], but developers of the compiler
suggested us improvements that eliminated the processing time of the input matrices (which
showed to be the real bottleneck, see the �gures in [2]). More concretely, in our �rst exper-
iments, the input matrices were directly introduced in the system by means of an explicit
binder as static data. The Poly/ML maintainer also modi�ed the system behaviour in the
SVN version of the tool to improve the processing capabilities of big inputs. From our side,
we changed our methodology to input matrices from external �les by means of an ad-hoc
parser. Processing input matrices this way proved to be no time consuming. In addition, we
have serialised the bit type in Isabelle to the booleans in SML and Haskell, whereas in the re-
sults presented in [2] the bit type was serialised to integers. The experimental tests presented
here shows that this change provides a signi�cant improvement of the computation times (the
computation of the rref of a 800×800 Z2 matrix needed 43.9s in Poly/ML, now only 15.96s).

Size (n) Poly/ML Haskell
100 0.04 0.36
200 0.25 2.25
400 2.01 17.17
800 15.96 131.73
1200 62.33 453.57
1600 139.70 1097.41
2000 284.28 2295.30

Table 1. Time to compute the rref of

randomly generated Z2 matrices.

Let us show a fragment of the experiments carried
out with the new methodology. The input matrices
can be downloaded from [1]. Table 1 presents the
times of computing the rref of randomly generated
Z2 matrices. The same randomly generated matri-
ces have been used across the di�erent systems. It
is well-known that the Gauss-Jordan algorithm has
arithmetic complexity ofO(n3). The computing times
of our programs also grow cubically (in both SML and
Haskell) with respect to the number of elements in the
input matrices (let us note that the underlying �eld
notably a�ects the performance and can even a�ect
the complexity bounds).

An interesting case appears when working with matrices over Q. Following the stan-
dard code generator setup to SML (serialising rat to fractions of IntInf.int), we detected



VERIFIED COMPUTER LINEAR ALGEBRA 3

that the greatest amount of time was spent in reducing fractions (operations gcd and
divmod). Serialising the Isabelle operation gcd to the corresponding built-in Poly/ML
function (which is not part of the SML Standard Library, but particular to the com-
piler), decreased by a factor of 20 the computing times. In addition, the natural serial-
isation for the Isabelle operation divmod would be IntInf.divmod in SML, which returns
the pair (i IntInf.div j, i IntInf.mod j) where the result of div is truncated toward neg-
ative in�nity (for example, divmod (-10, 6) returns (-2, 2)). However, in SML (and
Haskell) there also exists a more e�cient operation IntInf.quotrem, which returns the pair
(i IntInf.quot j, i IntInf.rem j) where quot is integer division truncated toward zero (for
instance, quotrem (-10, 6) returns (-1, -4)). Since in the case of Q matrices we only
divide when normalising fractions in SML (and thus, we only divide by divisors) the re-
mainder is always 0, so we can serialise to the more e�cient operation IntInf.quotrem.

Size (n) Poly/ML Haskell
10 0.01 0.01
20 0.02 0.03
40 0.21 0.24
80 3.77 3.53

Table 2. Time to compute the rref of

randomly generated Q matrices.

Table 2 presents the performance tests to compute
determinants of randomly generated matrices over Q.
Apparently, Haskell takes advantage of its native Ra-
tional type to match the results of Poly/ML. Table 3
presents the times used to compute the rref of matri-
ces over R represented as �oating-point numbers. In
this case, numerical stability problems arise (the rref

of matrices contains small nonzero entries), as also
happens in Computer Algebra systems. Once again,
Poly/ML outperforms Haskell and the performance is cubic as well.

Size (n) Poly/ML Haskell
100 0.03 0.38
200 0.25 2.62
400 1.85 19.51
800 13.99 148.20

Table 3. Time to compute the rref of

randomly generated R matrices.

2.2. The QR Decomposition. We have also for-
malised the QR decomposition in Isabelle/HOL and
its application to compute the least squares approxi-

mation to an unsolvable system of linear equations.
The QR decomposition decomposes a real matrix A
into the product of two di�erent matrices Q and R
(the �rst one containing an orthonormal collection of
vectors, the second one being upper triangular). The
QR decomposition is important, among other things,
since it signi�cantly reduces round-o� errors when computing the least squares approxima-
tion (which can also be solved by means of the Gauss-Jordan algorithm). Since the Isabelle
type real is used and square roots are involved in the algorithm (they are necessary to
normalise the vectors), the use of a representation of real based on fractions of integers
(IntInf.int) in SML is not possible (square roots are not computable in such a setting). A
development by Thiemann was published in the Archive of Formal Proofs [9]. This devel-

opment provides a re�nement for real numbers of the form p+ q
√
b (with p, q ∈ Q, b ∈ N).

We make use of this development to get exact symbolic computations. The performance
obtained by means of this re�nement depends much on the size of the entries. For example
the computation of the QR decomposition of a 10× 10 matrix requires several minutes.

The other possibility is the use of the serialisation to �oating-point numbers, which
is specially interesting (despite the computations cannot be trusted) when comparing
the precision obtained with the one of the Gauss-Jordan development. We present an



4 JESÚS ARANSAY AND JOSE DIVASÓN

experiment involving the Hilbert matrix (which is known to be very ill-conditioned)
in dimension 6, H6. We have computed the least squares solution to the system
H6 x = (1 0 0 0 0 0 5)T using both the QR decomposition and the Gauss-Jordan algorithm.
The exact solution of the least squares approximation can be obtained symbolically:
"["-13824","415170","-2907240","7754040","-8724240","3489948"]" . If we now use the
re�nement from Isabelle real to SML �oats, and both algorithms to solve the least squares
problem, the following solutions are obtained:

• QR solution using �oats:
[-13824.0,415170.0001,-2907240.0,7754040.001,-8724240.001,3489948.0]

• Gauss-Jordan solution using �oats:
[-13808.64215,414731.7866,-2904277.468,7746340.301,-8715747.432,3486603.907]

As it can be noticed, the QR decomposition is much more precise than the Gauss-Jordan
algorithm. Table 4 shows the performance obtained with this serialisation.

3. Conclusions and Further Work

Size (n) Poly/ML
100 0.748
160 4.621
220 18.941
280 42.100
340 97.360
400 183.754

Table 4. Time to com-

pute the QR decomposi-

tion of Hilbert matrices

over R.

We have presented the results obtained in the execution of veri-
�ed Linear Algebra programs generated from their formalisation in
Isabelle/HOL, as well as some serialisations and data re�nement
devoted to improve the performance. The veri�ed code cannot
compete with Computer Algebra systems, but it is usable with
matrices of remarkable dimensions. This is an attempt to try to
reduce the existing gap between software veri�cation and working
software. As a future work, the study of the performance of our
veri�ed algorithms to compute the echelon form and the Hermite
normal form of a matrix would be desirable. For the moment, the
Hermite normal form of a 25×25 integer matrix can be completed
in seconds, but we run out of memory in higher dimensions.

References

[1] http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2-Generalized/.
[2] J. Aransay and J. Divasón. Performance Analysis of a Veri�ed Linear Algebra Program in SML. In

Fredlund and Castro, editors, TPF 2013, pages 28 � 35, 2013.
[3] J. Aransay and J. Divasón. Formalisation in higher-order logic and code generation to functional lan-

guages of the Gauss-Jordan algorithm. J. of Func. Programming, 25, 2015.
[4] J. Divasón and J. Aransay. Gauss-Jordan Algorithm and Its Applications. Archive of Formal Proofs,

September 2014. http://afp.sf.net/entries/Gauss_Jordan.shtml, Formal proof development.
[5] J. Divasón and J. Aransay. QR Decomposition. Archive of Formal Proofs, 2015. http://afp.sf.net/

entries/QR_Decomposition.shtml, Formal proof development.
[6] A. J. Durán, M. Pérez, and J. L. Varona. Misfortunes of a mathematicians' trio using Computer Algebra

Systems: Can we trust? Notices of the AMS, 61(10):1249 � 1252, 2014.
[7] J. Harrison. The HOL Light Theory of Euclidean Space. J. of Autom. Reasoning, 50(2):173 � 190, 2013.
[8] The Poly/ML website. http://www.polyml.org/, 2015.
[9] R. Thiemann. Implementing �eld extensions of the form Q[

√
b]. Archive of Formal Proofs, February 2014.

http://afp.sf.net/entries/Real_Impl.shtml, Formal proof development.

Universidad de La Rioja
E-mail address: {jesus-maria.aransay,jose.divasonm}@unirioja.es

http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2-Generalized/
http://afp.sf.net/entries/Gauss_Jordan.shtml
http://afp.sf.net/entries/QR_Decomposition.shtml
http://afp.sf.net/entries/QR_Decomposition.shtml
http://www.polyml.org/
http://afp.sf.net/entries/Real_Impl.shtml

	Introduction
	1. Verified Computing
	2. Experimental Outcomes
	2.1. The Gauss-Jordan algorithm
	2.2. The QR Decomposition

	3. Conclusions and Further Work
	References

