
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

A formalisation in HOL of the Fundamental
Theorem of Linear Algebra and its application to
the solution of the least squares problem

Jesús Aransay · Jose Divasón

the date of receipt and acceptance should be inserted later

Abstract In this paper we show how a thoughtful reusing of libraries can
provide concise proofs of non-trivial mathematical results. Concretely, we for-
malise in Isabelle/HOL a proof of the Fundamental Theorem of Linear Algebra
for vector spaces over inner product spaces, the Gram-Schmidt process of or-
thogonalising vectors over R, its application to get the QR decomposition of
a matrix, and the least squares approximation of systems of linear equations
without solution, in a modest number of lines (ca. 2,700). This work inten-
sively reuses previous results, such as the Rank-Nullity Theorem and various
applications of the Gauss-Jordan algorithm. The formalisation is also accom-
panied by code generation and refinements that enable the execution of the
presented algorithms in Isabelle and SML.

Keywords Least squares problem · QR decomposition · Interactive Theorem
Proving · Linear Algebra · Code Generation · Symbolic Computation

1 Introduction

Interactive theorem proving is a field in which impressive problems are being
challenged and overcome successfully (recently, the Odd Order Theorem [27]
and the Flyspeck project, that reached the formalisation of the proof of the

J. Aransay
Departamento de Matemáticas y Computación
Universidad de La Rioja
Edif. Luis Vives, c/ Luis de Ulloa n. 2
E-mail: jesus-maria.aransay@unirioja.es

J. Divasón
Departamento de Matemáticas y Computación
Universidad de La Rioja
Edif. Luis Vives, c/ Luis de Ulloa n. 2
E-mail: jose.divasonm@unirioja.es

2 Jesús Aransay, Jose Divasón

Kepler Conjecture [32], and, few years ago, the seL4 operating system ker-
nel [39]). Still, new challenges usually require an accordingly impressive pre-
vious infrastructure to succeed (for instance, the SSReflect extension created
for the Four-Colour Theorem and the Odd Order Theorem, and the Simpl im-
perative language and the AutoCorres translator which are keystones in the
seL4 verification). This infrastructure, once developed, shall be reusable and
applicable enough to overcome new challenges. Even if some developments or
libraries reach a status of “keystones”, and new projects are regularly built
on top of them, this design principle does not always hold. For instance, the
Isabelle theorem prover offers a repository of developments, whose inputs are
refereed and later on maintained, called Archive of Formal Proofs (or AFP).
Blanchette et al. [10] presented a survey about the reutilisation of such entries.
Directly quoting the conclusions of this survey, “There is too little reuse to our
taste; the top 3 articles are reused 9, 6 and 4 times.”; we assume that these
conclusions can be spread to theorem provers as a whole. In this paper we
present various pieces of work which take great advantage of previously devel-
oped tools (either well-established parts of the Isabelle Library or 10 existing
developments of the AFP) to fulfil in an affordable number of lines a complete
work in Linear Algebra.

This work can be divided into four different parts. Firstly, we introduce
the formalisation of the result called by Strang the Fundamental Theorem of
Linear Algebra (see [49,50]), which establishes the relationships between the di-
mensions and bases of the four fundamental subspaces (the row space, column
space, null space, and left null space) associated to a given linear map between
two finite-dimensional vector spaces. This theorem is also closely tied to the
notion of orthogonality of subspaces, whose implementation we explore in the
interactive theorem prover Isabelle [44], and more concretely starting from its
HOL Multivariate Analysis Library [35] (HMA in the sequel). The notion is
already present in the library, but related concepts such as the projection of a
vector onto a subspace are not. Secondly, we formalise the Gram-Schmidt pro-
cess, which permits to obtain an orthogonal set of vectors from a given set of
vectors. Gram-Schmidt possesses remarkable features, such as preserving the
spanning set of collections of vectors and providing linearly independent vec-
tors, whose formalisation we present. Thirdly, as a natural application of the
Gram-Schmidt process we implement the QR decomposition of a matrix into
the product of two different matrices (the first one containing an orthonormal
collection of vectors, the second one being upper triangular). We formalise
the relevant properties of this decomposition reusing some of the previous
work that we created in a formalisation of the Gauss-Jordan algorithm [5,21].
Fourthly, we formalise the application of the QR decomposition of a matrix
to compute the least squares approximation to an unsolvable system of linear
equations, exploiting some of the infrastructure for norms and distances in the
HMA Library, and reusing the computation of solutions to systems of linear
equations provided by Gauss-Jordan.

Finally, and based on our previous infrastructure for the Gauss-Jordan al-
gorithm, we present examples of execution of the least squares problem (which

Formalisation of the solution to the least squares problem 3

internally uses Gram-Schmidt and QR decomposition) inside Isabelle and also
from the code generated to SML. More particularly, taking advantage of an
existing development in Isabelle for symbolically computing with Q extensions
of the form Q[

√
b] [51], exact symbolic computations of the QR decomposi-

tion, and thus of the least squares approximation of systems of linear equations
are performed. We also present some optimisations performed over the origi-
nal algorithm to improve its performance. Consequently, this work completes
our previous developments [4, 5, 21] where the computation of the solution
to systems of linear equations was formalised (for systems with unique solu-
tion, multiple solutions and without exact solution), computing also the least
squares approximation to systems without solution.

In Linear Algebra, the QR decomposition is of interest by itself because of
the insight that it offers about the vector subspaces of a linear map (it provides
orthonormal bases of the four fundamental subspaces). We point the interested
reader to the textbook by Strang [50, Chap. 4] for further information and
applications. The method of least squares is usually attributed to Gauss, who
already had a solution to it in 1795 that successfully applied to predict the
orbit of the asteroid Ceres in 1801 (see [9]).

The paper will be organised as follows. In Section 2 we introduce the math-
ematical notions involved in our development by means of their representation
in the HMA Library. In Section 3 we introduce the Fundamental Theorem of
Linear Algebra. In Section 4 we present our formalisation of the Gram-Schmidt
process. Section 5 presents the formalisation of the QR decomposition. Sec-
tion 6 shows the application of the QR decomposition to the least squares ap-
proximation. In Section 7 we describe code generation of the aforementioned
algorithms, introduce some code optimisations to improve performance, and
present some examples of execution. Section 8 presents a brief survey of related
formalisations. Finally, in Section 9 we present some conclusions of the com-
pleted work. The development is available from the Isabelle Archive of Formal
Proofs [23]. Since the development relies upon 10 AFP articles, we recommend
the interested reader to download the complete version of the AFP.

2 Preliminaries

2.1 Mathematical context

Matrices (over fields) are the representation in Linear Algebra of linear maps
between finite-dimensional vector spaces. Therefore, let f be f : Fm → Fn

and A ∈M(n,m)(F) the matrix representing f with respect to suitable bases
of Fm and Fn. The properties of A provide relevant information about f . For
instance, computing the dimension of the range of f (or the rank or dimension
of the column space of A, {Ay | y ∈ Fm} in set notation), or the dimension
of its kernel (or the null space of A, {x | Ax = 0}) we can detect if f is
either injective or surjective. The Rank-Nullity Theorem, that we formalised for
vector spaces over a generic field in a previous work [20], states that, for a linear

4 Jesús Aransay, Jose Divasón

map f , the dimension of its range plus the one of its kernel amounts to the
dimension of the source vector space (m in our case). The reduced row echelon
form (or rref) of a matrix, that can be computed by means of the Gauss-Jordan
algorithm, gives the dimension of both subspaces and their corresponding bases
(we presented a formalisation of this algorithm in a previous work [5, 21]).

Associated to every matrix (and linear map), another two different sub-
spaces exist. They are named row space ({AT y | y ∈ Fn} in set notation, where
AT denotes the transpose matrix of A) and left null space ({x | ATx = 0} in
set notation). The four subspaces (usually named four fundamental subspaces)
together share interesting properties about their dimensions and bases, that
tightly connect them. These connections provide valuable insight to study sys-
tems of linear equations Ax = b.

The aforementioned subspaces and results also have a geometrical interpre-
tation that requires introducing a new operation, the inner product of vectors
(〈·, ·〉 : V × V → F , for a vector space V over a field F , being F either R or
C), which satisfies the following properties:

– 〈x, y〉 = 〈y, x〉, where 〈·, ·〉 denotes the conjugate;
– 〈ax, y〉 = a〈x, y〉, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉;
– 〈x, x〉 ≥ 0, 〈x, x〉 = 0⇒ x = 0.

Note that in the particular case of the finite-dimensional vector space Rn
over R, the inner or dot product of two vectors u, v ∈ Rn is defined as
u · v =

∑n
i=1 uivi. When F = R, the conjugate is simply the identity.

Then, two vectors are said to be orthogonal when their inner product is 0
(which geometrically means that they are perpendicular). The row space and
the null space of a given matrix are orthogonal complements, and so are the
column space and the left null space. These results are brought together in
the Fundamental Theorem of Linear Algebra, whose statement we include in
Section 3. Thanks to the orthogonality of the row and null spaces, every vector
x ∈ Rm can be decomposed as x = xr+xn, where xr belongs to the row space
of A and xn belongs to the null space of A, and therefore xr · xn = 0. Now,
Ax = A (xr + xn) and this is equal to Axr (this hint will be crucial for the
least squares approximation of systems of linear equations that we describe in
Section 6).

2.2 Isabelle - HOL Multivariate Analysis Library

In this work we use various tools and developments carried out on top of
Isabelle [44]. The keystone of our work is the HMA Library [35], that we
briefly introduce in this section. Other tools which are also crucial for this
work, such as code generation, code refinements, and an Isabelle development
that permits to implement and compute with field extensions of the formQ[

√
b]

will be succinctly presented when they show up in our work.
The HMA Library is a set of Isabelle theories introducing mathematical

definitions and results including disciplines such as Topology, Algebra, and

Formalisation of the solution to the least squares problem 5

Analysis. They are vastly inspired by the work of Harrison [33, 34] in HOL
Light, which he used as a basis to complete proofs of the Fundamental Theo-
rem of Algebra and of the Stone-Weierstrass Theorem (and later on as a basis
of the Flyspeck project [32]). The translation of this Library from HOL Light
to Isabelle/HOL is far from complete. It is mainly being done by hand and,
apparently, translating HOL Light tactics and proofs to Isabelle is quite intri-
cate. Paulson, Hölzl, Eberl, Himmelmann, Heller, Immler, and ourselves have
or are actively contributing to this translation, and also to extend the HMA
Library in other directions (such as the ones presented in this paper and in
our previous works [5, 6]).

In its Isabelle version, it intensively uses the implementation of type classes
in the system by Haftmann and Wenzel [31] to represent mathematical struc-
tures (such as semigroups, rings, fields and so on), a representation with vari-
ous relevant features, such as enabling the possibility of operator overloading,
the definition of concrete instances of type classes, and the code generation of
instances of these structures. A type class definition can be seen as a logical
specification of the set of types that contains the operations and satisfies the
stated properties. We recommend the work by Hölzl, Immler, and Huffman [38]
for a thorough description of the type classes appearing in the HMA Library.
As an example of a type class (part of the HMA Library) that is widely used
in our work we present the definition of vector spaces over R.

class real_vector = scaleR + ab_group_add +
assumes "scaleR a (x + y) = scaleR a x + scaleR a y"
and "scaleR (a + b) x = scaleR a x + scaleR b x"
and "scaleR a (scaleR b x) = scaleR (a * b) x"
and "scaleR 1 x = x"

One particular limitation of the library, in both its HOL Light and Isabelle
versions, is that it is mainly designed to deal with structures over R, even if
most of its notions admit further generalisation. For instance, our formalisa-
tion of the Gauss-Jordan algorithm over generic fields, based on the library
representation of matrices, led us to generalise some of these concepts. We
presented this generalisation to fields, sometimes direct, but some other times
intricate in a previous work [6].

As an example, we present the generalised definition of vector space, which
requires a different Isabelle mechanism than type classes (locales), since its
definition involves two different type variables (the field, that in real_vector
was the fixed type real, and the Abelian group).

locale vector_space =
fixes scale::"’a::field ⇒ ’b::ab_group_add ⇒ ’b"
assumes "scale a (x + y) = scale a x + scale a y"
and "scale (a + b) x = scale a x + scale b x"
and "scale a (scale b x) = scale (a * b) x"
and "scale 1 x = x"

This definition of vector space is already part of the Isabelle Library. Un-
fortunately, some other derived mathematical structures and definitions (con-

6 Jesús Aransay, Jose Divasón

jugate, inner product spaces, orthogonality) have not been generalised yet in
the HMA Library. Despite that being a sensible work, it would involve the
reformulation of several results in those new introduced structures, depriving
us from one of the features of our work (the reutilisation of previous devel-
opments). In Section 3 we will compare the complexity (in number of code
lines) of building our work on top of the HMA Library (using real inner prod-
uct spaces) and that of building from scratch a new theory on inner product
spaces; we have chosen as a touchstone the proof of the Fundamental Theorem
of Linear Algebra.

Both the Gram-Schmidt algorithm and the QR decomposition are built
upon the notion of orthogonality. This notion requires a new type class based
upon vector spaces, named in the HMA Library real_inner (which describes
an inner product space over the real numbers). It introduces an inner or dot
product, which is then used to define the orthogonality of vectors.

context real_inner
begin
definition "orthogonal x y ←→ x · y = 0"
end

Some results on this work require finite-dimensional real vector spaces.
Therefore, we make use of the Euclidean space type class (also part of the
HMA Library), which is derived from real_inner by fixing a finite orthonormal
basis. As a particularly interesting instance of the Euclidean space type class,
Rn (for every n finite) is provided in the HMA Library. The representation of
n-dimensional vectors, with n a finite type, due to Harrison, is a crucial aspect
of the HMA Library (note that the underlying type system of the HOL family
of provers, such as HOL Light and Isabelle/HOL, excludes dependent types,
and consequently the possibility of defining n-dimensional vectors depending
directly on a natural number, n). Its type definition and particular notation
follows.

typedef (’a, ’b) vec = "UNIV :: ((’b::finite) ⇒ ’a) set"
morphisms vec_nth vec_lambda ..

notation vec_nth (infixl "$" 90) and vec_lambda (binder "χ" 10)

Vectors in finite dimensions are represented by means of functions from
an underlying finite type to the type of the vector elements. The Isabelle
constant UNIV denotes the set of every such function. Indeed, typedef builds
a new type as a subset of an already existing type (in this particular case,
the set includes every function whose source type is finite). Elements of the
newly introduced type and the original one can be converted by means of the
introduced morphisms. The notation clause introduces an infix notation ($)
for converting elements of type vec to functions and a binder χ that converts
functions to elements of type vec.

The definition becomes specially relevant since matrices will be also rep-
resented as an iterated construction over vectors (and thus matrices are rep-
resented as functions from a finite type to a type of vectors). In the sequel,

Formalisation of the solution to the least squares problem 7

we replace (’a, ’b) vec by the notation ’a^’b, which is reminiscent of LATEX
notation.

The real data type in Isabelle is internally represented by means of equiv-
alence classes of Cauchy sequences over the rational numbers. In our formal-
isation we abstract over these implementation details, and work exclusively
with the data type properties (mainly, that the type is a field). By sticking to
the real numbers, we also avoid some intricacies (for instance, the conjugate
operation for real numbers happens to be the identity).

The aforementioned notions are the ones used in the implementation and
formalisation of our objects of study (the Fundamental Theorem of Linear
Algebra, Gram-Schmidt orthogonalisation, QR decomposition, and the least
squares approximation). The finite type class over which the type definition
vec ranges represents types with a finite universe; these finite sets have an in-
ductive definition and also an induction rule which is used to perform inductive
proofs over vectors indexes. When required, we impose an additional restric-
tion over types used to represent vector indexes, which is that of belonging to
the type class wellorder ;1 our particularly defined type class mod-type allows
us to prove properties of matrices by induction on their rows or columns, and
can be replaced by the types Zn where n ∈ N (which are proven instances of
this type class) in the code execution process.

3 The Fundamental Theorem of Linear Algebra

Theorem 1 Fundamental Theorem of Linear Algebra. Let A ∈M(n,m)(R) be
a matrix and r = rankA; then, the following equalities hold:

1. The dimensions of the column space and the null space of A are equal to r
and m− r respectively;

2. The dimensions of the row space and the left null space of A are equal to
r and n− r respectively;

3. The row space and the null space are orthogonal complements;
4. The column space and the left null space are orthogonal complements.

Let us stress that items 1 and 2 also hold for A ∈M(n,m)(F), with F a field,
whereas items 3 and 4 hold for inner product spaces. We first introduce the
notion of span (which is defined for generic vector spaces) for the sake of
completeness. The hull binary (and infix) operator defines the resulting set of
intersecting every subspace containing S :

context vector_space
begin
definition "span (S::’b set) = subspace hull S"
end

1 Every finite set can be equipped with a well-order, but they are represented by means
of different type classes in the Isabelle library.

8 Jesús Aransay, Jose Divasón

The definition of the fundamental subspaces in Isabelle reads as follows.
Note the different kinds of product introduced in the definitions, including
op v* , which stands for vector times matrix, op *v, for matrix times vector.
Since we are out of the scope of vector_space, in the definitions of row_space and
col_space we explicitly provide the operation op *s that fixes the underlying
field and Abelian group (in other words, different scalar products could be
used to deal simultaneously with different vector spaces):

definition left_null_space: "left_null_space A = {x. x v* A = 0}"
definition null_space: "null_space A = {x. A *v x = 0}"
definition row_space: "row_space A = vector_space.span op *s (rows A)"
definition col_space: "col_space A = vector_space.span op *s (columns A)"

The definitions of the row and column spaces are proven equivalent to the
ones given in Section 2.1:

lemma fixes A :: "’a::field^’b::{finite,wellorder}^’c::{finite,wellorder}"
shows "row_space A = {w. ∃ y. transpose A *v y = w}"
and "col_space A = {y. ∃ x. A *v x = y}"

Item 1 in Theorem 1 is usually labelled as the Rank-Nullity Theorem, and
we completed its formalisation generalised to matrices over fields (see [20]).
From an existing basis of the null space and its completion up to a basis of
Fm, it is proven that the dimension of the column space is equal to r. Then,
the column space is proved equal to the range by means of algebraic rewriting.

In order to prove item 2 in Theorem 1, we apply again the Rank-Nullity
Theorem to AT . Additionally, it must be proven that the dimension of the row
space is equal to the rank of A. This particular proof, for matrices over generic
fields, involves the computation of the reduced row echelon form (or rref) of A,
and it requires reusing our formalisation of the Gauss-Jordan algorithm [5,21].
The key idea is to prove that elementary row operations preserve both the row
rank and the column rank of A, and then to compare the row and column ranks
of the rref of A, concluding that they are equal. We describe this proof in [6].
Up to now, proofs have been carried out in full generality (for matrices over a
generic field F).

Items 3 and 4 in Theorem 1 claim that the row space and the null space of
a given linear map are orthogonal complements, and so are the column space
and the left null space. The orthogonal complement of a subspace W is the
set of vectors of V orthogonal to every vector in W (note that, following the
HMA Library, the notion of orthogonality already places us in inner product
spaces over R):

definition "orthogonal_complement W = {x. ∀ y∈W. orthogonal x y}"

Since the definition of the null space claims that this space is equal to the
x such that Ax = 0 and the row space of A is the one generated by the rows
of A, both spaces are proven to be orthogonal ; a similar reasoning over AT
proves that the left null space and the column space are also orthogonal.

Formalisation of the solution to the least squares problem 9

lemma fixes A::"real^’cols::{finite,wellorder}^’rows::{finite,wellorder}"
shows "left_null_space A = orthogonal_complement (col_space A)"
and "null_space A = orthogonal_complement (row_space A)"

Note that the Rank-Nullity Theorem is the key result to prove that the
fundamental subspaces are complementary. The definitions and proofs intro-
duced in this section can be found in the files Fundamental_Subspaces and
Least_Squares_Approximation (where the Rank-Nullity Theorem is already
incorporated to the development) of our development [23]. Thanks to the in-
tensive reuse of these definitions and results, the complete proof of Theorem 1
took us 80 lines of Isabelle code.

As a matter of experiment, we tried to generalise the notion of inner product
space over R to that of inner product space over a field F , and then replay the
proof of Theorem 1. This generalisation can be found in file Generalizations2
of our development [23]. The number of lines devoted to define the required
notions, state Theorem 1 and prove it in full generality was ca. 650. Being the
generalisation of the results presented in this work to inner product spaces over
a field a sensible and interesting work, we stick in this work to inner product
spaces over R since this decision gives us the chance to reuse the libraries in
the HMA Library, instead of starting from scratch and reproducing them in
full generality.

4 A formalisation of the Gram-Schmidt algorithm

In this section we introduce the Gram-Schmidt process that leads to the com-
putation of an orthogonal basis of a vector space and its formalisation. Let us
note that orthonormal vectors are orthogonal vectors whose norm is equal to
1. Another relevant concept is the projection of a vector v onto a vector u,
and that of the projection onto a set. The Isabelle definitions follow; setsum
denotes the result of applying the operation (λx. proj a x) to every element of
S and computing their sum (these definitions can be found in file Projections
of our development [23] together with some of their relevant properties):

definition "proj v u = (v · u / (u · u)) *R u"
definition "proj_onto a S = setsum (λx. proj a x) S"

The Gram-Schmidt process takes as input a (finite) set of vectors {v1 . . . vk}
(which need not be linearly independent, neither be a set with size smaller
than or equal to the dimension of the underlying vector space) and iteratively
subtracts from each of them their projection onto the previous ones. The pro-
cess can be implemented in Isabelle as follows. The definition Gram_Schmidt_step
takes a vector a and a list of vectors ys and subtracts from a its projections
onto the vectors of ys. The obtained vector will be orthogonal to every vector
in the input list ys. Note that we have replaced sets of vectors by lists of vec-
tors for simplicity (op @ denotes the appending operation on lists); a similar
process could be applied to finite indexed sets:

10 Jesús Aransay, Jose Divasón

definition "Gram_Schmidt_step a ys = ys @ [a - proj_onto a (set ys)]"

This step is folded over a list of vectors xs and the empty list, obtaining thus
a list of vectors whose projections onto each other are 0 (i.e., are orthogonal).

definition "Gram_Schmidt xs = foldr Gram_Schmidt_step xs []"

The defined function Gram_Schmidt satisfies two properties. First, the vectors
in its output list must be pairwise orthogonal :

lemma Gram_Schmidt_pairwise_orthogonal:
fixes xs::"(’a::{real_inner}^’b) list"
shows "pairwise orthogonal (set (Gram_Schmidt xs))"

Second, the span of the sets associated to both the output and input lists
must be equal (note that here the definition real_vector.span does not require
the underlying scalar product, as it was the case with vector_space.span):

lemma Gram_Schmidt_span:
fixes xs::"(’a::{real_inner}^’b) list"
shows "real_vector.span (set (Gram_Schmidt xs)) = real_vector.span (set xs)"

The proofs of the properties Gram_Schmidt_pairwise_orthogonal and
Gram_Schmidt_span are carried out by induction over the input list. Under these
two conditions, whenever the input list is a basis of the vector space, the out-
put list will also be a basis (the predicate distinct is used to assert that there
are not repeated vectors in the input and output lists).

corollary orthogonal_basis_exists’:
fixes V :: "(real^’b) list"
assumes B: "is_basis (set V)" and d: "distinct V"
shows "is_basis (set (Gram_Schmidt V))
∧ distinct (Gram_Schmidt V) ∧ pairwise orthogonal (set (Gram_Schmidt V))"

A well-known variant of the Gram-Schmidt process is the modified Gram-
Schmidt process; given a set of vectors {v1 . . . vk}, instead of subtracting from a
vector vi (where 1 ≤ i ≤ k) its projections onto all its predecessors (v1 . . . vi−1),
as Gram-Schmidt does, it subtracts from a vector vi its projection onto ui−1,
where ui−1 is the result of orthogonalising vi−1. In exact arithmetic, the mod-
ified Gram-Schmidt process produces the same result as the Gram-Schmidt
process; from a numerical point of view, it reduces round-off errors, since each
vector is orthogonalised with respect to another one. The formalisation of the
modified process is similar to the one we have implemented. Since we do not
aim at using numerical approximations, we have not implemented it.

As a previous step for the QR decomposition of matrices, we introduced a
definition of the Gram-Schmidt process directly over the columns of a matrix.
To get that, the above operation Gram_Schmidt could be applied to the list
of columns of the matrix (indeed, that was our first version), but that would
require two conversions between matrices and lists. Instead, in order to improve

Formalisation of the solution to the least squares problem 11

efficiency, we have preferred to build a new matrix from a function, using the
χ binder (the morphism defining a vec from a function).

The operation Gram_Schmidt_column_k returns a matrix where Gram-Schmidt
is performed over column k and the remaining columns are not changed. This
operation is then folded over the list of the input matrix columns. Note that
k is a natural number, whereas rows and columns indexes are elements of
the finite types introduced in Section 2.2, and thus the operation from_nat is
applied to convert between them.

definition "Gram_Schmidt_column_k A k = (χ a b. (if b = from_nat k
then (column b A - (proj_onto (column b A) {column i A|i. i < b}))
else (column b A)) $ a)"

definition "Gram_Schmidt_upt_k A k = foldl Gram_Schmidt_column_k A [0..<k+1]"
definition "Gram_Schmidt_matrix A = Gram_Schmidt_upt_k A (ncols A - 1)"

The definition of Gram_Schmidt_matrix has been proven to satisfy similar
properties to Gram_Schmidt. Additionally, both definitions have been set up to
enable code generation and execution from Isabelle to both SML and Haskell.

The following expression can be now evaluated in Isabelle (note the use
of intermediary functions for inputting a matrix as a list of lists and out-
putting the resulting matrix as a list of lists). In this setting, the function
Gram_Schmidt_matrix is being evaluated. In Section 7 we will improve its perfor-
mance using a refinement of these functions to immutable arrays:

value "let A = list_of_list_to_matrix [[4,-2,-1,2], [-6,3,4,-8],
[5,-5,-3,-4]]::real^4^3 in matrix_to_list_of_list (Gram_Schmidt_matrix A)"

The obtained result is:

"[[4,50/77,15/13,0], [-6,-75/77,10/13,0], [5,-130/77,0,0]]"

Note that the output vectors are orthogonal, but not orthonormal. We
address this issue in the next section, when formalising the QR decompo-
sition. The formalisations presented in this section are available in the file
Gram_Schmidt from [23].

5 A formalisation of the QR decomposition algorithm

The QR decomposition of a matrix A is defined as a pair of matrices, A = QR,
where Q is a matrix whose columns are orthonormal and R is an upper trian-
gular matrix (which in fact contains the elementary column operations that
have been performed over A to reach Q). The literature includes different vari-
ants of this decomposition (see for instance [9, Chapt. 3, 4]). More concretely,
it is possible to distinguish two different decompositions of a given matrix
A ∈M(m,n)(R):

– If A is full column rank, A can be decomposed asQR, whereQ ∈M(m,n)(R)
and its columns are orthonormal vectors, and R ∈ M(n,n)(R) is an upper
triangular and invertible matrix.

12 Jesús Aransay, Jose Divasón

– A can also be decomposed as QR, where Q ∈M(m,m)(R) and is orthonor-
mal, and R ∈ M(m,n)(R) is an upper triangular (but neither square, nor
invertible) matrix. This case is called full QR decomposition.

In this work we formalise the first case, where the number of rows of A will
be greater than or equal to the number of columns. Indeed, this is the version
of the decomposition which is directly applicable to solve the least squares
problem, as we explain in Section 6. In the particular case where A is not full
column rank, we do not compute the QR decomposition, but, as we present
in Section 6, we solve the problem by means of the Gauss-Jordan algorithm.
Let us describe how the decomposition is performed.

Given a matrix A = (a1 | . . . | an) ∈ M(m,n)(R) (where n ≤ m) whose
columns ai are linearly independent vectors, the matrix Q ∈M(m,n)(R) is the
matrix with columns (q1 | . . . | qn), where qi is the normalised vector ai minus
its projections onto q1 . . . qi−1 (and thus, orthogonal to both a1 . . . ai−1 and
q1 . . . qi−1). The matrix R ∈M(n,n)(R) can be expressed as R = QTA.

Once we have computed the Gram-Schmidt process over the vectors of a
matrix in Section 4 (recall the Isabelle function Gram_Schmidt_matrix), and intro-
ducing an operation to normalise every column in a matrix, the computation
of the QR decomposition is defined in Isabelle as follows:

definition "divide_by_norm A = (χ a b. normalize (column b A) $ a)"
definition "QR_decomposition A =
(let Q = divide_by_norm (Gram_Schmidt_matrix A) in (Q, (transpose Q) ** A))"

The literature suggests some other ways to compute the matrices Q and
R, in such a way that the coefficients of matrix R are computed in advance,
and then used in the computation of the columns of Q; see for instance the
algorithms labelled as Classical Gram-Schmidt and Modified Gram-Schmidt
by Björck [9, Chap. 2.4]. These algorithms avoid some unnecessary operations
in our Isabelle formalisation (in particular, they avoid the computations of
QT and the product QTA). Instead, our formalised version directly uses the
output of the Gram-Schmidt orthogonalisation process presented in Section 4
and computes a posteriori the coefficients in R.

The properties of Q and R need to be proved. Once that in Section 4 we
proved that the columns of the matrix computed with Gram_Schmidt_matrix are
pairwise orthogonal and that they have a span equal to the one of the input
matrix, these properties are straightforward to prove for Q. The property of
the columns of Q having norm equal to 1 is proven also directly from the
definition of Q. For its intrinsic interest we illustrate the property of Q and A
having equal column space:

corollary col_space_QR_decomposition:
fixes A::"real^’n::{mod_type}^’m::{mod_type}"
defines "Q ≡ fst (QR_decomposition A)"
shows "col_space A = col_space Q"

Formalisation of the solution to the least squares problem 13

Another crucial property of Q (and QT) that is required later in the
least squares problem is the following one (note that it is stated for possi-
bly non-square matrices with more rows than columns):

lemma orthogonal_matrix_fst_QR_decomposition:
fixes A::"real^’n::{mod_type}^’m::{mod_type}"
defines "Q ≡ fst (QR_decomposition A)"
assumes r: "rank A = ncols A"
shows "transpose Q ** Q = mat 1"

This property is commutative for square matrices (QTQ = QQT = In and
thus Q−1 = QT) but it does not hold that QQT = Im for non-square
ones. Its proof is completed by case distinction in the matrix indexes; being
Q = (q1 | · · · | qn), and thus QT =

(q1
···
qn

)
, when multiplying row i of QT (which

is qi) times column i of Q, the result is 1 since the vectors are orthonormal.
On the contrary, when multiplying row i of QT (which is qi) times column j
of Q, the result is 0 because of orthogonality.

Then, the most relevant properties of R are being upper triangular and
invertible. Indeed, being A = (a1 | · · · | an), R = QTA =

(
q1·a1 q1·a2 ...
q2·a1 q2·a2 ...
...

)
. The

following lemma proves the matrix R being upper triangular:

lemma upper_triangular_snd_QR_decomposition:
fixes A::"real^’n::{mod_type}^’m::{mod_type}"
defines "Q ≡ fst (QR_decomposition A)" and "R ≡ snd (QR_decomposition A)"
assumes r: "rank A = ncols A"
shows "upper_triangular R"

The matrix R is also invertible:

lemma invertible_snd_QR_decomposition:
fixes A::"real^’n::{mod_type}^’m::{mod_type}"
defines "Q ≡ fst (QR_decomposition A)" and "R ≡ snd (QR_decomposition A)"
assumes r: "rank A = ncols A"
shows "invertible R"

The properties satisfied by the QR decomposition (in this statement, of
non-square matrices) can be finally stated in a single result (the result for
square matrices of size n also proves the columns of Q being a basis of Rn).
The result sums up the properties of Q and R that have been formalised along
Sections 4 and 5:

lemma QR_decomposition:
fixes A::"real^’n::{mod_type}^’m::{mod_type}"
defines "Q ≡ fst (QR_decomposition A)" and "R ≡ snd (QR_decomposition A)"
assumes r: "rank A = ncols A"
shows "A = Q ** R ∧

pairwise orthogonal (columns Q) ∧ (∀ i. norm (column i Q) = 1) ∧
(transpose Q) ** Q = mat 1 ∧ vec.independent (columns Q) ∧
col_space A = col_space Q ∧ card (columns A) = card (columns Q) ∧
invertible R ∧ upper_triangular R"

14 Jesús Aransay, Jose Divasón

The formalisations carried out in this section are available in the file
QR_Decomposition from our development [23].

6 Solution of the least squares problem

The previous decomposition can be used for different applications. In this work
we focus on finding the best approximation of a system of linear equations
without solution. In this way, we complete our previous work [5], in which
the computation of the solution of systems of linear equations was formalised
thanks to the Gauss-Jordan elimination.

The best approximation of a system Ax = b, in this setting, means to
find the elements x̂ such that minimise ‖e‖, where e = Ax̂− b. Our aim is to
prove that x̂ is the solution to Ax̂ = b̂, where b̂ denotes the projection of b
onto the column space of A. The solution for the general case (also known as
the rank deficient case) is usually performed by means of the Singular Value
Decomposition (or SVD); this decomposition provides, for any real or complex
matrix A, three matrices U , Σ, V such that A = UΣV H (where V H is the
result of conjugating each element of V and then transposing the matrix, and
Σ =

(
Σ1 0
0 0

)
, where Σ1 = diag (σ1 . . . σr) and σi denote the singular values of

A, in such a way that A =
∑n
i=1 σiuiv

H
i).

The existence of the SVD decomposition of a matrix can be proven by
induction without particular difficulties (see [9, Th. 1.2.1]). On the contrary,
the computation of the SVD decomposition (see, for instance, [9, Sect. 2.6])
requires the computation of eigenvalues and eigenvectors of matrices, whose
computation requires numerical methods. In this work we solve the case where
the input matrix A of the system Ax = b is full column rank by means of the
QR decomposition, and the general case will be solved applying the Gauss-
Jordan algorithm.

We define the characterisation of the least squares approximation of a
system as follows (following [9, Th. 1.1.2]):

definition "set_least_squares_approximation A b =
{x. ∀ y. norm (b - A *v x) ≤ norm (b - A *v y)}"

Prior to showing the utility of the QR decomposition to solve the previous
problem, we prove that the closest point to a point v /∈ S in a subspace S
(being X an orthogonal basis of S) is its projection onto that subspace:

lemma least_squares_approximation:
fixes X::"’a::{euclidean_space} set"
assumes "real_vector.subspace S" and "real_vector.independent X"
and "X ⊆ S" and "S ⊆ real_vector.span X"
and "pairwise orthogonal X"
and "proj_onto v X 6= y"
and "y ∈ S"
shows "norm (v - proj_onto v X) < norm (v - y)"

Formalisation of the solution to the least squares problem 15

The lemma least_squares_approximation, states that the projection of b onto
the range of A (that we denote by b̂) is the closest point to b in this subspace.
Let x̂ be such that A x̂ = b̂. Thanks to Theorem 1, b − A x̂ belongs to the
orthogonal complement of rangeA, which happens to be the left null space.
Consequently, we know that the solutions to the least squares problem must
satisfy the equation AT (b−Ax) = 0 (the converse also holds). From this prop-
erty, the standard characterisation of the set of least squares approximations
is obtained [9, Th. 1.1.2]:

lemma in_set_least_squares_approximation_eq:
fixes A::"real^’cols::{finite,wellorder}^’rows"
defines "A_T == transpose A"
shows "(x ∈ set_least_squares_approximation A b) = (A_T ** A *v x = A_T *v

b)"

The proof of lemma least_squares_approximation makes use of the
Pythagorean Theorem of real inner product spaces, whose proof we include
because of its intrinsic interest2 (it reproduces the conventional argument
||x+ y||2 = x · x+ x · y + y · x+ y · y, which because of the orthogonality of
x and y is equal to x · x+ y · y = ||x||2 + ||y||2):

lemma Pythagorean_theorem_norm:
assumes o: "orthogonal x y" shows "norm (x+y)^2=norm x^2 + norm y^2"

proof -
have "norm (x+y)^2 = (x+y) · (x+y)" unfolding power2_norm_eq_inner ..
also have "... = ((x+y) · x) + ((x+y) · y)" unfolding inner_right_distrib ..
also have "... = (x · x) + (x · y) + (y · x) + (y · y) "
unfolding real_inner_class.inner_add_left by simp

also have "... = (x · x) + (y · y)" using o unfolding orthogonal_def
by (metis comm_monoid_add_class.add.right_neutral inner_commute)

also have "... = norm x^2 + norm y^2" unfolding power2_norm_eq_inner ..
finally show ?thesis .

qed

Once we have characterised the set of least squares approximations, we
distinguish whether A is full column rank or not:

– If A is not full column rank, ATA does not have inverse, and the solu-
tion to the least squares problem can be obtained by applying the Gauss-
Jordan algorithm (that we formalised in a previous work [5]) to the sys-
tem ATAx̂ = AT b [9, Eq. 1.1.15]. Our Gauss-Jordan implementation would
compute a single solution of the system plus a basis of the null space of
ATA:

lemma in_set_least_squares_approximation_eq:
fixes A::"real^’cols::{finite,wellorder}^’rows"
defines "A_T ≡ transpose A"
shows "(x ∈ set_least_squares_approximation A b) = (A_T ** A *v x = A_T

*v b)"

2 The proof can be completed in one single line of Isabelle code, but we usually favour
Isar human-readable proofs [54].

16 Jesús Aransay, Jose Divasón

– Otherwise, ATA is an invertible matrix, and x̂ = (ATA)−1AT b. In this case,
the solution is unique, and the set in the right hand side is a singleton. The
following result proves the uniqueness and the explicit expression of the
solution [9, Eq. 1.1.16]:

lemma in_set_least_squares_approximation_eq_full_rank:
fixes A::"real^’cols::mod_type^’rows::mod_type"
defines "A_T ≡ transpose A"
assumes r: "rank A = ncols A"
shows "(x ∈ set_least_squares_approximation A b) =

(x = matrix_inv (A_T ** A) ** A_T *v b)"

As it may be noticed, the solution to the least squares problem does not
demand the QR decomposition of A. The decomposition is used when A is an
(full column rank) almost singular matrix (i.e., its condition number, σ1/σr,
where σ1 and σr are the greatest and smallest singular values of A, is “big”, and
the computation of (ATA)−1 seriously compromises floating-point precision).
Even if numerical methods are not central to our aim, we point the interested
reader to the works by Björck [9, Sect. 1.4] or [17, Sect. 2.4].

Since x̂ = (ATA)−1AT b, and using that A can be decomposed as QR, with
Q a matrix of orthonormal vectors, and R upper triangular, one also has that
AT = RTQT (note that QTQ = I). Then, x̂ = (RTQTQR)−1RTQT b, and this
equation can be reduced to x̂ = R−1QT b. Now, the matrices Q and R are
obtained through the Gram-Schmidt process, and the inverse of R, which is
upper triangular, can be performed by backward substitution. The Isabelle
statement of this new equality follows [9, Th. 1.3.3]:

corollary in_set_least_squares_approximation_eq_full_rank_QR2:
fixes A::"real^’cols::{mod_type}^’rows::{mod_type}"
defines "Q ≡ fst (QR_decomposition A)" and "R ≡ snd (QR_decomposition A)"
assumes r: "rank A = ncols A"
shows "(x ∈ set_least_squares_approximation A b) =

(x = matrix_inv R ** transpose Q *v b)"

The formalisations of the results in this section are available in the file
Least_Squares_Approximation from our development [23]. In the next section
we show how the previous results can be used to compute the least squares
approximation of a linear system.

7 Code generation from the development

Up to now we have proved that given a matrix A ∈ M(m,n)(R) and a system
of linear equations Ax = b without solution there exists one or multiple least
squares approximations to that system, and we have also provided and proved
explicit expressions to identify them. In the case where A is not full column
rank, computing the approximations requires solving the system ATAx̂ = AT b;
when A is full column rank, the approximation can be directly computed by
means of the expression x̂ = R−1QT b.

Formalisation of the solution to the least squares problem 17

The computation of the approximations, based on the previous expressions,
requires various features.

– First, the underlying real type (and the required operations) needs an
executable representation.

– Then, the representation (and the operations) chosen for matrices needs
an executable version.

– For the case where A is not full column rank, an executable version of
the Gauss-Jordan algorithm applied to compute the solution of systems of
linear equations needs to be provided.

The first point admits various solutions. The default Isabelle type for
real numbers is implemented by means of Cauchy sequences of rational num-
bers [12], but then code generation is contemplated for the subset of the real
numbers formed by rational numbers. With this particular subset, there exists
the possibility of executing inside of Isabelle arithmetic operations (imple-
mented by means of rewrite rules) over elements of type real, as long as the
results can be represented as quotients of rational numbers. This approach is
valid, for instance, for executing Gauss-Jordan (even in this particular case,
computing the Gauss-Jordan form of a random 15 × 15 matrix takes 3 min-
utes, even if this time heavily depends on the size of the coefficients), as long
as matrices inputs are rational numbers, but it is not valid for computing QR
decompositions.

Therefore, our alternative solution consists in making use of the aforemen-
tioned Isabelle code generation facility [28,30] that translates Isabelle specifi-
cations to specifications in various functional languages (in this development,
we make use exclusively of SML). The type real is generated by default in SML
to quotients of integer numbers. Unfortunately, square roots computations are
not possible in this setting (only Gram-Schmidt could be executed).

The code generator can alternatively be set up to identify (or serialise)
an Isabelle type to SML native types; following this methodology, we used
an already existing serialisation in the Isabelle library that maps the type
real and its operations to the SML structure Real (and its underlying type
real). This serialisation allows us to compute in SML the formalised algo-
rithm of the least squares problem, but computations fall in the conventional
rounding errors of double-precision floating-point numbers (despite the original
algorithm being formalised, the computations cannot be trusted). File Exam-
ples_QR_IArrays_Float in our development [23] contains some examples of
computations in SML following this methodology.

Fortunately, as we were completing this work, an Isabelle development
named “Implementing field extensions of the form Q[

√
b]” by Thiemann was

published in the Isabelle Archive of Formal Proofs [51]. This development
provides, among many other interesting features, a data type refinement for
real numbers of the form p + q

√
b (with p, q ∈ Q, b ∈ N, with

√
b irrational,

and b a prime product). The refinement can represent any real number in a
field extension Q[

√
b]; binary operations are implemented as partial functions,

so that operations over numbers belonging to different field extensions do raise

18 Jesús Aransay, Jose Divasón

exceptions. This refinement is available for computations inside of Isabelle, and
also for code generation to SML. We make use of this development, and obtain
exact symbolic computations, as long as we restrict ourselves to matrices whose
inputs are in Q (if we input matrices in Q[

√
b] their normalisation may belong

to Q[
√
b][
√
a], that is out of the scope of the presented Isabelle development).

The second concern to obtain computations is the representation of matri-
ces. The representation we have used along the formalisation relies on a type
vec representing vectors (and then its iterated construction to represent ma-
trices) which corresponds to functions over finite domains. Additionally, some
Isabelle definitions and statements are restricted to vectors indexed by the
type class mod_type. These types and type classes are perfectly suited for code
generation.

The following example shows the execution of the sum of a vector of rational
numbers with itself; the mod_type class is replaced by an instance (the finite
type with the three elements 0, 1 and 2, i.e. 3). Operations to convert lists
to vectors and vice versa are used for inputting and outputting the otherwise
cumbersome elements of vec type:

value "(let
A = list_of_list_to_matrix [[1/3,2,4/5],[9,4/7,5],[0,5/2,0]]::rat^3^3
in matrix_to_list_of_list (A + A))"

The obtained output follows (it is obtained in Isabelle, and thus certified,
based on a rewriting and normalisation by evaluation strategy [2, 30]):

"[[2 / 3, 4, 8 / 5], [18, 8 / 7, 10], [0, 5, 0]]"

The representation of vectors as functions (a given vector is internally rep-
resented as a lambda expression) can be improved by more convenient data
types, such as immutable arrays. Accessing operations are then performed in
constant time, whereas functions require being evaluated. Moreover, Isabelle
offers an infrastructure for both data type and algorithmic refinement by Haft-
mann et al. [29]. This infrastructure permits to establish a map (or morphism)
among data types (in our case, from vectors to immutable arrays), which,
together with certain operations over immutable arrays, have to be proven
equivalent to the ones that have been used in the formalisation. Isabelle offers
some additional packages that further simplify the refinement of types and op-
erations to executable counterparts (at least, Lifting and Transfer by Huffman
and Kunčar [36], and the Isabelle Refinement Framework by Lammich [40]).
None of them was applied in our case study. The first one, still ongoing work,
could pay off in terms of code reusability among the different representations
of vectors, but we are still exploring the possibilities of applying it to our
setting. The latter is specially designed for dealing with imperative programs
in which the underlying structures are maps or sets that are automatically
converted to optimised representations. Despite its utility, since underlying
types are vectors in our work, we could not directly apply the framework. In-

Formalisation of the solution to the least squares problem 19

stead, we preferred to reuse the formalised link that we already developed and
successfully tested in a previous work [4, 5].

In this work, we have reproduced in Isabelle the definitions of the QR
decomposition for immutable arrays and proved their equivalence with respect
to the vector versions. These lemmas are then used as rewrite rules (their left
hand side is replaced by their right hand side) in the evaluation and code
generation processes (and are named code lemmas in Isabelle jargon).

Nevertheless, some of the definitions over immutable arrays used in the
Gauss-Jordan formalisation have been replaced in this development. For in-
stance, iarray addition, which we defined in the Gauss-Jordan development
as:3

plus_iarray A B = IArray.of_fun (λn. A!!n + B!!n) (IArray.length A)

The infix operator A!!n denotes accessing to component n of A. The oper-
ation is not well-defined for values greater than or equal to length A. On the
contrary, do note that the operation is not commutative (it is trivial to find
counterexamples with vectors B whose length is greater than the one of A). In
this development the operation plus_iarray is defined as:

plus_iarray A B = (let
length_A = (IArray.length A); length_B = (IArray.length B);
n = max length_A length_B ;
A’ = IArray.of_fun (λa. if a < length_A then A!!a else 0) n;
B’ = IArray.of_fun (λa. if a < length_B then B!!a else 0) n

in IArray.of_fun (λa. A’!!a + B’!!a) n)

This new definition is commutative, and thus it permits to show that iar-
rays over a commutative monoid are an instance of the Isabelle type class
comm_monoid_add. When proving commutativity, do note that it does not admit
premises on the length of the vectors since it is the definition used to instan-
tiate the type IArray with an operation + (or plus). Thanks to commutativity,
several proofs involving finite sums (for instance, ranging over the columns
of a matrix) of iarrays are simplified. On the other hand, this definition is
more time consuming than the previous one, and it could have some impact
on performance.

Some definitions along our development made use of operations that may
be, a priori, non executable, such as all or exists applied to the elements of
a variable of type vec. These definitions have to be restated over iarrays in a
way that they are executable (in this particular case we take advantage of the
set type constructor over lists giving place to sets that can be computed and
traversed), and proved to be equivalent to the ones over vec.

fun all :: "(’a ⇒ bool) ⇒ ’a iarray ⇒ bool"
where "all p (IArray as) = (ALL a : set as. p a)"

fun exists :: "(’a ⇒ bool) ⇒ ’a iarray ⇒ bool"
where "exists p (IArray as) = (EX a : set as. p a)"

3 Note that the type system takes care of the elements of type vec being of equal size and
this assumption can then be avoided in the refinement to immutable arrays.

20 Jesús Aransay, Jose Divasón

We then serialise these operations to corresponding ones on SML:

code_printing
constant "IArray_Addenda_QR.exists" ⇀ (SML) "Vector.exists"
| constant "IArray_Addenda_QR.all" ⇀ (SML) "Vector.all"

Then, definitions over vec type are proven equivalent (modulo type mor-
phisms) to definitions over iarray :

definition "is_zero_iarray A =
IArray_Addenda_QR.all (λi. A !! i = 0) (IArray[0..<IArray.length A])"

lemma is_zero_iarray_eq_iff:
fixes A::"’a::{zero}^’n::{mod_type}"
shows "(A = 0) = (is_zero_iarray (vec_to_iarray A))"

The previous set-up, together with the refinement of real numbers to field
extensions Q[

√
b], gives place to the following symbolic computations of the

matrices Q and R in Isabelle (computations are internally being performed
in SML transparently to the user; they can also be internally performed in
Isabelle). Do note that, once the refinement to iarrays has been performed,
the operations internally being executed are the ones over iarrays:

definition "A ==
list_of_list_to_matrix [[1,3/5,3],[9,4,5/3],[0,0,4],[1,2,3]]::real^3^4"

value "print_mat (fst (QR_decomposition A))"
value "print_mat (snd (QR_decomposition A))"

The results obtained follow (their computation time in SML is 0.001 s.). We
have reproduced the example in Mathematica R© version 10.4 [43], obtaining a
similar time.4

"[["1/83*sqrt(83)", "4/4233*sqrt(8466)", "95/65229*sqrt(130458)"],
["9/83*sqrt(83)", "-11/8466*sqrt(8466)", "-19/130458*sqrt(130458)"],
["0", "0", "3/1279*sqrt(130458)"],
["1/83*sqrt(83)", "91/8466*sqrt(8466)", "-19/130458*sqrt(130458)"]]"

"[["sqrt(83)", "193/415*sqrt(83)", "21/83*sqrt(83)"],
["0", "7/415*sqrt(8466)", "418/12699*sqrt(8466)"],
["0", "0", "2/153*sqrt(130458)"]]"

We can also compute the least squares approximation to systems of equa-
tions with no solution. As we mentioned in Section 6, when A = QR is full
column rank, solving this problem requires computing the inverse of the ma-
trix R, and this is done thanks to the Gauss-Jordan algorithm that we already
formalised [5]. An interesting situation shows up here, related to the use of
Q[
√
b] extensions. The solution to the least squares problem Ax = b can be

computed as x̂ = R−1QT b.

4 The benchmarks have been carried out in laptop with an Intel Core i5-3360M processor,
4 GB of RAM, PolyML 5.5.2-3 and Ubuntu 14.04.

Formalisation of the solution to the least squares problem 21

Given a matrix A, the computation of the matrix Q may involve the use
of field extensions Q[

√
b], where b could be different in each column. Then,

the computation of R = QTA gives place to an upper triangular matrix (with
each row in a possibly different extension of Q[

√
b]), whose inverse is computed

by means of elementary row operations, based on our implementation of the
Gauss-Jordan algorithm [5,21].

The least squares approximation x̂ of a system Ax = b is computed symbol-
ically as shown in the following example (the operation the is the Isabelle/HOL
implementation of Hilbert’s ε definite operator, since we have used an option
type to represent the partiality of the inverse_matrix operation; details are given
in our Gauss-Jordan development [5]):

definition "b ≡ list_to_vec [1,2,3,sqrt(2)]::real^4"

value "let Q = fst (QR_decomposition A);
R = snd (QR_decomposition A)

in print_vec ((the (inverse_matrix R) ** transpose Q *v b))"

The computed solution is "["12269/17906 - 10443/35812 * sqrt(2)",
"-11840/8953 + 5900/8953 * sqrt(2)", "1605/2558 - 57/5116 * sqrt(2)"]".

As we illustrate with the following computation, being b̂ = A x̂, the differ-
ence b− b̂ lies on the left null space of A, and therefore AT (b− b̂) = 0:

value "let Q = fst (QR_decomposition A); R = snd (QR_decomposition A);
b2 = (A *v (the (inverse_matrix R) ** transpose Q *v b))

in print_vec (transpose A *v (b - b2))"

Its output, as expected, is: "["0", "0", "0"]".
We present the result of a problem related to the computation of the orbit

of the comet Tentax [17, Ex. 1.3.4]. A brief statement of the problem follows.
In a certain polar coordinate system, the following observations of the position
of the comet were made:

r 2.70 2.00 1.61 1.20 1.02
θ 48◦ 67◦ 83◦ 108◦ 126◦

Kepler’s first law states that, neglecting the perturbations from planets,
the comet should follow a plane hyperbolic or elliptic form. Therefore, the
coordinates satisfy the equation:

r =
p

1− e cos θ

Where p denotes a parameter and e the eccentricity. If the relationship
is rewritten as 1/p− (e/p) cos θ = 1/r, it becomes linear in the parameters
x1 = 1/p and x2 = e/p. Then, the linear system Ax = b is obtained, where:

22 Jesús Aransay, Jose Divasón

A =

1 −0.6691
1 −0.3907
1 −0.1219
1 0.3090
1 0.5878

 , b =

0.3704
0.5
0.6211
0.8333
0.9804

 .

The least squares problem is formulated in Isabelle as follows:

value "let A = list_of_list_to_matrix
[[1,-0.6691],[1,-0.3907],[1,-0.1219],[1,0.3090],[1,0.5878]]::real^2^5;
b = list_to_vec [0.3704,0.5,0.6211,0.8333,0.9804]::real^5;
QR = (QR_decomposition A); Q = fst QR; R = snd QR

in print_vec (the (inverse_matrix R) ** transpose Q *v b)"

The obtained solution is "["3580628725341/5199785740000",
"251601193/519978574"]" (corresponding to x1 and x2, from which the pa-
rameter p and the eccentricity e are computed). It is obtained in SML thanks
to the refinement to iarrays. Computing time in SML is 0.0012 s., whereas in
Mathematica R© it is 0.0007 s.

As an additional example, we introduce Hilbert matrices, which are well-
known for being ill-conditioned, and thus prone to round-off errors. Hilbert
matrices are defined as:

Hij =
1

i+ j − 1

For instance, the Hilbert matrix in dimension 6, H6 has determinant equal
to 1/186313420339200000 and the order of magnitude of its condition number
is 107:

[[1 ,1/2,1/3,1/4,1/5,1/6],
[1/2,1/3,1/4,1/5,1/6,1/7],
[1/3,1/4,1/5,1/6,1/7,1/8],
[1/4,1/5,1/6,1/7,1/8,1/9],
[1/5,1/6,1/7,1/8,1/9,1/10],
[1/6,1/7,1/8,1/9,1/10,1/11]]

We have computed the least squares approximation to the system
H6 x = (1 0 0 0 0 0 5)T using the QR decomposition (this QR decomposition
comprises coefficients of order 1019). The least squares approximation of the
system follows:

"["-13824","415170","-2907240","7754040","-8724240","3489948"]"

Its SML computation time is 0.013 s. or 0.022 s., depending on whether we
use the optimisations presented in Section 7.1 or not. In Mathematica R© the
same computation takes 0.017 s.

Formalisation of the solution to the least squares problem 23

7.1 Code Optimisations

The implementation of our first version of the QR algorithm admitted different
types of performance optimisation that we also applied. Here we comment on
three of them.

– First, there was an issue with the conversion from sets to lists in the code
generation process. Let us recover the Isabelle definition introduced in Sec-
tion 4, proj_onto a S = setsum (λx. proj a x) S. The definition applies an
operation to the elements of a set S and then computes their sum. The
Isabelle code generator is set up to refine sets to lists (whenever sets are
finite), and thus the previous sum is turned into a list sum, by means of
the following code equation (note that sums are abstracted to a generic
“big operator” F defined for both sets or lists, and that we have omitted
that the underlying structure is a commutative monoid):

lemma set_conv_list [code]:
"set.F g (set xs) = list.F (map g (remdups xs))"

It is relevant to pay attention to the operation remdups ; the input list xs
that represents the set could contain duplicated elements, and therefore
they have to be removed from that list for the equality to hold (for in-
stance, the set {1, 2, 3} can be originated by both xs = [1, 2, 3, 3] and
xs = [1, 2, 3]). When we applied code generation and by means of SML
profiling techniques, we detected that remdups was one of the most time
consuming operations in the QR executions. In our particular case, af-
ter applying Gram_Schmidt_column_k (this operation explicitly uses proj_onto,
and hence remdups, see Section 4) to the first k columns of a set, the ob-
tained columns are either 0 or orthogonal. In the second case, there are no
duplicated columns. Interestingly, in the first case, there might be dupli-
cated columns equal to 0; these columns, when used in later iterations of
Gram_Schmidt_column_k, do not affect the final result. In any case (with the
previous columns being 0 or orthonormal), the following operation, that
avoids removing duplicates, is more efficient than Gram_Schmidt_column_k, and
returns the same result when applied to the column k+1 of a matrix where
Gram_Schmidt_column_k has been applied to the first k columns. The following
definition (where remdups over the list of columns of the matrix has been
avoided) is to be compared with the one of Gram_Schmidt_column_k presented
in Section 4, that we repeat here to ease comparison:

definition "Gram_Schmidt_column_k A k =
(χ a b. (if b = from_nat k

then (column b A - (proj_onto (column b A) {column i A|i. i < b}))
else (column b A)) $ a)"

definition "Gram_Schmidt_column_k_efficient A k =
(χ a b. (if b = from_nat k
then (column b A - listsum (map (λx. ((column b A · x) / (x · x)) *R x)
(map (λn. column (from_nat n) A) [0..<to_nat b]))

24 Jesús Aransay, Jose Divasón

else column b A) $ a)"

The proof of the equivalence between both definitions can be found in file
QR_Efficient [23]; let us remark that the property only holds for a column
k + 1 when the first k columns have been already orthogonalised.
We have also used the standard strategy of providing code generation for
sets as lists where duplicates are removed in the computation of inner
products. By default, the inner product is computed over the set of indexes
of the vectors (that are turned into lists to which remdups is applied, even
when the set of indexes is known not to not contain repeated elements).
The following code equation avoids this (in our case, unnecessary) check:

lemma [code]:
"inner_iarray A B = listsum (map (λn. A!!n * B!!n) {0..<IArray.length A})"

– A second improvement on code performance was directly introduced by
the Isabelle developers during the process of completing this work, and is
related to the code generation set-up of the function map_range, that profiling
showed as another bottleneck of our programs execution. The function
map_range is internally used to apply a function to a range of numbers
(and therefore it is being used, for instance, in our previous definitions
inner_iarray or Gram_Schmidt_column_k_efficient):

definition map_range[code_abbrev]: "map_range f n = map f [0..<n]"

The original code equation for this definition follows:

lemma map_range_simps [simp, code]:
"map_range f 0 = []"
"map_range f (Suc n) = map_range f n @ [f n]"

This definition, in each iteration, builds two different lists and concatenates
them. The operation can be completed over a single list, improving both
memory usage and performance. The previous definition of map_range was
removed from the Isabelle library on lists, and the conventional definition
of map over lists used instead:

lemma [code]:
"map f [] = []"
"map f (x # xs) = f x # map f xs"

– Finally, we realised that the definition of Gram_Schmidt also had room
for improvement, from a computational point of view. The definition of
Gram_Schmidt_column_k_iarrays_efficient can be replaced by the following one
(they are extensionally equal):

definition "Gram_Schmidt_column_k_iarrays_efficient2 A k =
tabulate2 (nrows_iarray A) (ncols_iarray A)
(let col_k = column_iarray k A;

Formalisation of the solution to the least squares problem 25

col = (col_k - listsum (map (λx. ((col_k ·i x) / (x ·i x)) *R x)
((map (λn. column_iarray n A) [0..<k]))))

in (λa b. (if b = k then col else column_iarray b A) !! a))"

This definition makes use of let definitions to bind variables (such as col_k)
that in Gram_Schmidt_column_k_iarrays_efficient where being performed (in-
deed, they were simply access operations) many times. Proving the equiv-
alence between both definitions is straightforward (the proof is lemma
Gram_Schmidt_column_k_iarrays_efficient_eq in file QR_Efficient of our de-
velopment [23]).

The development also allows further computations, such as the projection
of a vector onto a subspace, the Gram-Schmidt algorithm, orthogonality of
vectors, solution of the least squares problem for matrices without full rank,
and can be used to grasp the geometrical implications of the Fundamental The-
orem of Linear Algebra. The previous computations and some other carried
out with the refinement to floating-point numbers can be found in files Ex-
amples_QR_Abstract_Symbolic, Examples_QR_IArrays_Symbolic, Exam-
ples_QR_Abstract_Float and Examples_QR_IArrays_Float [23]. We for-
malised the computation of the bases of the four fundamental subspaces of
a linear map in a previous work [5].

8 Related work

Abstract Algebra is a common topic for the theorem proving community. Some
milestones in this field have already been pointed out in Section 1. Also the
work by Harrison in HOL Light and its relation with the HMA Library has al-
ready been described, and used to our benefit. This seminal work in real vector
spaces has been continued in some developments, such as the work by Afshar
et al. [3], where complex vector spaces have also been formalised, following
ideas and reusing definitions of real vector spaces, and applied to a case study
of electromagnetic waves. However, we miss the definition of a “common place”
or generic structure representing inner product spaces over real and complex
numbers, such as the one introduced by us at the end of Section 3, that could
permit a definition and formalisation of the Gram-Schmidt process for both
structures simultaneously.

Some interesting works in Linear Algebra algorithms can also be found in
the literature.

The Mizar Mathematical Library contains articles by various authors re-
lated to matrix computations. The most related one to the work we present
here is a formalisation by Pąk of the Jordan Normal Form [46]; this work is
not based on real numbers, but generically carried out for matrices over alge-
braically closed fields. Some articles for specifically complex matrices by Chang
et al. [14,15] are also available. Basic definitions of operations (including inner
product and conjugates) and their associated properties are introduced.

26 Jesús Aransay, Jose Divasón

PVS also contains a remarkable library for real analysis (see for instance
the work by Dutertre [24] and Butler [13]). Real numbers are axiomatised as
a subtype of a generic number type. There is also a different representation of
real numbers implemented by Lester [41], that uses Cauchy sequences, both
of which are linked by means of intermediary results. Interval arithmetic has
been then used to prove inequalities over the reals by Daumas, Lester, and
Muñoz [18].

It is worth mentioning a recent development in Isabelle/HOL by Thiemann
and Yamada [52], in which they have formalised the computation of the Jordan
Normal Form. Their representation of matrices is slightly different from ours,
since they use a generic type to represent matrices of any dimension, whereas
ours has a hardwired representation of the size in the matrices types. Their
choice enables them to apply the algorithm to input matrices whose dimension
is unknown in advance, one of their prerequisites. On the contrary, they are
forced to include premises in several lemmas fixing the dimensions for matrices
before using them. Interestingly, they have been able to link their represen-
tation of matrices with ours (the one in the HMA Library) by means of the
Lift and Transfer tools [36], and, for instance, reuse some of the results about
determinants proven either in the HMA Library or in our work. They have
also applied the refinement to iarrays that we proposed for the Gauss-Jordan
algorithm [5]. Another interesting work in Isabelle based on the HMA Library
representation of matrices is the one by Adelsberger et al. [1]. They prove the
Cayley-Hamilton Theorem, but they do not pay attention to computability
issues. In a later development of ours, where we formalise an algorithm com-
puting the echelon form of a matrix over Euclidean domains [7, 22], we have
refined their definitions of polynomial matrices, characteristic polynomial and
so on, and used them to evaluate the Cayley-Hamilton Theorem statement in
matrices over a generic field. The previous examples illustrate the applicability
of our infrastructure and ideas to recent developments not completed by us.

Some works about inequalities with real numbers have also been carried
out in Isabelle/HOL, such as the work by Hölzl [37]. In this work lower-bound
and upper-bound inequalities of transcendental functions are formalised, and
then used to compute intervals of real arithmetic expressions. The idea is
to implement a process of reification of arithmetic expressions, and then a
refinement of real numbers to floating-point numbers represented as a pair
of integers for both the mantissa and exponent; the obtained floating-point
numbers are then used to compute interval values for arithmetic expressions.
These floating-point numbers are then generated to SML where inequalities are
evaluated, and solved (when possible). The refinement has been successfully
applied in Hölzl’s case study, and also in the work of Obua and Nipkow [45]
to formalise the basic linear programs emerging in the Flyspeck project. Even
if both applications are devoted to the formalisation of inequalities (instead
of solving equalities, as in our case study), the particular refinement of real
numbers to floating-point numbers may be useful in our setting. Also as part
of the Flyspeck project, Solovyev and Hales implemented several tools in the

Formalisation of the solution to the least squares problem 27

HOL Light proof assistant in order to get formal verification of numerical
computations [47,48].

Some relevant works in the Coq proof assistant are worth mentioning, such
as the CoqEAL (standing for Coq Effective Algebra Library) effort by Dénès
et al. [19]. This work is devoted to develop a set of libraries and commodities
over which algorithms over matrices can be implemented, proved correct, re-
fined, and finally executed. In a previous work [5, Sect. 5.2] we presented a
thorough comparison of our work and theirs, surveying also their most recent
works [16]. We summarise the points made there. With respect to the imple-
mentation and formalisation of algorithms, the main difference relies on the
possibility of using dependent types, and thus submatrices, in Coq. Inciden-
tally, the QR decomposition is usually performed in a per column basis, so it
is not clear in this particular case whether submatrices may simplify either the
implementation or the proof of the algorithm. Refinements are also possible in
CoqEAL, both at the level of data structures and algorithms; up to our knowl-
edge, vectors and matrices are refined in CoqEAL, for execution purposes, to
lists. Our Isabelle development uses immutable vectors, that theoretically seem
a better performing option than lists. As we have illustrated in Section 7.1,
we have also performed and formalised various algorithmic refinements inside
of Isabelle. Finally, regarding execution, CoqEAL algorithms can be executed
on top of the Coq virtual machine (and therefore inside of the Coq trusted
kernel).

Also in Coq, Gonthier [26] implemented a version of Gaussian elimination
(producing two different matrices, one describing the column space, the other
one the row space, and a number, equal to the rank of the input matrix) that
he later applied for the computation of several basic operations over linear
maps; for instance, the computation of the four fundamental subspaces of a
given matrix (we formalised similar computations [5, Sect. 5.2] by means of
the Gauss-Jordan algorithm, and thus performing, a priori, a greater number
of elementary operations than he does in Gaussian elimination), and also basic
operations between subspaces (union, intersection, inclusion, addition). One
of its most prominent features is the simplicity that he obtains in proofs of
properties concerning the rank and the fundamental subspaces. Another one
is the generality of the results presented there; since he aims at finally work-
ing with finite groups, most of the results are established in full generality
(instead of restricted to reals, as we have assumed in several cases along this
work). With respect to the work presented here, it seems that he has formalised
neither inner product spaces nor orthogonality and the subsequent concepts
(such as Gram-Schmidt, QR decomposition, and the least squares approxima-
tion). Since the focus of Gonthier’s work seems to be in the formalisation of
Linear Algebra, concerns about computability are neither tackled. Then, in
an ongoing work based on SSReflect about the Discrete Fourier Transform,
Gallego and Jouvelot [25] have proposed a representation of complex numbers
over which they have implemented the inner product, norm, orthogonality and
Hermitian transposes. This possibility illustrates that the generalisation of the
HMA Library to more general structures (at least to the complex numbers)

28 Jesús Aransay, Jose Divasón

is a feasible and sensible work (that also demands a careful design). The ver-
ification of floating-point mathematical computations and interval arithmetic
have also been studied in Coq by means of the CoqInterval library, mainly
developed by Melquiond [11,42].

[11]
We are not aware of any previous formalisation of neither the QR decom-

position nor the computation of the least squares approximation in any proof
assistant.

9 Conclusions

This work can be considered as an advanced exercise in theorem proving, but
at the same time it has required the use of well-established libraries (such
as HMA) and the adaptation and set-up of some previous works. Some of
these works had been completed by us (such as the Rank-Nullity theorem, the
Gauss-Jordan development and the code refinements to iarrays and real num-
bers in Haskell) but some others tools were new to us (for instance, the code
generator, iarrays, real numbers and the representation of field extensions). It
is worth noting that our development relies on another 10 previous develop-
ments in the Isabelle AFP, two of them developed by the authors, and 8 of
them from other authors. In that sense, with an affordable effort (the complete
development sums up ca. 2,700 lines, plus 2,100 lines devoted to refinements,
code generation, and examples), and also with a certain amount of previous
knowledge of the underlying system, we have developed a set of results and
formalised programs in Linear Algebra that corresponds to various lessons of
an undergraduate text in mathematics (for instance, material which sums up
60 pages in the textbook by Strang [50, Sect. 3.6 and Chap. 4]). As a matter of
comparison, the results presented in [50, Chap. 1 to Sect. 3.5], which include
at least all the results that we already formalised in our previous work [5] and
additional previous notions of the HMA Library, took us more than 15,000
lines of Isabelle code. From that point of view, we have to stress that this
work would have been impossible without such previous developments; as it
usually happens in mathematics, new results have to be built on top of estab-
lished results. This principle is well-known in the formal methods community,
but it is difficult to achieve; this work shows a successful case study where the
principle has been materialised.

As further work, at least three possibilities show up. First, the results pre-
sented from Section 4 and on admit a generalisation from real inner product
spaces to inner product spaces. The HMA Library would also benefit from
such a generalisation. The possibility of generalising algebraic structures from
the HMA Library has been already illustrated by our previous works with the
Gauss-Jordan algorithm [5, 6] and also the echelon form [7, 22]. Second, the
application of the QR decomposition to numerical problems such as the com-
putation of the eigenvalues, and also the formalisation of the related Singular
Value Decomposition would be of interest. Third, some experiments with code

Formalisation of the solution to the least squares problem 29

generation to Haskell that we have performed recently [8] show that the refine-
ment from the Isabelle real type to the Haskell type Prelude.Rational is slightly
better performing than the one in SML to quotients of type IntInt.int ; there-
fore, exploring the possibilities of code generation from the field extensions
by Thiemann [51] to Haskell, instead of SML, using the type Prelude.Rational
might be fruitful in improving the performance of the computations with the
QR algorithm presented. Moreover, it would be desirable to study a recent
work by Thiemann and Yamada [53] about a formalisation of algebraic num-
bers in Isabelle/HOL, which seems useful to get symbolic computations over
more structures than field extensions of type Q[

√
b]. Also in [8] we have ex-

plored the possibilities of refining the real Isabelle type to floating-point num-
bers in both SML and Haskell. Even if the obtained computations cannot
be trusted, we show in that work that the precision obtained is orders of
magnitude better than the one of the Gauss-Jordan algorithm with a simi-
lar refinement. The performance of the algorithm with floating-point numbers
is also illustrated [8]. The possibility of formalising more stable versions of
the Gram-Schmidt process (such as the modified Gram-Schmidt process) and
studying their behaviour could be also interesting.

Acknowledgements The authors would like to thank the anonymous referees because of
their valuable contributions along the review process. Particularly, their suggestions helped
us to improve the overall clarity of the presentation and the related work section. This work
has been partially supported by the research grant FPI-UR-12, from Universidad de La
Rioja and by the project MTM2014-54151-P from Ministerio de Economía y Competitividad
(Gobierno de España).

References

1. Adelsberger, S., Hetzl, S., Pollak, F.: The Cayley-Hamilton Theorem. Archive of For-
mal Proofs (2014). http://afp.sf.net/entries/Cayley_Hamilton.shtml, Formal proof
development

2. Aehlig, K., Haftmann, F., Nipkow, T.: A Compiled Implementation of Normalization
by Evaluation. Journal of Functional Programming 22(1), 9–30 (2012)

3. Afshar, S.K., Aravantinos, V., Hasan, O., Tahar, S.: Formalization of Complex Vectors
in Higher-Order Logic. In: S.M. Watt, J.H. Davenport, A.P. Sexton, P. Sojka, J. Urban
(eds.) Intelligent Computer Mathematics: CICM 2014. Proceedings, Lecture Notes in
Artificial Intelligence, vol. 8543, pp. 123–137. Springer (2014)

4. Aransay, J., Divasón, J.: Formalization and execution of Linear Algebra: from theorems
to algorithms. In: G. Gupta, R. Peña (eds.) PostProceedings of the International Sym-
posium on Logic-Based Program Synthesis and Transformation: LOPSTR 2013, Lecture
Notes in Computer Science, vol. 8901, pp. 01 – 19. Springer (2014)

5. Aransay, J., Divasón, J.: Formalisation in higher-order logic and code generation to func-
tional languages of the Gauss-Jordan algorithm. Journal of Functional Programming
25, 1 – 21 (2015)

6. Aransay, J., Divasón, J.: Generalizing a Mathematical Analysis Library in Isabelle/HOL.
In: K. Havelund, G. Holzmann, R. Joshi (eds.) NASA Formal Methods: NFM 2015,
Lecture Notes in Computer Science, vol. 9508, pp. 415 – 421 (2015)

7. Aransay, J., Divasón, J.: Formalisation of the Computation of the Echelon Form of a
Matrix in Isabelle/HOL. Formal Aspects of Computing (2016). Accepted for publication

8. Aransay, J., Divasón, J.: Verified Computer Linear Algebra. Accepted for publication in
the Conference EACA 2016 (2016). https://www.unirioja.es/cu/jearansa/archivos/
vcla.pdf

http://afp.sf.net/entries/Cayley_Hamilton.shtml
https://www.unirioja.es/cu/jearansa/archivos/vcla.pdf
https://www.unirioja.es/cu/jearansa/archivos/vcla.pdf

30 Jesús Aransay, Jose Divasón

9. Björck, A.: Numerical methods for least squares problems. SIAM (1996)
10. Blanchette, J., Haslbeck, M., Matichuk, D., Nipkow, T.: Mining the Archive of Formal

Proofs. In: M. Kerber (ed.) Conference on Intelligent Computer Mathematics: CICM
2015, Lecture Notes in Computer Science, vol. 9150, pp. 3–17. Springer (2015). Invited
paper

11. Boldo, S., Jourdan, J., Leroy, X., Melquiond, G.: Verified Compilation of Floating-Point
Computations. Journal of Automated Reasoning 54(2), 135–163 (2015)

12. Boldo, S., Lelay, C., Melquiond, G.: Formalization of real analysis: a survey of proof
assistants and libraries. Mathematical Structures in Computer Science FirstView, 1–
38 (2016). DOI 10.1017/S0960129514000437. URL http://journals.cambridge.org/
article_S0960129514000437

13. Butler, R.B.: Formalization of the Integral Calculus in the PVS Theorem Prover. Tech.
Rep. NASA/TM-2004-213279, L-18391, NASA Langley Research Center (2004). http:
//ntrs.nasa.gov/search.jsp?R=20040171869

14. Chang, W., Yamazaki, H., Nakamura, Y.: A Theory of Matrices of Complex Elements.
Formalized Mathematics 13(1), 157–162 (2005). URL http://fm.mizar.org/2005-13/
pdf13-1/matrix_5.pdf

15. Chang, W., Yamazaki, H., Nakamura, Y.: The Inner Product and Conjugate of Matrix
of Complex Numbers. Formalized Mathematics 13(4), 493–499 (2005). URL http:
//fm.mizar.org/2005-13/pdf13-4/matrixc1.pdf

16. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for Free! In: G. Gonthier, M. Norrish
(eds.) Certified Programs and Proofs: CPP 2013, Lecture Notes in Computer Science,
vol. 8307, pp. 147–162. Springer (2013)

17. Dahlquist, G., Björck, A.: Numerical Methods in Scientific Computing. SIAM (2008)
18. Daumas, M., Lester, D., Muñoz, C.: Verified Real Number Calculations: A Library for

Interval Arithmetic. IEEE Transactions On Computers 58(2), 226 – 237 (2009)
19. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to Computational

Algebra in COQ. In: L. Beringer, A. Felty (eds.) Interactive Theorem Proving: ITP
2012, Lecture Notes in Computer Science, vol. 7406, pp. 83–98. Springer (2012)

20. Divasón, J., Aransay, J.: Rank-Nullity Theorem in Linear Algebra. Archive of Formal
Proofs (2013). http://afp.sf.net/entries/Rank_Nullity_Theorem.shtml

21. Divasón, J., Aransay, J.: Gauss-Jordan Algorithm and Its Applications. Archive of
Formal Proofs (2014). http://afp.sf.net/entries/Gauss_Jordan.shtml, Formal proof
development

22. Divasón, J., Aransay, J.: Echelon Form. Archive of Formal Proofs (2015). http://afp.
sf.net/entries/Echelon_Form.shtml, Formal proof development

23. Divasón, J., Aransay, J.: QR Decomposition. Archive of Formal Proofs (2015). http:
//afp.sf.net/entries/QR_Decomposition.shtml, Formal proof development. Updated
version available from http://afp.sf.net/devel-entries/QR_Decomposition.shtml

24. Dutertre, B.: Elements of Mathematical Analysis in PVS. In: J. von Wright, J. Grundy,
J. Harrison (eds.) Theorem Proving in Higher Order Logics: TPHOLs 97, Lecture Notes
in Computer Science, vol. 1125, pp. 141–156. Springer, Turku, Finland (1996)

25. Gallego-Arias, E.J., Jouvelot, P.: Adventures in the (not so) Complex Space. The Coq
workshop 2015 (2015). https://github.com/ejgallego/mini-dft-coq

26. Gonthier, G.: Point-Free, Set-Free Concrete Linear Algebra. In: M. van Eekelen, H. Geu-
vers, J. Schmaltz, F. Wiedijk (eds.) Interactive Theorem Proving: ITP 2011, Lecture
Notes in Computer Science, vol. 6898, pp. 103–118. Springer (2011)

27. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S.L.,
Mahboubi, A., O’Connor, R., Biha, S.O., Pasca, I., Rideau, L., Solovyev, A., Tassi,
E., Théry, L.: A Machine-Checked Proof of the Odd Order Theorem. In: S. Blanzy,
C. Paulin-Mohring, D.Pichardie (eds.) Interactive Theorem Proving: ITP 2013, Lecture
Notes in Computer Science, vol. 7998, pp. 163 – 179. Springer (2013)

28. Haftmann, F.: Code generation from Isabelle/HOL theories. https://isabelle.in.
tum.de/doc/codegen.pdf (2016)

29. Haftmann, F., Krauss, A., Kuncar, O., Nipkow, T.: Data Refinement in Isabelle/HOL.
In: S. Blazy, C. Paulin-Mohring, D. Pichardie (eds.) Interactive Theorem Proving: ITP
2013, Lecture Notes in Computer Science, vol. 7998, pp. 100 – 115. Springer (2013)

http://journals.cambridge.org/article_S0960129514000437
http://journals.cambridge.org/article_S0960129514000437
http://ntrs.nasa.gov/search.jsp?R=20040171869
http://ntrs.nasa.gov/search.jsp?R=20040171869
http://fm.mizar.org/2005-13/pdf13-1/matrix_5.pdf
http://fm.mizar.org/2005-13/pdf13-1/matrix_5.pdf
http://fm.mizar.org/2005-13/pdf13-4/matrixc1.pdf
http://fm.mizar.org/2005-13/pdf13-4/matrixc1.pdf
http://afp.sf.net/entries/Rank_Nullity_Theorem.shtml
http://afp.sf.net/entries/Gauss_Jordan.shtml
http://afp.sf.net/entries/Echelon_Form.shtml
http://afp.sf.net/entries/Echelon_Form.shtml
http://afp.sf.net/entries/QR_Decomposition.shtml
http://afp.sf.net/entries/QR_Decomposition.shtml
http://afp.sf.net/devel-entries/QR_Decomposition.shtml
https://github.com/ejgallego/mini-dft-coq
https://isabelle.in.tum.de/doc/codegen.pdf
https://isabelle.in.tum.de/doc/codegen.pdf

Formalisation of the solution to the least squares problem 31

30. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
M. Blume and N. Kobayashi and G. Vidal (ed.) Functional and Logic Programming:
FLOPS 2010, Lecture Notes in Computer Science, vol. 6009, pp. 103 – 117. Springer
(2010)

31. Haftmann, F., Wenzel, M.: Constructive Type Classes in Isabelle. In: T. Altenkirch,
C. McBride (eds.) Types for Proofs and Programs: TYPES 2006, Revised Selected Pa-
pers, Lecture Notes in Computer Science, vol. 4502, pp. 160–174. Springer (2007)

32. Hales, T., Adams, M., Bauer, G., Dang, D., Harrison, J., Hoang, T.L., Kaliszyk, C.,
Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso,
J., Rute, J., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K.,
Zumkeller, R.: A formal proof of the Kepler conjecture. http://arxiv.org/abs/1501.
02155 (2015)

33. Harrison, J.: A HOL Theory of Euclidean Space. In: J. Hurd, T. Melham (eds.) Theorem
Proving in Higher Order Logics: TPHOLS 2005, Lecture Notes in Computer Science,
vol. 3603, pp. 114 – 129. Springer (2005)

34. Harrison, J.: The HOL Light Theory of Euclidean Space. Journal of Automated Rea-
soning 50(2), 173 – 190 (2013)

35. HOL Multivariate Analysis Library. http://isabelle.in.tum.de/library/HOL/
HOL-Multivariate_Analysis/index.html (2016)

36. Huffman, B., Kunčar, O.: Lifting and Transfer: A Modular Design for Quotients in
Isabelle/HOL. In: G. Gonthier, M. Norrish (eds.) Certified Programs and Proofs: CPP
2013, Lecture Notes in Computer Science, vol. 8307, pp. 131–146. Springer (2013)

37. Hölzl, J.: Proving Inequalities over Reals with Computation in Isabelle/HOL. In: G.D.
Reis, L. Théry (eds.) International Workshop on Programming Languages for Mecha-
nized Mathematics Systems: PLMMS’09, pp. 38–45. Munich (2009)

38. Hölzl, J., Immler, F., Huffman, B.: Type Classes and Filters for Mathematical Analysis
in Isabelle/HOL. In: S. Blazy, C. Paulin-Mohring, D. Pichardie (eds.) Interactive The-
orem Proving: ITP 2013, Lecture Notes in Computer Science, vol. 7998, pp. 279–294.
Springer (2013)

39. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4:
formal verification of an operating-system kernel. Commun. ACM 53(6), 107–115 (2010)

40. Lammich, P.: Automatic Data Refinement. In: S. Blazy, C. Paulin-Mohring, D. Pichardie
(eds.) Interactive Theorem Proving: ITP 2013, Lecture Notes in Computer Science, vol.
7998, pp. 84 – 99. Springer (2013)

41. Lester, D..R.: Real Number Calculations and Theorem Proving. In: O.A. Mohamed,
C. Muñoz, S. Tahar (eds.) Theorem Proving in Higher Order Logics: TPHOLs 08,
Lecture Notes in Computer Science, vol. 5170, pp. 215 – 229. Springer (2008)

42. Martin-Dorel, É., Melquiond, G.: Proving Tight Bounds on Univariate Expressions with
Elementary Functions in Coq. Journal of Automated Reasoning pp. 1–31 (2015). DOI
10.1007/s10817-015-9350-4

43. Mathematica 10.4. Wolfram Research, Inc. Champaign, Illinois (2016)
44. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-

Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002). Updated
version available in http://isabelle.in.tum.de/doc/tutorial.pdf

45. Obua, S., Nipkow, T.: Flyspeck II: The Basic Linear Programs. Annals of Mathematics
and Artificial Intelligence 56, 245–272 (2009)

46. Pąk, K.: Jordan Matrix Decomposition. Formalized Mathematics 16(4), 297–303 (2008).
DOI 10.2478/v10037-008-0036-9

47. Solovyev, A., Hales, T.: Efficient formal verification of bounds of linear programs. In:
Intelligent Computer Mathematics, Lecture Notes in Computer Science, vol. 6824, pp.
123–132. Springer (2011)

48. Solovyev, A., Hales, T.: Formal verification of nonlinear inequalities with Taylor interval
approximations. In: NASA Formal Methods, Lecture Notes in Computer Science, vol.
7871, pp. 383–397. Springer (2013)

49. Strang, G.: The Fudamental Theorem of Linear Algebra. The American Mathematical
Monthly 100(9), 848–855 (1993)

50. Strang, G.: Introduction to Linear Algebra, 4th edn. Wellesley-Cambridge Press (2009)

http://arxiv.org/abs/1501.02155
http://arxiv.org/abs/1501.02155
http://isabelle.in.tum.de/library/HOL/HOL-Multivariate_Analysis/index.html
http://isabelle.in.tum.de/library/HOL/HOL-Multivariate_Analysis/index.html
http://isabelle.in.tum.de/doc/tutorial.pdf

32 Jesús Aransay, Jose Divasón

51. Thiemann, R.: Implementing field extensions of the form Q[
√
b]. Archive of Formal

Proofs (2014). http://afp.sf.net/entries/Real_Impl.shtml, Formal proof develop-
ment

52. Thiemann, R., Yamada, A.: Matrices, Jordan Normal Forms, and Spectral Radius The-
ory. Archive of Formal Proofs (2015). http://afp.sf.net/entries/Jordan_Normal_
Form.shtml, Formal proof development

53. Thiemann, R., Yamada, A.: Algebraic Numbers in Isabelle/HOL (2016). Accepted for
presentation in ITP 2016

54. Wenzel, M.: Isabelle/Isar — a versatile environment for human-readable formal proof
documents. Ph.D. thesis, Technische Universität München (2002). https://mediatum.
ub.tum.de/doc/601724/601724.pdf

http://afp.sf.net/entries/Real_Impl.shtml
http://afp.sf.net/entries/Jordan_Normal_Form.shtml
http://afp.sf.net/entries/Jordan_Normal_Form.shtml
https://mediatum.ub.tum.de/doc/601724/601724.pdf
https://mediatum.ub.tum.de/doc/601724/601724.pdf

	Introduction
	Preliminaries
	The Fundamental Theorem of Linear Algebra
	A formalisation of the Gram-Schmidt algorithm
	A formalisation of the QR decomposition algorithm
	Solution of the least squares problem
	Code generation from the development
	Related work
	Conclusions

