Under consideration for publication in Formal Aspects of Computing

Formalisation of the Computation of
the Echelon Form of a Matrix in

Isabelle/HOL

Jests Aransay and Jose Divasén

Abstract. In this contribution we present a formalised algorithm in the Isabelle/HOL proof assistant to
compute echelon forms, and, as a consequence, characteristic polynomials of matrices. We have proved its
correctness over Bézout domains, but its executability is only guaranteed over Euclidean domains, such as
the integer ring and the univariate polynomials over a field. This is possible since the algorithm has been
parameterised by a (possibly non-computable) operation that returns the Bézout coeflicients of a pair of
elements of a ring. The echelon form is also used to compute determinants and inverses of matrices. As a
by-product, some algebraic structures have been implemented (principal ideal domains, Bézout domains,
etc.). In order to improve performance, the algorithm has been refined to immutable arrays inside of Isabelle
and code can be generated to functional languages as well.

Keywords: Theorem proving; Isabelle/HOL; Linear Algebra; Verified Code Generation

1. Introduction

A classical mathematical problem is the transformation of a matrix over a ring into a canonical form (i.e.,
a unique matrix that is equivalent in some sense to the original matrix, and that provides a explicit way to
distinguish matrices that are not equivalent), which have many applications in computational Linear Algebra.
These canonical forms contain fundamental information of the original matrix, such as the determinant and
the rank. Examples of canonical forms are the Hermite normal form (usually applied to integer matrices),
the Smith normal form and the reduced row echelon form. The most basic canonical form is the one called
echelon form. Some authors, including S. Leon [Leol4], use such a term to mean the output of the Gaussian
elimination (which can only be applied to matrices over fields). However, the concept can be generalised
to more general rings; other authors, including A. Storjohann [Sto00], have studied this generalisation and
present the algorithm to compute the echelon form of a matrix over a principal ideal domain. Nevertheless,
this canonical form can be defined over more general structures: as L. Hogben shows, its existence can be
proved over matrices whose coefficients belong to a Bézout domain [Hog06]|.

Correspondence and offprint requests to: Jesis Aransay and Jose Divasén. Departamento de Matematicas y Computacién,
C/ Luis de Ulloa 2, Edificio Juan Luis Vives, Universidad de La Rioja, 26004 Logrofio, La Rioja, Spain.
E-mails: jesus-maria.aransay@Qunirioja.es and jose.divasonm@unirioja.es

2 Jests Aransay and Jose Divasén

An algorithm to transform a matrix to its echelon form has many applications, such as the computation
of determinants and inverses, since it is the analogous to the Gaussian elimination but involving more general
rings. In addition, the echelon form can be used as a preparation step to compute the Hermite normal form
of a matrix, and thus, to compute ranks and solutions of systems of linear Diophantine equations.

Another advantage of having an algorithm to transform a matrix into an echelon form is that, as a by-
product, the characteristic polynomials can be easily obtained (even though there exist other more efficient
ways of computing characteristic polynomials). Characteristic polynomials play a key role in Linear Algebra:
the roots of the characteristic polynomial of a matrix are its eigenvalues and from them the eigenvectors can
be obtained. Among the numerous applications of these concepts are biometrics [Fuk13| and the mathematical
foundations of quantum mechanics [VN55]. The characteristic polynomial is also a powerful tool to simplify
computations where matrices are involved.

In this work, we present a formalisation in Isabelle/HOL of an algorithm to obtain the echelon form of
a given matrix. (The full development can be found at [DA15a].) We have formalised the algorithm over
Bézout domains, but its executability is guaranteed only over Euclidean domains. This is possible since we
have formalised the algorithm including an additional parameter: the operation that given two elements
returns their Bézout coefficients. Let a and b be two elements of a Bézout domain; from its definition, there
exist p, ¢ and ¢ such that pa + gb = g where g is the greatest common divisor of a and b. Bézout domains
pose this operation, but neither its uniqueness nor its executability are guaranteed. The executability of
this operation is at least guaranteed on Euclidean domains, based on the division algorithm. This way, we
have been able to formalise the existence and correctness of an algorithm to obtain an echelon form over
Bézout domains and get the computation over Euclidean domains. Even more, if one were able to provide an
executable operation to compute the Bézout coefficients in a Bézout domain, the algorithm would become
computable in that structure as well. These transformations into echelon forms allow one to compute inverses
and determinants of matrices, as well as the characteristic polynomial. The wide range of applications of
these concepts constitute a motivation to formalise such an algorithm.

The utility of this work is threefold. First, we have enhanced the Isabelle ring library based on type
classes including some structures, concepts and theorems that were missing: Bézout domains, principal ideal
domains, GCD domains, subgroups, ideals and more. Second, we have formalised an algorithm to transform
a matrix into an echelon form, parameterised by the Bézout coefficients operation (that establishes if the
algorithm will or will not be computable). As we have already said, this allows us to formalise the existence
of the algorithm over Bézout domains and the computation over Euclidean domains. To improve the perfor-
mance, a refinement to immutable arrays has also been carried out. Verified code to compute determinants
and inverses (over matrices whose elements belong to a Euclidean domain, such as the integers and the
univariate polynomials over a field) is generated, and also applied to compute characteristic polynomials
of matrices over fields. Finally, we have successfully reused the infrastructure that we developed for the
formalisation and refinement of the Gauss-Jordan algorithm [DA14]. This work shows its usefulness.

The paper is divided as follows. Section [2| presents some previous mathematical concepts that are im-
portant in our development as well as some other related formalisations. In Section [3] we show the algebraic
structures we have implemented in Isabelle and the hierarchy of the involved classes. In Section [4 we explain
both the formalisation of the algorithm and its relationship with the infrastructure presented in [DA14]. Sec-
tion [5| presents the formalisation of the direct applications of the algorithm: computation of determinants,
inverses and the characteristic polynomial of a matrix. Moreover, some other computations related to the
Cayley-Hamilton theorem are shown as well as the verified refinement of the algorithm to immutable arrays
in order to improve the performance. Section [6] shows some related work presented in the literature. Finally,
conclusions and possible further work are presented in Section [7] The Isabelle code presented in the paper
is freely available from the Isabelle Archive of Formal Proofs [DA15a]. Let us note that Isabelle libraries
are continuously evolving. We present the Isabelle code in the time this paper is written, that is, after the
Isabelle 2016 official release. Modifications on the library are being carried out (particularly, many definitions
that we introduce in Section [3|are being incorporated to the Isabelle library by M. Eberl and F. Haftmann),
and some results, instances and structures presented here could be changed in the Isabelle repository version
during their process of adoption as part of the standard library for the next Isabelle release.

Echelon Form in Isabelle/HOL 3

2. Preliminaries
2.1. Linear Algebra and Echelon Forms

To begin with, we are going to introduce the main mathematical concepts which our development is based
on. First of all, we should define some notation. By PIR (principal ideal ring) we mean a commutative ring
with identity in which every ideal is principal. We use PID (principal ideal domain) to mean a PIR which
has no zero divisors. Confusingly, some authors (e.g. M. Newman [New72|) use PIR to refer to what we call
PID. Nevertheless, we consider that it is important to make the difference: for instance, the Hermite normal
form, which will be presented later, is not a canonical form for left equivalence of matrices over a PIR, but
it is over PIDs [Sto00]. In the sequel, we assume that F is a field and R a commutative ring with a unit.

This work presents the formalisation of an algorithm which transforms a matrix into its echelon form,
hence the most important concepts related to such a transformation must be defined. There are three types
of elementary row (column) operations over a matrix A € My, xn(R):

1. Interchange of two rows (columns) of A.
2. Multiplication of a row (column) of A by a unit.
3. Addition of a scalar multiple of one row (column) of A to another row (column) of A.

Given a matrix, it can be transformed into another row (column) equivalent matrix by means of elemen-
tary operations. These transformations are very useful if they are applied properly, since they allow obtaining
equivalent matrices which simplify the computation of the inverse, determinant, decompositions such as LU
and QR, etc. of the original matrix.

The most basic matrix canonical form (in the sense that many other canonical forms are based on it)
that can be obtained using elementary operations is the echelon form.

Definition 1. The leading entry of a nonzero row is its first nonzero element.
Definition 2. A matrix A € M,,«,(R) is said to be in echelon form if:

1. All rows consisting only of 0’s appear at the bottom of the matrix.

2. For any two consecutive nonzero rows, the leading entry of the lower row is to the right of the leading
entry of the upper row.

Note that a matrix in echelon form is upper triangular, so it is straightforward to compute its determinant.
Furthermore, the reduced row echelon form is another useful matrix canonical form, since it is the output of
the Gauss-Jordan algorithm.

Definition 3. A matrix A € M,,x,(R) is said to be in reduced row echelon form (or shorter, in rref) if:

1. A is in echelon form.
2. In any nonzero row, the leading entry is a 1.
3. Any column that contains a leading entry has 0’s in all other positions.

By means of elementary operations, any matrix over a PID can be transformed into an echelon form
and any matrix over a field can be transformed into its reduced row echelon form, which is unique. It is a
well-known result that over more general rings than fields it could not be possible to get the reduced row
echelon form of a given matrix (leading entries different from 1 could appear).

There are many other kinds of canonical matrices which are based on the echelon form and present useful
properties:

e The Hermite normal form. It is the natural generalisation of the reduced row echelon form for PIDs,
although it is normally studied only in the case of integer matrices. One of its primary uses is to solve
systems of linear Diophantine equations over PIDs.

e The Smith normal form. It is useful in topology for computing the homology of a simplicial complex.
e The minimal echelon form.
e The Howell form.

A. Storjohann [Sto00] gives a detailed account of these canonical forms and presents algorithms to com-
pute them.

4 Jests Aransay and Jose Divasén

On another note, there are three important concepts that must be introduced: eigenvalues, eigenvectors
and the characteristic polynomial of a matrix.

Definition 4. A scalar A is an eigenvalue for a matrix A € M, «,(R) if there exists a nonzero column vector
x for which

Ax =Xz
In this case, x is called an eigenvector for A associated with A.

Definition 5. The characteristic polynomial of A € M, «,(R) is the polynomial defined as the determinant
of the polynomial matrix tI — A (where ¢ denotes the polynomial variable, and I the identity matrix), that
is, det(tI — A).

Such concepts play an important role on mathematics due to their significant applications and are related
with the Cayley-Hamilton theorem:

Theorem 1. The Cayley-Hamilton theorem for matrices. Every square matrix over a commutative
ring satisfies its own characteristic polynomial.

S. Adelsberger et al. have formalised the Cayley-Hamilton theorem in Isabelle/HOL [AHP14]. Our devel-
opment will rely on this development to reuse the definition and some properties of characteristic polynomials.

2.2. Isabelle, type classes and Gauss-Jordan algorithm

The importance and use of theorem provers are increasing nowadays, both in the formalisation of mathe-
matical results and in the verification of algorithms. Isabelle is one of the most used and well-known proof
assistants, on top of which different logics are implemented; the most explored of them is higher-order logic
(or HOL), and it is also the one where the greatest number of tools (code generation, automatic proof
procedures) and developments are available. It has been successfully used, for instance, in the proof of the
Kepler conjecture by T. Hales et al. [HABT15] (the largest formal proof completed to date) and in the
formal verification of sel4, an operating-system kernel, by G. Klein et al. [KEHT09]. A simple but precise
way to describe Isabelle/HOL is as functional programming plus logic. Some of the notation in the sequel
will exploit this functional flavour; for instance, by f a b we will refer to the function f applied to arguments
a and b (or, even in a more functional jargon, the function fa applied to the argument b).

The HOL Multivariate Analysis Library (or, HMA for short) is a set of Isabelle/HOL theories that has
been successfully used in concrete developments in Analysis, Topology and Linear Algebra. It contains (in
the current Isabelle release) more than 4,000 lemmas and 250 definitions and is based on the impressive
work of J. Harrison in HOL Light [Harl3]. One of the keys of the library is the representation of matrices;
this representation was successfully applied in the formalisation of mathematics in various theorem provers,
because of its succinctness and its taking advantage of the underlying type system; vectors are represented
as functions over an underlying finite type; matrices as vectors of vectors. Our development is based on this
library.

Isabelle/HOL provides axiomatic type classes [Hafl6b|, which allow organising polymorphic specifica-
tions. Essentially, they combine an operational aspect (in the manner of Haskell) with a logical aspect,
both managed uniformly. A type class C specifies assumptions Py, ..., Py for fixed constants and operations
c1,--.,¢yn and may be based on other type classes Ay, ..., A,. The command class declares type classes in
Isabelle/HOL. Just one type variable « is allowed to occur in the type class specification. It is said that a
type B is an instance of the type class C' if it provides definitions for the respective constants and respects the
required assumptions. For example, the Isabelle type int which represents the integer numbers is an instance
of the semigroup class. The command subclass establishes relationships (inclusions) among classes, allowing
one to inherit facts and definitions. Code can also be generated from type classes to functional languages in
a Haskell-like manner. In this work, we make use of type classes to represent algebraic structures and their
relationships.

In |[DA14] we presented an infrastructure to formalise, execute and refine algorithms of Linear Algebra in
Isabelle/HOL. The development is based on HMA and goes together with a case study: the formalisation of
the Gauss-Jordan algorithm. The Gauss-Jordan algorithm transforms a matrix (whose coefficients belong to
a field) into another matrix in reduced row echelon form by means of elementary operations. We formalised
the elementary operations over matrices and its properties, which can be reused for proving the correctness

Echelon Form in Isabelle/HOL 5

of other Linear Algebra algorithms. We also set up Isabelle to generate code from the matrix representation
presented in HMA. Additionally, a refinement to immutable arrays was carried out in such a way that the
algorithm obtained a remarkable performance, even compared with an equivalent imperative version of the
algorithm (see [AD15a]).

We also formalised some of the well-known applications of the Gauss-Jordan algorithm: computation
of ranks, inverses, determinants, dimensions and bases of the four fundamental subspaces of a matrix and
solutions of systems of linear equations (in every case: unique solution, multiple solutions and no solution).
Verified code of these computations is generated to both Standard ML and Haskell.

It is worth remarking that the Gauss-Jordan algorithm is applied to matrices whose elements belong
to a field (the generalisation from R to fields was presented in |[AD15b]). Therefore, it is useful for doing
computations, for instance, with matrices over Zs, Q, R and C, but it cannot be used for matrices over rings,
such as integer matrices.

2.3. Matrices over rings

Despite the fact that matrices over fields have been more studied, matrices over rings possess remarkable
applications. Two well-known examples of this kind of matrices are integer matrices and polynomial matrices
(also denoted as Z and F'[z]-matrices respectively).

Integer matrices are widely used in graph theory [BW04] and combinatorics |[LLO0|. Systems of Diophan-
tine equations can be represented using those matrices as well. Polynomial matrices are primarily used to
compute the characteristic polynomial of a matrix A. The roots of the characteristic polynomial are the
eigenvalues. Once the eigenvalues are known (), the eigenvectors can be obtained solving the homogeneous
system of equations (A — AI) - v = 0 or by means of the Cayley-Hamilton theorem. The characteristic
polynomial of a matrix has several applications, such as computing its inverse and performing powerful
simplifications computing its powers. Eigenvalues and eigenvectors are useful both in mathematics (for in-
stance, in differential equations [Zil12] and factor analysis in statistics [Chi06]) and in other varied fields,
such as biometrics [Fuk13], quantum mechanics [VN55] and solid mechanics |[Bat03]. They are also used in
the PageRank computation [LM11] (the algorithm used by Google Search to rank websites in their search
engine results).

3. Algebraic structures, formalisation and hierarchy

In this section, we recall mathematical definitions of the main algebraic structures involved in the develop-
ment as well as their formalisation that we have carried out in Isabelle. Throughout the paper, by ged we
mean greatest common divisor.

Figure [1| shows the hierarchy of the main Isabelle type classes involved in the development. The arrows
express strict inclusions (all of them have been proved in Isabelle); hence by the transitivity property of the
inclusion one could figure out the dependencies and subclasses among the structures. As we will see later,
there exist more classes involved in the formalisation, but Figure [I| shows the main ones. The structures that
we have had to introduce are presented in bold.

The algebraic structures presented in this section and their properties have been formalised in the file
Rings2.thy of [DA15a]. Let us start with the mathematical concept of GCD ring and GCD domain.

Definition 6. A GCD ring R is a ring where every pair of elements has a greatest common divisor, that is,
for a,b € R there exists ged(a,b) € R such that:
e gcd(a,b) | a
e ged(a,b) | b
e geRA(g]a)N(g]b)=>g]gcd(a,b)
If the ring is an integral domain (it has no zero divisors), the structure is called GCD domain.
As it is shown below, our Isabelle implementation does not fix a ged operation. The existence of a ged for

each pair of elements a and b is just assumed. Similarly, when required, the existence of the Bézout coefficients
for any two elements a and b is simply assumed, but nothing is made explicit about how to compute them.

6 Jests Aransay and Jose Divasén

semiring

semiring_gcd comm _ring_1 semiring_div

Bezout_ring ’ GCD_domain ‘

’ Bezout_domain ‘

euclidean_ring

euclidean_ring_gcd ‘

field

Fig. 1. Hierarchy of the main classes appearing in the development (arrows express inclusions; transitive ones
are left out). The structures that we have had to introduce are presented in bold.

Thanks to this design decision, we can represent non-constructive structures (in the sense that no witnesses
could be obtained for the operations). Moreover, structures where both the greatest common divisor and the
Bézout coefficients are non-unique are also considered.

class GCD_ring = comm_ring_1 +
assumes exists_gcd: "dd. d dvd a A d dvd b A (Vd’. d’ dvd a A d’ dvd b — d’ dvd d)"

class GCD_domain = GCD_ring + idom

Bézout rings are a structure closely related to the previous one:

Definition 7. A Bézout ring R is a ring where the Bézout identity holds, that is, for a,b € R there exist
p,q,d € R such that:

e pa+qgb=d
e d is a greatest common divisor of ¢ and b

If the ring is an integral domain, the structure is called Bézout domain.

Thus, the implementation in Isabelle that we have chosen for Bézout rings is quite similar to the one
presented for GCD rings:

Echelon Form in Isabelle/HOL 7

class bezout_ring = comm_ring 1 +
assumes exists_bezout: "IJp qgd. (p *a +q * b =d) A (d dvd a) A (d dvd b)
A (Vd’. (d’ dvd a A d’ dvd b) — d’ dvd d)"

class bezout_domain = bezout_ring + idom

It is simple to prove that any Bézout ring is a GCD ring:
subclass GCD_ring
proof
fix a b
show "3d. ddvd a A ddvd b A (Vd’. d’ dvd a A d’ dvd b — d’ dvd d)"

using exists_bezout [of a b] by auto
qed

Before introducing the concept of principal ideal ring, ideals must be presented:
Definition 8. Let R be a ring. A nonempty subset I of R is called an ideal if:
e [is a subgroup of the abelian group R, that is, I is closed under subtraction;
a,bel =a—-bel
e [is closed under multiplication by any ring element, that is,
acel,reR=racl
The ideal generated by a set S C R is the smallest ideal containing S, that is,
(S) = (I |ideal TASC I}
A principal ideal is an ideal that can be generated by an element a € R, that is,
I'={(a)={ra|r e R}
The implementation in Isabelle is done in a straightforward manner:
definition "ideal I = (subgroup I A (Va€I. Vr. r *a € I))"

definition "ideal_generated S = (| {I. ideal I A S C I}"
definition "principal_ideal S = (Ja. ideal_generated {a} = S)"

Definition 9. A principal ideal ring (denoted as PIR) R is a ring where every ideal is a principal ideal. If
the ring is also an integral domain, the structure is said to be a principal ideal domain (denoted as PID).

Once the concepts of ideal and principal ideal have been defined in Isabelle, principal ideal rings are
implemented in a direct way:

class pir = comm_ring_1
+ assumes all_ideal_is_principal: "ideal I — principal_ideal I"

class pid = idom + pir

In addition, we have proved some important lemmas (maybe not crucial for our development, but indeed
for Ring Theory) over this structure. For instance the ascending chain condition, which is fundamental for
proving that any PID is a unique factorization domain.

Theorem 2. The ascending chain condition. Any principal ideal domain D satisfies the ascending chain

condition, that is, D cannot have a strictly increasing sequence of ideals

Lcl,cC---

where each ideal is properly contained in the next one.

8 Jests Aransay and Jose Divasén

Proof. Suppose to the contrary that there is such an increasing sequence of ideals. Consider the ideal

U:UL
i€N
which must have the form U = (a) for some a € U. Since a € I, for some k, we have I, = I; for all j > k,
contradicting the fact that the inclusions are proper. []

Our corresponding proof in Isabelle requires 30 lines.

context pir
begin

lemma ascending_chain_condition:
fixes I::"nat = ’a set"
assumes all_ideal: "Vn. ideal (I n)" and inc: "Vn. In C I (n+ 1)"
shows "dn. In=1 (o + 1"

end

Let us show that any PIR is a Bézout ring. This proof is not immediate, but we have just needed about 90
lines of code in Isabelle. The proof is done as follows: given two elements a and b of a PIR, since every ideal
is principal we can obtain an element d such that the ideal generated by d is equal to the ideal generated by
the set {a,b}. Finally, it is shown that d is indeed a greatest common divisor, completing the proof.

subclass (in pir) bezout_ring

The mathematical definition of Fuclidean ring is the following one:

Definition 10. A Euclidean ring is a ring R with a Euclidean norm f : R — N such that, for any a € R
and nonzero b € R:

e f(a) < f(ab);
e There exist ¢, € R such that a = bg +r and f(r) < f(b).

If the ring is also an integral domain, the structure is said to be a Euclidean domain.

We have reused the representation of Euclidean ring that was already in the Isabelle library. It was
developed by M. Eberl [Ebelb| as part of his formalisation of a decision procedure for univariate polynomials.
In his terminology, he uses ring to refer to an integral domain.

class euclidean_semiring = semiring _div + normalization_semidom +
fixes euclidean_size :: "’a = nat"
assumes size_0 [simp]: "euclidean_size 0 = 0"
assumes mod_size_less:
"b # 0 —> euclidean_size (a mod b) < euclidean_size b"
assumes size_mult_mono:
"b # 0 —> euclidean_size a < euclidean_size (a * b)"

class euclidean_ring = euclidean_semiring + idom

Note that one additional operation is fixed by M. Eberl: the normalisation_factor, included in the class
normalisation_semidom. This operation returns a unit such that dividing any element of the ring by its normal-
isation factor yields the same result for all elements in the same association class, effectively normalising the
elementﬂ For instance, for integers, a normalisation factor is the sign (dividing two associated integers by
their respective signs we obtain the same result). For polynomials, a normalisation factor is the leading co-
efficient (two associated polynomials divided by their leading coefficients yield the same monic polynomial).
The Isabelle definition uses euclidean_size to represent the Euclidean norm introduced in Definition

Both the integers (Z) and the univariate polynomials over a field (F[z]) form Euclidean domains. In

1 Two elements a,b € R are said to be associates if a = ub, where u is a unit.

Echelon Form in Isabelle/HOL 9

the case of the integer numbers, a Euclidean norm is the absolute value. In the case of the polynomials, a
Euclidean norm is 2%¢9((#)) (note that we assume deg(0) = —oc). We have proved that F[z] is an instance
of the euclidean_ring class (Z was already proved to be an instance of it). In addition, we have proved that
any Euclidean domain is a PID (about 50 lines) and that any field is a Euclidean domain.

instantiation poly :: (field) euclidean_ring
instantiation int :: euclidean_ring

In a Euclidean ring, a Fuclidean algorithm can be defined to compute the greatest common divisor of
any two elements. Furthermore, this algorithm can always be used to obtain the Bézout coefficients. This
constructive operation is presented in Isabelle in the euclidean_ring class with the name of gecd_euciid.

M. Eberl also defined two more classes: euclidean_semiring_gcd and euclidean_ring_gcd, where the operations
ged, lem, Ged (the ged of the elements of a given set) and Lem (analogous to the previous one) are fixed as part
of the structure. We have proved that both Z and F[z] are also instances of the euclidean_ring_gcd class. In
addition, some theorems presented in the euclidean_ring_gcd class have been generalised to the euclidean_ring
one.

For the sake of completeness, we have also implemented rings where for each two elements there exists
a gcd in a constructive way, i.e. not only assuming the existence of a ged operation but fixing it. The
corresponding subclasses have also been proved:

class semiring gcd = semiring + gcd +
assumes "gcd a b dvd a"
and "gcd a b dvd b"
and "c dvd a = ¢ dvd b = ¢ dvd gcd a b"

class pir_gcd = pir + semiring_gcd
class pid_gcd = pid + pir_ged

subclass (in euclidean_ring _gcd) pid_gcd

subclass (in euclidean_semiring_gcd) semiring_gcd

Let us note that when proving that a given type is an instance of the euclidean_ring ged class, one has to
prove, apart from the properties for being a Euclidean domain, that the type includes a ged operation and
provide a witness of it.

The semiring_div class is defined as a structure where there are two fixed operations: div and mod, so there
is an explicit (constructive) divisibility (note that semiring div is not a subclass of semiring, because semiring
does not have such fixed operations). Hence we can distinguish between constructive structures (where the
operations are fixed, for instance semiring_div, semiring_gcd, etc.) and possibly non-constructive structures
(where it is just assumed the existence of the operations, for instance pir, Bezout_domain, etc.).

For a full description of other algebraic structures related to the ones presented here (semirings, fields,
unique factorization domains) and the relationships among them, see [Jac12,[Rom07,[FS01]. The following
chain of strict inclusions is satisfied (as it is said in this section, all of them have been proved in Isabelle):

Field C Euclidean ring C Principal ideal ring C Bézout ring C GCD ring

4. Parametric algorithms and proofs

In Section [I] we have said that our aim is to formalise an algorithm proving that there exists the echelon
form of any matrix whose elements belong to a Bézout domain. In addition, we want to compute such an
echelon form, so we will need computable ged and bezout operations which exist, at least, over Euclidean
domains. On the contrary, over more general algebraic structures the existence of ged and Bézout coefficients
is known to exist, but maybe its computation is not. In order to specify ged and bezout in such a way that they
can be introduced in Bézout domains (bezout_domain class) and linked to their already existing computable
definitions in Euclidean domains (euclidean_ring class), we have considered several options:

1. We could define a greatest common divisor in Bézout rings and GCD rings as follows:

10 Jests Aransay and Jose Divasén

definition "gcd.-bezout.ring a b = (SOME d. d dvd a A d dvd b A (VYd’. d’ dvd a A d’ dvd b — d’ dvd d)"

The operator soME arises since the ged could be non-computable and there could be more than one ged for
the same two elements. The operator soME is used in Isabelle/HOL to describe Hilbert’s choice operator
(also known as €); thanks to its axiomatic definition, a witness for purely existential predicates can be
chosen. If an operation to obtain the Bézout coefficients is defined by means of the soME operator, using
it one could formalise the existence of an algorithm to obtain the echelon form over a Bézout domain.
However, one would not be able to execute such an operation over Euclidean domains (over constructive
Bézout domains neither) because it is not possible to prove that ged_bezout_ring is equal to ged_eucl (the
constructive operation over Euclidean domains to compute the gcd of two elements). Let us remark that
the ged is not unique over Bézout rings and GCD rings, and with the gcd_bezout_ring we would not know
which of the possible greatest common divisors is returned by the operator SoME.

2. Based on the previous option, one could create a bezout_ring norm class where the normalisation factor is
fixed. Then, one could define a gcd normalised over such a class:

definition "gcd_bezout_ring norm a b = gcd_bezout_ring a b div normalisation_factor (gcd-bezout_ring a b)"

Then, now one could prove that: gcd_bezout_ring_norm = gcd_eucl. This would allow us to execute the gcd
function, but with the Bézout coefficients this is not possible since they are never unique.

3. The third option (and the chosen one) consists in defining the echelon form algorithm over Bézout domains
and parameterising the algorithm by a bezout operation which must satisfy the predicate is_bezout_ext,
which is presented below. From the caller’s point of view, the operation can be considered an oracle.
Then we can prove the correctness of the algorithm over Bézout domains since in such structures there
always exists a possibly non-constructive operation which satisfies such a predicate. In addition, we will
always be able to execute it over Euclidean domains, since we can prove that there exists a computable
bezout operation which satisfies the properties.

An interesting discussion and a solution on the topic of ezecuting Russell’s definite description operator
¢ (under favourable premises) in Isabelle/HOL by A. Lochbihler and L. Bulwahn is available [LB11]. For a
given predicate P, they compute the set of every x such that P z; if the set is a singleton, ¢ returns such
value; otherwise it throws an exception. In our particular case, solutions in Bézout domains could be non-
computable. Therefore, we chose to use an underspecified parameter bezout in that setting, that is replaced,
in the particular case of Euclidean domains, by the computable gcd.

The properties that a bezout operation must satisfy are fixed by means of the predicate is_bezout_ext. Let
us first introduce the definition of the Bézout coefficients.

Definition 11. Given a ring R, and a,b € R, the elements p, ¢ such that

1. pa+gb=d
2. d is a greatest common divisor of a and b

are the Bézout coefficients of a and b. Because of the definition of ged, there also exist elements u,b € R
such that du = —b and dv = a.

The coefficients v and v are the elements that will be used later to define the Bézout matrices (see
Definition that are used to compute the echelon form. It is relevant to note that they cannot be directly
defined as u = —b/d and v = a/d because in abstract structures, such as Bézout domains, we do not have
an explicit division operation (if we do so, we would have to work over a bezout_domain_div class instead of
using the more general bezout_domain one).

The Isabelle definition of Bézout coeflicients (in the form of a predicate, and considering the five coeffi-
cients presented in Definition follows:

definition is_bezout_ext :: "(’a = ’a = (’a X ’a X ’a X ’a X ’a)) = bool"

where "is_bezout_ext bezout = (Va b. let (p, q, u, v, gcd_a_b) = bezout a b

in

* a+q*b=gcd_a_b
(ged_a_b dvd a)
(ged_a_b dvd b)
(Vd’. d’ dvd a A d’ dvd b —> d’ dvd gcd_a_b)
gcd_a_b * u = -b

>>>>'

Echelon Form in Isabelle/HOL 11

A ged_a_b ¥ v = a)"

In the following lemma we prove that there exists a (non-computable) function satisfying such a predicate
over a Bézout ring (see Definition [7]). Do note that the Bézout coefficients of any pair (a, b) are known to exist
in this structure, but they might not be uniquely determined, neither computable. Therefore, in the lemma,
when we introduce the witness function bezout_ext, we have to use the Isabelle operator soME to choose the
Bézout coefficients:

context bezout_ring

begin
lemma exists_bezout_ext: "dbezout_ext. is_bezout_ext bezout_ext"
proof -

def bezout_ext = "Xa b. (SOME (p,q,u,v,d). p *a+q *b =d

A (d dvd a) A (d dvd b) A (Vd’. d’> dvd a A d’> dvd b — d’ dvdd) ANd*u=-b AdH*v=a)"

Finally, when we move into Euclidean domains, we can define a computable operation (do note that soue
is no longer used in the definition of the witness) which satisfies the predicate is_bezout_ext.

context euclidean_ring
begin

definition "euclid_ext2 a b = (let (p, q, d) = euclid_ext a b
in (p, q, -b div d, a div d, d))"

lemma is_bezout_ext_euclid_ext2: "is_bezout_ext euclid_ext2"

end

Thanks to the lemma presented above, we know that there exists a constructive bezout operation over
FEuclidean domains. So if we define an algorithm based on it, it will be executable. Nevertheless, if one wants
to work in more abstract structures than Euclidean domains, one must provide a computable operation if
execution is pursued.

Finally, the approach to prove the existence and correctness of the algorithm over Bézout domains and
the execution over Euclidean domains is the following;:

1. Define the algorithm over Bézout domains. The algorithm itself (operation echelon_form_of) will have a
bezout operation as an additional parameter:

definition "echelon_form_of A bezout = echelon_form_of_upt_k A (ncols A - 1) bezout"

2. Formalise the correctness of the algorithm over Bézout domains, under the premise that bezout satisfies
the corresponding properties (the predicate is_bezout_ext). We have shown previously that an operation
satisfying such properties always exists over Bézout domains (see the lemma exists_bezout_ext). For
example, the following lemma is the final result that says that the algorithm (echelon_form_of) indeed
produces an echelon form (the predicate echelon_form) by means of elementary transformations (so there
exists an invertible matrix which transforms the original matrix into its echelon form).

lemma echelon_form_of_invertible:
fixes A::"’a::{bezout_domain}~’cols::{mod_type} " ’rows: :{mod_type}"
assumes ib: "is_bezout_ext bezout"
shows "JP. invertible P
A P x* A = (echelon_form_of A bezout)
N echelon_form (echelon_form_of A bezout)"

3. Finally, as we know that the operation euclid_ext2 is defined over Euclidean domains, is computable and
satisfies the predicate is_bezout_ext, we will have a computable algorithm and the coroliary stating that
the algorithm produces a matrix in echelon form contains no premises (no assumes clause in the Isabelle
statement). Unconditional statements play a key role in the Isabelle code generation process (Section [4.3)).

corollary echelon_form_of_euclidean_invertible:

12 Jests Aransay and Jose Divasén

fixes A::"’a::{euclidean_ring}~’cols::{mod_type}~’rows::{mod_type}"
shows"3P. invertible P

A P ** A = (echelon_form_of A euclid_ext2)

N echelon_form (echelon_form_of A euclid_ext2)"

4.1. An algorithm computing the echelon form of a matrix, parametrically

In this section, we present the parameterised algorithm to compute the echelon form of a matrix that we
have formalised. In broad terms, the algorithm will be implemented traversing the columns. The reduction of
a column k works as follows. Given an operation bezout that must satisfy the Isabelle predicate is_bezout_ext,
a column k and a tuple (A,i), where A is the matrix, and 4 the position of the column k where the pivot
should be placed; the output is another tuple (A’,4"), where A’ is the matrix A with the elements of column
k equal to zero below 4, and i’ is the position where the next pivot should be placed in column k + 1. The
main steps are:

1. If the pivot (the element in the position (7, k)) and all elements below it are zero, then it is necessary
to do nothing. Just (A, 1) is returned.

2. If not, if all elements below the pivot are zero but the pivot is not, then we just have to increase the
pivot, i.e. ' =i+ 1. Thus, (A,i + 1) is returned.

3. If not, then we have to look for a nonzero element below 4, move it to the position (i, k) (where

the pivot must be placed) interchanging rows and reduce the elements below the pivot by means of
Bézout coefficients. We call this matrix as A’. Hence, (A’,i 4 1) is returned.

4. Apply the previous steps to the next column.
Let us explain in detail the algorithm. First of all, we have to define a special kind of matrices.

Definition 12. Given a matrix A and two of its coefficients A, ;, Ap; (both in the same column), the
(elementary) Bézout matriz associated to them is:

1 0 v e e e o0
0 p g 0 0
EBezout: : :
0 U v 0 0

where (p, ¢, u,v,d) denote the Bézout coefficients of A, ; and A ; such that pA, ; +qAp; = d, du = — Ay ;
and dv = A, ;. The coefficients not explicitly shown in the matrix are assumed to be 0, except for the ones
in the diagonal, which are 1.

Their implementation in Isabelle follows (the binder x is used to define elements of type ‘a~’rows as
functions over the type ’rows, and in this particular case is used iteratively to define a matrix, an element of
type ’a"’cols”’rows in terms of variables x and y representing respectively the rows and the columns of the
matrix; it is natural to think of x as the X binder but for defining vectors; then, the symbol $ is used for
access operations over the matrix indexes):

context bezout_ring

begin
definition
bezout_matrix :: "’a”’cols”’rows = ’rows = ’rows = ’cols =
(’a = ’a = (’a X ’a X ’a X ’a X ’a)) = ’a”’rows”’rows"
where

"bezout_matrix A a b j bezout = (x x y.

Echelon Form in Isabelle/HOL 13

(let

(p, g, u, v, d) = bezout (A aj) (ADb j
in

if x =a AN y = a then p else
if x =a ANy = b then q else
if x = b AN y = a then u else
if x = b A y = b then v else
if x = y then 1 else 0))"

end

The Bézout matrices have good properties, such as being invertible and having determinant equal to 1.
Moreover, the elementary Bézout matrix of two coefficients A, ; and A, ; satisfies the following relevant
property (when multiplied to the left times A):

* * * *
* oo A * * d *
Epezout . = .
oo Ay * * 0 *

Now, we can iteratively multiply the input matrix A by different elementary Bézout matrices in order
to reduce all the elements below the pivot ¢ in a column j. This is carried out by means of the following
recursive function:

primrec
bezout_iterate :: "’a::{bezout_ring}”’cols”’rows::{mod_type} =
nat = ’rows::{mod_type} = ’cols =
(’a =’a = (’a X ’a X ’a X ’a X ’a)) = ’a"’cols”’rows::{mod_type}"
where "bezout_iterate A 0 i j bezout = A"
| "bezout_iterate A (Suc n) i j bezout =
(if (Suc n) < to_nat i then A else
bezout_iterate (bezout_matrix A i (from_nat (Suc n)) j bezout ** A) n i j bezout)"

The following definition is the key operation that applies the bezout_iterate in a column k of the matrix.
That is, the algorithm chooses the pivot, puts it in the suitable place (the position (i,k)) and reduces the
elements below it by means of the recursive bezout_iterate operation presented above.

definition
"echelon_form_of_column_k bezout A’ k =
(let (A, i) = A’
in if (Vm>from_nat i. A $ m $ from_nat k = 0) V (i = nrows A) then (4, i) else
if (Vm>from_nat i. A $ m $ from_nat k = 0) then (4, i + 1) else
let n = (LEAST n. A $ n $ from_nat k # 0 A from_nat i < n);
interchange_A = interchange_rows A (from_nat i) n

in
(bezout_iterate (interchange_A) (nrows A - 1) (from_nat i) (from_nat k) bezout, i + 1))"

The previous operation is the one which carries out the four main steps presented at the beginning of
this section. In Section when we perform the refinements in order to improve performance, we will
introduce some binders to avoid some repeated computations that appear in the previous definition (such as,
for instance, from_nat k, from_nat i and (Vm>from_nat i. A $ m $ from_nat k = 0)). Since now we are concerned
with formalisation, we postpone any attempt of optimisation.

Interestingly, we have reused in the definition echelon_form_of_column_k some of the operations presented
in the Gauss-Jordan development, such as interchange_rows (the elementary operations were defined over
matrices over rings in such a development in order to reuse them). Folding the operation over all columns
of the matrix, we define the algorithm:

definition "echelon_form_of_upt_k A k bezout = fst (foldl (echelon_form_of_column_k bezout) (4,0) [0..<Suc kI)"

14 Jests Aransay and Jose Divasén

definition "echelon_form_of A bezout = echelon_form_of_upt_k A (ncols A - 1) bezout"

It is worth remarking that every operation used in the algorithm has bezout (the operation that returns
the elements (p,q,u,v,d)) as an additional parameter. Thus, parameterising the algorithm with different
bezout operations, different echelon forms of a matrix could be obtained. Moreover, this idea let us use the
same algorithm definition for both Bézout domains and Euclidean domains.

4.2. Formalising the computation of the echelon form of a matrix, parametrically

Let us explain how the formalisation has been accomplished. The mathematical definition of echelon form
was already presented in Section As an auxiliary predicate, we introduce the definition of echelon form
up to the column k.

Definition 13. A matrix A € M, x,(R) is said to be in row echelon form up to column k if:

1. For every zero (up to column k) row i, there is no row j, with ¢ < j, such that it is a nonzero row up to
column k .

2. For any two consecutive nonzero (up to column k) rows ¢ and j, with ¢ < j, the leading entry of j is to
the right of the leading entry of 4 (in other words, its index is greater).

The Isabelle definitions of is_zero_row_upt_k (which is being reused from our previous formalisation of
Gauss-Jordan [DA14]) and echelon_form_upt_k follow:

definition is_zero_row_upt_k :: "’rows = nat =’a::{zero}"’columns::{mod_type}"’rows = bool"
where "is_zero_row_upt_k i k A = (Vj::’columns. (to_nat j) <k — A $ i $ j=0)"

definition
echelon_form_upt_k :: "’a::{bezout_ring}~’cols::{mod_type} ’rows::{finite, ord} = nat = bool"
where
"echelon_form_upt_k A k = (
(Vi. is_zero_row_upt_k i k A
— = (3j. j >1i AN - is_zero_row_upt_k j k A))
N
(Vi j. 1 <j A — (is_zero_row_upt_k i k A) A — (is_zero_row_upt_k j k A)
— ((LEAST n. A in # 0) < (LEASTn. A$j $n # 0))"

Then the predicate echelon_form (see Deﬁnition will just be echelon form up to the last column:

definition "echelon_form A = echelon_form_upt_k A (ncols A)"

The sketch of the proof is the following:

1. Show the basic properties of the bezout_matrix: it is invertible and its determinant is equal to 1.

2. Show by induction that the recursive function bezout_iterate indeed reduces all the elements below the
pivot.

3. Show that echelon_form_of_column_k works properly, which means that it reduces the column k£ and pre-
serves the elements of the previous columns.

4. Apply induction: if a matrix A is in echelon form up to the column k and echelon_form_of_column_k is
applied to A in the column k + 1, then the output will be a matrix in echelon form up to the column
E+1.

The formalisation is presented in the file Echelon_Form.thy of [DA15a]. Just one remark: remember that
our approach includes an additional parameter bezout that must satisty is_bezout_ext. So each lemma must
have such an assumption. For instance, the following lemma states that bezout_matrix has determinant equal
to 1:

lemma det_bezout_matrix:
fixes A::"’a::{bezout_domain}~’cols”’rows::{finite,wellorder}"
assumes ib: "is_bezout_ext bezout"

Echelon Form in Isabelle/HOL 15

and a_less_b: "a < b" and aj: "A $a $ j # 0"
shows "det (bezout_matrix A a b j bezout) = 1"

The final theorem of the formalisation of the algorithm is the following one:
Theorem 3. For every matrix A € M, «,(R) there exists a matrix E such that:

1. E is in echelon form.
2. There exists an invertible matrix P such that PA = E.

Its Isabelle statement follows:

lemma echelon_form_of_invertible:
fixes A::"’a::{bezout_domain}~’cols::{mod_type}~’rows: :{mod_type}"
assumes ib: "is_bezout_ext bezout"
shows "JP. invertible P
A P ** A = (echelon_form_of A bezout)
A echelon_form (echelon_form_of A bezout)"

Do note that our Isabelle implementation uses the function echelon_form_of to define the matrix E.

Thanks to the infrastructure developed in the Gauss-Jordan development [DA14], we have been able to
reuse many definitions and properties, saving effort. Even so, the complete proof of the correctness of the
algorithm has taken about 3,000 lines.

4.3. Computing the formalised version of the echelon form of a matrix

Computation can be achieved parameterising echelon_form_of by an executable bezout operation. When work-
ing with Euclidean domains, we can use euclid_ext2 for this purpose, as we have explained at the beginning
of this section.

The presented Isabelle formalisation of the echelon form algorithm can be directly executed inside of
Isabelle (by rewriting specifications and code equations) with some setup modifications obtaining, thus,
formalised computations. In order to get executable specifications, one must restrict herself to a subset
of Isabelle/HOL (for instance, the Hilbert choice operator ¢ and the Russell definite description operator
¢ are not, in general, executable). The execution then consists in successive equation rewritings; the left
hand side of definitions and lemmas is replaced by their right hand side. The lemmas that can be used
for code generation are exclusively unconditional ones (the ones that do not contain premises). For in-
stance, lemma det_echelon_form_of_det_setprod in Section [5] cannot be used in code generation, but lemma
inverse_matrix_code_rings (presented also in Section [5)) can be (in fact, it is used, as the label code_unfold
indicates).

The particular setup modifications that we have performed are quite related to the ones that we presented
in our previous work about the Gauss-Jordan algorithm and its applications (see [AD14} Sect. 4]). Essentially,
we are carrying out the natural data type refinement: from the abstract and non-executable datatype vec to
its executable implementation as functions over finite types. The code equations are established by means
of the code abstract and code_unfold labels |Haf16a].

The execution is carried out inside of Isabelle by means of the value command. We can specify the eval-
uation to be performed inside of Isabelle (by means of a simp suffix), and therefore the evaluation will be
performed using exclusively the Isabelle trusted kernel (and the obtained evaluation can be labeled as a 1emma
in the system). This kind of evaluation is known to be quite inefficient. Alternatively, the specification can
be translated to a functional language (our languages of choice are Standard ML and Haskell; in previous
works [AD14,|/AD15a] we already detected the Standard ML interpreter Poly/ML [Pol| to be faster than
the Haskell GHC compiler, at least for our particular case study), by means of the code generation machin-
ery [Hafl6a]. This technique is orders of magnitude faster than Isabelle evaluation, but still quite slow when
using functions to represent vectors.

For instance, the following command computes (generating code to Standard ML) the echelon form of a
3 x 3 integer matrix (the computation is almost immediate):

value "let A=(list_of_list_to_matrix[[1,-2,4],[1,-1,1],[0,1,-2]]::int"3°3)

16 Jests Aransay and Jose Divasén

in matrix_to_list_of_list (echelon_form_of A euclid_ext2)"

The output is: [[1,-1,11,[0,1,-2],[0,0,1]]::int list list

As in the Gauss-Jordan development, additional operations for conversion between lists of lists and func-
tions (1ist_of_list_to_matrix and matrix_to_list_of_list) appear to avoid inputting and outputting matrices as
functions, which can become rather cumbersome. Hence the input and output of the algorithm are presented
to the user as lists of lists.

More examples of execution can be found in the file Examples_Echelon_Form_Abstract.thy of the devel-
opment [DA15a]. This way of executing the algorithm is rather slow, since the matrix representation based
on functions over finite types is inefficient, but very suitable for formalisation purposes. For instance, the
computation of the echelon form of a 8 x 8 integer matrix was not completed in 90 minutesﬂ We consider it
fair to say that this representation and evaluation technique are valid for testing purposes. To improve the
performance, we have refined the algorithm to a more efficient matrix representation based on immutable
arrays and exported code to functional languages, reusing the infrastructure developed in the formalisation
of the Gauss-Jordan algorithm. This is presented in Section [5.1

4.4. Relation to the reduced row echelon form: code reuse and differences

As we have said previously, the echelon form formalisation is highly based on other development of ours:
the formalisation of the Gauss-Jordan algorithm and its applications (see Section . The main difference
is that the Gauss-Jordan algorithm works over matrices whose coefficients belong to a field, whereas the
computation of the echelon form is carried out involving matrices over Bézout domains, a more abstract
type of rings. Nevertheless, the elementary operations were already defined and their properties proved over
general rings in the Gauss-Jordan development, so we have been able to reuse them to implement and prove
the correctness of the echelon form algorithm.

It is clear that rref implies echelon form and this fact has been proved in Isabelle. Thus, each lemma
proved for echelon forms is also valid for rref. Furthermore, in the Gauss-Jordan development there were
many properties stated over matrices in rref that have now been generalised to matrices in echelon form.
These properties were fundamental in the development; in fact, we have reused the proofs presented in
the Gauss-Jordan formalisation because some proofs were exactly the same. For instance, we had proved a
lemma stating that a matrix in rref is upper triangular. Since the proof was essentially based on properties
of echelon forms (the conditions 2 and 3 of Definition [3| were not necessary in the proof of the statement),
changing rref by echelon form we got the theorem generalised.

The proof scheme in both developments is quite similar, except for the idea of parameterising the algo-
rithm with the bezout operation. We follow the same strategy for defining the algorithm and induction is
applied over the columns. The elementary operations and its properties have been reused, in addition to the
setup of the Isabelle code generator and the infrastructure for refining to immutable arrays.

5. Applications of the echelon form

There are three important applications of the echelon form that we have formalised:

1. Computation of determinants.
2. Computation of inverses.
3. Computation of characteristic polynomials.

All of them are closely related: inverses and characteristic polynomials are based on the computation of
determinants. To compute the determinant of a matrix first we have to apply the algorithm to transform it
to an echelon form. Since the echelon form is upper triangular and the transformation has been based on
elementary operations, we just have to multiply the elements of the diagonal and maybe change the sign
of the result (depending on the elementary operations performed in the transformation) to compute the
determinant.

2 Intel® Core’ " i5-3360M processor (2 cores, 4 threads) with 4GB of RAM.

Echelon Form in Isabelle/HOL 17

A notion of invariant appears in its formalisation. Given a matrix A, after n elementary opera-
tions the pair (b,,A,) is obtained, and it holds that b, - (det A) = det A,. Since the algorithm ter-
minates, after a finite number, m, of operations, we obtain a pair (b,,, echelon_form_of 4) such that
by - (det A) = det(echelon_form_of A). The function echelon_form_of_det is the one which returns that pair
of elements. Since we are working in structures more general than a field, we have to prove that b, is a unit
of the ring (is invertible), in order to be able to isolate the determinant of A. In fact, we have proved that
b, will be either 1 or —1. Finally, we proved that the determinant of an echelon form is the product of its
diagonal elements, thus the computation is completed. From this, we have the final lemma:

corollary det_echelon_form_of_det_setprod:
fixes A::"’a::{bezout_domain_div}~’n::{mod_type}”’n::{mod_typel}"
assumes ib: "is_bezout_ext bezout"
shows "det A = ring_inv (fst (echelon_form_of_det A bezout))
* setprod (Ai. snd (echelon_form_of_det A bezout) $ i $ i) (UNIV::’n set)"

The inverse can be computed thanks to the fact that the following formula has been formalised in Isabelle:
ATl = %. The adjugate matrices were defined in the Cayley-Hamilton development [AHP14], we
have made that definition executable. The determinant will tell us if a matrix is invertible (a matrix is
invertible iff its determinant is a unit)ﬂ So we will take care of the invertibility of the input matrix computing
the determinant and making use of the Isabelle option type (whose elements are of the form (some x) and

None). The final statement for computing inverses over Euclidean domains is the one presented below:

lemma inverse_matrix_code_rings[code_unfold]:
fixes A::"’a::{euclidean_ring}"’n::{mod_type}~’n::{mod_type}"
shows "inverse_matrix A = (let d = det A in
if is_unit d then Some (ring_inv d *ss adjugate A) else None)"

It is worth noting that both determinants and inverses can already be computed over fields, such as
C and Zs, using the Gauss-Jordan algorithm. Thanks to this formalisation for computing echelon forms,
the computation can be extended to Euclidean domains, such as Z and Fz], and even to Bézout domains
providing a bezout executable operation.

The characteristic polynomial of a matrix A is det(¢tI — A), so once determinants can be computed over
a Euclidean domain thanks to the echelon form, characteristic polynomials come for free: it just consists of
computing the determinant of a polynomial matrix. We had to prove that univariate polynomials over a field
are a FKuclidean domain and make executable some definitions presented in the Cayley-Hamilton develop-
ment [AHP14], where the characteristic polynomial was defined. The execution of all of these applications
is carried out in a similar way to the ones of the Gauss-Jordan algorithm and the echelon form itself:

value "let A = (list_of_list_to_matrix [[3,2,8],[0,3,9],[8,7,9]]::int"3°3)
in det A"

value "let A = list_of_list_to_matrix ([[3,5,1],[2,1,3],[1,2,1]])::real~3"3
in (charpoly A)"

value "let A = list_of_list_to_matrix ([[3,5,1],[2,1,3],[1,2,1]1])::int"3"3
in (inverse_matrix A)"

The corresponding outputs are the following ones:

-156::int
[:7,-10,-5,1:]::real poly
None

Note that the last output is nNome, since its corresponding input matrix was not invertible.
[:7,-10,-5,1:]: :real poly represents the polynomial 23 — 522 — 10z + 7.

Finally, another contribution of our work is that we have made executable most of the definitions presented
in the Cayley-Hamilton development [AHP14], such as minors, adjugates, cofactor matrix, the evaluation of

3 1In fields all nonzero elements are units, but in more abstract rings there can be nonzero elements which are not units.

18 Jests Aransay and Jose Divasén

polynomials of matrices and more, which have important applications in Linear Algebra. This part of the
work is presented in the file Code_Cayley-Hamilton.thy of our development [DA15a].

5.1. Code refinement

As we have said in Section[4.3] the formalised algorithm is computable but the performance is not as good as it
is desirable. Since the Isabelle code is not suitable for computing purposes, the original Isabelle specifications
are refined to immutable arrays and translated to Standard ML and Haskell, following the approach and
intensively reusing the infrastructure presented in the Gauss-Jordan development [AD14]. Immutable arrays
are polymorphic vectors, immutable sequences with constant-time access. They were successfully used in
such a development to enhance performance, allowing us to apply that verified Gauss-Jordan algorithm in
interesting real case studies [AD15a].

The previous algorithm echelon_form_of has to be redefined over immutable arrays. Additionally, we apply
(and prove) some optimisations that also help to improve performance (for instance, binders are used to
identify some computations that have to be performed various times, so that they are only performed once).
After that, we have had to prove the equivalence between the formalised algorithm over matrices represented
as functions over finite types, and matrices represented as immutable arrays. The following lemma states
that the echelon form computed over functions is the same as the one computed over immutable arrays
(matrix_to_iarray represents a type morphism):

lemma matrix_to_iarray_echelon_form_of [code_unfold]:
shows "matrix_to_iarray (echelon_form_of A bezout)
= echelon_form_of_iarrays (matrix_to_iarray A) bezout"

Every operation presented in the paper and every application (determinants, inverses, characteristic
polynomial) has been refined to immutable arrays. Additionally, we make use of serialisations, a process to
map Isabelle types and operations to the corresponding ones in the target languages. Serialisations are a
common practice in the code generation process (see [Hafl6a] for some introductory examples). In our case,
we have made use of the serialisations presented in the Gauss-Jordan formalisation (such as Vector.vector
and IArray.array to encode immutable arrays in Standard ML and Haskell respectively; and the type for
representing integer numbers in the target languages). Moreover, we have included some more serialisations
for the ged, div and mod integer operations. Serialising the ged Isabelle operation to the corresponding built-in
Poly/ML [Pol] and MLton |[MLt] functions (which are not part of the SML Basis Library, but particular
to each compiler), increases notably the performance. To serialise in Standard ML the div and mod integer
operations we considered two alternatives:

1. Serialise the Isabelle div and mod integer operations to the corresponding ones (IntInf.div and IntInf.mod).

2. Serialise both of them to the operation IntInf.divmod, which returns the pair
(i IntInf.div j, i IntInf.mod j). The SML Basis Library says that this is likely to be more efficient than
computing both components separately.

In our development, the benchmarks showed that the best option was the second one. But in other
formalisations the best option may be the first one, depending on the need of computing div and mod or just
one of them. Hence:

constant "divmod_integer :: integer => _ => _" — (SML) "(IntInf.divMod ((_),(_)))"

The generated Standard ML code has about 2,400 lines (it is noteworthy that a substantial amount of
this code is devoted to the definitions of dictionaries, the Standard ML mechanism to resemble Isabelle
type classes [Hafl6a]). We have said in Section that the computation of the echelon form of a 8 x
8 integer matrix was not completed in more than 90 minutes using the matrix representation based on
functions. Thanks to the refinements and the serialisations presented in this section, when code is exported
to Standard ML, this computation takes 0.001 seconds of CPU time (the echelon form is computed in a
similar time). If we perform a similar computation over a random 20 x 20 integer matrix using immutable
arrays, the CPU time consumed 2.172 secondsEI More examples of execution of our algorithm are shown in

4 Intel® Core' " i5-3360M processor (2 cores, 4 threads) with 4GB of RAM.

Echelon Form in Isabelle/HOL 19

the file Fxamples_Echelon_Form_IArrays.thy. This computation time can significantly vary depending on the
magnitude of the matrix coefficients, and also on the one of the intermediary ged computations.

6. Related work

There are several formalisations of Linear Algebra in most proof systems, above all focusing the point on
vector spaces properties. For instance, P. Rudnicki et al. [RSTO1] present a formalisation of commutative
algebra in the Mizar system. In HOL Light, an impressive library [Harl3] of theorems about n-dimensional
Euclidean spaces was developed by J. Harrison. Nevertheless, algorithmic aspects have not been explored
in these systems. M. Eberl |[Ebel5| has completed a decision procedure for univariate real polynomials in
Isabelle/HOL. Some of his work on Euclidean rings has been useful to us (indeed, he is leading an ongoing
work to improve the representation of division and gcd structures in the Isabelle library, in the vein of some
of the suggestions and ideas introduced in Section |3 that will benefit from both his and our developments).
Apart from that, the goal of his work is focused on polynomials over the real numbers.

There is a formalisation of matrix algebra using arrays in ACL2 by R. Gamboa et al. [GCV03], but it
is focused on vectors and matrices over numerical types, without considering other types of rings (such as
polynomials). They have implemented the computation of determinants and inverses, by means of elementary
row operations, but these computations are not formalised.

Probably the closest work to ours is the one by G. Cano et al. [CCD'16]|. It is a formalisation of Linear
Algebra over elementary divisor rings in Coq. They also present a formalisation of the Smith normal form.
The algorithm they have implemented performs similar transformations to the ones we have presented in
this paper. The main difference between Cano’s work and ours is that they are restricted to use constructive
structures, such as constructive principal ideal domains. On the other hand, we can work with more abstract
structures where we know the existence of divisions and greatest common divisors, but maybe not how to
compute them. This allows us to formalise the algorithm involving Bézout domains. The executability of the
algorithm will depend on the existence of an executable bezout operation. Therefore, in Euclidean domains,
execution is guaranteed, thanks to the euciid_ext2 operation; in Bézout domains executability will depend
on the existence of an executable operation. In addition, the computation of inverses, determinants and
characteristic polynomials are not tackled in such a paper.

As other related work, the computation of the determinant of matrices over general rings has also been
explored in a later formalisation in Isabelle/HOL about matrices and Jordan normal forms by R. Thiemann
and A. Yamada |TY15|. The algorithm that they formalise is specific to compute determinants and it is not
based on elementary operations, so it cannot be applied to obtain canonical forms of matrices and thus to
compute other objects such as ranks of matrices and solutions of systems of linear Diophantine equations. In
addition, they define and prove the algorithm just over computable structures, since a computable division
operation is required.

Besides, the Sasaki-Murao algorithm has been formalised in Coq by T. Coquand et al. [TAV12]. The
Sasaki-Murao algorithm is specially designed to compute the determinant of square matrices over a commu-
tative ring. In [TAV12] Sect. 4], the authors study the performance of such a formalised algorithm: computing
the determinant of a random 20 x 20 integer matrix needs 62.83 seconds over the Coq virtual machine, even
if the algorithm is specially designed for that computation. When they generate code to Haskell that de-
terminant is computed in 0.273 seconds. As we mentioned in Section the echelon form algorithm takes
2.172 seconds in a similar computation. Our algorithm is not specialised in the computation of determinants
(indeed, it works over non-square matrices), but instead it computes the echelon form, from which more
information than the determinant, such as related canonical forms, can be obtained. A substantial difference
between the work in Coq and ours is that they use lists, instead of arrays, to encode vectors and matrices.
Furthermore, the Cayley-Hamilton theorem is also formalised in this system |[OB10].

It is also worth mentioning the CoqEAL (standing for Coq Effective Algebra Library) effort [CDM13|
DMS12]; the project, led by G. Gonthier, is devoted to develop a set of libraries and commodities over which
algorithms over matrices can be implemented, proved correct, refined to list of lists, and finally executed,
in a similar way to our approach in Isabelle. The Sasaki-Murao algorithm and the rank of matrices over
fields [DMS12| are based on it.

A recent formalisation of decision procedures for univariate polynomial computation by A. Narkawicz
et al. in PVS has been published [NMnD15|. It is based on Sturm’s and Tarski’s theorems and it is useful,
for instance, in the computation of the roots of the characteristic polynomial of a matrix (the eigenvalues).

20 Jests Aransay and Jose Divasén

Narkawicz et al. also had to formalise some properties of matrices and the Gauss-Jordan algorithm. As it has
already been mentioned, the Gauss-Jordan algorithm and its applications have been formalised in Isabelle
by us [DA14]. The Gaussian elimination has been formalised by M. Denes in Coq [Dénl3|. Another way to
approximate eigenvalues is by means of the QR algorithm. A previous step is the QR decomposition, which
was also formalised and refined in Isabelle by us [DA15b] and can be executed with symbolic computations.

7. Conclusions and further work

In this work we have presented a formalisation of an algorithm to compute the echelon form of a matrix.
The correctness of the algorithm has been proved over Bézout domains and its executability is guaranteed
over constructive structures, such as Euclidean domains. In order to do that we have parameterised the
functions of the algorithm by the operation bezout. The algorithm is proved correct for any choice for
bezout operation. By instantiating bezout by a computable operation, the echelon form becomes computable.
Therefore, the correctness of the algorithm is proved over non-constructive algebraic structures, and then the
algorithm executed over constructive ones. Furthermore, the algorithm has been refined to immutable arrays
in order to improve the performance. The applications of the algorithm (determinants, inverses, characteristic
polynomials) have also been formalised and refined, increasing the work that we did in the Gauss-Jordan
development [DA14] to more abstract rings. Such a Gauss-Jordan formalisation has intensively been reused:
the infrastructure developed there (elementary operations, code generator setup, refinement statements,
matrix properties, etc.) has shown to be very useful. One sign of it is that the whole development of the
echelon form took about 8,000 lines of Isabelle code, whereas the Gauss-Jordan formalisation needed about
15,000 lines. This is remarkable because the echelon form algorithm is a more difficult algorithm than the
Gauss-Jordan one (mainly because more abstract rings are involved and not each division is exact) and shows
how much code has been reused and the helpfulness of the developed infrastructure in such a formalisation.
As a by-product, some algebraic structures (Bézout rings, principal ideal domains, etc.) and their properties
(ideals, subgroups, relationships among them) have been formalised, enhancing the Isabelle library of rings
using type classes.

Isabelle/HOL has a relevant amount of features, some of which have been crucial to our work. Following
the order in which they were used in our work, type classes |Hafl6b| are the first one that eased our
development. The hierarchy introduced in Figure [I] was fully performed by means of type classes. The
possibility to define structures and prove them subclasses of existing ones, automatically importing every
result in the context of the first class greatly simplified the formalisation task. Moreover, type classes are
naturally connected to code generation (specially in Haskell, but also in Standard ML thanks to dictionaries),
easily obtaining data structures in the chosen functional language representing the Isabelle type classes.
From the logical perspective, Hilbert’s choice operator allowed us a direct representation of the ged and
bezout operations in Bézout and GCD domains. The way to connect these operations to the existing one in
Euclidean domains was discussed in Section[d] Then, code generation [Haf16a] enables the direct translation
of Isabelle executable specifications to functional languages.

As further work, it would be desirable to increase the developed library of rings with some other concepts,
such as irreducible and prime elements, and with more algebraic structures, such as Priifer domains and
Noetherian rings. In addition, it would be interesting to provide more instances to Bézout domains, apart
from the already existing ones Z and F[z]. As a natural continuation to our work, the formalisation of
the Hermite normal form and the Smith normal form would be very interesting. This is feasible thanks
to both the infrastructure already developed in the formalisation of the Gauss-Jordan algorithm and the
Ring Theory presented in this contribution. In fact, the Hermite normal form can simply be obtained from
the echelon form reducing the elements above the pivots. In addition, the computation of eigenvalues and
eigenvectors from the characteristic polynomial would be desirable. On a different note, our refinement from
the Isabelle vec type to immutable arrays did not benefit from the Isabelle machinery by B. Huffman and
O. Kuncar [HK13] to lift and transfer specifications and proofs between data types. When we completed our
previous work |[AD15a], this facility was still “work in progress”, but if it supports nested types, it should
be now useful to ease the link between the different representations of matrices in the abstract setting and
the one defined in our refinement.

Our algorithm to compute the echelon form (and hence, the characteristic polynomial) of a matrix relies
on a function to compute the Bézout coeflicients and the gcd of a couple of elements, so performance strongly

Echelon Form in Isabelle/HOL 21

depends on the efficiency of such a function. Thus, the formalisation of efficient algorithms to compute gcds,
both exact [BvH82] and approximate |[Pan01|, would be interesting.

Acknowledgements

The authors would like to thank the anonymous referees because of their valuable ideas. Particularly, their
suggestions helped us to improve the readability of the Isabelle code presented, and also the related work
section. This work has been supported by the research grant FPI-UR-12, from Universidad de La Rioja and
by the project MTM2014-54151-P from Ministerio de Economia y Competitividad (Gobierno de Espana).

References

[AD14] J. Aransay and J. Divasén. Formalization and execution of Linear Algebra: from theorems to algorithms. In
G. Gupta and R. Pena, editor, PostProceedings of the International Symposium on Logic-Based Program Synthesis
and Transformation: LOPSTR 2013, volume 8901 of LNCS, pages 01 — 19. Springer, 2014.

[AD15a] J. Aransay and J. Divasén. Formalisation in higher-order logic and code generation to functional languages of the
Gauss-Jordan algorithm. Journal of Functional Programming, 25(€9):21, 2015. doi: 10.1017/S0956796815000155.

[AD15b] J. Aransay and J. Divasén. Generalizing a Mathematical Analysis library in Isabelle/HOL. In K. Havelund,
G. Holzmann, and R. Joshi, editors, Proceedings of the Seventh NASA Formal Methods Symposium: NFM 2015,
2015.

[AHP14] S. Adelsberger, S. Hetzl, and F. Pollak. The Cayley-Hamilton Theorem. Archive of Formal Proofs, 2014. http:
//isa-afp.org/entries/Cayley_Hamilton.shtml, Formal proof development.

[Bat03] K. J. Bathe. Computational Fluid and Solid Mechanics. Elsevier Science, 2003.

[BvHS&2] A. Borodin, J. von zur Gathen, and J. E. Hopcroft. Fast Parallel Matrix and GCD Computations. Information
and Control, 52(3):241-256, 1982.

[BWO04] L.W. Beineke and R.J. Wilson. Topics in Algebraic Graph Theory. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, 2004.

[CCD*16] G. Cano, C. Cohen, M. Dénes, A. Mortberg, and V. Siles. Formalized Linear Algebra over Elementary Divisor
Rings in Coq. Logical Methods in Computer Science, 2016.

[CDM13] C. Cohen, M. Dénes, and A. Mortberg. Refinements for Free! In G. Gonthier and M. Norrish, editors, Certified
Programs and Proofs: CPP 2013, volume 8307 of Lecture Notes in Computer Science, pages 147-162. Springer,
2013.

[Chio6] D. Child. The Essentials of Factor Analysis. Bloomsbury Academic, 2006.

[DA14] J. Divasén and J. Aransay. Gauss-Jordan Algorithm and Its Applications. Archive of Formal Proofs, 2014.
http://isa-afp.org/entries/Gauss_Jordan.shtml, Formal proof development.

[DA15a)] J. Divasén and J. Aransay. Echelon Form. Archive of Formal Proofs, 2015. http://isa-afp.org/entries/
Echelon_Form.shtml, Formal proof development. Updated version available from the AFP repository version:
http://www.isa-afp.org/devel-entries/Echelon_Form.shtml.

[DA15b] J. Divasén and J. Aransay. QR Decomposition. Archive of Formal Proofs, 2015. http://isa-afp.org/entries/
QR_Decomposition.shtml, Formal proof development.

[Dén13] M. Dénes. Formal study of efficient algorithms in Linear Algebra. PhD Thesis, Université Nice Sophia Antipolis,
2013.

[DMS12] M. Dénes, A. Mortberg, and V. Siles. A refinement-based approach to Computational Algebra in COQ. In
L. Beringer and A. Felty, editors, Interactive Theorem Proving: ITP 2012, volume 7406 of Lecture Notes in
Computer Science, pages 83—98. Springer, 2012.

[Ebel5] M. Eberl. A Decision Procedure for Univariate Real Polynomials in Isabelle/HOL. In Proceedings of the 2015
Conference on Certified Programs and Proofs, CPP ’15, pages 75—83, New York, NY, USA, 2015.

[FS01] L. Fuchs and L. Salce. Modules Over Non-Noetherian Domains. Mathematical surveys and monographs. American
Mathematical Society, 2001.

[Fuk13] K. Fukunaga. Introduction to Statistical Pattern Recognition. Computer science and scientific computing. Elsevier
Science, 2013.

[GCVO03] R. Gamboa, J. Cowles, and J. Van Baalen. Using ACL2 Arrays to Formalise Matrix Algebra. In Fourth International
Workshop on the ACL2 Theorem Prover and Its Applications, 2003.

[HAB*15] T. Hales, M. Adams, G. Bauer, D. Tat Dang, J. Harrison, T. Le Hoang, C. Kaliszyk, V. Magron, S. McLaughlin,
T. Tat Nguyen, T. Quang Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, A. Hoai Thi Ta, T. N.
Tran, D. Thi Trieu, J. Urban, K. Khac Vu, and R. Zumkeller. A formal proof of the Kepler conjecture. CoRR,
abs/1501.02155, 2015.

[Hafl6a] F. Haftmann. Code generation from Isabelle/HOL theories. Tutorial documentation, 2016. http://isabelle.in.
tum.de/dist/Isabelle2016/doc/codegen. pdf.

[Haf16b] F. Haftmann. Haskell-style type classes with Isabelle/Isar. Tutorial documentation, 2016. http://isabelle.in.
tum.de/dist/Isabelle2016/doc/classes.pdf.

[Har13] J. Harrison. The HOL Light Theory of Euclidean Space. Journal of Automated Reasoning, 50(2):173 — 190, 2013.

http://isa-afp.org/entries/Cayley_Hamilton.shtml
http://isa-afp.org/entries/Cayley_Hamilton.shtml
http://isa-afp.org/entries/Gauss_Jordan.shtml
http://isa-afp.org/entries/Echelon_Form.shtml
http://isa-afp.org/entries/Echelon_Form.shtml
http://www.isa-afp.org/devel-entries/Echelon_Form.shtml
http://isa-afp.org/entries/QR_Decomposition.shtml
http://isa-afp.org/entries/QR_Decomposition.shtml
http://isabelle.in.tum.de/dist/Isabelle2016/doc/codegen.pdf
http://isabelle.in.tum.de/dist/Isabelle2016/doc/codegen.pdf
http://isabelle.in.tum.de/dist/Isabelle2016/doc/classes.pdf
http://isabelle.in.tum.de/dist/Isabelle2016/doc/classes.pdf

22

[HK13]

[Hog06]

[Jacl2]
[KEH09]

[LB11]

[Leo14]
[LL0O]
[LM11]
[MLt]
[NewT72]
[NMnD15]

[OB10]
[Pan01]

[Pol]
[Rom07]
[RSTO1]
[Sto00]
[TAV12]
[TY15]
[VN55]

[Zil12]

Jests Aransay and Jose Divasén

B. Huffman and O. Kuncar. Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL. In G. Gonthier
and M. Norrish, editors, Certified Programs and Proofs: CPP 2013, volume 8307 of Lecture Notes in Computer
Science, pages 131-146. Springer, 2013.

J. Hogben. Handbook of Linear Algebra. (Discrete Mathematics and Its Applications). Chapman & Hall/CRC, 1
edition, 2006.

N. Jacobson. Basic Algebra I: Second Edition. Dover Books on Mathematics. Dover Publications, 2012.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4: formal verification of an OS kernel. In Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 207-220, New York, NY,
USA, 2009. ACM.

A. Lochbihler and L. Bulwahn. Animating the Formalised Semantics of a Java-like Language. In van Eekelen M.,
H. Geuvers, J. Schmalz, and F. Wiedijk, editors, Interactive Theorem Proving (ITP 2011), volume 6898 of Lecture
Notes in Computer Science, pages 216 — 232. Springer, 2011.

S. J. Leon. Linear Algebra with Applications. Featured Titles for Linear Algebra (Introductory) Series. Pearson
Education, 2014.

B. Liu and H.J. Lai. Matrices in Combinatorics and Graph Theory. Network Theory and Applications. Springer,
2000.

A.N. Langyville and C.D. Meyer. Google’s PageRank and Beyond: The Science of Search Engine Rankings. Prince-
ton University Press, 2011.

The MLton website. http://mlton.org/.

M. Newman. Integral matrices. Pure and Applied Mathematics. Elsevier Science, 1972.

A. Narkawicz, C. Muinioz, and A. Dutle. Formally-Verified Decision Procedures for Univariate Polynomial Compu-
tation Based on Sturm’s and Tarski’s Theorems. Journal of Automated Reasoning, 54(4):285 — 326, 2015.

S. Ould Biha. Mathematical components for groups theory. PhD Thesis, Université Nice Sophia Antipolis, 2010.
V. Y. Pan. Computation of approximate polynomial gcds and an extension. Information and Computation,
167(2):71-85, 2001.

The Poly/ML website. http://www.polyml.org/,

S. Roman. Advanced Linear Algebra. Graduate Texts in Mathematics. Springer, 2007.

P. Rudnicki, C. Schwarzweller, and A. Trybulec. Commutative Algebra in the Mizar System. Journal of Symbolic
Computation, 32(1/2):143-169, 2001.

A. Storjohann. Algorithms for Matriz Canonical Forms. PhD Thesis, Swiss Federal Institute of Technology Zurich,
2000.

Coquand T., Mortberg A., and Siles V. A formal proof of Sasaki-Murao algorithm. Journal of Formalized Rea-
soning, 5(1):27-36, 2012.

R. Thiemann and A. Yamada. Matrices, Jordan Normal Forms, and Spectral Radius Theory. Archive of Formal
Proofs, August 2015. http://isa-afp.org/entries/Jordan_Normal_Form.shtml, Formal proof development.

J. Von Neumann. Mathematical Foundations of Quantum Mechanics. Investigations in Physics. Princeton Uni-
versity Press, 1955.

D. Zill. A First Course in Differential Equations with Modeling Applications. Cengage Learning, 2012.

http://mlton.org/
http://www.polyml.org/
http://isa-afp.org/entries/Jordan_Normal_Form.shtml

	Introduction
	Preliminaries
	Linear Algebra and Echelon Forms
	Isabelle, type classes and Gauss-Jordan algorithm
	Matrices over rings

	Algebraic structures, formalisation and hierarchy
	Parametric algorithms and proofs
	An algorithm computing the echelon form of a matrix, parametrically
	Formalising the computation of the echelon form of a matrix, parametrically
	Computing the formalised version of the echelon form of a matrix
	Relation to the reduced row echelon form: code reuse and differences

	Applications of the echelon form
	Code refinement

	Related work
	Conclusions and further work
	References

