
Formalization and execution of Linear Algebra:

from theorems to algorithms.

J. Aransay and J. Divasón

Departamento de Matemáticas y Computación, Universidad de La Rioja,
Edif. Luis Vives, c. Luis de Ulloa s/n. 26004. Spain

{jesus-maria.aransay,jose.divasonm}@unirioja.es

Abstract. In this work we present a formalization of the Rank Nullity

theorem of Linear Algebra in Isabelle/HOL. The formalization is of in-
terest because of various reasons. First, it has been carried out based
on the representation of mathematical structures proposed in the HOL
Multivariate Analysis library of Isabelle/HOL (which is part of the stan-
dard distribution of the proof assistant). Hence, our proof shows the
adequacy of such an infrastructure for the formalization of Linear Al-
gebra. Moreover, we enrich the proof with an additional formalization
of its computational meaning; to this purpose, we choose to implement
the Gauss-Jordan elimination algorithm for matrices over �elds, prove
it correct, and then apply the Isabelle code generation facility that per-
mits to execute the formalized algorithm. For the algorithm to be code
generated, we use again the implementation of matrices available in the
HOL Multivariate Analysis library, and enrich it with some necessary
features. We report on the precise modi�cations that we introduce to get
code execution from the original representation, and on the performance
of the code obtained. We present an alternative veri�ed type re�nement
of vectors that outperforms the original version. This re�nement per-
forms well enough as to be applied to the computation of the rank of
some biomedical digital images. Our work proves itself as a suitable basis
for the formalization of numerical Linear Algebra in HOL provers that
can be successfully applied for computations of real case studies.

Keywords: Linear Algebra, Veri�cation, Code generation.

Introduction

In standard mathematical practice, formalization of results and execution of al-
gorithms are usually (and unfortunately) rather separate concerns. Computer
Algebra systems (CAS) are commonly seen as black boxes in which one has to
trust, despite some well-known major errors in their computations, and mathe-
matical proofs are more commonly carried out by mathematicians with pencil &
paper, and sometimes formalized with the help of a proving assistant. Neverthe-
less, some of the features of each of these tasks (formalization and computation)
are considered as a burden for the other one; computation demands optimized

versions of algorithms, and very usually ad hoc representations of mathematical
structures, and formalization demands more intricate concepts and de�nitions
in which proofs have to rely on.

In this paper, we present a case study in which we aim at developing a formal-
ization in Linear Algebra in which computations are still posible. From an ex-
isting library in the Isabelle/HOL distribution (HOL Multivariate Analysis [15],
HMA in the sequel), which has been fruitfully applied in the formalization of
major mathematical results (both in this system and also in HOL-Light, that
shares a similar representation), we formalize a mathematical result, known as
the �Rank Nullity theorem�.

The result is of interest by itself in Linear Algebra (some textbooks name it
the Fundamental theorem of Linear Algebra) but it is even more interesting if
we consider that each linear form between �nite dimensional vector spaces can
be represented by means of a matrix with respect to to some provided bases.
Every matrix over a �eld can be turned into a matrix in reduced row echelon
form (rref, from here on) by means of operations that preserve the behavior of
the linear form, but change the underlying bases; the number of non zero rows
of such a matrix is equal to the rank of the (original) linear form; the number of
zero rows is the dimension of its kernel.

The best-known algorithm for the computation of the rref of a matrix is the
Gauss-Jordan elimination method. We have implemented the algorithm over the
representation of matrices in the HMA library; this representation was intro-
duced by J. Harrison in HOL-Light and successfully applied in the formalization
of Mathematics in various theorem provers, because of its succinctness and its
taking advantage of the underlying type system; vectors are represented as func-
tions over an underlying �nite type; matrices as vectors of vectors. A priori, �nite
enumerable types have nice computational features, since mathematical and log-
ical operations (traversing, epsilon operator, universal or existential quanti�ers)
over them can be executed. We present here some additional features, relying
in previous works, that enable these possibilities in Isabelle/HOL. In this work,
we link the original statement of the Rank Nullity theorem together with the
Gauss-Jordan elimination algorithm, and can use both tools to produce certi�ed
computations of the rank and kernel of linear forms.

As we will illustrate with some examples, the performance of the algorithm is
rather poor, mainly because of the data structure used to represent matrices; the
executable algorithm cannot be used for real applications, but only for tests (for
instance, it could be used for experimental testing or as a reference algorithm for
more optimized versions of it). Therefore, we introduce a data type re�nement
that allows us to obtain a version of the algorithm performing nicely in matrices
of a considerable size (but still far from specialized Computer Algebra libraries).

The paper is structured as follows; in Section 1 we describe the Isabelle
features in which our development is based on. In Section 2 we present the
Rank Nullity theorem, as well as its Isabelle formalization. In Section 3 we
introduce the notion of rref and the formalization of the Gauss-Jordan algorithm.
In Section 4 we present the choices and setup of the Isabelle code generation tool

that enable to execute operations and algorithms. In Section 5 we bring together
the previous ingredients and present the generated SML code from the original
algorithm. Additionally, we present a re�nement that enabled us to improve the
performance of the certi�ed algorithm. In Section 6 we draw some conclusions
and present related works, as well as possible future research lines. The source
�les of the development are available from [2]; they have been developed under
the Isabelle 2013 version. The previous web site also includes the SML code
generated from the Isabelle speci�cations, and also the input matrices that have
been used in the benchmarks presented in Section 5.

1 Isabelle/HOL

Isabelle [21] is a generic interactive proving assistant, on top of which di�erent
logics can be implemented; the most explored of these variety of logics is higher-
order logic (or HOL), and it is also the one where the greatest number of tools
(code generation, automatic proof procedures) are available. We do not aim
to present here the fundamentals of Isabelle/HOL, just to introduce the main
features that are used in our work.

The HOL type system is rather simple; it is based on non-empty types, func-
tion types (⇒) and type constructors κ that can be applied to already existing
types (nat, bool) or type variables (α, β). Types can be also introduced by enu-
meration (bool) or by induction, as lists (by means of the datatype command).
Additionally, new types can be also de�ned as non-empty subsets of already ex-
isting types by means of the typedef command; the command takes a set de�ned
by comprehension over a given type {x :: α. P x}, and de�nes a new type σ. We
will refer to this new type as abstract, and to the underlying one as concrete (this
terminology is particular to the context of code generation, where the abstract
type cannot be directly code generated, whereas the concrete one, under precise
assumptions, can be; see [8] for details).

Isabelle also introduces type classes in a similar fashion to Haskell; a type
class is de�ned by a collection of operators (over a single type variable) and
premises over them. For instance, the HMA library has a type class �eld rep-
resenting the algebraic structure. Concrete types (real, rat) can be proved to
be instances of a given type class (�eld in our example). Type classes can be
also used to impose additional restrictions over type variables; for instance, the
expression (x :: α :: �eld) imposes the constraint that the type variable α pos-
sess the structure and properties stated in the �eld type class, and can be later
replaced exclusively by types which are instances of that type class.

1.1 HOL Multivariate Analysis library

The HOLMultivariate Analysis library is a set of Isabelle theories which contains
a wide range of results in di�erent mathematical �elds such as Analysis, Topology
or Linear Algebra. They are based on the work of J. Harrison in HOL-Light [10],

which includes proofs of intricate theorems (such as the Stone-Weierstrass the-
orem) and has been successfully used as a basis for the Flyspeck project [11],
aiming at formally verifying the proof of the Kepler conjecture by T. Hales.
Among the fundamentals of the library, one of the keys is the representation of
n-dimensional vectors over a given type (Fn, where F stands for a generic �eld,
or in Isabelle jargon a type variable α :: �eld) taking into account that the HOL
type system lacks the expressivity of dependent types. A detailed explanation
can be found in [9, Section 2]. The idea is to represent vectors over α by means
of functions from a �nite type variable β :: �nite to α; for proving purposes, this
type de�nition is usually su�cient; if we need to introduce vectors of a concrete
dimension n, β can be replaced by a (�nite) type of such cardinality (we present
in Section 4 a possible representation of such types).

The Isabelle type de�nition is as follows; the functions vec-nth and vec-lambda
are the morphisms between the abstract data type vec and the underlying con-
crete data type, functions with �nite domain:

typedef (α,β) vec = UNIV :: ((β::finite) ⇒ α) set

morphisms vec-nth vec-lambda ..

The previous type also admits in Isabelle the shorter notation αˆβ. The
idea of using underlying �nite types for vectors indices has great advantages,
as already pointed out by Harrison, from the formalization point of view. For
instance, the type system enforces that operations on vectors (such as addition or
multiplication) are only performed over vectors of equal dimension, i.e., vectors
which indexing types are exactly the same (this would not be the case if we
were to use, for instance, lists as vectors). Moreover, the functional �avor of
operations and properties over vectors is kept (for instance, vector addition can
be de�ned in a pointwise manner).

The representation of matrices is then derived in a natural way based on the
one of vectors by iterating the previous construction (matrices over a type α will
be terms of type αˆmˆn, where m and n stand for �nite type variables).

The HMA library already contains some de�nitions and properties of ma-
trices de�ned in this way (multiplication, invertible matrices, the relationship
between linear forms and matrices, determinants). Nevertheless, we missed some
other standard results in Linear Algebra, that we had to introduce, such as the
notion of coordinates with respect to a particular (not the canonical one) basis,
the in�uence of changes of bases over a given matrix, or the elementary row
(and column) operations over matrices (exchanging rows, multiplying a row by
a constant and adding to a row another one multiplied by a constant). These ele-
mentary operations also give place to the notion of elementary matrices; indeed,
these are the invertible matrices; each elementary matrix represents a change of
bases.

Another subject that has not been explored in the Isabelle HMA library, or in
HOL-Light, is the possibility to execute the previous data types and operations.
As we will see in Section 4, the �nite type class does not enable some operators

over vectors and matrices to be executed, and some additional type classes have
to be used.

Finally, another aspect that has not been explored in the HMA library is
numerical Linear Algebra. There is no implementation of common algorithms
such as Gaussian elimination or diagonalization. We aim to show that the HMA
library provides a framework where algorithms over matrices can be formalized,
executed and coupled with their mathematical meaning.

1.2 Code generation

Isabelle/HOL o�ers a facility to generate code from speci�cations of data types,
type classes and de�nitions over them, as long as these elements have an exe-
cutable representation in the target languages (SML, Haskell, OCaml or Scala).
The code generator is part of the trusted kernel of Isabelle [7].

As we explained before, the vec type is an abstract type, produced as a sub-
set of the concrete type of functions from a �nite type to a variable type; this
type cannot be directly mapped to an SML type, since its de�nition, a priori,
could involve HOL logical operators unavailable in SML. In the code generation
process, a data type re�nement from the abstract to the concrete type must be
de�ned; the concrete type is then the one chosen to appear in the target pro-
gramming language. A similar re�nement is carried out over the operations of
the abstract type; de�nitions over the concrete data type (functions, in our case)
have to be produced, and proved equivalent (modulo type morphisms) to the
ones over the abstract type. The general idea is that formalizations have to be
carried out over the abstract representation, whereas the concrete representa-
tions are exclusively used during the code generation process. The methodology
also admits iterative re�nements, as long as their equivalence is always proved.
A detailed explanation of the methodology can be found in [7]; an interesting
case study in [5].

In Section 5 we present two di�erent re�nements of the vec Isabelle type; the
�rst one uses functions over �nite domains, and is designed for simplicity. The
second one uses immutable arrays (represented in the Isabelle type iarray) and
presents a remarkable performance improvement when generated to SML.

2 The Rank Nullity theorem of Linear Algebra

The Rank Nullity theorem is a well-known result in Linear Algebra; the following
formulation has been obtained from [22, Theorem 2.8].

Theorem 1 (The rank plus nullity theorem). Let τ ∈ L (V,W).

dim(ker(τ)) + dim(im (τ)) = dim(V)

or, in other notation,

rk (τ) + null (τ) = dim(V)

In the previous statement, L (V,W) denotes the set of linear forms between
two given vector spaces V and W . It is worth noting that V must be a �nite-
dimensional vector space. Several textbooks impose the additional restriction of
W being also �nite-dimensional, but this restriction (as can be observed in the
Isabelle formalization) is only needed in the version of the theorem for matrices
representing linear forms (otherwise, we would have a matrix with an in�nite
number of columns representing the linear form). The following formalization [1]
is part of the Isabelle repository; thanks to the infrastructure in the HMA library,
it comprises a total of 380 lines of Isabelle code. The Isabelle statement of the
result is as follows:

theorem rank_nullity_theorem:

assumes "linear (f::(α::{euclidean_space}) => (β::{real_vector}))"
shows "DIM (α) = dim {x. f x = 0} + dim (range f)"

Following the ideas in the HMA library, the vector spaces are represented
by means of types belonging to particular type classes; the �nite-dimensional
premise on the source vector space is part of the de�nition of the type class
euclidean-space (in the hierarchy of algebraic structures of the HMA library [16],
this is the �rst type class to include the requisite of being �nite-dimensional).
Accordingly, real-vector is the type class representing vector spaces over R. The
operator dim represents the dimension of a subset of a type, whereas DIM is
equivalent to dim, but refers to the carrier set of that type.

There is one remarkable result that we did not �nd in textbooks, but that
proved crucial in the formalization. Its Isabelle statement reads as follows:

lemma inj_on_extended:

assumes lf: "linear f" and f: "finite C"

and ind_C: "independent C" and C_eq: "C = B ∪ W"

and disj_set: "B ∩ W = {}" and span_B: "{x. f x = 0} ⊆ span B"

shows "inj_on f W"

The result claims that any linear form f is injective over any collection (W)
of linearly independent elements whose images are a basis of the range; this is
required to prove that, given {e1 . . . em} a basis of ker(f), when we complete this
basis up to a basis {e1 . . . en} of the vector space V , the linear form f is injective
over the elements W = {em+1 . . . en} and therefore its cardinality is the same
than the one of {fem+1 . . . fen} (and equal to the dimension of the range of f).1

The Isabelle statement of the Rank Nullity theorem over matrices turns out
to be straightforward; we make use of a result in the HMA library (labeled as
matrix-works) which states that, given any linear form f , f(x :: realˆn) is equal
to the (matrix by vector) product of the matrix associated to f and x. The
picture has slightly changed with respect to the Isabelle statement of the Rank
Nullity theorem; where the source and target vector spaces were, respectively,

1 In our opinion, this result is a typical example of a property that is unavoidable in
a formalized proof, but usually skipped in paper & pencil proofs.

an Euclidean space and a real vector space (of any dimension), they are now
replaced by a realˆnˆm matrix, i.e., the vector spaces realˆn and realˆm.

lemma rank_nullity_theorem_matrices:

�xes A::"real^α^β"
shows "DIM (real^α) = dim (null_space A) + dim (col_space A)"

This statement is used to compute the dimensions of the rank and kernel
of linear forms by means of their associated matrices. It exploits the fact that
the rank of a matrix is de�ned to be the dimension of its column space, also
known as column rank, which is the vector space generated by its columns; this
dimension is also equal to the ones of the row space and the range.

3 The Gauss-Jordan elimination method

There are several ways of computing the dimension of the range (and conse-
quently of the kernel) of a linear form. In our development we choose the Gauss-
Jordan elimination method. The main reason is that it has several di�erent
applications. For instance, it can be used to solve systems of linear equations;
in [20] Nipkow presents a proof that the Gauss-Jordan elimination algorithm
is correct in this respect; the algorithm used in that work is very succinct, but
works exclusively for input square matrices with unique solution, i.e., whose
rank is equal to their dimension. Nipkow proves that the algorithm is complete
(under suitable circumstances, it generates a solution) and correct (it generates
a vector which is a solution of the linear system). The algorithm we are for-
malizing di�ers from Nipkow's since we need an algorithm capable of dealing
with non-square matrices whose rank can be smaller or equal than their number
of rows. We also have to prove a di�erent property of the algorithm than the
one he proves; namely, that the rank of the input matrix is preserved through
the algorithm steps. Gauss-Jordan elimination also performs quite well in the
computation of inverse matrices and can be used in the computation of determi-
nants. The algorithm is not optimal for any of those problems, but algorithmic
re�nements could be used in later stages to reach better performing algorithms
for each of the previous tasks, once the mathematical properties of the original
algorithm are stated and proved.

The Gauss-Jordan algorithm is based on the computation of the reduced row
echelon form of (probably non-square) matrices. The rref of a matrix is de�ned
as follows (see [22]):

1. All rows consisting only of 0's appear at the bottom of the matrix.

2. In any nonzero row, the �rst nonzero entry is a 1. This entry is called a
leading entry.

3. For any two consecutive rows, the leading entry of the lower row is to the
right of the leading entry of the upper row.

4. Any column that contains a leading entry has 0's in all other positions.

The previous de�nition of rref is valid for non-square matrices. Interestingly,
the rref (R) of a matrix A can be obtained by performing exclusively row opera-
tions, in such a way that R = E1 . . . EkA, where Ei denote elementary matrices;
since elementary operations (and elementary matrices) preserve the rank of a
matrix, computing the rank of A can be reduced to computing the rank of R (its
number of nonzero rows). The code in the following formalization is available
from [2] in �les Elementary_Operations and Gauss_Jordan.

One way to achieve the collection of elementary row operations that reach
the rref of a matrix is through the Gauss-Jordan elimination algorithm2; ver-
sions of the algorithm abound in the literature; however, we preferred to intro-
duce our own version, designed to ease the formalization. In it, the algorithm
is described by means of exclusively elementary row operations Ei (namely in-
terchange_rows, mult_row and add_row), so that the rank of a matrix A is
preserved because of the previous formula R = E1 . . . EkA. Additionally, the
algorithm exploits the underlying (�nite) representation of matrices, where both
the indices of rows and columns are represented by �nite types; both the types
of columns and rows indices need to be traversed, and thus are restricted to be
instances of the enum type class; this type class is part of the Isabelle library,
and represents types for which the carrier set is explicit.

Algorithm 1 Gauss-Jordan elimination algorithm

Data: A is the input matrix;
l← 0; . l is the index where the pivot is to be placed after each iteration;
for k ← 0, (ncolsA)− 1 do

B Check that there is a nonzero entry over index l in column k;
if nonzero l (col k A) then

i← index_nonzero l (col k A) . Let i be the index of the �rst nonzero entry;
A← interchange_rowsA i l . Rows i and l are interchanged;
A l← mult_rowA l (1/A l k) . Row l is multiplied by (1/A l k);
for t← 0, (nrowsA)− 1 do

if t 6= l then
At← add_rowA t l (−At k) . Row t is added row l times (−At k);

end if
end for
l← l + 1

end if
end for

The algorithm satis�es the following properties. When applied from column
0 up to column k, the �rst k+1 columns will be in rref. Note that implicitly we
are imposing additional constraints on the types indexing columns (and rows);

2 A somehow surprising point is that this algorithm is not even mentioned in [22], even
if a detailed description of elementary operations over matrices, rref or invertible ma-
trices is presented; this underscores our claim that algorithmic and its mathematical
meaning are often presented as di�erent subjects.

they must be inductive, since the proofs will be performed by induction over
columns' indices; we make use of an additional type class mod-type, which re-
sembles the structure Z/nZ, together with some required arithmetic operations
and conversion functions from it to the integers. In particular, a representation
of numeral types in the Isabelle library (represented by the bit0 and bit1 type
constructors over �nite types) which we will use later for representing concrete
matrices of a given dimension is instance of this type class.

The crucial result in the formalization of the algorithm preserving the rank
of matrices is that elementary operations (i.e., invertible matrices) applied to a
matrix preserve its rank:

lemma invertible_matrix_mult_left_rank':

�xes A::"real^'n^'m" and P::"real^'m^'m"

assumes "invertible P" and "B = P ** A" shows "rank B = rank A"

As a consequence of the previous result, we also proved that linear forms are
preserved by elementary operations (only the underlying bases change). Note
that the previous machinery is not particular to our formalization, but could also
be reused for di�erent algorithms in numerical Linear Algebra. We formalized a
result stating that the previous algorithm produces a rref.

Moreover, the presented version of the algorithm is executable, as long as
code can be generated for the index types; we present in Section 4 the details of
that extraction.

4 Code generation from �nite types

Up to now, we have used in our development an abstract data type vec (and
its iterated construction for representing matrices), for which the underlying
concrete types are functions with an indexing type; the indexing type is instance
of the �nite, enum and mod-type type classes; these classes demand the universe
of the underlying type to be �nite, to have an explicit enumeration of their
universe, and some arithmetical properties.

The �nite type class is enough to generate code for some abstract data struc-
tures, such as �nite sets, which are later mapped in the target programming
language (for instance, SML) to data structures such as lists or red black trees
(see [19] for details and benchmarks). Our case study is a bit more demanding,
since the indexing types of vectors and matrices have to be also enumerable. The
enum type class allows us to execute operations such as matrix multiplication,
A ∗ B (as long as the type of columns in A is equal to the type of rows in B),
algorithms traversing the universe of the rows or columns indexing types (such
as operations that involve the logical operators ∀ or ∃ or the Hilbert's ε opera-
tor), enabling operators like �every element in a row is equal to zero� or �select
the least position in a row whose element is not zero�.

The standard setup of the Isabelle code generator for (�nite) sets is designed
for working with sets of generic types (for instance, sets of natural numbers),
mapping them to lists on the target programming language. This poses some

restrictions, since operations such as coset ∅ cannot be computed over arbitrary
types, whereas in an enumerable type this is equal to a set containing every
element of the enumerable type (and therefore, in the target programming lan-
guage, the result of the previous operation will produce a list containing every
element in the corresponding type). The particular setup enabling these kind of
calculations (only for enumerable types), which are ad-hoc for our case study,
can be found in the �le Code_Set of our development [2].

Another di�erent but related issue is the election of a concrete type to be
used as index of vectors and matrices; we already know that the type has to
be an instance of the type classes �nite, enum and mod-type (indeed, mod-type
can be proved to be a subclass of enum, but we preferred to keep them both
since they serve in our work for di�erent purposes). The Isabelle library contains
an implementation of numeral types used to represent �nite types of any cardi-
nality. It is based on the binary representation of natural numbers (by means
of the two type constructors, bit0 and bit1, applied to underlying �nite types,
and of a singleton type constructor num1). From the previous constructors, an
Isabelle type representing Z/5Z (or 5 in Isabelle notation) can be used, which
is internally represented as bit1 (bit0 (num1)). The representation of the (ab-
stract) type 5 is the set {0, 1, 2, 3, 4 :: 5}; its concrete representation is the subset
{0, 1, 2, 3, 4 :: int}. The integers as underlying type allow users to reuse (with
adequate modi�cations) integer operations (substraction and unary minus) in
the resulting �nite types. As part of our development, we prove that the num1,
bit0 and bit1 type constructors are instances of the enum type class.

The Isabelle library already provides basic arithmetic functions for the nu-
meral types, with de�nitions of addition, substraction, multiplication and divi-
sion. Note that, for these operations to be de�ned generally for every cardinality,
the cardinality of the �nite type must be computed on demand (adding 3 and
4 in type 5 must return 2). To this aim, the Isabelle library has a type class
(card_UNIV) for types whose cardinality is computable; we prove that the pre-
vious numeral types are instances of such class, therefore enabling the computa-
tion of their cardinals (see �le Numeral_Type_Addenda in [2] for the complete
proofs).

5 Bringing it all back home: formalization and execution

In the previous section we have presented a setup that permits code generation
of the vectors indexing types and their operations. Nevertheless, as we mentioned
in the presentation of the vec data type, this is itself an abstract type which also
has to be re�ned to concrete data types that can be code generated.

We present here two such re�nements. The �rst one consists in re�ning the
abstract type vec to its underlying concrete type functions (with �nite domain).
We expected the performance to be unimpressive, but for the purpose of for-
malization it is bene�cial for these two representations to be closely related; at
a low cost, an executable version of the algorithm can be achieved, capable of
computing the rref of matrices of small sizes.

The second data type re�nement is more informative; we re�ne the vec data
type to the Isabelle type iarray, representing immutable arrays (which are gen-
erated in SML to the Vector structure [23]).

In order to achieve the �rst re�nement (from abstract matrices to functions),
the type morphisms between the type vec and its counterpart (functions) have
to be labeled precisely in the code generator setup. Additionally, every operation
over the abstract data type has to be mapped to an operation over the concrete
data type (and their behavioral equivalence proved). As long as our algorithm
is based on (abstract) operations which are mapped to corresponding concrete
operations, the later ones will be correctly code generated. Since dealing with
matrices as functions can become rather cumbersome, we also de�ne additional
functions for conversion between lists of lists and functions (so that the input
and output of the algorithm are presented to the user as lists of lists).

One subtlety appears at this step; from a given list of elements, a vector
of a certain dimension is to be produced; the user must add a type annotation
declaring which dimension the generated vector has to be (in other words, the
size of the list needs to be known in advance).

Below we present examples of the evaluation (by means of SML generated
code) of the Gauss-Jordan algorithm to compute the dimension of the rank
(which is also the one of the column space) and the one of the null space of given
matrices of reals; the evaluation can be also performed in Isabelle (and therefore
the code generator would not intervene):

value[code] "rank (list_of_lists_to_matrix

[[1,0,0,7,5],[1,0,4,8,-1],[1,0,0,9,8],[1,2,3,6,5]]::real^5^4)"

value[code] "dim (null_space (list_of_lists_to_matrix

[[1,0,0,7,5],[1,0,4,8,-1],[1,0,0,9,8],[1,2,3,6,5]]::real^5^4))"

The previous computations have been carried out with matrices represented
as functions. They are almost instantaneous, but the computation of the algo-
rithm over matrices of size 10× 10 is already very slow (several minutes).

The second aforementioned re�nement was designed for improving perfor-
mance. The original Isabelle abstract type vec is mapped to the Isabelle type
iarray (the type itself is just a wrapper of lists), which is then mapped in the
code generation process to the SML Vector structure; the SML structure requires
constant time for access operations, improving, a priori, an implementation by
lists. The code equations that perform the data type and operations conver-
sions (from type vec to type iarray) can be found in �le Matrix_To_IArray
in [2]. As in our previous example, the data type re�nement demands labeling
the morphisms between the abstract type (vec) and the concrete one (iarray),
and introducing operations on iarrays that are proven equivalent to the original
abstract ones. These proofs are almost straightforward, since the iarray and vec
representations share a functional �avor (in the way of accessing elements) that
can be exploited in proofs.

Our Gauss-Jordan algorithm is implemented for matrices with entries over
a �eld ; in our execution experiments we carry out computations over the Is-

abelle types real, rat (for Q) and bit (an implementation of the �eld Z/2Z);
the Isabelle type real admits serialisations to an SML ad hoc type (quotients
of SML IntInf.int elements) and also to the SML Real.real type. The former
o�ers arbitrary precision, but on a standard machine, using the optimizer com-
piler MLton, only (randomly generated) matrices up to 100 × 100 size can be
computed in a reasonable time (as a matter of comparison, Gauss-Jordan algo-
rithm in Mathematica® over matrices of real numbers with arbitrary precision
becomes rather slow at sizes over 500 × 500). Table 1 shows the times used by
the SML implementation Poly/ML and the optimizer compiler MLton to process
and execute the Gauss-Jordan elimination algorithm generated from the Isabelle
veri�ed speci�cation over (randomly generated) matrices whose inputs are quo-
tients of IntInf.int elements. The following experiments have been carried out
in a computer with an Intel Core i3-370M Processor (2 cores of 2.4 GHz) with
4GB of RAM and Ubuntu GNU/Linux 11.10. The SML code and the benchmark
matrices are available from [2].

Rational matrices

Size
(n)

Poly/ML MLton
Processing

Time (seconds)
Execution

Time (seconds)
Processing

Time (seconds)
Execution

Time (seconds)

10 0.0 0.0 0.2 0.0
20 0.0 0.2 0.3 0.0
30 0.0 1.0 0.6 0.5
40 0.1 3.7 0.9 1.5
50 0.1 10.2 1.4 4.5
60 0.2 22.7 1.9 9.6
70 0.3 43.0 2.7 18.4
80 0.5 77.0 3.5 32.7
90 0.6 126.9 4.5 54.1
100 0.7 200.9 6.0 84.1

Table 1. Elapsed time (in seconds) to process random Qn×n matrices (with elements
between -10 and 10) and computing their rrefs using the Gauss-Jordan algorithm with
Poly/ML 5.5 and MLton 20100608.

Applying pro�ling techniques, we detected that most of the computing time
is used not in matrix operations but in the ones related to integer quotients
operations (normalising quotients, computing the lcm of denominators, and the
like3). The latter serialisation (to the SML Real.real type) is produced only for
computing purposes, since it is inconsistent and su�ers from numerical stability
problems, but allows us to apply Gauss-Jordan elimination to (randomly gen-
erated) matrices up to size 700 × 700. The performance tests are presented in

3 Both MLton and Poly/ML make use of the GMP http://gmplib.org/ set of libraries
for arithmetic.

http://gmplib.org/

Table 2. The processing and execution times in Poly/ML follow a linear pattern
with respect to the number of elements in the matrix (n2).

Real matrices

Size
(n)

Poly/ML MLton
Processing

Time (seconds)
Execution

Time (seconds)
Processing

Time (seconds)
Execution

Time (seconds)

10 0.0 0.0 0.8 0.0
20 0.0 0.0 2.5 0.0
30 0.0 0.0 6.4 0.0
40 0.1 0.0 13.8 0.0
60 0.2 0.0 56.9 0.0
80 0.3 0.0 164.3 0.0
100 0.6 0.2 361.6 0.1
200 3.7 0.7 9145.4 0.5
300 9.6 2.4 - -
400 20.3 5.9 - -
500 37.3 10.2 - -
600 65.8 20.5 - -
700 98.6 44.4 - -

Table 2. Elapsed time (in seconds) to process random Rn×n matrices (with elements
between -10 and 10) and computing their rrefs using the Gauss-Jordan algorithm with
Poly/ML 5.2 and MLton 20100608.

The rat type is also serialised to quotients of IntInf.int pairs; the performance
tests are therefore equal to the ones obtained for the �rst serialisation of type
real and presented in Table 1.

Finally, we de�ne our custom serialisation of type bit to SML; the Isabelle
constants 0 :: bit and 1 :: bit are mapped in SML to 0 and 1 of type IntInf.int ;
operations over bit to arithmetic operations modulo 2 in IntInf.int. This seriali-
sation proved empirically to perform better than other options such as the SML
type Bool, or using IntInf.int with exhaustive de�nitions of the operations. The
benchmarks of this serialisation are presented in Table 3.

With this last serialisation and Poly/ML 5.5 we get to apply Gauss-Jordan
elimination, and compute the rank, of matrices of dimensions up to 2560×2560;
computing time grows linearly on the number of matrix entries (as can be seen
in Table 3), and therefore RAM memory becomes the only practical limitation.
For instance, we are able to compute the rank of the binary matrix representing
the following digital image (Fig. 1), captured with a confocal microscope from a
neuronal culture. It is worth noting that the processing and computing times over
matrices obtained from digital images are smaller than the ones obtained over
randomly generated matrices, since the �rst ones usually contain patterns which
reduce the total number of computations performed during the diagonalization
process.

Z2 matrices

Size
(n)

Poly/ML MLton
Processing

Time (seconds)
Execution

Time (seconds)
Processing

Time (seconds)
Execution

Time (seconds)

50 0.0 0.0 0.8 0.0
100 0.3 0.0 4.0 0.1
150 0.6 0.1 16.3 0.3
200 1.0 0.3 54.6 0.6
250 1.6 0.7 124.7 1.3
300 2.2 1.2 262.9 2.2
350 3.0 1.9 480.4 3.5
400 4.6 2.9 809.2 5.2
500 7.3 6.1 - -
600 10.6 9.8 - -
800 19.8 24.1 - -
1000 31.8 45.1 - -
1200 53.7 79.7 - -
1400 65.6 143.0 - -
1600 107.0 200.5 - -

Table 3. Elapsed time (in seconds) to process randomly generated (Z2)
n×n matri-

ces and computing their corresponding rrefs using the Gauss-Jordan algorithm with
Poly/ML 5.5 and MLton 20100608.

The rank of matrices with entries in Z2 permits to know the number of
connected components (and can be successfully applied to the computation of
the number of synapses in a neuron, automating a cumbersome task previously
made �by hand� by biologists) in the original image. See [13] for details about
this technique.

Additional benchmarks and extensive details on the previous and some other
tests are presented in [3].

6 Related work and Further work

6.1 Related work

From the di�erent theorem provers available in the HOL family, the ones with
a better mathematical library are HOL-Light and Isabelle; this can be easily
checked by reading through their libraries, and corroborated by informal but
informative rankings such as [24]; our work here relies on the foundations that
both systems share and has reused successfully the mathematical machinery
that has been developed there; nevertheless, and to the best of our knowledge,
both of them lack of implementations of numerical Linear Algebra; moreover,
we do not know of any attempt of execution of the de�nitions available in that
libraries. From our point of view, our work is a starting point to �ll a gap between
formalization and execution that aims to a greater use of these already powerful
libraries.

Fig. 1. Image (2048× 2048 px.) of a neuron captured with a confocal microscope.

Some other theorem provers have also formalized the computation of the
rank of linear forms; for instance, the SSRe�ect library of Coq contains the most
extensive e�ort to formalize �nite-dimensional Linear Algebra concepts, aiming
at providing a suitable library for the implementation of the classi�cation of
�nite simple groups. The whole library is based upon �nite-dimensional struc-
tures, and Coq itself is a constructive setting in which proofs and algorithms
are intertwined, so that one would (erroneously) expect that an implementa-
tion of Gauss-Jordan elimination over matrices should be executable; as is well
known [12, Sect. 4], the extensive use of dependent types features in the repre-
sentation of algebraic structures and matrices, which allows for relatively simple
proofs, comes at a cost: these de�nitions have been locked to avoid the heavy
computations that they would demand, since they may not �nish in a reasonable
amount of time.

The previous re�ection supports our claim that �nite functions as a working
type for executing matrices are not a good choice; in an e�ort to o�er executabil-
ity of some of the concepts in the SSRe�ect library, a new library CoqEAL [4]
has been carried out in which, by means of types and algorithms re�nements,
computable versions of, for instance, the rank of a matrix, are provided.

6.2 Further work and Conclusions

We do not aim to present this development as a canonical approach to the
the task of bringing together mathematical formalization and execution, but
to show that proof assistants are mature enough to enable the simultaneous
development of both �elds with some technical e�ort (that once carried out, can
be later reused in di�erent settings). Additionally, one of the �elds in which the
Isabelle/HOL tool is more actively growing at the moment is data types and
algorithms re�nements, with the ambitious goal of reducing the gap between
software formalization and working software.

The case study we have presented in this paper can be considered from at
least two di�erent points of view. First, as an experiment in Linear Algebra for-
malization, for which the HMA library has shown to be an adequate framework.

With some technical e�ort in the code generation process, we have been capable
of formalizing and executing the same �abstract� algorithm; in addition to this,
we have developed tools (de�nitions and proofs over row and column elementary
operations) that are applicable in the formalization of numerical Linear Alge-
bra. Second, as an e�ort to get competitive results from a computational point of
view; we have successfully applied some re�nement techniques already available
in Isabelle, obtaining formalized programs that can be executed over matrices
of a remarkable size.

There are several directions we plan to take this work. Even if the perfor-
mance of the Gauss-Jordan formalized algorithm is quite satisfying, some re�ne-
ments could be thought of to reduce the number of operations that it performs;
the algorithm could be implemented using block matrices that recursively de-
crease their size after each iteration of the algorithm. This would reduce the
number of operations performed; on the other hand, it could demand the use of
dependent types or subtypes to de�ne submatrices (or some similar construct),
falling short of the HOL type system.

Some other improvements of the algorithm are presented in the literature;
for instance, instead of pivoting the �rst nonzero element over a given index of
a column, the maximum element of the same column can be pivoted (�partial
pivoting�), or even the maximum element in the whole submatrix (�total piv-
oting�); these strategies are experimentally known to improve the performance
of the algorithm and specially its numerical stability. Instead of improving the
performance of the Gauss-Jordan elimination algorithm, an ad hoc algorithm
computing the rank of matrices could be implemented, and linked by a standard
re�nement technique with rank computation by Gauss-Jordan elimination.

There are further re�nement techniques in Isabelle that we would like to
explore as a natural continuation to our work. The work in [8] presents an in-
frastructure for lifting de�nitions from a concrete data type to an abstract one,
and for transferring proofs from the abstract setting to the concrete one. The
concept is really close to the one we have proposed in this paper, but at the mo-
ment the technology can be applied to Isabelle user de�ned types (as abstract
type) and its underlying concrete types or quotient types. In our setting, it could
have been used to lift de�nitions from functions to the type vec; it is also used
in the code generation process of some of the �elds that we used as examples.
Another interesting Isabelle tool that we would like to explore is Autoref [18];
according to the authors, the tool automatically re�nes algorithms over abstract
concepts to algorithms over concrete implementations; even if our underlying
algebraic structures (vectors or matrices) are not completely �abstract�, it could
be interesting to explore the feasibility of writing down Linear Algebra algo-
rithms in Isabelle in an almost imperative way (as they are usually presented in
textbooks) and rely on the automatic re�nement to translate these algorithms
to executable ones in a functional programming setting, very much in the spirit
of [17]. The previous tools and techniques could be applied to a wide range of
Linear Algebra algorithms, some of them rooted in variants of Gauss-Jordan
elimination.

Acknowledgements. This work has been supported by projects MTM2009-
13842-C02-01 (Ministerio de Educación y Ciencia), FORMATH, nr. 243847, of
the FET program within the FP7 of the European Commission, and Universidad
de La Rioja, research grant FPI-UR-12.

Andreas Lochbihler provided us with great insight and invaluable ideas in
how to get the right setup for code generation of sets, and also in understanding
the type classes computing cardinality of types. Florian Haftmann helped us with
the serialisation of the real Isabelle type to the Real SML structure. Johannes
Hölzl assisted us in polishing our formalization of the Rank Nullity theorem.
Julio Rubio suggested the use of pro�ling techniques to detect weaknesses in the
execution experiments and commented on earlier versions of the paper.

References

1. J. Aransay and J. Divasón. Rank Nullity Theorem in Linear Algebra, Archive
of Formal Proofs. 2013. http://afp.sourceforge.net/entries/Rank_Nullity_

Theorem.shtml.
2. J. Aransay and J. Divasón. Gauss-Jordan elimination in Isabelle/HOL. 2013. http:

//www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan/.
3. J. Aransay and J. Divasón. Performance Analysis of a Veri�ed Linear Algebra pro-

gram in SML, Taller de Programación Funcional (TPF 2013). Accepted for pub-
lication. Preprint available from http://wiki.portal.chalmers.se/cse/uploads/

ForMath/pavlap.
4. M. Dénès, A. Mörtberg and V. Siles. A re�nement-based approach to computational

algebra in COQ. Interactive Theorem Proving (ITP 2012). pp. 83 � 98. LNCS, 2012.
5. J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf and J. G. Smaus. A

Fully Veri�ed Executable LTL Model Checker. Computer Aided Veri�cation (CAV
2013). pp. 463 � 478. LNCS, 2013.

6. Formath Project: Formalisation of Mathematics. http://wiki.portal.chalmers.
se/cse/pmwiki.php/ForMath.

7. F. Haftmann and T. Nipkow. Code Generation via Higher-Order Rewrite Systems.
Functional and Logic Programming (FLOPS 2010). pp. 103 � 117. LNCS, 2010.

8. F. Haftmann, A. Krauss, O. Kun£ar and T. Nipkow. Data Re�nement in Is-
abelle/HOL. Interactive Theorem Proving (ITP 2013). pp. 100 � 115. LNCS, 2013.

9. J. Harrison. A HOL Theory of Euclidean Space. TPHOLs 2005. pp. 114 � 129.
LNCS, 2005.

10. J. Harrison. The HOL Light Theory of Euclidean Space. J. Autom. Reasoning, 50
(2). pp. 173 � 190. 2013.

11. T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua and R. Zumkeller. A
revision of the Proof of the Kepler Conjecture. Discrete & Computational Geometry,
44 (1). pp. 1 � 34. 2010.

12. J. Heras, T. Coquand, A. Mörtberg and V. Siles, Computing Persistent Homol-
ogy within Coq/SSRe�ect. ACM Transactions on Computational Logic. Accepted
for publication. Preprint available from http://www.cse.chalmers.se/~mortberg/

papers/cphwcs.pdf.
13. J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza and V. Siles. Towards a certi

�ed computation of homology groups for digital images. Computational Topology
in Image Context (CTIC 2012). pp. 49 � 57. LNCS, 2012.

http://afp.sourceforge.net/entries/Rank_Nullity_Theorem.shtml
http://afp.sourceforge.net/entries/Rank_Nullity_Theorem.shtml
http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan/
http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan/
http://wiki.portal.chalmers.se/cse/uploads/ForMath/pavlap
http://wiki.portal.chalmers.se/cse/uploads/ForMath/pavlap
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath
http://www.cse.chalmers.se/~mortberg/papers/cphwcs.pdf
http://www.cse.chalmers.se/~mortberg/papers/cphwcs.pdf

14. J. Heras, M. Poza, M. Dénès and L. Rideau. Incidence Simplicial Matrices Formal-
ized in Coq/SSRe�ect. Conference on Intelligent Computer Mathematics (CICM
2011). pp. 30 � 44. LNCS, 2011.

15. J. Hölzl et al, HOL Multivariate Analysis, http://isabelle.in.tum.de/dist/

library/HOL/HOL-Multivariate_Analysis/index.html, 2013.
16. J. Hölzl, F. Immler and B. Hu�man. Type Classes and Filters for Mathematical

Analysis in Isabelle/HOL. Interactive Theorem Proving (ITP 2013). pp. 279 � 294.
LNCS, 2013.

17. P. Lammich and T. Tuerk. Applying Data Re�nement for Monadic Programs to
Hopcroft's Algorithm. Interactive Theorem Proving (ITP 2012). pp. 166�182. LNCS,
2012.

18. P. Lammich. Automatic Data Re�nement. Interactive Theorem Proving (ITP
2013). pp. 84 � 99. LNCS, 2013.

19. A. Lochbihler. Light-weight containers for Isabelle: e�cient, extensible, nestable.
Interactive Theorem Proving (ITP 2013). pp. 116 � 132. LNCS, 2013

20. T. Nipkow. Gauss-Jordan Elimination for Matrices Represented as Func-
tions. Archive of Formal Proofs, 2011. http://afp.sourceforge.net/entries/

Gauss-Jordan-Elim-Fun.shtml.
21. T. Nipkow, L. Paulson and M. Wenzel. Isabelle/HOL: A proof assistant for Higher-

Order Logic. Springer, 2002.
22. S. Roman. Advanced Linear Algebra (Third Edition). Springer. 2008
23. E. Gasner and J. H. Reppy (eds.) The Standard ML Basis Library, http://www.

standardml.org/Basis/.
24. F. Wiedijk. Formalizing 100 Theorems. http://www.cs.ru.nl/~freek/100/.

http://isabelle.in.tum.de/dist/library/HOL/HOL-Multivariate_Analysis/index.html
http://isabelle.in.tum.de/dist/library/HOL/HOL-Multivariate_Analysis/index.html
http://afp.sourceforge.net/entries/Gauss-Jordan-Elim-Fun.shtml
http://afp.sourceforge.net/entries/Gauss-Jordan-Elim-Fun.shtml
http://www.standardml.org/Basis/
http://www.standardml.org/Basis/
http://www.cs.ru.nl/~freek/100/

	Formalization and execution of Linear Algebra: from theorems to algorithms.

