
Generalizing a Mathematical Analysis
library in Isabelle/HOL

Jesús Aransay and Jose Divasón?

Departamento de Matemáticas y Computación,
Universidad de La Rioja

jesus-maria.aransay@unirioja.es, jose.divasonm@unirioja.es

Abstract. The HOL Multivariate Analysis Library (HMA) of Is-
abelle/HOL is focused on concrete types such as R, C and Rn and on
algebraic structures such as real vector spaces and Euclidean spaces, rep-
resented by means of type classes. The generalization of HMA to more
abstract algebraic structures is something desirable but it has not been
tackled yet. Using that library, we were able to prove the Gauss-Jordan
algorithm over real matrices, but our interest lied on generating verified
code for matrices over arbitrary fields, greatly increasing the range of
applications of such an algorithm. This short paper presents the steps
that we did and the methodology that we devised to generalize such a
library, which were successful to generalize the Gauss-Jordan algorithm
to matrices over arbitrary fields.

Keywords: Theorem proving, Isabelle/HOL, type classes, Linear Alge-
bra

1 Introduction

The importance and use of theorem provers grow day to day, not only involving
strictly the formalization of mathematical results but also in the verification of
software and hardware. Isabelle is one of the most used and well-known theorem
provers, on top of which different logics are implemented; the most explored of
these varieties of logics is higher-order logic (or HOL), and it is also the one where
the greatest number of tools (code generation, automatic proof procedures) are
available. It has been successfully used, for instance, in the Flyspeck project (the
largest formal proof completed to date) and in the formal verification of seL4,
an operating-system kernel.

The HOL Multivariate Analysis Library (or, HMA for short) is a set of Is-
abelle/HOL theories that has been sucessfully used in concrete developments in
Analysis, Topology and Linear Algebra. It contains about 2500 lemmas and
150 definitions and is based on the impressive work of J. Harrison in HOL
Light [1]. Formalization of algorithms in Linear Algebra and code generation
from datatypes and such algorithms had not been explored in HMA. To ful-
fill this goal, in [5] we presented a formalization of the Gauss-Jordan algorithm

? This author is sponsored by a research grant FPI-UR-12 of Universidad de La Rioja.

based on HMA. In that development, we set up Isabelle to generate code from
the matrix representation presented in HMA. A refinement to immutable ar-
rays was carried out to improve performance. We also formalized some of its
well-known applications: computation of ranks, inverses, determinants, dimen-
sions and bases of the four fundamental subspaces of a matrix and solutions of
systems of linear equations. Verified code of these computations is generated to
both SML and Haskell.

However, while formalizing the previous results we found a limitation in
HMA: some important results that we needed were only proven for real matrices
or for real vector spaces. Due to this fact, we were only able to generate verified
code of the Gauss-Jordan algorithm for real matrices. But we were especially
interested in matrices whose coeffients belong to some other fields. For instance,
the rank over Z2 matrices permits the computation of the number of connected
components of a digital image. In Neurobiology, this technique can be used to
compute the number of synapses in a neuron (see [2] for details). This limitation
arises since HMA derives from earlier formalizations limited to concrete types,
such as R, C and Rn. Many results presented in HMA are ported from J. Har-
rison’s work in HOL Light [1], where most theorems are proven only for Rn.
Another interesting application is the computation of determinants of Q matri-
ces: commercial software performs such computations wrong (see [12]) in cases
that could be critical in cryptology.

J. Hölzl et al. [4] improved significantly the HMA. They presented a new
hierarchy of spaces based on type classes to represent the common structures of
Multivariate Analysis, such as topological spaces, metric spaces and Euclidean
spaces. This improvement showed the power of Isabelle’s type system. Some
limitations still remain; for instance, most properties about vector spaces are only
demonstrated in HMA over real vector spaces, impeding us from working with
matrices whose elements belong to other fields. Generalizing the results in HMA
is a known problem but has not been tackled. J. Harrison already pointed it out
in his work [1]: “many proofs are morally the same and it would be appealing to
be able to use similar technology to generalize the proofs”. J. Avigad also found
this limitation when working with HMA in his formalization of the Central Limit
Theorem [3]; he said that some concepts “admit a common generalization, which
would unify the library substantially”.

This short paper presents a work in progress which aims at being the foun-
dation stone to get such a generalization. The final aim would be to generalize
the library as far as possible. As work done, we present the generalizations and
the methodology that permitted us to prove the Gauss-Jordan algorithm over
matrices whose elements belong to an arbitrary field.

2 Generalization of HMA

Mathematical structures presented in HMA are defined by means of type classes;
type classes are provided by Isabelle and have great advantages: they allow to or-
ganize polymorphic specifications, to create a hierarchy among different classes,

to provide instances, to produce a simple sintax and to simplify proofs thanks
to the Isabelle type inference mechanism. A type class C specifies assumptions
P1, . . . , Pk for constants c1, . . . , cm (that are to be overloaded) and may be based
on other type classes B1, . . . , Bn. Only one type variable α is allowed to occur
in the type class specification. Hence, if we want to prove properties of arbitrary
vector spaces (where two type variables appear), we have to use locales instead.

Locales are an Isabelle approach for dealing with parametric theories and
they are specially suitable for Abstract Algebra as they allow to talk about
carriers, sub-structures and existence of structures. On the other hand, code
generation within locales with assumptions essentially does not work. Locales
enable to prove theorems abstractly, relative to sets of assumptions. These the-
orems can then be used in other contexts where the assumptions themselves, or
instances of the assumptions, are theorems. This form of theorem reuse is called
interpretation. Locales generalize interpretation from theorems to conclusions,
enabling the reuse of definitions and other constructs that are not part of the
specifications of the locales.

We are on the borderline: our work requires to use abstract structures such
as vector spaces or modules (we have to use locales) but we aim to preserve
the executability (code generation). Our proposal is to work with a mix between
locales and type classes: every possible lemma is generalized to newly introduced
locales, but lemmas required in type classes are kept (because they belong there,
or because they are obtained thanks to interpretation of the corresponding ab-
stract locale).

2.1 An example of generalization

Let us illustrate the previous methodology with an example. A key lemma in
HMA is the one which states the link between matrices and linear maps:

theorem matrix_works:

assumes "linear f"

shows "matrix f *v x = f (x ::real^’n)"

It is stated for linear maps between real vector spaces. The linear predicate
in the premise is introduced by the following locale definition:

locale linear = additive f for f :: "’a::real_vector ⇒ ’b::real_vector"

+ assumes scaleR: "f (scaleR r x) = scaleR r (f x)"

One parameter is only required: a map f . In the heading, the type of f
is fixed as a map between two real vector spaces (real vector class). In order
to generalize it to arbitrary vector spaces over the same field, we propose the
following definition:

locale linear = B: vector_space scaleB + C: vector_space scaleC

for scaleB :: "(’a::field ⇒ ’b::ab_group_add ⇒ ’b)" (infixr "*b" 75)

and scaleC :: "(’a ⇒ ’c::ab_group_add ⇒ ’c)" (infixr "*c" 75) +

fixes f :: "(’b ⇒ ’c)"

assumes cmult: "f (r *b x) = r *c (f x)"

and add: "f (a + b) = f a + f b"

This new locale has three parameters, instead of one: the scalar multiplica-
tions scaleB and scaleC, which fix both the vector spaces and the field, and the
map f . Now we can interpret Fn (where F is a field) as a vector space over F
and prove the linear interpretation for Fn (the corresponding linear map is the
multiplication of a matrix by a vector):
interpretation vec: vector_space "op *s :: ’a::field ⇒ ’a^’b ⇒ ’a^’b"

interpretation vec: linear "op *s" "op *s" "(λx. A *v (x::’a::field^_))"

After reproducing in the new locale the lemmas involved in the proof, we
prove the generalized version. Note the differences between both statements:

theorem matrix_works:

assumes "linear (op *s) (op *s) f"

shows "matrix f *v x = f (x ::’a ::field^’n)"

2.2 The Generalization of the Gauss-Jordan algorithm

Our aim is to generalize the Gauss-Jordan algorithm to generate verified code for
matrices with elements belonging to a generic field. The algorithm itself just re-
quires type classes (the field) so code generation will work; nevertheless, proving
its correctness needs generalizations of properties using locales. In Section 2.1,
we have shown an example of how to carry out this generalization. As Harrison
pointed out [1], in many cases the proof is essentially the same. However, the
procedure is not immediate and almost every demonstration involves subtle de-
sign decisions: introduce new locales, syntactic details, interpretations inside the
lemma to reuse previous facts, change the types properly and so on. In broad
terms, we have carried out four kinds of generalizations in the HMA to achieve
verified execution over matrices with elements belonging to a field:

1. Lemmas involving real vector spaces (a type class) are generalized to arbi-
trary vector spaces (a locale).

2. Lemmas involving Euclidean spaces (a type class) are generalized to finite-
dimensional vector spaces (a locale).

3. Lemmas involving real matrices are generalized to matrices over any field
(thanks to the previous two points).

4. Lemmas about determinants of matrices with coefficients in a real vector
space are proven for matrices with coefficients in a commutative ring.

In HMA the first time that the notion of a finite basis appeared was
in the euclidean space class. Now, we have introduced a new locale fi-
nite dimensional vector space and generalized several proofs from the eu-
clidean space class to that locale. Thanks to those generalizations, some lemmas
that were stated in HMA only over real matrices are now proven over more gen-
eral types. Let us take a look at the following lemma, which claims that a matrix

is invertible iff its determinant is not null. The following version is the original
one available in HMA, stated for integral domains:

lemma det_identical_rows:

fixes A :: "’a::linordered_idom^’n^’n"

assumes ij: "i 6= j" and r: "row i A = row j A"

shows "det A = 0"

proof-
have tha: "

∧
(a::’a) b. a = b =⇒ b = - a =⇒ a = 0" by simp

have th1: "of_int (-1) = - 1" by simp

let ?p = "Fun.swap i j id"

let ?A = "χ i. A $?p i"

from r have "A = ?A" by (simp add: vec_eq_iff row_def Fun.swap_def)

then have "det A = det ?A" by simp

moreover have "det A = - det ?A" by (simp add: det_permute_rows[OF

permutes_swap_id] sign_swap_id ij th1)

ultimately show "det A = 0" by (metis tha)

qed

The original statement comes from Harrison’s formalization [1], where the
lemma is demonstrated over real matrices. The previous proof follows the one
presented in most of the literature. Essentially, in the proof it is deduced that
detA = − detA and thus detA = 0. But such a property does not hold in
rings which characteristic is 2 (such as Z2). For instance, in [6] the statement
is presented for commutative rings but it is proven without taking into account
rings with characteristic 2. The same appears in [7], but the author warns that
the demonstration fails in the case of Z2 matrices. To generalize the result to an
arbitrary ring, we had to change totally the proof and work over permutations.1

Not only change some proofs, sometimes we have to introduce new definitions.
For instance, to multiply a matrix by a scalar. HMA works with real matrices, so
the next operation is used: (op ∗R)::real ⇒ ’a ⇒ ’a. In the generalization,
we would like to multiply a matrix of type ’a^’n^’m by an element of type ’a.
We cannot use (op ∗R) to do that. The most similar operation presented in
HMA is: (op *s)::’a ⇒ ’a^’n ⇒ ’a^’n.

We cannot reuse it because is thought to multiply a vector (and not a matrix)
by a scalar. Then, we define the multiplication of a matrix by a scalar as follows:
definition matrix_scalar_mult :: "’a ⇒ ’a^’n^’m ⇒ ’a^’n^’m"

(infixl "*k" 70) where "k *k A ≡ (χ i j. k * A $ i $ j)"

The statements for the real matrix version and the general one are different:
lemma scalar_matrix_vector_assoc:

fixes A :: "real^’m^’n"

shows "k *R (A *v v) = k *R A *v v"

lemma scalar_matrix_vector_assoc:

fixes A :: "’a::field^’m^’n"

shows "k *s (A *v v) = k *k A *v v"

1 We followed the proof presented in http://hobbes.la.asu.edu/courses/site/

442-f09/dets.pdf

http://hobbes.la.asu.edu/courses/site/442-f09/dets.pdf
http://hobbes.la.asu.edu/courses/site/442-f09/dets.pdf

Some other particularities arose in the generalization. For instance, we had
to completely change other demonstration: the row rank and the column rank
of a matrix are equal. We had followed an elegant proof but only valid for real
matrices, see [9]. We based its generalization on the output of the Gauss-Jordan
algorithm (a reduced row echelon form) following [11]. This change forced us to
completely reorganize the files of our development. Another example arises in
systems of linear equations: in the real field there could be infinite solutions, but
in other fields such as Z2 there is always finitely many solutions.

Finally, we have generalized more than 2500 lines of code: about 220 theo-
rems and 9 definitions, introducing 6 new locales, 3 new sublocales and 8 new
interpretations. The generalized version of the Gauss-Jordan formalization was
published in the AFP [10]. Moreover, the generalizations are useful for another
contribution of ours: the Rank-Nullity Theorem [8].

3 Conclusions

The generalization of HMA is useful and desirable, but doing it can be over-
whelming at a first glance. The process can be partially automated with suit-
able scripts, but the full goal cannot be discharged automatically and it requires
to make some design decisions. The careful combination of locales, type classes
and interpretations has been shown to be a sensible methodology. A remarkable
number of proofs have been reused in this way. This contribution shows that the
aim is feasible and the generalization has served for our purposes of executing a
verified version of the Gauss-Jordan algorithm over fields such as Z2 and Q.

References

1. Harrison, J.: The HOL Light Theory of Euclidean Space. J. Autom. Reasoning. Vol.
50-2. pp. 173–190 (2013)

2. Heras, J. et al.: Towards a certified computation of homology groups for digital
images. CTIC 2012. LNCS, vol. 7309. pp. 49–57. Springer (2012)

3. Avigad, J., Hölzl, J. and Serafin, L.: A formally verified proof of the Central Limit
Theorem. CoRR, (2014)

4. Hölzl, J., Immler, F. and Huffman, B.: Type Classes and Filters for Mathematical
Analysis in Isabelle/HOL. ITP 2013. LNCS, vol. 7998. pp. 279–294. Springer (2013)

5. http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2/
6. Axler, S.: Linear Algebra Done Right. Second Edition. Springer (2004)
7. Strang, G.: Introduction to Linear Algebra. Wellesley - Cambridge Press (2009)
8. Aransay, J. and Divasón, J.: Rank-Nullity Theorem in Linear Algebra. AFP (2013)
9. Mackiw, G.: A Note on the Equality of the Column and Row Rank of a Matrix.

Mathematics Magazine, Vol. 68-4. pp. 285–286 (1995)
10. Aransay, J. and Divasón, J.: Gauss-Jordan Algorithm and its Applications. AFP

(2014)
11. http://www.math4all.in/public_html/linearalgebra/chapter3.4.html
12. Durán, A. J., Pérez, M. and Varona, J. L.: The Misfortunes of a Trio of Mathe-

maticians Using Computer Algebra Systems. Can We Trust in Them? Notices of the
AMS. Vol. 51-10. pp. 1249–1252 (2014)

http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2/
http://www.math4all.in/public_html/linear algebra/chapter3.4.html

	Generalizing a Mathematical Analysis library in Isabelle/HOL

