
example-Z4Z2

By jmaransay

April 17, 2009

Contents

1 Definition of a ring of completion homomorphisms 3

2 Definition of completion functions and some related lemmas 4
2.1 Homomorphisms defined as completions 5
2.2 Completion homomorphisms with usual composition form a

monoid . 6
2.3 Preliminary facts about addition of homomorphisms 8
2.4 Completion homomorphisms are a commutative group with

the underlying operation . 10
2.5 Endomorphisms with suitable operations form a ring 12
2.6 Definition of differential group 14
2.7 Definition of homomorphisms between differential groups . . 14
2.8 Completion homomorphisms between differential structures

form a commutative group with the underlying operation . . 16
2.9 Differential homomorphisms form a commutative group with

the underlying operation . 20
2.10 Homomorphisms seen as algebraic structures 23
2.11 Completion homomorphisms between two algebraic structures

form a commutative group . 24
2.12 Previous facts about homomorphisms of differential structures 25

3 Previous definitions and Propositions 2.2.9, 2.2.10 and Lemma
2.2.11 in Aransay’s memoir 31
3.1 Definition of isomorphic differential groups 37
3.2 Previous facts for Lemma 2.2.11 39
3.3 Lemma 2.2.11 . 40

4 Propositions 2.2.12, 2.2.13 and Lemma 2.2.14 in Aransay’s
memoir 45
4.1 Previous definitions for Lemma 2.2.14 45
4.2 Proposition 2.2.12 . 46
4.3 Proposition 2.2.13 . 47

1

4.4 Lemma 2.2.14 . 48

5 Infinite Sets and Related Concepts 54
5.1 Infinite Sets . 55
5.2 Infinitely Many and Almost All 61
5.3 Enumeration of an Infinite Set 62
5.4 Miscellaneous . 63

6 Definition of local nilpotency and Lemmas 2.2.1 to 2.2.6 in
Aransay’s memoir 64
6.1 Definition of local nilpotent element and the bound function . 64
6.2 Definition of power series and some lemmas 65
6.3 Some basic operations over finite series 69
6.4 Definition and some lemmas of perturbations 74
6.5 Some properties of the endomorphisms Φ, Ψ, α and β 78
6.6 Lemmas 2.2.1 to 2.2.6 . 79

7 Lemma 2.2.15 in Aransay’s memoir 85

8 Proposition 2.2.16 and Lemma 2.2.17 in Aransay’s memoir 89
8.1 Previous definitions . 89
8.2 Proposition 2.2.16 . 92
8.3 Lemma 2.2.17 . 94

9 Lemma 2.2.18 in Aransay’s memoir 104
9.1 Lemma 2.2.18 . 105

10 Lemma 2.2.19 in Aransay’s memoir 108
10.1 Lemma 2.2.19 . 109

11 Proof of the Basic Perturbation Lemma 111
11.1 BPL proof . 111
11.2 Existence of a reduction . 112
11.3 BPL previous simplifications 113
11.4 BPL simplification . 125

12 Definition of some results about the accesible part of a re-
lation. 128

13 Definition of orbits of functions and termination conditions.130
13.1 Definition of the orbit of a function over a given point. 131
13.2 Definition of the section of a function over a given point. . . . 132
13.3 Definition of a termination condition in terms of orbits. . . . 135

14 Definition of while loops as tail recursive functions. 138

2

15 Definition of For loops. 143

16 Additional type classes 151

17 Local nilpotency 155

18 Finite sums 157

19 Equivalence of both approaches 160
19.1 Algebraic structures . 160
19.2 Homomorphisms and endomorphisms. 164
19.3 Definition of constants. 170

20 Pretty integer literals for code generation 199

21 Type of indices 201
21.1 Datatype of indices . 201
21.2 Indices as datatype of ints . 203
21.3 Basic arithmetic . 204
21.4 ML interface . 206
21.5 Specialized op −, op div and op mod operations 206
21.6 Code serialization . 206

22 Implementation of natural numbers by target-language in-
tegers 208
22.1 Basic arithmetic . 208
22.2 Case analysis . 209
22.3 Preprocessors . 209
22.4 Target language setup . 210

23 An example of the BPL: a reduction from Z4 to Z2 214
23.1 Type definition for Z2 . 214
23.2 Concrete syntax . 215
23.3 Lemmas and proof tool setup 215
23.4 Type definition for Z4 . 217
23.5 Definitions over the given type. 217
23.6 Concrete syntax. 218
23.7 Lemmas and proof tool setup. 218
23.8 Code generation and examples of execution 223

1 Definition of a ring of completion homomorphisms

theory HomGroupCompletion
imports
∼∼/src/HOL/Algebra/Ring

3

begin

2 Definition of completion functions and some re-
lated lemmas

constdefs
completion :: [(′a, ′c) monoid-scheme, (′b, ′d) monoid-scheme, (′a => ′b)] =>

(′a => ′b)
completion G G ′ f == (%x . if x ∈ carrier G then f x else one G ′)

lemma completion-in-funcset : (!!x . x ∈ carrier G ==> f x ∈ carrier G ′) ==>
(completion G G ′ f) ∈ carrier G −> carrier G ′

by (simp add : Pi-def completion-def)

lemma completion-in-hom: includes group-hom G G ′ h shows completion G G ′

h ∈ hom G G ′

by (unfold completion-def hom-def Pi-def , auto)

lemma completion-apply-carrier [simp]: x ∈ carrier G ==> completion G G ′ h x
= h x

by (simp add : completion-def)

lemma completion-apply-not-carrier [simp]: x /∈ carrier G ==> completion G G ′

h x = one G ′

by (simp add : completion-def)

lemma completion-ext : (!!x . x ∈ carrier G ==> h x = g x) ==> (completion G
G ′ h) = (completion G G ′ g)

by (simp add : expand-fun-eq Pi-def completion-def)

lemma inj-on-completion-eq : inj-on (completion G G ′ h) (carrier G) = inj-on h
(carrier G)

by (unfold inj-on-def , simp)

constdefs
completion-fun :: [(′a, ′c) monoid-scheme, (′b, ′d) monoid-scheme] => (′a =>
′b) set

completion-fun G G ′ == {f . f = (%x . if x ∈ carrier G then f x else one G ′)}

constdefs
completion-fun2 :: [(′a, ′c) monoid-scheme, (′b, ′d) monoid-scheme] => (′a =>
′b) set

completion-fun2 G G ′ == {f . ∃ g . f = completion G G ′ g}

lemma f-in-completion-fun2-f-completion: f ∈ completion-fun2 G G ′ ==> f =
completion G G ′ f

by (unfold completion-fun2-def , unfold completion-def , auto simp add : if-def)

4

lemma completion-in-completion-fun: completion G G ′ h ∈ completion-fun G G ′

by (unfold completion-fun-def completion-def) (simp add : if-def)

lemma completion-in-completion-fun2 : shows completion G G ′ h ∈ completion-fun2
G G ′

by (unfold completion-fun2-def) auto

lemma completion-fun-completion-fun2 : completion-fun G G ′ = completion-fun2
G G ′

by (unfold completion-fun-def completion-fun2-def completion-def) (auto simp
add : if-def)

lemma completion-id-in-completion-fun: shows completion G G ′ id ∈ completion-fun
G G ′

by (unfold completion-fun-def completion-def , auto simp add : expand-fun-eq)

lemma completion-closed2 : assumes h: h ∈ completion-fun2 G G ′ and x : x /∈
carrier G shows h x = one G ′

using prems
by (unfold completion-fun2-def completion-def , auto)

2.1 Homomorphisms defined as completions

constdefs
hom-completion :: [(′a, ′c) monoid-scheme, (′b, ′d) monoid-scheme] => (′a =>
′b)set

hom-completion G G ′ == {h. h ∈ completion-fun2 G G ′ & h ∈ hom G G ′}

lemma hom-completionI : assumes h ∈ completion-fun2 G G ′ and h ∈ hom G
G ′ shows h ∈ hom-completion G G ′

by (unfold hom-completion-def , simp add : prems)

lemma hom-completion-is-hom: assumes f : f ∈ hom-completion G G ′ shows f
∈ hom G G ′

using f by (unfold hom-completion-def , simp)

lemma hom-completion-mult : assumes h ∈ hom-completion G G ′ and x ∈ carrier
G and y ∈ carrier G

shows h (mult G x y) = mult G ′ (h x) (h y)
using prems by (simp add : hom-completion-is-hom hom-mult)

lemma hom-completion-closed : assumes h: h ∈ hom-completion G G ′ and x : x
∈ carrier G shows h x ∈ carrier G ′

using h and x by (unfold hom-completion-def hom-def Pi-def , simp)

lemma hom-completion-one[simp]: includes group G + group G ′

assumes h: h ∈ hom-completion G G ′ shows h (one G) = one G ′

using h and group-hom.hom-one [of G G ′ h] and prems
by (unfold hom-completion-def group-hom-def group-hom-axioms-def , simp)

5

lemma comp-sum: includes group G
assumes h: h ∈ hom G G and h ′: h ′ ∈ hom G G and x : x ∈ carrier G and y :

y ∈ carrier G
shows h ′ (h (mult G x y)) = mult G (h ′ (h x)) (h ′ (h y))

proof −
have h (mult G x y) = mult G (h x) (h y)

by (rule hom-mult [of h G G x y], simp-all add : h x y)
then have h ′ (h (mult G x y)) = h ′ (mult G (h x) (h y)) by simp
also from h h ′ x y have . . . = mult G (h ′ (h x)) (h ′ (h y))

by (intro hom-mult , unfold hom-def Pi-def , simp-all)
finally show ?thesis by simp

qed

lemma comp-is-hom: includes group G
assumes h: h ∈ hom G G and h ′: h ′ ∈ hom G G
shows h ′ ◦ h ∈ hom G G
using h h ′ by (unfold hom-def Pi-def , simp)

Usual composition op ◦ of completion homomorphisms is closed

lemma hom-completion-comp: includes group G
assumes f ∈ hom-completion G G and g ∈ hom-completion G G
shows f ◦ g ∈ hom-completion G G

proof −
from prems show ?thesis

apply (unfold hom-completion-def hom-def Pi-def , auto)
apply (unfold completion-fun2-def completion-def , simp)
apply (intro exI [of - f ◦ g])
apply (auto simp add : expand-fun-eq)
done

qed

2.2 Completion homomorphisms with usual composition form
a monoid

The underlying algebraic structures in our development, except otherwise
stated, will be commutative groups or differential groups

lemma (in comm-group) hom-completion-monoid :
shows monoid (| carrier = hom-completion G G , mult = op o, one = (λx . if x
∈ carrier G then id x else 1) |)

(is monoid ?H-CO)
proof (intro monoidI)

fix x y
assume x : x ∈ carrier ?H-CO and y : y ∈ carrier ?H-CO
from prems show x ⊗?H-CO y ∈ carrier ?H-CO

by (simp, intro hom-completion-comp)(simp-all add : comm-group-def)
next

show 1?H-CO ∈ carrier ?H-CO

6

by (unfold hom-completion-def hom-def completion-fun2-def completion-def)(auto
simp add : Pi-def)
next

fix x y z

show x ⊗?H-CO y ⊗?H-CO z = x ⊗?H-CO (y ⊗?H-CO z)
by (simp) (rule sym, rule o-assoc)

next
fix x
assume x : x ∈ carrier ?H-CO
from prems show 1?H-CO ⊗?H-CO x = x

by (unfold hom-completion-def completion-fun2-def completion-def hom-def
Pi-def , auto simp add : expand-fun-eq)
next

fix x
assume x : x ∈ carrier ?H-CO
from prems show x ⊗?H-CO 1?H-CO = x
by (unfold hom-completion-def completion-fun2-def , auto simp add : expand-fun-eq)

(intro group-hom.hom-one, unfold group-hom-def group-hom-axioms-def hom-def
Pi-def comm-group-def , simp)
qed

Homomorphisms, without the completion condition, are also a monoid with
usual composition and the identity

lemma (in group) hom-group-monoid :
shows monoid (| carrier = hom G G , mult = op o, one = id |)
(is monoid ?HOM)

proof (intro monoidI)
fix x y
assume x ∈ carrier ?HOM and y ∈ carrier ?HOM
from prems show x ⊗?HOM y ∈ carrier ?HOM by (simp add : Pi-def hom-def)

next
show 1?HOM ∈ carrier ?HOM by (simp add : hom-def Pi-def)

next
fix x y z
assume x ∈ carrier ?HOM and y ∈ carrier ?HOM and z ∈ carrier ?HOM
show x ⊗?HOM y ⊗?HOM z = x ⊗?HOM (y ⊗?HOM z) using o-assoc [of x y

z] by simp
next

fix x
assume x ∈ carrier ?HOM
show 1?HOM ⊗?HOM x = x by simp

next
fix x
assume x ∈ carrier ?HOM
show x ⊗?HOM 1?HOM = x by simp

qed

7

2.3 Preliminary facts about addition of homomorphisms

lemma homI :
assumes closed :

∧
x . x ∈ carrier G =⇒ f x ∈ carrier H

and mult :
∧

x y . [[x ∈ carrier G ; y ∈ carrier G]] =⇒ f (x ⊗G y) = f x ⊗H f y
shows f ∈ hom G H by (unfold hom-def) (simp add : Pi-def closed mult)

The operation we are going to use as addition for homomorphisms is based
on the multiplicative operation of the underlying algebraic structures

The three following lemmas show how we can define the addition of homo-
morphisms in different ways with satisfactory result

lemma (in comm-group) hom-mult-is-hom: assumes F : f ∈ hom G G and G : g
∈ hom G G shows (λx . f x ⊗ g x) ∈ hom G G
proof (rule homI)

fix x
assume X : x ∈ carrier G
from prems show f x ⊗ g x ∈ carrier G by (intro m-closed , simp-all only :

hom-closed)
next

fix x y
assume X : x ∈ carrier G and Y : y ∈ carrier G
from prems have f (x ⊗ y) ⊗ g (x ⊗ y) = f x ⊗ f y ⊗ (g x ⊗ g y) by (unfold

hom-def , simp add : m-ac)
with prems show f (x ⊗ y) ⊗ g (x ⊗ y) = f x ⊗ g x ⊗ (f y ⊗ g y) by (simp

add : m-ac hom-closed)
qed

lemma (in comm-group) hom-mult-is-hom-rest :
assumes f : f ∈ hom G G and g : g ∈ hom G G
shows (λx∈carrier G . f x ⊗ g x) ∈ hom G G (is ?fg ∈ -)

proof (rule homI)
fix x assume x ∈ carrier G
with f g show ?fg x ∈ carrier G by (simp add : hom-closed)

next
fix x y assume x ∈ carrier G y ∈ carrier G
with f g show ?fg (x ⊗ y) = ?fg x ⊗ ?fg y by (simp add : hom-closed hom-mult

m-ac)
qed

lemma (in comm-group) hom-mult-is-hom-completion:
assumes f : f ∈ hom G G and g : g ∈ hom G G
shows (λx . if x ∈ carrier G then f x ⊗ g x else 1) ∈ hom G G
(is ?fg ∈ -)
apply (rule homI)
using f g apply (simp add : hom-closed)
using f g apply (simp add : hom-mult m-ac hom-closed)
done

The inverse for the addition of homomorphisms will be given by the λx . inv

8

f x operation

lemma (in comm-group) hom-inv-is-hom: assumes f : f ∈ hom G G shows (λx .
inv f x) ∈ hom G G
proof (unfold hom-def , simp, intro conjI)

from f show (λx . inv f x) ∈ carrier G → carrier G by (unfold Pi-def hom-def ,
auto)
next

show ∀ x∈carrier G . ∀ y∈carrier G . inv f (x ⊗ y) = inv f x ⊗ inv f y
proof (intro ballI)

fix x y assume x : x ∈ carrier G and y : y ∈ carrier G
from prems show inv f (x ⊗ y) = inv f x ⊗ inv f y
proof −

from prems have f (x ⊗ y) = f x ⊗ f y by (intro hom-mult , simp-all)
then have inv f (x ⊗ y) = inv (f x ⊗ f y) by simp
also from prems have . . . = inv (f y) ⊗ inv (f x)

by (intro inv-mult-group) (simp-all add : hom-closed)
also from prems have . . . = inv (f x) ⊗ inv (f y)

by (intro m-comm) (simp-all add : inv-closed hom-closed)
finally show ?thesis by simp

qed
qed

qed

Lemma ?f ∈ hom G G =⇒ (λx . inv ?f x) ∈ hom G G proves that the mul-
tiplicative inverse of the underlying structure preserves the homomorphism
definition

locale group-end = group-hom G G h

Due to the partial definitions of domains, it would not be possible to prove
that h ◦ (λx . inv h x) = (λx . 1); the closer fact that can be proven is h ◦
(λx . inv h x) = (λx∈carrier G . 1);

lemma (in comm-group) hom-completion-inv-is-hom-completion:
assumes f ∈ hom-completion G G
shows (λx . if x ∈ carrier G then inv f x else 1) ∈ hom-completion G G

proof (unfold hom-completion-def completion-fun2-def completion-def , simp, intro
conjI)

show ∃ g . (λg . if g ∈ carrier G then inv f g else 1) = (λx . if x ∈ carrier G then
g x else 1)

by (rule exI [of - λx . inv (f x)], simp)
next

show (λx . if x ∈ carrier G then inv f x else 1) ∈ hom G G
proof (unfold hom-def , simp, intro conjI)

from prems show (λx . if x ∈ carrier G then inv f x else 1) ∈ carrier G →
carrier G

by (unfold Pi-def hom-completion-def completion-fun2-def completion-def
hom-def Pi-def , auto)

next
show ∀ x∈carrier G . ∀ y∈carrier G . inv f (x ⊗ y) = inv f x ⊗ inv f y

9

proof (intro ballI)
fix x y
assume x ∈ carrier G and y ∈ carrier G
show inv f (x ⊗ y) = inv f x ⊗ inv f y
proof −

from prems have f (x ⊗ y) = f x ⊗ f y by (intro hom-mult , unfold
hom-completion-def , simp-all)

then have inv f (x ⊗ y) = inv (f x ⊗ f y) by simp
also from prems have . . . = inv (f y) ⊗ inv (f x)

by (intro inv-mult-group) (unfold hom-completion-def hom-def Pi-def ,
simp-all)

also from prems have . . . = inv (f x) ⊗ inv (f y)
by (intro m-comm)(unfold hom-completion-def hom-def Pi-def , simp-all)

finally show ?thesis by simp
qed

qed
qed

qed

lemma (in comm-group) hom-completion-mult-inv-is-hom-completion:
assumes f ∈ hom-completion G G
shows ∃ g∈hom-completion G G . (λx . if x ∈ carrier G then g x ⊗ f x else 1) =

(λx . 1)
proof (intro bexI [of - (λx . if x ∈ carrier G then inv (f x) else 1)])

from prems show (λg . if g ∈ carrier G then inv f g else 1) ∈ hom-completion
G G

by (intro hom-completion-inv-is-hom-completion)
next

from prems show (λx . if x ∈ carrier G then (if x ∈ carrier G then inv f x else
1) ⊗ f x else 1) = (λx . 1)

by (unfold hom-completion-def hom-def Pi-def , auto simp add : expand-fun-eq)
qed

2.4 Completion homomorphisms are a commutative group
with the underlying operation

lemma (in comm-group) hom-completion-mult-comm-group:
shows comm-group (|carrier = hom-completion G G , mult = λf . λg . (λx . if x
∈ carrier G then f x ⊗ g x else 1),

one = (λx . if x ∈ carrier G then 1 else 1)|)
(is comm-group ?H-CO)

proof (intro comm-groupI)
fix x y
assume x ∈ carrier ?H-CO and y ∈ carrier ?H-CO
from prems show x ⊗?H-CO y ∈ carrier ?H-CO

by (unfold hom-completion-def completion-fun2-def completion-def , auto simp
add : hom-mult-is-hom-completion)
next

show 1?H-CO ∈ carrier ?H-CO

10

by (unfold hom-completion-def completion-fun2-def completion-def hom-def
Pi-def expand-fun-eq , auto)
next

fix x y z
assume x ∈ carrier ?H-CO and y ∈ carrier ?H-CO and z ∈ carrier ?H-CO
from prems show x ⊗?H-CO y ⊗?H-CO z = x ⊗?H-CO (y ⊗?H-CO z)
by (unfold hom-completion-def completion-fun2-def completion-def expand-fun-eq ,

auto simp add : hom-def Pi-def m-assoc)
next

fix x y
assume x ∈ carrier ?H-CO and y ∈ carrier ?H-CO
from prems show x ⊗?H-CO y = y ⊗?H-CO x
by (unfold comm-monoid-axioms-def expand-fun-eq hom-completion-def hom-def

Pi-def , simp add : m-comm)
next

fix x
assume x ∈ carrier ?H-CO
from prems show 1?H-CO ⊗?H-CO x = x
by (unfold hom-completion-def completion-fun2-def completion-def expand-fun-eq

group-axioms-def hom-def Pi-def , auto)
next

fix x
assume x ∈ carrier ?H-CO

from prems and hom-completion-mult-inv-is-hom-completion [of x] show ∃ y∈carrier
?H-CO . y ⊗?H-CO x = 1 ?H-CO

by simp
qed

lemma (in comm-group) hom-completion-mult-comm-group2 :
shows comm-group (| carrier = hom-completion G G , mult = λf . λg . (λx . if x
∈ carrier G then f x ⊗ g x else 1), one = (λx . 1)|)
proof −

from prems have comm-group (|carrier = hom-completion G G , mult = λf g x .
if x ∈ carrier G then f x ⊗ g x else 1,

one = λx . if x ∈ carrier G then 1 else 1|) by (intro hom-completion-mult-comm-group)
then show ?thesis by simp

qed

lemma (in comm-group) hom-completion-mult-comm-monoid :
includes comm-group G
shows comm-monoid (| carrier = hom-completion G G , mult = λf . λg . (λx . if

x ∈ carrier G then f x ⊗ g x else 1), one = (λx . 1)|)
proof −

from prems have comm-group (|carrier = hom-completion G G , mult = λf g x .
if x ∈ carrier G then f x ⊗ g x else 1,

one = λx . if x ∈ carrier G then 1 else 1|) by (intro hom-completion-mult-comm-group)

11

then have comm-group (|carrier = hom-completion G G , mult = λf g x . if x ∈
carrier G then f x ⊗ g x else 1,

one = λx . 1|) by simp
then show ?thesis by (unfold comm-group-def comm-monoid-def , simp)

qed

2.5 Endomorphisms with suitable operations form a ring

The distributive law is proved first

lemma (in comm-group) r-mult-dist-add : assumesf ∈ hom-completion G G and
g ∈ hom-completion G G and h ∈ hom-completion G G

shows (λx . if x ∈ carrier G then f x ⊗ g x else 1) o h = (λx . if x ∈ carrier G
then (f o h) x ⊗ (g o h) x else 1)
proof (simp add : expand-fun-eq , intro allI impI conjI)

fix x
assume x ∈ carrier G and h x /∈ carrier G
from prems show 1 = f (h x) ⊗ g (h x)

by (unfold hom-completion-def completion-fun2-def completion-def , auto)
next

fix x
assume x /∈ carrier G and h x ∈ carrier G
show f (h x) ⊗ g (h x) = 1
proof −

from prems have f (h x) = 1 and g (h x) = 1
apply (unfold hom-completion-def completion-fun2-def completion-def , auto)

apply (intro group-hom.hom-one, unfold group-hom-def group-hom-axioms-def
comm-group-def hom-completion-def hom-def Pi-def , auto)+

done
then show ?thesis by simp

qed
qed

lemma (in comm-group) l-mult-dist-add : assumesf ∈ hom-completion G G and
g ∈ hom-completion G G and h ∈ hom-completion G G

shows h ◦ (λx . if x ∈ carrier G then f x ⊗ g x else 1) = (λx . if x ∈ carrier G
then (h o f) x ⊗ (h o g) x else 1)
proof −

from prems show ?thesis
apply (simp add : expand-fun-eq , intro allI impI conjI)
apply (intro hom-mult , unfold hom-completion-def hom-def Pi-def , auto)
apply (intro group-hom.hom-one)
apply (unfold comm-group-def group-hom-def group-hom-axioms-def hom-def

Pi-def , simp)
done

qed

Endomorphisms with the previous operations form a ring

lemma (in comm-group) hom-completion-ring :

12

shows ring (| carrier = hom-completion G G , mult = op o, one = (λx . if x ∈
carrier G then id x else 1),

zero = (λx . if x ∈ carrier G then 1 else 1), add = λf . λg . (λx . if x ∈ carrier G
then f x ⊗ g x else 1)|)
proof (rule ringI , unfold abelian-group-def abelian-monoid-def abelian-group-axioms-def ,

simp-all add : hom-completion-mult-comm-monoid hom-completion-mult-comm-group)
show monoid (| carrier = hom-completion G G , mult = op o, one = λx . if x ∈

carrier G then id x else 1, zero = λx . 1,
add = λf g x . if x ∈ carrier G then f x ⊗ g x else 1 |)

proof −
from comm-group.hom-completion-monoid and prems
have monoid (|carrier = hom-completion G G , mult = op ◦, one = λx . if x ∈

carrier G then id x else 1|)
by (unfold comm-group-def , auto)

then show ?thesis by (unfold monoid-def , simp)
qed

next
show comm-group (|carrier = hom-completion G G , mult = λf g x . if x ∈ carrier

G then f x ⊗ g x else 1, one = λx . 1|)
by (intro hom-completion-mult-comm-group2)

next
show

∧
x y z . [[x ∈ hom-completion G G ; y ∈ hom-completion G G ; z ∈

hom-completion G G]]
=⇒ (λxa. if xa ∈ carrier G then x xa ⊗ y xa else 1) ◦ z = (λxa. if xa ∈ carrier

G then (x ◦ z) xa ⊗ (y ◦ z) xa else 1)
by (erule r-mult-dist-add) (assumption+)

next
show

∧
x y z . [[x ∈ hom-completion G G ; y ∈ hom-completion G G ; z ∈

hom-completion G G]]
=⇒ z o (λxa. if xa ∈ carrier G then x xa ⊗ y xa else 1) = (λxa. if xa ∈ carrier

G then (z o x) xa ⊗ (z o y) xa else 1)
by (erule l-mult-dist-add)(assumption+)

qed

locale hom-completion-ring = comm-group G + ring R +
assumes R = (| carrier = hom-completion G G , mult = op o,
one = (λx . if x ∈ carrier G then id x else 1),
zero = (λx . if x ∈ carrier G then one G else 1),
add = λf . λg . (λx . if x ∈ carrier G then f x ⊗ g x else 1)|)

Some examples where it is shown the usefulness of the previous proofs

lemma (in hom-completion-ring) r-dist-minus:
[|f ∈ carrier R; g ∈ carrier R; h ∈ carrier R|]
==> (f 	2 g) ⊗2 h = (f ⊗2 h) 	2 (g ⊗2 h) by algebra

lemma (in hom-completion-ring) sublemma:
[| f ∈ carrier R; h ∈ carrier R; f ⊗2 h = h |] ==> (12 	2 f) ⊗2 h = 02 by

algebra

13

2.6 Definition of differential group

According to Section 2.3 in Aransay’s memoir, in the following we will be
dealing with ungraded algebraic structures.

The Basic Perturbation Lemma is usually stated in terms of differential
structures; these include diferential groups as well as chain complexes.

Moreover, chain complexes can be defined in terms of differential groups
(more concretely, as indexed collections of differential groups).

The proof of the Basic Perturbation Lemma does not include any reference to
graded structures or proof obligations derived from the degree information.

Thus, we preferred to state and prove the Basic Perturbation Lemma in
terms of ungrades structures (differential and abelian groups), for the sake
of simplicity, and avoid implementing and dealing with graded structures
(chain complexes and graded groups).

record ′a diff-group = ′a monoid +
diff :: ′a ⇒ ′a (differ ı 81)

locale diff-group = comm-group D +
assumes diff-hom : differ ∈ hom-completion D D
and diff-nilpot : differ ◦ differ = (λx . 1)

lemma diff-groupI :
includes struct D
assumes m-closed :
!!x y . [| x ∈ carrier D ; y ∈ carrier D |] ==> x ⊗ y ∈ carrier D
and one-closed : 1 ∈ carrier D
and m-assoc:
!!x y z . [| x ∈ carrier D ; y ∈ carrier D ; z ∈ carrier D |] ==> (x ⊗ y) ⊗ z = x
⊗ (y ⊗ z)

and m-comm:
!!x y . [| x ∈ carrier D ; y ∈ carrier D |] ==> x ⊗ y = y ⊗ x
and l-one: !!x . x ∈ carrier D ==> 1 ⊗ x = x
and l-inv-ex : !!x . x ∈ carrier D ==> ∃ y ∈ carrier D . y ⊗ x = 1
and diff-hom: differ ∈ hom-completion D D
and diff-nilpot : !!x . (differ) ((differ) x) = 1
shows diff-group D
using prems by (unfold diff-group-def diff-group-axioms-def comm-group-def group-def

group-axioms-def comm-monoid-def
comm-monoid-axioms-def Units-def monoid-def , auto simp add : expand-fun-eq)

2.7 Definition of homomorphisms between differential groups

locale hom-completion-diff = diff-group C + diff-group D + var f +
assumes f-hom-completion: f ∈ hom-completion C D
and f-coherent : f ◦ differ1 = differ2 ◦ f

14

constdefs (structure C and D)
hom-diff :: - => - => (′a => ′b) set
hom-diff C D == {f . f ∈ hom-completion C D & (f ◦ (differC) = (differD) ◦

f)}

lemma hom-diff-is-hom-completion: assumes h: h ∈ hom-diff C D
shows h ∈ hom-completion C D
using h by (unfold hom-diff-def , simp)

lemma hom-diff-closed : assumes h: h ∈ hom-diff C D and x : x ∈ carrier C
shows h x ∈ carrier D
using h and x by (unfold hom-diff-def hom-completion-def hom-def Pi-def , simp)

lemma hom-diff-mult : assumes h: h ∈ hom-diff C D and x : x ∈ carrier C and
y : y ∈ carrier C shows h (x ⊗C y) = h (x) ⊗D h (y)

using hom-completion-mult [of h C D x y] and h and x and y by (unfold
hom-diff-def , simp)

lemma hom-diff-coherent : assumes h: h ∈ hom-diff C D shows h ◦ differC =
differD ◦ h

using h by (unfold hom-diff-def , simp)

lemma (in diff-group) hom-diff-comp-closed : assumes f ∈ hom-diff D D and g
∈ hom-diff D D shows g ◦ f ∈ hom-diff D D
proof −

from prems show g ◦ f ∈ hom-diff D D
proof (unfold hom-diff-def , auto)

from prems show g ◦ f ∈ hom-completion D D
by (intro hom-completion-comp, unfold comm-group-def group-def group-axioms-def

hom-diff-def , simp-all)
from prems show g ◦ f ◦ differ = differ ◦ (g ◦ f)
proof −

have g ◦ f ◦ differ = g ◦ (f ◦ differ)
by (rule sym, rule o-assoc)

also from prems have . . . = g ◦ (differ ◦ f)
by (unfold hom-diff-def , auto)

also have . . . = (g ◦ differ) ◦ f
by (rule o-assoc)

also from prems have . . . = (differ ◦ g) ◦ f
by (unfold hom-diff-def , auto)

also have . . . = differ ◦ (g ◦ f)
by (rule sym, rule o-assoc)

finally show ?thesis by simp
qed

qed
qed

lemma (in diff-group) hom-diff-monoid :

15

shows monoid (|carrier = hom-diff D D , mult = op o, one = (λx . if x ∈ carrier
D then id x else 1)|)

(is monoid ?DIFF)
proof (intro monoidI)

fix x y
assume x ∈ carrier ?DIFF y ∈ carrier ?DIFF
then show x ⊗?DIFF y ∈ carrier ?DIFF by simp (rule hom-diff-comp-closed)

next
show 1?DIFF ∈ carrier ?DIFF
proof (simp, unfold hom-diff-def hom-completion-def completion-fun2-def completion-def

hom-def Pi-def diff-group-def , auto)
from prems show (λx . if x ∈ carrier D then id x else 1) ◦ differ = differ ◦

(λx . if x ∈ carrier D then id x else 1)
apply (unfold diff-group-def diff-group-axioms-def hom-completion-def completion-fun2-def

completion-def hom-def Pi-def)
apply (auto simp add : expand-fun-eq)

apply (rule sym, intro group-hom.hom-one, unfold group-hom-def group-hom-axioms-def
comm-group-def hom-def Pi-def , simp)

done
qed

next
fix x y z
assume x ∈ carrier ?DIFF and y ∈ carrier ?DIFF and z ∈ carrier ?DIFF
show x ⊗?DIFF y ⊗?DIFF z = x ⊗?DIFF (y ⊗?DIFF z) by (simp add : o-assoc)

next
fix x
assume x ∈ carrier ?DIFF from prems show 1?DIFF ⊗?DIFF x = x
by (unfold hom-diff-def hom-completion-def hom-def Pi-def completion-fun2-def

completion-def , auto simp add : expand-fun-eq)
next

fix x
assume x ∈ carrier ?DIFF
from prems show x ⊗?DIFF 1?DIFF = x
by (unfold hom-diff-def hom-completion-def hom-def Pi-def completion-fun2-def

completion-def ,auto simp add : expand-fun-eq)
(rule group-hom.hom-one, unfold group-hom-def group-hom-axioms-def diff-group-def

comm-group-def hom-def Pi-def , simp)
qed

2.8 Completion homomorphisms between differential struc-
tures form a commutative group with the underlying
operation

lemma (in diff-group) hom-diff-mult-closed : assumes f ∈ hom-diff D D and g ∈
hom-diff D D

shows (λx . if x ∈ carrier D then f x ⊗ g x else 1) ∈ hom-diff D D
proof (unfold hom-diff-def hom-completion-def completion-fun2-def completion-def ,
simp, intro conjI)

show ∃ ga. (λx . if x ∈ carrier D then f x ⊗ g x else 1) = (λx . if x ∈ carrier D

16

then ga x else 1)
by (rule exI [of - λx . f x ⊗ g x], simp)

next
from prems show (λx . if x ∈ carrier D then f x ⊗ g x else 1) ∈ hom D D

by (unfold hom-diff-def hom-completion-def hom-def Pi-def , auto simp add :
m-ac)
next

show (λx . if x ∈ carrier D then f x ⊗ g x else 1) ◦ differ = differ ◦ (λx . if x ∈
carrier D then f x ⊗ g x else 1)

proof (rule ext)
fix x
show ((λx . if x ∈ carrier D then f x ⊗ g x else 1) ◦ differ) x = (differ ◦ (λx .

if x ∈ carrier D then f x ⊗ g x else 1)) x
proof (cases x ∈ carrier D)

case True
from prems show ?thesis
by (unfold diff-group-axioms-def hom-diff-def hom-completion-def completion-fun2-def

diff-group-def completion-def hom-def Pi-def)
(auto simp add : expand-fun-eq)

next
case False
from prems show ?thesis
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def

completion-fun2-def completion-def hom-def Pi-def)
(auto simp add : expand-fun-eq)

qed
qed

qed

lemma (in diff-group) hom-diff-inv-def : assumes f ∈ hom-diff D D
shows (λx . if x ∈ carrier D then inv f x else 1) ∈ hom-diff D D

proof (unfold hom-diff-def , auto)
from prems show (λx . if x ∈ carrier D then inv f x else 1) ∈ hom-completion

D D
by (intro hom-completion-inv-is-hom-completion, unfold hom-diff-def , simp)

next
from prems show (λx . if x ∈ carrier D then inv f x else 1) ◦ differ = differ ◦

(λx . if x ∈ carrier D then inv f x else 1)
proof (simp add : expand-fun-eq , intro allI impI conjI)

fix x
assume x ∈ carrier D
show inv f ((differ) x) = (differ) (inv f x)
proof −

have (inv f ((differ) x) = (differ) (inv f x)) = (inv f ((differ) x) ⊗ f ((differ)
x) = (differ) (inv f x) ⊗ f ((differ) x))

proof (rule sym, rule r-cancel)
from prems show f ((differ) x) ∈ carrier D
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def

17

hom-def Pi-def , simp)
next

from prems show inv f ((differ) x) ∈ carrier D
by (intro inv-closed)(unfold diff-group-def diff-group-axioms-def hom-diff-def

hom-completion-def hom-def Pi-def , simp)
next

from prems show (differ) (inv f x) ∈ carrier D
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def

hom-def Pi-def , simp)
qed
also have inv f ((differ) x) ⊗ f ((differ) x) = (differ) (inv f x) ⊗ f ((differ)

x)
proof −

have l-h: inv f ((differ) x) ⊗ f ((differ) x) = 1
proof (rule l-inv)

from prems show f ((differ) x) ∈ carrier D
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def

hom-def Pi-def , simp)
qed
have r-h: (differ) (inv f x) ⊗ f ((differ) x) = 1
proof −
have (differ) (inv f x) ⊗ f ((differ) x) = (differ) (inv f x) ⊗ (differ) (f x)
proof −

from prems have f ((differ) x) = (differ) (f x)
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def

hom-def Pi-def , simp add : expand-fun-eq)
then show ?thesis by simp

qed
also have . . . = (differ) (inv f x ⊗ f x)
proof (rule sym, rule hom-mult)

from prems show differ ∈ hom D D
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def ,

simp)
next

from prems show inv f x ∈ carrier D
by (intro inv-closed , unfold hom-diff-def hom-completion-def hom-def

Pi-def , simp)
next

from prems show f x ∈ carrier D
by (unfold hom-diff-def hom-completion-def hom-def Pi-def , simp)

qed
also have . . . = (differ) (1)
proof −

from prems have inv f x ⊗ f x = 1
by (intro l-inv , unfold hom-diff-def hom-completion-def hom-def Pi-def ,

simp)
then show ?thesis by simp

qed
also from prems have . . . = 1

18

proof (intro group-hom.hom-one, unfold diff-group-def comm-group-def
group-hom-def group-hom-axioms-def ,

intro conjI , simp-all)
from prems show differ ∈ hom D D

by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def ,
simp)

qed
finally show ?thesis by simp

qed
from l-h and r-h show ?thesis by simp

qed
finally show ?thesis by simp

qed
next

fix x
assume x ∈ carrier D and (differ) x /∈ carrier D

from prems show 1 = (differ) (inv f x)
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def

hom-def Pi-def , simp)
next

fix x
assume x /∈ carrier D
from prems show inv f ((differ) x) = (differ) 1
proof −

have l-h: inv f ((differ) x) = 1 thm inv-one
proof −

from prems have inv f ((differ) x) = inv f (1)
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def

completion-fun2-def completion-def Pi-def ,
auto)

also have . . . = inv 1
proof −

from prems have f 1 = 1
by (intro group-hom.hom-one)

(unfold diff-group-def comm-group-def group-hom-def group-hom-axioms-def
hom-diff-def hom-completion-def , auto)

then show ?thesis by simp
qed
also have . . . = 1

by (rule inv-one)
finally show ?thesis by simp

qed
from prems have r-h: (differ) 1 = 1

by (intro group-hom.hom-one)
(unfold diff-group-def comm-group-def diff-group-axioms-def group-hom-def

group-hom-axioms-def hom-diff-def hom-completion-def ,
auto)

19

from r-h and l-h show ?thesis by simp
qed

next
show 1 = (differ) 1
proof (rule sym, intro group-hom.hom-one)

from prems show group-hom D D (differ)
by (unfold diff-group-def comm-group-def

diff-group-axioms-def group-hom-def group-hom-axioms-def hom-diff-def
hom-completion-def , auto)

qed
qed

qed

lemma (in diff-group) hom-diff-inv : assumes f ∈ hom-diff D D
shows ∃ g∈hom-diff D D . (λx . if x ∈ carrier D then g x ⊗ f x else 1) = (λx . 1)

proof (rule bexI [of - (λx . if x ∈ carrier D then inv f x else 1)])
from prems show (λx . if x ∈ carrier D then (if x ∈ carrier D then inv f x else

1) ⊗ f x else 1) = (λx . 1)
by (auto simp add : expand-fun-eq) (rule l-inv , unfold hom-diff-def hom-completion-def

hom-def Pi-def , simp)
next

show (λx . if x ∈ carrier D then inv f x else 1) ∈ hom-diff D D by (rule
hom-diff-inv-def , simp add : prems)
qed

2.9 Differential homomorphisms form a commutative group
with the underlying operation

lemma (in diff-group) hom-diff-mult-comm-group:
shows comm-group (|carrier = hom-diff D D , mult = λf . λg . (λx . if x ∈ carrier

D then f x ⊗ g x else 1),
one = (λx . if x ∈ carrier D then 1 else 1)|)
(is comm-group ?DIFF)

proof (intro comm-groupI)
fix x y
assume x ∈ carrier ?DIFF and y ∈ carrier ?DIFF
then show x ⊗?DIFF y ∈ carrier ?DIFF by simp (erule hom-diff-mult-closed ,

assumption)
next

from prems show 1?DIFF ∈ carrier ?DIFF
proof (simp, unfold hom-diff-def hom-completion-def hom-def Pi-def completion-fun2-def ,

auto)
show ∃ g . (λx . 1) = completion D D g by (rule exI [of - λx . 1], unfold

completion-def , simp)
next

from prems show (λx . 1) ◦ differ = differ ◦ (λx . 1)
proof (auto simp add : expand-fun-eq)

show 1 = (differ) 1
proof (rule sym, intro group-hom.hom-one)

20

from prems show group-hom D D (differ)
by (unfold group-hom-def group-hom-axioms-def diff-group-def comm-group-def

diff-group-axioms-def hom-diff-def
hom-completion-def , simp)

qed
qed

qed
next

fix x y z
assume x ∈ carrier ?DIFF and y ∈ carrier ?DIFF and z ∈ carrier ?DIFF
from prems show x ⊗?DIFF y ⊗?DIFF z = x ⊗?DIFF (y ⊗?DIFF z)
by (auto simp add : expand-fun-eq) (intro m-assoc, unfold hom-diff-def hom-completion-def ,

auto simp add : hom-closed)
next

fix x y
assume x ∈ carrier ?DIFF and y ∈ carrier ?DIFF
from prems show x ⊗?DIFF y = y ⊗?DIFF x
by (auto simp add : expand-fun-eq) (intro m-comm, unfold hom-diff-def hom-completion-def

hom-def Pi-def , auto)
next

fix x
assume x ∈ carrier ?DIFF
from prems show 1?DIFF ⊗?DIFF x = x

by (auto simp add : expand-fun-eq)
(intro l-one, unfold hom-diff-def hom-completion-def completion-fun2-def completion-def

hom-def Pi-def , auto)
next

fix x
assume x ∈ carrier ?DIFF

from prems and hom-diff-inv [of x] show ∃ y∈carrier ?DIFF . y ⊗?DIFF x =
1 ?DIFF by simp
qed

The completion homomorphisms between differential groups are a ring with
suitable operations

lemma (in diff-group) hom-diff-ring :
shows ring (| carrier = hom-diff D D , mult = op o, one = (λx . if x ∈ carrier

D then id x else 1),
zero = (λx . if x ∈ carrier D then 1 else 1), add = λf . λg . (λx . if x ∈ carrier D

then f x ⊗ g x else 1)|)
(is ring ?DIFF)

proof (rule ringI , unfold abelian-group-def abelian-group-axioms-def abelian-monoid-def ,
auto)

show monoid (| carrier = hom-diff D D , mult = op o, one = λx . if x ∈ carrier
D then id x else 1, zero = λx . 1,

add = λf g x . if x ∈ carrier D then f x ⊗ g x else 1 |)
proof −
from diff-group.hom-diff-monoid and prems have monoid (|carrier = hom-diff

21

D D , mult = op ◦,
one = λx . if x ∈ carrier D then id x else 1|)
by (unfold diff-group-def , auto)

then show ?thesis by (unfold monoid-def , simp)
qed

next
show comm-monoid (|carrier = hom-diff D D , mult = λf g x . if x ∈ carrier D

then f x ⊗ g x else 1, one = λx . 1|)
proof −

from diff-group.hom-diff-mult-comm-group and prems
have comm-group (|carrier = hom-diff D D , mult = λf g x . if x ∈ carrier D

then f x ⊗ g x else 1,
one = λx . if x ∈ carrier D then 1 else 1|)
by (unfold diff-group-def , auto)

then show ?thesis by (unfold comm-group-def comm-monoid-def , simp)
qed

next
show comm-group (|carrier = hom-diff D D , mult = λf g x . if x ∈ carrier D

then f x ⊗ g x else 1, one = λx . 1|)
proof −

from diff-group.hom-diff-mult-comm-group and prems
have comm-group (|carrier = hom-diff D D , mult = λf g x . if x ∈ carrier D

then f x ⊗ g x else 1,
one = λx . if x ∈ carrier D then 1 else 1|)
by (unfold diff-group-def , auto)

then show ?thesis by simp
qed

next
show

∧
x y z . [[x ∈ hom-diff D D ; y ∈ hom-diff D D ; z ∈ hom-diff D D]]

=⇒ (λxa. if xa ∈ carrier D then x xa ⊗ y xa else 1) ◦ z = (λxa. if xa ∈ carrier
D then (x ◦ z) xa ⊗ (y ◦ z) xa else 1)

proof −
fix x y z
assume x ∈ hom-diff D D and y ∈ hom-diff D D and z ∈ hom-diff D D
from prems
show (λxa. if xa ∈ carrier D then x xa ⊗ y xa else 1) ◦ z = (λxa. if xa ∈

carrier D then (x ◦ z) xa ⊗ (y ◦ z) xa else 1)
by (intro r-mult-dist-add) (unfold hom-diff-def , simp-all)

qed
next

show
∧

x y z . [[x ∈ hom-diff D D ; y ∈ hom-diff D D ; z ∈ hom-diff D D]]
=⇒ z o (λxa. if xa ∈ carrier D then x xa ⊗ y xa else 1) = (λxa. if xa ∈ carrier

D then (z o x) xa ⊗ (z o y) xa else 1)
by (intro l-mult-dist-add) (unfold hom-diff-def , simp-all)

qed (simp-all add : hom-diff-def)

end

22

theory HomGroupsCompletion
imports
HomGroupCompletion
begin

2.10 Homomorphisms seen as algebraic structures

Homomorphisms with the underlying operation are closed

lemma hom-mult-completion-is-hom:
includes comm-group G + comm-group G ′

shows [|f : hom G G ′; g : hom G G ′ |] ==> (%x . if x ∈ carrier G then f x ⊗2

g x else 12) : hom G G ′

apply (unfold hom-def , simp add : prems, auto simp add : Pi-def m-closed)
apply (simp add : m-ac hom-completion-closed)
done

lemma hom-completion-mult-is-hom-completion:
includes comm-group G + comm-group G ′

assumes f ∈ hom-completion G G ′ and g ∈ hom-completion G G ′

shows (λx . if x ∈ carrier G then f x ⊗G ′ g x else 1G ′) ∈ hom-completion G G ′

proof (unfold hom-completion-def completion-fun2-def completion-def , simp, intro
conjI)
show ∃ ga. (λx . if x ∈ carrier G then f x ⊗G ′ g x else 1G ′) = (λx . if x ∈ carrier

G then ga x else 1G ′)
by (rule exI [of - (λx . f x ⊗G ′ g x)])(simp)

next
from prems show (λx . if x ∈ carrier G then f x ⊗G ′ g x else 1G ′) ∈ hom G G ′

by (intro hom-mult-completion-is-hom, unfold comm-group-def hom-completion-def)(simp-all)
qed

Proof of the existence of an inverse homomorphism

lemma hom-completions-mult-inv-is-hom-completion:
includes comm-group G + comm-group G ′

assumes f ∈ hom-completion G G ′

shows ∃ g∈hom-completion G G ′. (λx . if x ∈ carrier G then g x ⊗G ′ f x else
1G ′) = (λx . 1G ′)
proof (intro bexI [of - (λx . if x ∈ carrier G then invG ′ (f x) else 1G ′)])

show (λg . if g ∈ carrier G then invG ′ f g else 1G ′) ∈ hom-completion G G ′

proof (unfold hom-completion-def completion-fun2-def completion-def , simp, in-
tro conjI)

show ∃ g . (λg . if g ∈ carrier G then invG ′ f g else 1G ′) = (λx . if x ∈ carrier
G then g x else 1G ′)

by (rule exI [of - λx . invG ′ (f x)], simp)
next

show (λx . if x ∈ carrier G then invG ′ f x else 1G ′) ∈ hom G G ′

proof (unfold hom-def , simp, intro conjI)
from prems show (λx . if x ∈ carrier G then invG ′ f x else 1G ′) ∈ carrier G

→ carrier G ′

23

by (unfold Pi-def hom-completion-def completion-fun2-def completion-def
hom-def Pi-def , auto)

next
show ∀ x∈carrier G . ∀ y∈carrier G . invG ′ f (x ⊗ y) = invG ′ f x ⊗G ′ invG ′

f y
proof (intro ballI)

fix x y
assume x ∈ carrier G and y ∈ carrier G
show invG ′ f (x ⊗ y) = invG ′ f x ⊗G ′ invG ′ f y
proof −

from prems have f (x ⊗ y) = f x ⊗G ′ f y by (intro hom-mult , unfold
hom-completion-def , simp-all)

then have invG ′ f (x ⊗ y) = invG ′ (f x ⊗G ′ f y) by simp
also from prems have . . . = invG ′ (f y) ⊗G ′ invG ′ (f x)

by (intro inv-mult-group) (unfold hom-completion-def hom-def Pi-def ,
simp-all)

also from prems have . . . = invG ′ (f x) ⊗G ′ invG ′ (f y)
by (intro m-comm)(unfold hom-completion-def hom-def Pi-def , simp-all)

finally show ?thesis by simp
qed

qed
qed

qed
next

from prems
show (λx . if x ∈ carrier G then (if x ∈ carrier G then invG ′ f x else 1G ′) ⊗G ′

f x else 1G ′) = (λx . 1G ′)
by (unfold hom-completion-def hom-def Pi-def , auto simp add : expand-fun-eq)

qed

2.11 Completion homomorphisms between two algebraic struc-
tures form a commutative group

lemma hom-completion-groups-mult-comm-group:
includes comm-group G + comm-group G ′

shows comm-group (| carrier = hom-completion G G ′, mult = λf . λg . (λx . if x
∈ carrier G then f x ⊗2 g x else 12),

one = (λx . if x ∈ carrier G then 12 else 12)|)
(is comm-group ?H-CO)

proof (intro comm-groupI)
fix f g
assume f ∈ carrier ?H-CO and g ∈ carrier ?H-CO
from prems show f ⊗?H-CO g ∈ carrier ?H-CO
by simp (intro hom-completion-mult-is-hom-completion, unfold comm-group-def ,

simp-all)
next

show 1?H-CO ∈ carrier ?H-CO
proof (unfold hom-completion-def completion-fun2-def completion-def , auto)

show ∃ g . (λx . 1G ′) = (λx . if x ∈ carrier G then g x else 1G ′) by (intro exI

24

[of - λx . 1G ′], simp)
next

show (λx . 1G ′) ∈ hom G G ′ by (unfold hom-def Pi-def , simp)
qed

next
fix x y z
assume x ∈ carrier ?H-CO and y ∈ carrier ?H-CO and z ∈ carrier ?H-CO
from prems show x ⊗?H-CO y ⊗?H-CO z = x ⊗?H-CO (y ⊗?H-CO z)

by (auto simp add : expand-fun-eq hom-completion-def hom-def Pi-def) (rule
m-assoc, simp-all)
next

fix x y
assume x ∈ carrier ?H-CO and y ∈ carrier ?H-CO
from prems show x ⊗?H-CO y = y ⊗?H-CO x

by (auto simp add : expand-fun-eq hom-completion-def hom-def Pi-def) (rule
m-comm, simp-all)
next

fix x
assume x ∈ carrier ?H-CO
from prems show 1?H-CO⊗?H-CO x = x

by (auto simp add : expand-fun-eq hom-completion-def completion-fun2-def
completion-def hom-def Pi-def)
next

fix x
assume x ∈ carrier ?H-CO
from prems and hom-completions-mult-inv-is-hom-completion [of G G ′ x] show
∃ y∈carrier ?H-CO . y ⊗?H-CO x = 1?H-CO

by (unfold comm-group-def , simp)
qed

2.12 Previous facts about homomorphisms of differential struc-
tures

lemma hom-diff-mult-is-hom-diff :
includes diff-group D + diff-group D ′

assumes f ∈ hom-diff D D ′ and g ∈ hom-diff D D ′

shows (λx . if x ∈ carrier D then f x ⊗D ′ g x else 1D ′) ∈ hom-diff D D ′

proof (unfold hom-diff-def hom-completion-def completion-fun2-def completion-def ,
simp, intro conjI)
show ∃ ga. (λx . if x ∈ carrier D then f x ⊗D ′ g x else 1D ′) = (λx . if x ∈ carrier

D then ga x else 1D ′)
by (rule exI [of - (λx . f x ⊗D ′ g x)])(simp)

next
from prems show (λx . if x ∈ carrier D then f x ⊗D ′ g x else 1D ′) ∈ hom D D ′

by (unfold hom-diff-def hom-completion-def hom-def Pi-def , auto simp add :
m-ac)
next

show (λx . if x ∈ carrier D then f x ⊗D ′ g x else 1D ′) ◦ differ = differD ′ ◦ (λx .
if x ∈ carrier D then f x ⊗D ′ g x else 1D ′)

25

proof (rule ext)
fix x
show ((λx . if x ∈ carrier D then f x ⊗D ′ g x else 1D ′) ◦ differ) x = (differD ′

◦ (λx . if x ∈ carrier D then f x ⊗D ′ g x else 1D ′)) x
proof (cases x ∈ carrier D)

case True
from prems show ?thesis
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def

completion-fun2-def completion-def hom-def Pi-def) (auto simp add :
expand-fun-eq)

next
case False
then show ?thesis
proof (auto simp add : expand-fun-eq)

show f ((differ) x) ⊗D ′ g ((differ) x) = (differD ′) 1D ′

proof −
from prems have l-h-s-1 : f ((differ) x) = 1D ′

by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def
completion-fun2-def completion-def ,

auto) (intro group-hom.hom-one, unfold comm-group-def group-hom-def
group-hom-axioms-def hom-def Pi-def , simp)

moreover from prems have l-h-s-2 : g ((differ) x) = 1D ′

by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def
completion-fun2-def completion-def ,

auto) (intro group-hom.hom-one, unfold comm-group-def group-hom-def
group-hom-axioms-def hom-def Pi-def , simp)

moreover from prems have r-h-s: (differD ′) 1D ′ = 1D ′

by (intro group-hom.hom-one)(unfold diff-group-def comm-group-def
group-hom-def group-hom-axioms-def diff-group-axioms-def

hom-diff-def hom-completion-def , simp)
ultimately show ?thesis by simp

qed
next

show 1D ′ = (differD ′) 1D ′

proof (rule sym, intro group-hom.hom-one)
from prems show group-hom D ′ D ′ (differD ′)

by (unfold diff-group-def comm-group-def group-hom-def group-hom-axioms-def
diff-group-axioms-def hom-diff-def

hom-completion-def , simp)
qed

qed
qed

qed
qed

lemma hom-diff-mult-inv-is-hom-diff :
includes diff-group D + diff-group D ′

assumes f ∈ hom-diff D D ′

26

shows ∃ g∈hom-diff D D ′. (λx . if x ∈ carrier D then g x ⊗D ′ f x else 1D ′) =
(λx . 1D ′)
proof (intro bexI [of - (λx . if x ∈ carrier D then invD ′ (f x) else 1D ′)])

show (λg . if g ∈ carrier D then invD ′ f g else 1D ′) ∈ hom-diff D D ′

proof (unfold hom-diff-def hom-completion-def completion-fun2-def completion-def ,
simp, intro conjI)

show ∃ g . (λg . if g ∈ carrier D then invD ′ f g else 1D ′) = (λx . if x ∈ carrier
D then g x else 1D ′)

by (rule exI [of - λx . invD ′ (f x)], simp)
next

show (λx . if x ∈ carrier D then invD ′ f x else 1D ′) ∈ hom D D ′

proof (unfold hom-def , simp, intro conjI)
from prems show (λx . if x ∈ carrier D then invD ′ f x else 1D ′) ∈ carrier D

→ carrier D ′

by (unfold hom-diff-def hom-completion-def completion-fun2-def completion-def
hom-def Pi-def , auto)

next
show ∀ x∈carrier D . ∀ y∈carrier D . invD ′ f (x ⊗ y) = invD ′ f x ⊗D ′ invD ′

f y
proof (intro ballI)

fix x y
assume x ∈ carrier D and y ∈ carrier D
show invD ′ f (x ⊗ y) = invD ′ f x ⊗D ′ invD ′ f y
proof −

from prems have f (x ⊗ y) = f x ⊗D ′ f y by (intro hom-mult , unfold
hom-diff-def hom-completion-def , simp-all)

then have invD ′ f (x ⊗ y) = invD ′ (f x ⊗D ′ f y) by simp
also from prems have . . . = invD ′ (f y) ⊗D ′ invD ′ (f x)
by (intro inv-mult-group) (unfold hom-diff-def hom-completion-def hom-def

Pi-def , simp-all)
also from prems have . . . = invD ′ (f x) ⊗D ′ invD ′ (f y)

by (intro m-comm)(unfold hom-diff-def hom-completion-def hom-def
Pi-def , simp-all)

finally show ?thesis by simp
qed

qed
qed

next
show (λg . if g ∈ carrier D then invD ′ f g else 1D ′) ◦ differ = differD ′ ◦ (λg .

if g ∈ carrier D then invD ′ f g else 1D ′)
proof (simp add : expand-fun-eq , intro allI impI conjI)

fix x
assume x ∈ carrier D
show invD ′ f ((differ) x) = (differD ′) (invD ′ f x)
proof −

have (invD ′ f ((differ) x) = (differD ′) (invD ′ f x)) = (invD ′ f ((differ)
x) ⊗D ′ f ((differ) x) = (differD ′) (invD ′ f x)

⊗D ′ f ((differ) x))

27

proof (rule sym, rule r-cancel)
from prems show f ((differ) x) ∈ carrier D ′

by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def
hom-def Pi-def , simp)

next
from prems show invD ′ f ((differ) x) ∈ carrier D ′

by (intro inv-closed)(unfold diff-group-def diff-group-axioms-def hom-diff-def
hom-completion-def hom-def Pi-def , simp)

next
from prems show (differD ′) (invD ′ f x) ∈ carrier D ′

by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def
hom-def Pi-def , simp)

qed
also have (invD ′ f ((differ) x) ⊗D ′ f ((differ) x) = (differD ′) (invD ′ f x)

⊗D ′ f ((differ) x))
proof −

have l-h: invD ′ f ((differ) x) ⊗D ′ f ((differ) x) = 1D ′

proof (rule l-inv)
from prems show f ((differ) x) ∈ carrier D ′

by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def
hom-def Pi-def , simp)

qed
moreover have r-h: (differD ′) (invD ′ f x) ⊗D ′ f ((differ) x) = 1D ′

proof −
have (differD ′) (invD ′ f x) ⊗D ′ f ((differ) x) = (differD ′) (invD ′ f x)

⊗D ′ (differD ′) (f x)
proof −

from prems have f ((differ) x) = (differD ′) (f x)
by (unfold diff-group-axioms-def hom-diff-def hom-completion-def

hom-def Pi-def , simp add : expand-fun-eq)
then show ?thesis by simp

qed
also have . . . = (differD ′) (invD ′ f x ⊗D ′ f x)
proof (rule sym, rule hom-mult)

from prems show differD ′ ∈ hom D ′ D ′

by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def ,
simp)

next
from prems show invD ′ f x ∈ carrier D ′

by (intro inv-closed , unfold hom-diff-def hom-completion-def hom-def
Pi-def , simp)

next
from prems show f x ∈ carrier D ′

by (unfold hom-diff-def hom-completion-def hom-def Pi-def , simp)
qed
also have . . . = (differD ′) (1D ′)
proof −

from prems have invD ′ f x ⊗D ′ f x = 1D ′

by (intro l-inv , unfold hom-diff-def hom-completion-def hom-def Pi-def ,

28

simp)
then show ?thesis by simp

qed
also from prems have . . . = 1D ′

proof (intro group-hom.hom-one, unfold diff-group-def comm-group-def
group-hom-def group-hom-axioms-def , intro conjI , simp-all)

from prems show differD ′ ∈ hom D ′ D ′

by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def ,
simp)

qed
finally show ?thesis by simp

qed
ultimately show ?thesis by simp

qed
finally show ?thesis by simp

qed
next

fix x
assume x ∈ carrier D and (differ) x /∈ carrier D

from prems show 1D ′ = (differD ′) (invD ′ f x)
by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def

hom-def Pi-def , simp)
next

fix x
assume x /∈ carrier D
from prems show invD ′ f ((differ) x) = (differD ′) 1D ′

proof −
have l-h: invD ′ f ((differ) x) = 1D ′

proof −
from prems have invD ′ f ((differ) x) = invD ′ f (1)

by (unfold diff-group-def diff-group-axioms-def hom-diff-def hom-completion-def
completion-fun2-def completion-def Pi-def , auto)

also have . . . = invD ′ 1D ′

proof −
from prems have f 1 = 1D ′

by (intro group-hom.hom-one) (unfold diff-group-def comm-group-def
group-hom-def group-hom-axioms-def hom-diff-def hom-completion-def , auto)

then show ?thesis by simp
qed
also have . . . = 1D ′

by (rule inv-one)
finally show ?thesis by simp

qed
moreover from prems have r-h: (differD ′) 1D ′ = 1D ′

by (intro group-hom.hom-one)
(unfold diff-group-def diff-group-axioms-def comm-group-def group-hom-def

group-hom-axioms-def hom-diff-def hom-completion-def , auto)

29

ultimately show ?thesis by simp
qed

next
show 1D ′ = (differD ′) 1D ′

proof (rule sym, intro group-hom.hom-one)
from prems show group-hom D ′ D ′ (differD ′)
by (unfold diff-group-def comm-group-def diff-group-axioms-def group-hom-def

group-hom-axioms-def hom-diff-def hom-completion-def , auto)
qed

qed
qed

next
from prems show (λx . if x ∈ carrier D then (if x ∈ carrier D then invD ′ f x

else 1D ′) ⊗D ′ f x else 1D ′) = (λx . 1D ′)
by (unfold hom-diff-def hom-completion-def hom-def Pi-def , auto simp add :

expand-fun-eq)
qed

The set of completion differential homomorphisms between two differential
groups are a commutative group

lemma hom-diff-groups-mult-comm-group:
includes diff-group D + diff-group D ′

shows comm-group (| carrier = hom-diff D D ′, mult = λf . λg . (λx . if x ∈ carrier
D then f x ⊗2 g x else 12),

one = (λx . if x ∈ carrier D then 12 else 12)|)
(is comm-group ?H-DI)

proof (intro comm-groupI)
fix f g
assume f ∈ carrier ?H-DI and g ∈ carrier ?H-DI
from prems and hom-diff-mult-is-hom-diff [of D D ′ f g] show f ⊗?H-DI g ∈

carrier ?H-DI
by (unfold diff-group-def , simp)

next
show 1?H-DI ∈ carrier ?H-DI
proof (unfold hom-diff-def hom-completion-def completion-fun2-def completion-def ,

auto)
show ∃ g . (λx . 1D ′) = (λx . if x ∈ carrier D then g x else 1D ′)

by (intro exI [of - λx . 1D ′], simp)
next

show (λx . 1D ′) ∈ hom D D ′

by (unfold hom-def Pi-def , simp)
next

from prems show (λx . 1D ′) ◦ differ = differD ′ ◦ (λx . 1D ′)
by (auto simp add : expand-fun-eq) (rule sym, intro group-hom.hom-one,

unfold diff-group-def comm-group-def group-hom-def group-hom-axioms-def
diff-group-axioms-def hom-diff-def hom-completion-def , simp)

qed
next

fix x y z

30

assume x ∈ carrier ?H-DI and y ∈ carrier ?H-DI and z ∈ carrier ?H-DI
from prems show x ⊗?H-DI y ⊗?H-DI z = x ⊗?H-DI (y ⊗?H-DI z)

by (auto simp add : expand-fun-eq hom-diff-def hom-completion-def hom-def
Pi-def) (rule m-assoc, simp-all)
next

fix x y
assume x ∈ carrier ?H-DI and y ∈ carrier ?H-DI
from prems show x ⊗?H-DI y = y ⊗?H-DI x

by (auto simp add : expand-fun-eq hom-diff-def hom-completion-def hom-def
Pi-def) (rule m-comm, simp-all)
next

fix x
assume x ∈ carrier ?H-DI
from prems show 1 ?H-DI ⊗?H-DI x = x
by (auto simp add : expand-fun-eq hom-diff-def hom-completion-def completion-fun2-def

completion-def hom-def Pi-def)
next

fix x
assume x ∈ carrier ?H-DI

from prems and hom-diff-mult-inv-is-hom-diff [of D D ′ x] show ∃ y∈carrier
?H-DI . y ⊗?H-DI x = 1 ?H-DI

by (unfold diff-group-def , simp)
qed

The following result has been already proved in comm-group (|carrier =
hom-diff D D , mult = λf g x . if x ∈ carrier D then f x ⊗ g x else 1, one
= λx . if x ∈ carrier D then 1 else 1|); now that we have provided a proof
of a similar result but for two different differential groups, D and D ′, it can
be trivially proved for the case D = D ′

lemma (in diff-group) hom-diff-group-mult-comm-group-inst :
shows comm-group (| carrier = hom-diff D D , mult = λf . λg . (λx . if x ∈ carrier

D then f x ⊗ g x else 1),
one = (λx . if x ∈ carrier D then 1 else 1)|)
using prems hom-diff-groups-mult-comm-group [of D D] by simp

end

3 Previous definitions and Propositions 2.2.9, 2.2.10
and Lemma 2.2.11 in Aransay’s memoir

theory lemma-2-2-11
imports
∼∼/src/HOL/Algebra/Coset
HomGroupsCompletion
begin

Definitions and results leading to prove that the ker and image sets of a

31

given homomorphism are subgroups and give place to suitable algebraic
structures

locale comm-group-hom = group-hom +
assumes comm-group-G : comm-group G
and comm-group-H : comm-group H
and hom-completion-h: h ∈ completion-fun2 G H

lemma comm-group-hom [intro]: assumes G : comm-group G and H : comm-group
H and h: h ∈ hom-completion G H

shows comm-group-hom G H h
using G H h
by (unfold comm-group-hom-def comm-group-hom-axioms-def group-hom-def group-hom-axioms-def

hom-completion-def comm-group-def , simp)

lemma (in comm-group-hom) subgroup-kernel : subgroup (kernel G H h) G
by (rule subgroup.intro) (auto simp add : kernel-def)

lemma (in comm-group-hom) kernel-comm-group: comm-group (| carrier = (kernel
G H h), mult = mult G , one = one G |)

using prems
apply (intro comm-groupI)
apply (unfold comm-group-hom-def comm-group-hom-axioms-def comm-group-def

comm-monoid-axioms-def kernel-def , auto simp add : G .m-assoc)
apply (unfold comm-monoid-def comm-monoid-axioms-def , simp)
done

locale diff-group-hom-diff = comm-group-hom D C h +
assumes diff-group-axioms-D : diff-group-axioms D
and diff-group-axioms-C : diff-group-axioms C
and diff-hom-h: h ◦ differD = differC ◦ h

lemma diff-group-hom-diffI : assumes d-g-D : diff-group D and d-g-C : diff-group
C and h-hom: h ∈ hom-diff D C

shows diff-group-hom-diff D C h
using d-g-D and d-g-C and h-hom
by (unfold diff-group-hom-diff-def diff-group-hom-diff-axioms-def comm-group-hom-def

comm-group-hom-axioms-def diff-group-def
hom-diff-def hom-completion-def group-hom-def group-hom-axioms-def comm-group-def ,

simp)

lemma (in diff-group-hom-diff) diff-group-D : shows diff-group D
using prems by (unfold diff-group-def diff-group-hom-diff-def diff-group-hom-diff-axioms-def

comm-group-hom-def comm-group-hom-axioms-def group-hom-def group-hom-axioms-def
comm-group-def) (simp)

lemma (in diff-group-hom-diff) diff-group-C : shows diff-group C
using prems by (unfold diff-group-def diff-group-hom-diff-def diff-group-hom-diff-axioms-def

32

comm-group-hom-def comm-group-hom-axioms-def group-hom-def group-hom-axioms-def
comm-group-def) (simp)

lemma (in diff-group-hom-diff) hom-diff-h: shows h ∈ hom-diff D C
using prems by (unfold diff-group-def diff-group-hom-diff-def diff-group-hom-diff-axioms-def
comm-group-hom-def comm-group-hom-axioms-def group-hom-def group-hom-axioms-def

hom-diff-def hom-completion-def) simp

lemma (in diff-group-hom-diff) group-hom-D-D-differ : shows group-hom D D
(differD)
using prems by (unfold group-hom-def group-hom-axioms-def diff-group-hom-diff-def

diff-group-hom-diff-axioms-def comm-group-hom-def diff-group-axioms-def [of
D] hom-completion-def) simp

lemma (in diff-group-hom-diff) group-hom-C-C-differ : shows group-hom C C
(differC)
using prems by (unfold group-hom-def group-hom-axioms-def diff-group-hom-diff-def

diff-group-hom-diff-axioms-def comm-group-hom-def diff-group-axioms-def [of
C] hom-completion-def) simp

lemma (in diff-group-hom-diff) subgroup-kernel : subgroup (kernel D C h) D
by (rule subgroup.intro) (auto simp add : kernel-def)

The following lemma corresponds to Proposition 2.2.9 in Aransay’s thesis

Due to the use of completion functions for the differential, we need to define
the diff function, which originally was a completion from D into D, as a
completion from the kernel into the original differential group D

lemma (in diff-group-hom-diff) kernel-diff-group:
diff-group (| carrier = (kernel D C h), mult = mult D , one = one D ,
diff = completion (|carrier = (kernel D C h), mult = mult D , one = one D , diff

= diff D |) D (diff D)|)
(is diff-group ?KER)

proof (intro diff-groupI , simp-all)
fix x y
assume x-in-ker : x ∈ kernel D C h and y-in-ker : y ∈ kernel D C h
from group-hom.subgroup-kernel [of D C h] and subgroup-def [of kernel D C h

D] and prems show x ⊗ y ∈ kernel D C h
by (unfold diff-group-hom-diff-def comm-group-hom-def , simp)

next
from group-hom.subgroup-kernel [of D C h] and subgroup-def [of kernel D C h

D] and prems
show 1 ∈ kernel D C h by (unfold diff-group-hom-diff-def comm-group-hom-def ,

simp)
next

fix x y z
assume x-in-ker : x ∈ kernel D C h and y-in-ker : y ∈ kernel D C h and z-in-ker :

33

z ∈ kernel D C h
from group-hom.subgroup-kernel [of D C h] and subgroup-def [of kernel D C h

D] and prems and D .m-assoc [of x y z]
show x ⊗ y ⊗ z = x ⊗ (y ⊗ z) by (unfold diff-group-hom-diff-def comm-group-hom-def ,

auto)
next

fix x y assume x-in-ker : x ∈ kernel D C h and y-in-ker : y ∈ kernel D C h
from group-hom.subgroup-kernel [of D C h] and prems

and psubsetD [of kernel D C h carrier D x]
and psubsetD [of kernel D C h carrier D y]
and comm-monoid .m-ac (2) [of D x y]

show x ⊗ y = y ⊗ x unfolding diff-group-hom-diff-def unfolding comm-group-hom-def

unfolding subgroup-def
unfolding comm-group-hom-axioms-def unfolding comm-group-def [of D] by

auto
next

fix x assume x-in-ker : x ∈ kernel D C h
from group-hom.subgroup-kernel [of D C h] and subgroup-def [of kernel D C h

D] and prems show 1 ⊗ x = x
unfolding diff-group-hom-diff-def comm-group-hom-def by auto

next
fix x assume x-in-ker : x ∈ kernel D C h
from bexI [of (λy . y ⊗ x = 1) inv x kernel D C h] show ∃ y∈kernel D C h. y
⊗ x = 1

using m-inv-def [of - x]
using prems (1) using group-hom.subgroup-kernel [of D C h] using x-in-ker
unfolding diff-group-hom-diff-def unfolding comm-group-hom-def unfolding

subgroup-def by auto
next
from prems and diff-group-hom-diff .group-hom-C-C-differ [of D C h] diff-group-hom-diff .group-hom-D-D-differ

[of D C h]
and group-hom.hom-one [of C C differC]

show completion (|carrier = kernel D C h, mult = op ⊗, one = 1, diff = differ |)
D (differ)
∈ hom-completion (|carrier = kernel D C h, mult = op ⊗, one = 1,
diff = completion (|carrier = kernel D C h, mult = op ⊗, one = 1, diff =

differ |) D (differ)|)
(|carrier = kernel D C h, mult = op ⊗, one = 1,
diff = completion (|carrier = kernel D C h, mult = op ⊗, one = 1, diff =

differ |) D (differ)|)

unfolding diff-group-hom-diff-def diff-group-hom-diff-axioms-def comm-group-hom-def
comm-group-hom-axioms-def

group-hom-def group-hom-axioms-def diff-group-axioms-def hom-completion-def
hom-def completion-def completion-fun2-def

Pi-def kernel-def by (auto simp add : expand-fun-eq)
next

fix x

34

from prems and diff-group.diff-nilpot [OF diff-group-hom-diff .diff-group-D [of
D C h]] and group-hom.hom-one [of D D differD]

and diff-group-hom-diff .group-hom-D-D-differ [of D C h]
show completion (|carrier = kernel D C h, mult = op ⊗, one = 1, diff = differ |)

D (differ)
(completion (|carrier = kernel D C h, mult = op ⊗, one = 1, diff = differ |) D

(differ) x) = 1
unfolding completion-def diff-group-hom-diff-def comm-group-hom-def by (auto

simp add : expand-fun-eq)
qed

The following lemma corresponds to Proposition 2.2.10 in Aransay’s thesis;
here it is proved for a generic homomorphism h

lemma (in diff-group-hom-diff) image-diff-group:
diff-group (| carrier = image h (carrier D), mult = mult C , one = one C ,
diff = completion (| carrier = image h (carrier D), mult = mult C , one = one

C , diff = diff C |) C (diff C)|)
(is diff-group (| carrier = ?img-set , mult = mult C , one = one C , diff = ?compl
|) is diff-group ?IMG)
proof (intro diff-groupI , auto)

fix x y
assume x : x ∈ carrier D and y : y ∈ carrier D
from hom-mult [OF x y] and D .m-closed [OF x y] show h x ⊗C h y ∈ ?img-set

unfolding image-def by force
next

from D .one-closed and group-hom.hom-one [of D C h] show 1C ∈ ?img-set
unfolding image-def by force
next

fix x y z
assume x : x ∈ carrier D and y : y ∈ carrier D and z : z ∈ carrier D
from m-assoc and hom-closed and x y z show h x ⊗C h y ⊗C h z = h x ⊗C

(h y ⊗C h z) by simp
next

fix x y
assume x : x ∈ carrier D and y : y ∈ carrier D
from prems and hom-closed [OF x] and hom-closed [OF y] and x y and

comm-monoid .m-comm [of C h x h y]
and diff-group-hom-diff .diff-group-C [of D C h]

show h x ⊗C h y = h y ⊗C h x unfolding diff-group-def comm-group-def [of
C] by auto
next

fix x
assume x : x ∈ carrier D

from Units-def [of D] and D .Units-eq and x obtain y where y : y ∈ carrier D
and y-x : y ⊗D x = 1D by fast

from group-hom.hom-one [of D C h] and hom-mult [OF y x] and y-x and y
show ∃ y∈carrier D . h y ⊗C h x = 1C by auto
next

35

show ?compl∈ hom-completion ?IMG ?IMG
proof (intro hom-completionI homI , auto)

show ?compl ∈ completion-fun2 ?IMG ?IMG unfolding completion-fun2-def
completion-def by (auto simp add : expand-fun-eq)

next
fix x
assume x : x ∈ carrier D
from prems and diff-group-hom-diff .diff-group-D [of D C h]

and hom-completion-closed [OF diff-group.diff-hom [of D] x]
and imageI [of (differD) x carrier D h] and diff-group-hom-diff .diff-hom-h

[of D C h]
show (differC) (h x) ∈ ?img-set unfolding image-def by (simp add : expand-fun-eq)
next

fix x y
assume x : x ∈ carrier D and y : y ∈ carrier D
from hom-mult [OF x y] and D .m-closed [OF x y]
have ?compl (h x ⊗C h y) = (differC) (h (x ⊗ y)) by (unfold completion-def

image-def , auto)
also from diff-group-hom-diff .diff-group-C [of D C h] and hom-mult [OF x y]

and hom-completion-mult [OF diff-group.diff-hom [of C] hom-closed [OF x]
hom-closed [OF y]] and prems

have . . . = (differC) (h x) ⊗C (differC) (h y) by simp
finally show ?compl (h x ⊗C h y) = (differC) (h x) ⊗C (differC) (h y) by

simp
qed

next
from diff-group-hom-diff .diff-group-C [of D C h] and diff-group.diff-nilpot [of

C]
and diff-group.diff-hom [of C] and image-def and diff-group-hom-diff .group-hom-C-C-differ

[of D C h]
and group-hom.hom-one [of C C differC] and prems show

∧
x . ?compl (?compl

x) = 1C
unfolding hom-completion-def completion-fun2-def completion-def by (auto

simp add : expand-fun-eq)
qed

Before proving Lemma 2.2.11, we first must introduce the definition of re-
duction

locale reduction = diff-group D + diff-group C + var f + var g + var h +
assumes f-hom-diff : f ∈ hom-diff D C
and g-hom-diff : g ∈ hom-diff C D
and h-hom-compl : h ∈ hom-completion D D
and fg : f ◦ g = (λx . if x ∈ carrier C then id x else 1C)
and gf-dh-hd : (λx . if x ∈ carrier D then (g ◦ f) x ⊗ (if x ∈ carrier D then

((differ) ◦ h) x ⊗ (h ◦ (differ)) x else 1D) else 1D) =
(λx . if x ∈ carrier D then id x else 1D)
and fh: f ◦ h = (λx . if x ∈ carrier D then 1C else 1C)
and hg : h ◦ g = (λx . if x ∈ carrier C then 1D else 1D)
and hh: h ◦ h = (λx . if x ∈ carrier D then 1D else 1D)

36

Due to the nature of the formula (λx . if x ∈ carrier D then (g ◦ f) x ⊗ (if
x ∈ carrier D then (differ ◦ h) x ⊗ (h ◦ differ) x else 1) else 1) = (λx . if
x ∈ carrier D then id x else 1), we associate first the addition of d ◦ h and
h ◦ d, and then g ◦ f

lemma reductionI :
includes struct D + struct C
assumes src-diff-group: diff-group D
and trg-diff-group: diff-group C
assumes f ∈ hom-diff D C
and g ∈ hom-diff C D
and h ∈ hom-completion D D
and f ◦ g = (λx . if x ∈ carrier C then id x else 1C)
and (λx . if x ∈ carrier D then (g ◦ f) x ⊗ (if x ∈ carrier D then ((differ) ◦ h)

x ⊗ (h ◦ (differ)) x else 1D) else 1D) =
(λx . if x ∈ carrier D then id x else 1D)
and f ◦ h = (λx . if x ∈ carrier D then 1C else 1C)
and h ◦ g = (λx . if x ∈ carrier C then 1D else 1D)
and h ◦ h = (λx . if x ∈ carrier D then 1D else 1D)
shows reduction D C f g h
using prems unfolding reduction-def reduction-axioms-def diff-group-def by

simp

lemma (in reduction) C-diff-group: shows diff-group C using prems unfolding
reduction-def by simp

lemma (in reduction) D-diff-group: shows diff-group D using prems unfolding
reduction-def by simp

lemma (in reduction) D-C-f-diff-group-hom-diff : shows diff-group-hom-diff D C
f using prems and diff-group-hom-diffI [of D C f]

unfolding reduction-def reduction-axioms-def by auto

lemma (in reduction) D-C-f-group-hom: shows group-hom D C f using D-C-f-diff-group-hom-diff

unfolding diff-group-hom-diff-def comm-group-hom-def by simp

lemma (in reduction) C-D-g-diff-group-hom-diff : shows diff-group-hom-diff C D
g using prems and diff-group-hom-diffI [of C D g]

unfolding reduction-def reduction-axioms-def by auto

lemma (in reduction) C-D-g-group-hom: shows group-hom C D g using C-D-g-diff-group-hom-diff

unfolding diff-group-hom-diff-def comm-group-hom-def by simp

3.1 Definition of isomorphic differential groups

Lemma 2.2.11, which corresponds to the first lemma in the BPL proof, has
been already proved in our first approach.

37

It requires introducing first the notion of isomorphic differential groups; the
definition is based on the one of isomorphic monoids presented in Group.thy
for homomorphisms, by extending it to be coherent with the differentials.

constdefs
iso-diff :: (′a, ′c) diff-group-scheme => (′b, ′d) diff-group-scheme => (′a =>

′b) set (infixr ∼=diff 60)
D ∼=diff C == {h. h ∈ hom-diff D C & bij-betw h (carrier D) (carrier C)}

lemma iso-diffI : assumes closed :
∧

x . x ∈ carrier D =⇒ h x ∈ carrier C
and mult :

∧
x y . [[x ∈ carrier D ; y ∈ carrier D]] =⇒ h (x ⊗D y) = h x ⊗C h y

and complect : ∃ g . h = (λx . if x ∈ carrier D then g x else 1C)
and coherent :

∧
x . h ((differD) x) = (differC) (h x)

and inj-on:
∧

x y . [[x ∈ carrier D ; y ∈ carrier D ; h (x) = h (y)]] =⇒ x=y
and image:

∧
y . y∈carrier C =⇒ ∃ x ∈ carrier D . y = h (x)

shows h ∈ D ∼=diff C
using prems
unfolding iso-diff-def unfolding hom-diff-def apply (simp add : expand-fun-eq)
unfolding hom-completion-def apply simp
unfolding completion-fun2-def completion-def apply (simp add : expand-fun-eq)
unfolding hom-def unfolding Pi-def apply simp
unfolding bij-betw-def inj-on-def apply simp
unfolding image-def by auto

definition
iso-inv-diff :: (′a, ′c) diff-group-scheme => (′b, ′d) diff-group-scheme => ((′a

=> ′b) × (′b => ′a)) set (infixr ∼=invdiff 60)
where D ∼=invdiff C == {(f , g). f ∈ (D ∼=diff C) & g ∈ (C ∼=diff D) & (f ◦ g

= completion C C id) & (g ◦ f = completion D D id)}

lemma iso-inv-diffI : assumes f : f ∈ (D ∼=diff C) and g : g ∈ (C ∼=diff D) and
fg-id : (f ◦ g = completion C C id)

and gf-id : (g ◦ f = completion D D id) shows (f , g) ∈ (D ∼=invdiff C)
using f g fg-id gf-id unfolding iso-inv-diff-def by simp

lemma iso-inv-diff-iso-diff : assumes f-f ′: (f , f ′) ∈ (D ∼=invdiff C) shows f ∈ (D
∼=diff C)

using f-f ′ unfolding iso-inv-diff-def by simp

lemma iso-inv-diff-iso-diff2 : assumes f-f ′: (f , f ′) ∈ (D ∼=invdiff C) shows f ′ ∈
(C ∼=diff D)

using f-f ′ unfolding iso-inv-diff-def by simp

lemma iso-inv-diff-id : assumes f-f ′: (f , f ′) ∈ (D ∼=invdiff C) shows f ′ ◦ f =
completion D D id

using f-f ′ unfolding iso-inv-diff-def by simp

38

lemma iso-inv-diff-id2 : assumes f-f ′: (f , f ′) ∈ (D ∼=invdiff C) shows f ◦ f ′ =
completion C C id

using f-f ′ unfolding iso-inv-diff-def by simp

lemma iso-inv-diff-rev : assumes f-f ′: (f , f ′) ∈ (D ∼=invdiff C) shows (f ′, f) ∈
(C ∼=invdiff D)

using f-f ′ unfolding iso-inv-diff-def by simp

lemma iso-diff-hom-diff : assumes h: h ∈ D ∼=diff C shows h ∈ hom-diff D C
using h unfolding iso-diff-def by simp

3.2 Previous facts for Lemma 2.2.11

lemma (in reduction) g-f-hom-diff : shows g ◦ f ∈ hom-diff D D
proof (unfold hom-diff-def hom-completion-def , auto)

from f-hom-diff and g-hom-diff have f : f ∈ completion-fun2 D C and g : g ∈
completion-fun2 C D

by (unfold hom-diff-def hom-completion-def , simp-all)
show g ◦ f ∈ completion-fun2 D D
proof (unfold completion-fun2-def , simp, intro exI [of - g ◦ f], unfold completion-def ,

auto simp add : expand-fun-eq)
fix x assume x : x /∈ carrier D
from C-diff-group D-diff-group g-hom-diff and completion-closed2 [OF f x]

and group-hom.hom-one [of C D g]
show g (f x) = 1 unfolding diff-group-def comm-group-def group-def group-hom-def

group-hom-axioms-def hom-diff-def hom-completion-def
by simp

qed
next

show g ◦ f ∈ hom D D
proof (intro homI)

fix x
assume x : x ∈ carrier D
from hom-diff-closed [OF f-hom-diff x] and hom-diff-closed [OF g-hom-diff , of

f x] show (g ◦ f) x ∈ carrier D by simp
next

fix x y
assume x : x ∈ carrier D and y : y ∈ carrier D
from f-hom-diff g-hom-diff and x y and hom-completion-mult [of f D C x y]

hom-completion-mult [of g C D f x f y]
and hom-diff-closed [of f D C x] hom-diff-closed [of f D C y]

show (g ◦ f) (x ⊗ y) = (g ◦ f) x ⊗ (g ◦ f) y unfolding hom-diff-def by simp
qed

next
from hom-diff-coherent [OF f-hom-diff] and hom-diff-coherent [OF g-hom-diff]

and o-assoc [of g f differ]
and o-assoc [of g differC f] and o-assoc [of differ g f] show g ◦ f ◦ differ =

differ ◦ (g ◦ f) by simp

39

qed

lemma (in reduction) D-D-g-f-diff-group-hom-diff : shows diff-group-hom-diff D
D (g ◦ f) using g-f-hom-diff and D-diff-group

and diff-group-hom-diffI [of D D (g ◦ f)] by simp-all

lemma (in reduction) D-D-g-f-group-hom: shows group-hom D D (g ◦ f) using
D-D-g-f-diff-group-hom-diff

unfolding diff-group-hom-diff-def comm-group-hom-def by simp

The following lemma proves that, in a general reduction, f, g, h, the set
image of g ◦ f with the operations inherited from D is a differential group.

lemma (in reduction) image-g-f-diff-group: shows diff-group (|carrier = image (g
◦ f) (carrier D), mult = mult D , one = one D ,

diff = completion (|carrier = image (g ◦ f) (carrier D), mult = mult D , one =
one D , diff = diff D |) D (diff D) |)
using diff-group-hom-diff .image-diff-group [of D D g ◦ f] and diff-group-hom-diffI

[OF D-diff-group D-diff-group g-f-hom-diff] by simp

3.3 Lemma 2.2.11

The following lemmas correpond to Lemma 2.2.11 in Aransay’s thesis

In the version in the thesis, two differential groups are defined to be iso-
morphic whenever there exists two homomorphisms f and g such that their
composition is the identity in both directions

The Isabelle definition is slightly different, and it requires proving that there
exists one homomorphism, which is, additionally, injective and surjective

This is the reason why the lemma is proved in Isabelle in four different
lemmas; the first two, prove that the isomorphism exists, and then we prove
that they are mutually inverse

We first introduce a locale which only contains some abbreviations, the main
reason is to shorten proofs and statements

We will avoid the use of record update operations

locale lemma-2-2-11 = reduction D C f g h

FIXME:Probably the following definitions would be more suitably stored as
abbreviations or notations

context lemma-2-2-11
begin

definition im-gf where im-gf == image (g ◦ f) (carrier D)

definition diff-group-im-gf where diff-group-im-gf == (|carrier = image (g ◦ f)
(carrier D), mult = mult D , one = one D ,

40

diff =completion (|carrier = image (g ◦ f) (carrier D), mult = mult D , one =
one D , diff = diff D |) D (diff D)|)

definition diff-im-gf where diff-im-gf == completion diff-group-im-gf D (diff D)

end

lemma (in lemma-2-2-11) lemma-2-2-11-first-part : shows g ∈ (C ∼=diff diff-group-im-gf)
proof (intro iso-diffI)

fix x
assume x : x ∈ carrier C
show g x ∈ carrier diff-group-im-gf
proof (unfold diff-group-im-gf-def image-def , simp, intro bexI [of - g x])

from fg and x show g x = g (f (g x)) by (auto simp add : expand-fun-eq)
next

from hom-diff-closed [OF g-hom-diff x]show g x ∈ carrier D by simp
qed

next
fix x y
assume x : x ∈ carrier C and y : y ∈ carrier C
from hom-diff-mult [OF g-hom-diff x y] and diff-group-im-gf-def show g (x ⊗C

y) = g x ⊗diff-group-im-gf g y by simp
next
from g-hom-diff and f-in-completion-fun2-f-completion [of g C D] and completion-def

[of C D g] and diff-group-im-gf-def
show ∃ ga. g = (λx . if x ∈ carrier C then ga x else 1diff-group-im-gf)

unfolding hom-diff-def hom-completion-def completion-fun2-def expand-fun-eq
by (intro exI [of - g]) auto
next

fix x
show g ((differC) x) = (differdiff-group-im-gf) (g x)
proof (cases x ∈ carrier C)

case True then have g x ∈ (g ◦ f) ‘ carrier D
proof (unfold image-def , simp, intro bexI [of - g x])

from fg and True show g x = g (f (g x)) by (simp add : expand-fun-eq)
next

from hom-diff-closed [OF g-hom-diff True] show g x ∈ carrier D by simp
qed

then have (differdiff-group-im-gf) (g x) = (differ) (g x) unfolding completion-def
diff-group-im-gf-def im-gf-def by auto

with g-hom-diff and hom-diff-coherent [of g C D] show g ((differC) x)
=(differdiff-group-im-gf) (g x)

unfolding diff-group-im-gf-def im-gf-def by (simp add : expand-fun-eq)
next

case False
from C .diff-hom and hom-completion-def [of C C] and completion-closed2

[OF - False, of differC C] have (differC) x = 1C by simp
with group-hom.hom-one [of C D g] and C-D-g-group-hom
have g ((differC) x) = 1D by simp

41

moreover
from D-C-f-group-hom C-D-g-group-hom D .diff-hom and group-hom.hom-one

[of D C f] group-hom.hom-one [of C D g]
group-hom.hom-one [of D D differ] and D .one-closed and False and diff-group-im-gf-def

and C-diff-group D-diff-group g-hom-diff f-hom-diff
have comp-one: (differdiff-group-im-gf) (g x) = 1D
unfolding group-hom-def group-hom-axioms-def hom-diff-def hom-completion-def

completion-fun2-def completion-def
diff-group-def comm-group-def by auto

ultimately show g ((differC) x) = (differdiff-group-im-gf) (g x) by simp
qed

next
fix x y
assume x : x ∈ carrier C and y : y ∈ carrier C and g-eq : g x = g y
from g-eq have fg-eq : f (g x) = f (g y) by simp
with fg and x and y show x = y by (simp add : expand-fun-eq)

next
fix y
assume y : y ∈ carrier diff-group-im-gf then have y ∈ (g ◦ f)‘ (carrier D) by

(unfold diff-group-im-gf-def , simp)
then obtain x where g (f x) = y and x : x ∈ carrier D by auto
with bexI [of λx . (y = g x) f x carrier C] and hom-diff-closed [OF f-hom-diff

x] show ∃ x∈carrier C . y = g x by simp
qed

The inverse of g is the restriction of f to the image set of g ◦ f

lemma (in lemma-2-2-11) lemma-2-2-11-second-part : shows completion diff-group-im-gf
C f ∈ (diff-group-im-gf ∼=diff C)
(is ?compl-f ∈ (?IM ∼=diff C))
proof (intro iso-diffI)

fix x
assume x : x ∈ carrier ?IM then have x-im: x ∈ (g ◦ f)‘ (carrier D) by (unfold

diff-group-im-gf-def , simp)
then obtain y where gf-y : g (f y) = x and y : y ∈ carrier D by auto
from x-im have ?compl-f x = f x by (unfold completion-def diff-group-im-gf-def ,

simp)
with gf-y and hom-diff-closed [OF f-hom-diff y] hom-diff-closed [OF g-hom-diff ,

of f y] hom-diff-closed [OF f-hom-diff , of g (f y)]
show ?compl-f x ∈ carrier C by simp

next
fix x y
assume x : x ∈ carrier ?IM and y : y ∈ carrier ?IM then obtain x ′ y ′ where

gf-x ′: g (f x ′) = x and gf-y ′: g (f y ′) = y
and x ′: x ′ ∈ carrier D and y ′: y ′ ∈ carrier D unfolding diff-group-im-gf-def

by auto
with sym [OF hom-diff-mult [OF g-hom-diff , of f x ′ f y ′]] and hom-diff-closed

[OF f-hom-diff x ′] hom-diff-closed [OF f-hom-diff y ′]
and x y and sym [OF hom-diff-mult [OF f-hom-diff x ′ y ′]]
have ?compl-f (x ⊗?IM y) = f (x ⊗D y) unfolding diff-group-im-gf-def completion-def

42

by auto
also from gf-x ′ gf-y ′ have . . . = f (g (f x ′) ⊗D g (f y ′)) by simp
also from hom-diff-closed [OF f-hom-diff x ′] hom-diff-closed [OF f-hom-diff y ′]

hom-diff-closed [OF g-hom-diff , of f x ′]
hom-diff-closed [OF g-hom-diff , of f y ′] and hom-diff-mult [OF f-hom-diff]

have . . . = f (g (f x ′)) ⊗C f (g (f y ′)) by simp
also from gf-x ′ gf-y ′ and x ′ y ′ have . . . = ?compl-f x ⊗C ?compl-f y unfolding

completion-def diff-group-im-gf-def by auto
finally show ?compl-f (x ⊗?IM y) = ?compl-f x ⊗C ?compl-f y by simp

next
show ∃ g . ?compl-f = (λx . if x ∈ carrier ?IM then g x else 1C) unfolding

completion-def by (rule exI [of - f]) simp
next

fix x
show ?compl-f ((differ?IM) x) = (differC) (?compl-f x)
proof (cases x ∈ carrier ?IM)

case True then obtain y where y : y ∈ carrier D and gf-y : x = g (f y)
unfolding diff-group-im-gf-def by auto

then have ?compl-f ((differ?IM) x) = ?compl-f ((differ) (g (f y))) unfolding
completion-def diff-group-im-gf-def by auto

also have . . . = f ((differ) (g (f y)))
proof −
from hom-diff-coherent [OF g-hom-diff] and hom-diff-coherent [OF f-hom-diff]

have ((differ) (g (f y))) = (g (f ((differ) y)))
by (simp add : expand-fun-eq)
with hom-completion-closed [OF D .diff-hom y] show ?thesis unfolding

image-def diff-group-im-gf-def completion-def by auto
qed
also from hom-diff-coherent [OF f-hom-diff] have . . . = (differC) (f (g (f y)))

by (simp add : expand-fun-eq)
also from y and gf-y have . . . = (differC) (?compl-f x) unfolding completion-def

image-def diff-group-im-gf-def by auto
finally show ?thesis by simp

next
case False then have diff-one: ((differ?IM) x) = 1 unfolding diff-group-im-gf-def

completion-def by auto
from D-C-f-group-hom and C-D-g-group-hom and group-hom.hom-one [of D

C f] and group-hom.hom-one [of C D g] and bexI [of - 1]
and diff-group-im-gf-def and im-gf-def have one-image: 1 ∈ (g ◦ f)‘ carrier

D unfolding image-def by simp
with diff-one have ?compl-f ((differ?IM) x) = f 1 unfolding completion-def

diff-group-im-gf-def by simp
also from D-C-f-group-hom and group-hom.hom-one [of D C f] have . . . =

1C by simp
finally have l-h-s: ?compl-f ((differ?IM) x) = 1C by simp
from False have diff-one: (differC) (?compl-f x) = (differC) 1C unfolding

completion-def by simp
also from C .diff-hom and group-hom.hom-one [of C C (differC)] and C-diff-group

have . . . = 1C

43

unfolding group-hom-def group-hom-axioms-def diff-group-def comm-group-def
hom-completion-def by simp

with diff-one have r-h-s: (differC) (?compl-f x) = 1C by simp
from l-h-s and r-h-s show ?thesis by simp

qed
next

fix x y
assume x : x ∈ carrier ?IM and y : y ∈ carrier ?IM then obtain x ′ y ′ where

gf-x ′: g (f x ′) = x and gf-y ′: g (f y ′) = y
and x ′: x ′ ∈ carrier D and y ′: y ′ ∈ carrier D unfolding diff-group-im-gf-def

by auto
assume eq : ?compl-f x = ?compl-f y with x y have f x = f y unfolding

completion-def by simp
with gf-x ′ gf-y ′ have f (g (f x ′)) = f (g (f y ′)) by simp
then have g (f (g (f x ′))) = g (f (g (f y ′))) by simp
with fg and hom-diff-closed [OF f-hom-diff x ′] hom-diff-closed [OF f-hom-diff

y ′] and gf-x ′ gf-y ′ show x = y
by (auto simp add : expand-fun-eq)

next
fix y
assume y : y ∈ carrier C
from fg have fg-idemp: (f ◦ g) ◦ (f ◦ g) = (f ◦ g) by (simp add : expand-fun-eq)
with bexI [of λx . (y = f (g (f x))) g y carrier D] and hom-diff-closed [OF

g-hom-diff y] and fg and y
show ∃ x∈carrier ?IM . y = ?compl-f x unfolding completion-def diff-group-im-gf-def

image-def by (auto simp add : expand-fun-eq)
qed

We now prove that g and the restriction of f are inverse of each other.

lemma (in lemma-2-2-11) lemma-2-2-11-third-part : shows completion diff-group-im-gf
C f ◦ g = (λx . if x ∈ carrier C then id x else 1C)
(is ?compl-f ◦ g = ?id-C)
proof (unfold expand-fun-eq , auto)

fix x
assume x : x ∈ carrier C with diff-group-im-gf-def and image-def [of (g ◦ f)

carrier D]
and bexI [of λy . (g x = (g ◦ f) y) g x carrier D] and fg and hom-diff-closed

[OF g-hom-diff x]
show ?compl-f (g x) = x unfolding completion-def by (simp add : expand-fun-eq)

next
fix x
assume x : x /∈ carrier C
from diff-group-im-gf-def and g-hom-diff and completion-closed2 [OF - x , of g

D] and D-C-f-group-hom and group-hom.hom-one [of D C f]
show ?compl-f (g x) = 1C unfolding hom-diff-def hom-completion-def completion-def

by simp
qed

lemma (in lemma-2-2-11) lemma-2-2-11-fourth-part :

44

shows g ◦ completion diff-group-im-gf C f = (λx . if x ∈ carrier diff-group-im-gf
then id x else 1diff-group-im-gf)
(is g ◦ ?compl-f = ?id-IM)
proof (unfold diff-group-im-gf-def completion-def expand-fun-eq , auto)

fix x
assume x : x ∈ carrier D
from fg and hom-diff-closed [OF f-hom-diff x] show g (f (g (f x))) = g (f x)

by (simp add : expand-fun-eq)
next

from C-D-g-group-hom and group-hom.hom-one [of C D g] show g 1C = 1D
by simp
qed

The following is just the recollection of the four parts in which we have
divided the proof of Lemma 2.2.11

The following statement should be compared to Lemma 2.2.11 in Aransay
memoir
lemma (in lemma-2-2-11) lemma-2-2-11 : shows (g , completion diff-group-im-gf
C f) ∈ (C ∼=invdiff diff-group-im-gf)
using lemma-2-2-11-first-part and lemma-2-2-11-second-part and lemma-2-2-11-third-part

and lemma-2-2-11-fourth-part
unfolding iso-inv-diff-def completion-def by simp

end

4 Propositions 2.2.12, 2.2.13 and Lemma 2.2.14 in
Aransay’s memoir

theory lemma-2-2-14
imports
lemma-2-2-11
begin

4.1 Previous definitions for Lemma 2.2.14

In the following we introduce some locale specifications and definitions that
will ease our proofs

For instance, we introduce the locale ring-endomorphisms which will allow
us to apply equational reasoning with endomorphisms

In the ring-endomorphisms specification we introduce as an assumption the
fact ring-R, stating that completion endomorphisms are a ring; we have
proved this fact in the library HomGroupCompletion.thy and here it should
be introduced by means of an interpretation, but some technical limitations
in the interpretation mechanism led us to introduce this fact as an assump-
tion

45

locale ring-endomorphisms = diff-group D + ring R +
assumes ring-R: R = (| carrier = hom-completion D D , mult = op o,
one = (λx . if x ∈ carrier D then id x else 1),
zero = (λx . if x ∈ carrier D then 1 else 1),
add = λf . λg . (λx . if x ∈ carrier D then f x ⊗ g x else 1)|)

locale lemma-2-2-14 = ring-endomorphisms D R + var h +
assumes h-hom: h ∈ hom-completion D D
and h-nil : h ⊗R h = 0R
and hdh-h: h ⊗R differ ⊗R h = h

context lemma-2-2-14
begin

definition p where p == (differ) ⊗R h ⊕R h ⊗R (differ)

definition ker-p where ker-p == kernel D D p

definition diff-group-ker-p where diff-group-ker-p == (| carrier = kernel D D p,
mult = mult D , one = one D ,

diff = completion (|carrier = kernel D D p, mult = mult D , one = one D , diff
= diff D |) D (diff D)|)
definition inc-ker-p where inc-ker-p == (λx . if x ∈ (kernel D D p) then x else
1D)

end

lemma (in ring-endomorphisms) D-diff-group: shows diff-group D using prems
unfolding ring-endomorphisms-def by simp

lemma (in ring-endomorphisms) diff-in-R [simp]: shows differ ∈ carrier R using
D .diff-hom and ring-R by simp

lemma (in lemma-2-2-14) h-in-R [simp]: shows h ∈ carrier R using h-hom and
ring-R by simp

lemma (in lemma-2-2-14) p-in-R [simp]: shows p ∈ carrier R using p-def by
simp

lemma (in ring-endomorphisms) diff-nilpot [simp]: shows differ ⊗R differ = 0R
using ring-R and D .diff-nilpot by simp

4.2 Proposition 2.2.12

The following two lemmas correspond to Proposition 2.2.12 in Aransay’s
memoir

lemma (in lemma-2-2-14) p-in-hom-diff : shows p ∈ hom-diff D D
proof (unfold hom-diff-def , simp, intro conjI)

from ring-R and p-in-R show p ∈ hom-completion D D by simp

46

next
show p ◦ differ = differ ◦ p
proof −

from ring-R have p ◦ differ = p ⊗R differ by simp
also from p-def have . . . = ((differ) ⊗R h ⊕R h ⊗R (differ)) ⊗R differ by

simp
also from h-in-R and diff-in-R have . . . = ((differ) ⊗R h) ⊗R (differ) ⊕R

(h ⊗R (differ)) ⊗R differ by algebra
also from h-in-R and diff-in-R have . . . = (differ) ⊗R (h ⊗R (differ)) ⊕R

(h ⊗R (differ)) ⊗R differ by algebra
also from h-in-R and diff-in-R have . . . = (differ) ⊗R (h ⊗R (differ)) ⊕R h

⊗R (differ ⊗R differ) by algebra
also from h-in-R and diff-in-R and diff-nilpot have . . . = (differ) ⊗R (h ⊗R

(differ)) ⊕R 0R by algebra
also have . . . = (differ) ⊗R (h ⊗R (differ)) ⊕R (differ ⊗R differ ⊗R h) by

simp
also from h-in-R and diff-in-R have . . . = (differ) ⊗R (h ⊗R (differ)) ⊕R

differ ⊗R (differ ⊗R h) by algebra
also from h-in-R and diff-in-R have . . . = differ ⊗R (h ⊗R differ ⊕R differ

⊗R h) by algebra
also from h-in-R and diff-in-R have . . . = differ ⊗R (differ ⊗R h ⊕R h ⊗R

differ) by algebra
also from p-def and ring-R have . . . = differ ◦ p by simp
finally show ?thesis by simp

qed
qed

lemma (in lemma-2-2-14) ker-p-diff-group: diff-group diff-group-ker-p
using diff-group-hom-diffI [OF D-diff-group D-diff-group p-in-hom-diff] and

diff-group-ker-p-def
using diff-group-hom-diff .kernel-diff-group by simp

4.3 Proposition 2.2.13

The following lemma corresponds to Proposition 2.2.13 in Aransay’s Ph.D.

lemma (in ring-endomorphisms) image-subset : assumes p-in-R: p ∈ carrier R
and p-idemp: p ⊗R p = p

shows image (1R 	R p) (carrier D) ⊆ kernel D D p
proof (unfold image-def kernel-def , auto)

fix x
assume x-in-D : x ∈ carrier D
from minus-closed [OF one-closed p-in-R] and ring-R have one-minus-p: (1R
	R p) ∈ hom-completion D D by simp

from hom-completion-closed [OF one-minus-p x-in-D] show (1R 	R p) x ∈
carrier D by simp
next

fix x
assume x ∈ carrier D

47

show p ((1R 	R p) x) = 1
proof −

from p-in-R have p ⊗R (1R 	R p) = p ⊗R 1R 	R p ⊗R p by algebra
also from p-in-R and p-idemp have . . . = p 	R p by simp
also from p-in-R have . . . = 0R by algebra
finally have p ⊗R (1R 	R p) = 0R by simp
then have (p ⊗R (1R 	R p))(x) = 0R (x) by (simp only : expand-fun-eq)
with ring-R show ?thesis by simp

qed
qed

lemma (in group-hom) ker-m-closed : assumes x-in-ker : x ∈ kernel G H h and
y-in-ker : y ∈ kernel G H h

shows x ⊗ y ∈ kernel G H h
using x-in-ker and y-in-ker unfolding kernel-def by auto

4.4 Lemma 2.2.14

The following lemma, proved in a generic ring, will help us to prove that p
= d ⊗R h ⊕R h ⊗R d is a projector

lemma (in ring) idemp-prod : assumes a: a ∈ carrier R and b: b ∈ carrier R
and a-idemp: a ⊗ a = a and b-idemp: b ⊗ b = b

and a-b: a ⊗ b = 0 and b-a: b ⊗ a = 0 shows (a ⊕ b) ⊗ (a ⊕ b) = (a ⊕ b)
using a b a-idemp b-idemp a-b b-a by algebra

The following lemma corresponds to the first part of Lemma 2.2.14 as stated
in Aransay’s memoir

lemma (in lemma-2-2-14) p-projector : shows p ⊗R p = p
proof −
from p-def have p ⊗R p = (differ ⊗R h ⊕R h ⊗R differ) ⊗R (differ ⊗R h ⊕R

h ⊗R differ)
(is p ⊗R p = (?d-h ⊕R ?h-d) ⊗R (?d-h ⊕R ?h-d)) by simp

also have . . . = (?d-h ⊕R ?h-d)
proof (intro ring .idemp-prod)

from ring-endomorphisms-def [of D R] and prems show ring R by (unfold
lemma-2-2-14-def , simp)

show?d-h ∈ carrier R by simp
show ?h-d ∈ carrier R by simp
from R.m-assoc [of differ h differ ⊗R h] and R.m-assoc [of h differ h] and

diff-in-R h-in-R hdh-h
show ?d-h ⊗R ?d-h = ?d-h by simp
from R.m-assoc [of h ⊗R differ h differ] and diff-in-R and h-in-R and hdh-h

show ?h-d ⊗R ?h-d = ?h-d by simp
from h-nil and R.m-assoc [of differ h h ⊗R differ] and sym [OF R.m-assoc

[of h h differ]] show ?d-h ⊗R ?h-d = 0R by simp
from h-nil and R.m-assoc [of h differ differ ⊗R h] and sym [OF R.m-assoc

[of differ differ h]] show ?h-d ⊗R ?d-h = 0R by simp

48

qed
also from p-def have . . . = p by simp
finally show ?thesis by simp

qed

lemma (in abelian-group) minus-equality :
[| x ∈ carrier G ; y ∈ carrier G ; y ⊕ x = 0 |] ==> 	 x = y
using group.inv-equality [OF a-group, of y x] unfolding a-inv-def by simp

lemma (in abelian-monoid) minus-unique:
[| x ∈ carrier G ; y ∈ carrier G ; y ′ ∈ carrier G ; y ⊕ x = 0; x ⊕ y ′ = 0 |] ==>

y = y ′

using monoid .inv-unique [OF a-monoid , of y x] by simp

When proving that R is a ring, you have to give an element such that it
satisfies the condition of the additive inverse; nevertheless, when you really
want to know the explicit expression of this inverse, there is no direct way to
recover it. This makes a difference with the rest of constants and operations
in a ring, such as the addition, the product, or the units.

This is the reason why we had to introduce the following lemma, giving us
the expression of the additive inverse of any element a in R
lemma (in ring-endomorphisms) minus-interpret : assumes a: a ∈ carrier R

shows (R a) = (λx . if x ∈ carrier D then invD (a x) else 1D)
proof (rule abelian-group.minus-equality)

from prems show abelian-group R by intro-locales
next

show a ∈ carrier R by assumption
next

from ring-R and a and comm-group.hom-completion-inv-is-hom-completion [of
D a] and D-diff-group

show inv-in-R: (λx . if x ∈ carrier D then inv a x else 1) ∈ carrier R unfolding
diff-group-def comm-group-def by simp
next

from ring-R and a and hom-completion-closed [of a D D] show (λx . if x ∈
carrier D then inv a x else 1) ⊕R a = 0R

by (auto simp add : expand-fun-eq)
qed

The following proof is a nice example of how we can take advantage of
reasoning with endomorphisms as elements of a ring, making use of the
automatic tactics for this structure (by algebra, . . .)
lemma (in lemma-2-2-14) one-minus-p-hom-diff : shows 1R 	R p ∈ hom-diff D
D
proof (unfold hom-diff-def , simp, intro conjI)

from R.minus-closed [OF R.one-closed p-in-R] and ring-R show 1R 	R p ∈
hom-completion D D by simp

49

next
show 1R 	R p ◦ differ = differ ◦ 1R 	R p
proof −

from ring-R have 1R 	R p ◦ differ = (1R 	R p) ⊗R differ by simp
also from diff-in-R and p-in-R have . . . = (differ) 	R (p ⊗R differ) by

algebra
also from ring-R and hom-diff-coherent [OF p-in-hom-diff] have . . . = differ

	R (differ ⊗R p) by simp
also from sym [OF R.r-one [of differ]] have . . . = (differ ⊗R 1R) 	R (differ

⊗R p) by simp
also from diff-in-R and p-in-R have . . . = differ ⊗R (1R 	R p) by algebra
also from ring-R have . . . = differ ◦ (1R 	R p) by simp
finally show ?thesis by simp

qed
qed

The following lemma allows us to change the codomain of a homomorphism,
whenever its image set is a subset of the new codomain

lemma (in diff-group-hom-diff) h-image-hom-diff : assumes image-subset : image
h (carrier D) ⊆ C ′

shows h ∈ hom-diff D (| carrier = C ′, mult = mult C , one = one C ,
diff = completion (|carrier = C ′, mult = mult C , one = one C , diff = diff C |)

C (diff C)|)
proof −

from diff-group-hom-diff .hom-diff-h [of D C h] and prems have h-hom-diff : h
∈ hom-diff D C by simp
with image-subset and group-hom.hom-one [of C C differC] and diff-group-hom-diff .group-hom-C-C-differ

[of D C h] and prems
show ?thesis unfolding hom-diff-def hom-completion-def hom-def completion-fun2-def

completion-def image-def Pi-def
unfolding expand-fun-eq by auto+

qed

We denote as inclusion, inc, a homomorphism from a subgroup into a group
such that it maps every element to the same element

lemma inc-ker-hom-diff : includes diff-group D
assumes h-hom-diff : h ∈ hom-diff D D
shows (λx . if x ∈ kernel D D h then x else 1D) ∈
hom-diff (|carrier = kernel D D h, mult = mult D , one = one D ,
diff = completion (|carrier = kernel D D h, mult = mult D , one = one D , diff

= diff D |) D (diff D)|) D
(is ?inc-KER ∈ hom-diff ?KER -)

proof (unfold hom-diff-def hom-completion-def , auto)
show ?inc-KER ∈ completion-fun2 ?KER D unfolding completion-fun2-def by

(auto simp add : expand-fun-eq)
next

show ?inc-KER ∈ hom ?KER D
proof (rule homI , auto)

fix x

50

assume x ∈ kernel D D h then show x ∈ carrier D unfolding kernel-def by
simp

next
fix x y
assume x-ker : x ∈ kernel D D h and y-ker : y ∈ kernel D D h and x-times-y :

x ⊗ y /∈ kernel D D h
from group-hom.ker-m-closed [of D D h x y] and prems show 1 = x ⊗ y
unfolding group-hom-def group-hom-axioms-def hom-diff-def hom-completion-def

diff-group-def comm-group-def by simp
qed

next
show ?inc-KER ◦ completion (|carrier = kernel D D h, mult = mult D , one =

one D , diff = diff D |) D (differ) = differ ◦ ?inc-KER
(is ?inc-KER ◦ ?compl-diff = differ ◦ ?inc-KER)

proof (rule ext)
fix x
show (?inc-KER ◦ ?compl-diff) x = (differ ◦ ?inc-KER) x
proof (cases x ∈ kernel D D h)

case True
from True and diff-group.diff-hom [of D] and hom-completion-closed [of

differ D D x] and
hom-diff-def [of D D] and h-hom-diff and expand-fun-eq [of h ◦ differ differ

◦ h] and group-hom.hom-one [of D D differ]
and prems

show (?inc-KER ◦ ?compl-diff) x = (differ ◦ ?inc-KER) x
unfolding diff-group-def comm-group-def group-hom-def
group-hom-axioms-def kernel-def subset-eq hom-diff-def hom-completion-def

by simp
next

case False
from False and diff-group.diff-hom [of D] and group-hom.hom-one [of D D

differ] and prems
show (?inc-KER ◦ ?compl-diff) x = (differ ◦ ?inc-KER) x
unfolding diff-group-def comm-group-def group-hom-def group-hom-axioms-def

hom-completion-def by auto
qed

qed
qed

The following lemma corresponds to the second part of Lemma 2.2.14 in
Aransay’s memoir; we prove that a given triple of homomorphisms is a
reduction

lemma (in lemma-2-2-14) lemma-2-2-14 : shows reduction D diff-group-ker-p (1R
	R p) inc-ker-p h

(is reduction D ?KER (1R 	R p) ?inc-KER h)
proof (intro reductionI)

from D-diff-group show diff-group D by simp
next
from D-diff-group diff-group-hom-diff .kernel-diff-group [of D D p] and diff-group-ker-p-def

51

and diff-group-hom-diffI [OF - - p-in-hom-diff]
show diff-group ?KER by simp

next
from diff-group-hom-diff .h-image-hom-diff [of D D 1R 	R p kernel D D p] and

diff-group-hom-diffI [OF - - one-minus-p-hom-diff]
and image-subset [OF p-in-R p-projector] and D-diff-group and diff-group-ker-p-def

show 1R 	R p ∈ hom-diff D ?KER by simp
next
from D-diff-group and inc-ker-hom-diff [OF - p-in-hom-diff] and diff-group-ker-p-def

and inc-ker-p-def
show ?inc-KER ∈ hom-diff ?KER D by simp

next
from h-hom show h ∈ hom-completion D D by simp

next

show 1R 	R p ◦ ?inc-KER = (λx . if x ∈ carrier ?KER then id x else 1?KER)
(is 1R 	R p ◦ ?inc-KER = ?id-KER)

proof −

from p-in-R have (1R 	R p) = (1R ⊕R (R p)) by algebra
also from ring-R and minus-interpret [OF p-in-R]
have . . . = (λx . if x ∈ carrier D then (λx . if x ∈ carrier D then id x else 1D)

x
⊗ (λx . if x ∈ carrier D then inv p x else 1D) x else 1D) by simp

finally have one-minus-p: (1R 	R p) = (λx . if x ∈ carrier D then (λx . if x
∈ carrier D then id x else 1D) x

⊗ (λx . if x ∈ carrier D then inv p x else 1D) x else 1D) by simp
then show 1R 	R p ◦ ?inc-KER = ?id-KER
proof −

from group-hom.hom-one [of D D p] and p-in-hom-diff and D-diff-group
have p 1 = 1

unfolding group-hom-def group-hom-axioms-def hom-diff-def diff-group-def
comm-group-def hom-completion-def by simp

then have inv-p-one: inv p 1 = 1 by simp
with one-minus-p and diff-group-ker-p-def and inc-ker-p-def show ?thesis

by (auto simp add : kernel-def expand-fun-eq)
qed

qed
next

show (λx . if x ∈ carrier D then
(?inc-KER ◦ 1R 	R p) x ⊗ (if x ∈ carrier D then (differ ◦ h) x ⊗ (h ◦ differ)

x else 1) else 1) =
(λx . if x ∈ carrier D then id x else 1)

proof −
from ring-R
have (λx . if x ∈ carrier D then (?inc-KER ◦ 1R 	R p) x ⊗ (if x ∈ carrier D

52

then (differ ◦ h) x ⊗ (h ◦ differ) x else 1) else 1)
= (?inc-KER ⊗R (1R 	R p) ⊕R (differ ⊗R h ⊕R h ⊗R differ)) by (simp

add : expand-fun-eq)
also have . . . = (1R 	R p) ⊕R (differ ⊗R h ⊕R h ⊗R differ)
proof −

from ring-R have ?inc-KER ⊗R (1R 	R p) = ?inc-KER ◦ 1R 	R p by
simp

also have ?inc-KER ◦ 1R 	R p = 1R 	R p
proof (rule ext)

fix x
show (?inc-KER ◦ 1R 	R p) x = (1R 	R p) x
proof (cases x ∈ carrier D)

case True with image-subset [OF p-in-R p-projector] have (1R 	R p) x
∈ kernel D D p by (auto simp add : imageI)

with inc-ker-p-def show ?thesis by simp
next

case False from inc-ker-p-def and minus-closed [OF one-closed p-in-R]
and ring-R

and completion-closed2 [OF - False, of (1R 	R p) D] show ?thesis
unfolding hom-completion-def by simp

qed
qed
finally have ?inc-KER ⊗R (1R 	R p) = 1R 	R p by simp
then show (?inc-KER ⊗R (1R 	R p) ⊕R (differ ⊗R h ⊕R h ⊗R differ))

= (1R 	R p) ⊕R (differ ⊗R h ⊕R h ⊗R differ) by simp
qed
also from p-def have . . . = (1R 	R p) ⊕R p by simp
also from p-in-R have . . . = 1R by algebra
also from ring-R have . . . = (λx . if x ∈ carrier D then id x else 1) by simp
finally show ?thesis by simp

qed
next

from prems show 1R 	R p ◦ h = (λx . if x ∈ carrier D then 1?KER else 1?KER)
(is 1R 	R p ◦ h = ?zero-R)

proof −

from ring-R have 1R 	R p ◦ h = (1R 	R p) ⊗R h by simp
also from h-in-R and p-in-R have . . . = h 	R (p ⊗R h) by algebra
also from p-def have . . . = h 	R ((differ ⊗R h ⊕R h ⊗R differ) ⊗R h) by

simp
also from diff-in-R and h-in-R and hdh-h and h-nil have . . . = h 	R h by

algebra
also from h-in-R have . . . = 0R by algebra
also from ring-R and diff-group-ker-p-def have . . . = ?zero-R by simp
finally show 1R 	R p ◦ h = ?zero-R by simp

qed
next

show h ◦ ?inc-KER = (λx . if x ∈ carrier diff-group-ker-p then 1 else 1)

53

(is h ◦ ?inc-KER = ?zero-KER)

proof (unfold inc-ker-p-def diff-group-ker-p-def , auto simp add : expand-fun-eq)

fix x
assume x-in-ker : x ∈ kernel D D p
show h x = 1
proof −

from hdh-h and ring-R and expand-fun-eq [of h ◦ differ ◦ h h] have h x =
h ((differ) (h x)) by auto

also from sym [OF D .r-one [of h ((differ) (h x))]] and hom-completion-closed
[OF h-hom, of x]

and x-in-ker and hom-completion-closed [of differ D D h x] and D .diff-hom

and hom-completion-closed [OF h-hom, of (differ) (h x)] have . . . = h
((differ) (h x)) ⊗D 1 by (unfold kernel-def , simp)

also from h-nil and ring-R have . . . = h ((differ) (h x)) ⊗D h (h ((differ)
x)) by (simp add : expand-fun-eq)

also from sym [OF hom-completion-mult [OF h-hom, of (differ) (h x) h
((differ) x)]] and D .diff-hom

and hom-completion-closed [OF h-hom, of (differ) x] hom-completion-closed
[OF D .diff-hom, of x]

and hom-completion-closed [OF D .diff-hom, of h x] hom-completion-closed
[OF h-hom, of x] and x-in-ker

have . . . = h ((differ) (h x) ⊗D h ((differ) x)) unfolding kernel-def by simp
also from p-def and ring-R and x-in-ker have . . . = h (p (x)) unfolding

expand-fun-eq kernel-def by simp
also from x-in-ker have . . . = h 1D unfolding kernel-def by simp
also from hom-completion-one [OF - - h-hom] and D-diff-group have . . . =

1D unfolding diff-group-def comm-group-def group-def by simp
finally show h x = 1 by simp

qed
next

fix x assume x /∈ kernel D D p
from hom-completion-one [OF - - h-hom] and D-diff-group show h 1D = 1D

unfolding diff-group-def comm-group-def group-def by simp
qed

next

from h-nil and ring-R show h ◦ h = (λx . if x ∈ carrier D then 1 else 1) by
simp
qed

end

5 Infinite Sets and Related Concepts

theory Infinite-Set

54

imports ATP-Linkup
begin

5.1 Infinite Sets

Some elementary facts about infinite sets, mostly by Stefan Merz. Beware!
Because ”infinite” merely abbreviates a negation, these lemmas may not
work well with blast.

abbreviation
infinite :: ′a set ⇒ bool where
infinite S == ¬ finite S

Infinite sets are non-empty, and if we remove some elements from an infinite
set, the result is still infinite.

lemma infinite-imp-nonempty : infinite S ==> S 6= {}
by auto

lemma infinite-remove:
infinite S =⇒ infinite (S − {a})
by simp

lemma Diff-infinite-finite:
assumes T : finite T and S : infinite S
shows infinite (S − T)
using T

proof induct
from S
show infinite (S − {}) by auto

next
fix T x
assume ih: infinite (S − T)
have S − (insert x T) = (S − T) − {x}

by (rule Diff-insert)
with ih
show infinite (S − (insert x T))

by (simp add : infinite-remove)
qed

lemma Un-infinite: infinite S =⇒ infinite (S ∪ T)
by simp

lemma infinite-super :
assumes T : S ⊆ T and S : infinite S
shows infinite T

proof
assume finite T
with T have finite S by (simp add : finite-subset)
with S show False by simp

55

qed

As a concrete example, we prove that the set of natural numbers is infinite.

lemma finite-nat-bounded :
assumes S : finite (S ::nat set)
shows ∃ k . S ⊆ {..<k} (is ∃ k . ?bounded S k)

using S
proof induct

have ?bounded {} 0 by simp
then show ∃ k . ?bounded {} k ..

next
fix S x
assume ∃ k . ?bounded S k
then obtain k where k : ?bounded S k ..
show ∃ k . ?bounded (insert x S) k
proof (cases x < k)

case True
with k show ?thesis by auto

next
case False
with k have ?bounded S (Suc x) by auto
then show ?thesis by auto

qed
qed

lemma finite-nat-iff-bounded :
finite (S ::nat set) = (∃ k . S ⊆ {..<k}) (is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs by (rule finite-nat-bounded)

next
assume ?rhs
then obtain k where S ⊆ {..<k} ..
then show finite S

by (rule finite-subset) simp
qed

lemma finite-nat-iff-bounded-le:
finite (S ::nat set) = (∃ k . S ⊆ {..k}) (is ?lhs = ?rhs)

proof
assume ?lhs
then obtain k where S ⊆ {..<k}

by (blast dest : finite-nat-bounded)
then have S ⊆ {..k} by auto
then show ?rhs ..

next
assume ?rhs
then obtain k where S ⊆ {..k} ..
then show finite S

56

by (rule finite-subset) simp
qed

lemma infinite-nat-iff-unbounded :
infinite (S ::nat set) = (∀m. ∃n. m<n ∧ n∈S)
(is ?lhs = ?rhs)

proof
assume ?lhs
show ?rhs
proof (rule ccontr)

assume ¬ ?rhs
then obtain m where m: ∀n. m<n −→ n /∈S by blast
then have S ⊆ {..m}

by (auto simp add : sym [OF linorder-not-less])
with 〈?lhs〉 show False

by (simp add : finite-nat-iff-bounded-le)
qed

next
assume ?rhs
show ?lhs
proof

assume finite S
then obtain m where S ⊆ {..m}

by (auto simp add : finite-nat-iff-bounded-le)
then have ∀n. m<n −→ n /∈S by auto
with 〈?rhs〉 show False by blast

qed
qed

lemma infinite-nat-iff-unbounded-le:
infinite (S ::nat set) = (∀m. ∃n. m≤n ∧ n∈S)
(is ?lhs = ?rhs)

proof
assume ?lhs
show ?rhs
proof

fix m
from 〈?lhs〉 obtain n where m<n ∧ n∈S

by (auto simp add : infinite-nat-iff-unbounded)
then have m≤n ∧ n∈S by simp
then show ∃n. m ≤ n ∧ n ∈ S ..

qed
next

assume ?rhs
show ?lhs
proof (auto simp add : infinite-nat-iff-unbounded)

fix m
from 〈?rhs〉 obtain n where Suc m ≤ n ∧ n∈S

by blast

57

then have m<n ∧ n∈S by simp
then show ∃n. m < n ∧ n ∈ S ..

qed
qed

For a set of natural numbers to be infinite, it is enough to know that for any
number larger than some k, there is some larger number that is an element
of the set.
lemma unbounded-k-infinite:

assumes k : ∀m. k<m −→ (∃n. m<n ∧ n∈S)
shows infinite (S ::nat set)

proof −
{

fix m have ∃n. m<n ∧ n∈S
proof (cases k<m)

case True
with k show ?thesis by blast

next
case False
from k obtain n where Suc k < n ∧ n∈S by auto
with False have m<n ∧ n∈S by auto
then show ?thesis ..

qed
}
then show ?thesis

by (auto simp add : infinite-nat-iff-unbounded)
qed

lemma nat-infinite [simp]: infinite (UNIV :: nat set)
by (auto simp add : infinite-nat-iff-unbounded)

lemma nat-not-finite [elim]: finite (UNIV ::nat set) =⇒ R
by simp

Every infinite set contains a countable subset. More precisely we show that
a set S is infinite if and only if there exists an injective function from the
naturals into S.
lemma range-inj-infinite:

inj (f ::nat ⇒ ′a) =⇒ infinite (range f)
proof

assume inj f
and finite (range f)

then have finite (UNIV ::nat set)
by (auto intro: finite-imageD simp del : nat-infinite)

then show False by simp
qed

lemma int-infinite [simp]:
shows infinite (UNIV ::int set)

58

proof −
from inj-int have infinite (range int) by (rule range-inj-infinite)
moreover
have range int ⊆ (UNIV ::int set) by simp
ultimately show infinite (UNIV ::int set) by (simp add : infinite-super)

qed

The “only if” direction is harder because it requires the construction of a
sequence of pairwise different elements of an infinite set S. The idea is to
construct a sequence of non-empty and infinite subsets of S obtained by
successively removing elements of S.

lemma linorder-injI :
assumes hyp: !!x y . x < (y :: ′a::linorder) ==> f x 6= f y
shows inj f

proof (rule inj-onI)
fix x y
assume f-eq : f x = f y
show x = y
proof (rule linorder-cases)

assume x < y
with hyp have f x 6= f y by blast
with f-eq show ?thesis by simp

next
assume x = y
then show ?thesis .

next
assume y < x
with hyp have f y 6= f x by blast
with f-eq show ?thesis by simp

qed
qed

lemma infinite-countable-subset :
assumes inf : infinite (S :: ′a set)
shows ∃ f . inj (f ::nat ⇒ ′a) ∧ range f ⊆ S

proof −
def Sseq ≡ nat-rec S (λn T . T − {SOME e. e ∈ T})
def pick ≡ λn. (SOME e. e ∈ Sseq n)
have Sseq-inf :

∧
n. infinite (Sseq n)

proof −
fix n
show infinite (Sseq n)
proof (induct n)

from inf show infinite (Sseq 0)
by (simp add : Sseq-def)

next
fix n
assume infinite (Sseq n) then show infinite (Sseq (Suc n))

by (simp add : Sseq-def infinite-remove)

59

qed
qed
have Sseq-S :

∧
n. Sseq n ⊆ S

proof −
fix n
show Sseq n ⊆ S

by (induct n) (auto simp add : Sseq-def)
qed
have Sseq-pick :

∧
n. pick n ∈ Sseq n

proof −
fix n
show pick n ∈ Sseq n
proof (unfold pick-def , rule someI-ex)

from Sseq-inf have infinite (Sseq n) .
then have Sseq n 6= {} by auto
then show ∃ x . x ∈ Sseq n by auto

qed
qed
with Sseq-S have rng : range pick ⊆ S

by auto
have pick-Sseq-gt :

∧
n m. pick n /∈ Sseq (n + Suc m)

proof −
fix n m
show pick n /∈ Sseq (n + Suc m)

by (induct m) (auto simp add : Sseq-def pick-def)
qed
have pick-pick :

∧
n m. pick n 6= pick (n + Suc m)

proof −
fix n m
from Sseq-pick have pick (n + Suc m) ∈ Sseq (n + Suc m) .
moreover from pick-Sseq-gt
have pick n /∈ Sseq (n + Suc m) .
ultimately show pick n 6= pick (n + Suc m)

by auto
qed
have inj : inj pick
proof (rule linorder-injI)

fix i j :: nat
assume i < j
show pick i 6= pick j
proof

assume eq : pick i = pick j
from 〈i < j 〉 obtain k where j = i + Suc k

by (auto simp add : less-iff-Suc-add)
with pick-pick have pick i 6= pick j by simp
with eq show False by simp

qed
qed
from rng inj show ?thesis by auto

60

qed

lemma infinite-iff-countable-subset :
infinite S = (∃ f . inj (f ::nat ⇒ ′a) ∧ range f ⊆ S)

by (auto simp add : infinite-countable-subset range-inj-infinite infinite-super)

For any function with infinite domain and finite range there is some element
that is the image of infinitely many domain elements. In particular, any
infinite sequence of elements from a finite set contains some element that
occurs infinitely often.

lemma inf-img-fin-dom:
assumes img : finite (f‘A) and dom: infinite A
shows ∃ y ∈ f‘A. infinite (f −‘ {y})

proof (rule ccontr)
assume ¬ ?thesis
with img have finite (UN y :f‘A. f −‘ {y}) by (blast intro: finite-UN-I)
moreover have A ⊆ (UN y :f‘A. f −‘ {y}) by auto
moreover note dom
ultimately show False by (simp add : infinite-super)

qed

lemma inf-img-fin-domE :
assumes finite (f‘A) and infinite A
obtains y where y ∈ f‘A and infinite (f −‘ {y})
using assms by (blast dest : inf-img-fin-dom)

5.2 Infinitely Many and Almost All

We often need to reason about the existence of infinitely many (resp., all
but finitely many) objects satisfying some predicate, so we introduce corre-
sponding binders and their proof rules.

definition
Inf-many :: (′a ⇒ bool) ⇒ bool (binder INFM 10) where
Inf-many P = infinite {x . P x}

definition
Alm-all :: (′a ⇒ bool) ⇒ bool (binder MOST 10) where
Alm-all P = (¬ (INFM x . ¬ P x))

notation (xsymbols)
Inf-many (binder ∃∞ 10) and
Alm-all (binder ∀∞ 10)

notation (HTML output)
Inf-many (binder ∃∞ 10) and
Alm-all (binder ∀∞ 10)

lemma INF-EX :

61

(∃∞x . P x) =⇒ (∃ x . P x)
unfolding Inf-many-def

proof (rule ccontr)
assume inf : infinite {x . P x}
assume ¬ ?thesis then have {x . P x} = {} by simp
then have finite {x . P x} by simp
with inf show False by simp

qed

lemma MOST-iff-finiteNeg : (∀∞x . P x) = finite {x . ¬ P x}
by (simp add : Alm-all-def Inf-many-def)

lemma ALL-MOST : ∀ x . P x =⇒ ∀∞x . P x
by (simp add : MOST-iff-finiteNeg)

lemma INF-mono:
assumes inf : ∃∞x . P x and q :

∧
x . P x =⇒ Q x

shows ∃∞x . Q x
proof −

from inf have infinite {x . P x} unfolding Inf-many-def .
moreover from q have {x . P x} ⊆ {x . Q x} by auto
ultimately show ?thesis

by (simp add : Inf-many-def infinite-super)
qed

lemma MOST-mono: ∀∞x . P x =⇒ (
∧

x . P x =⇒ Q x) =⇒ ∀∞x . Q x
unfolding Alm-all-def by (blast intro: INF-mono)

lemma INF-nat : (∃∞n. P (n::nat)) = (∀m. ∃n. m<n ∧ P n)
by (simp add : Inf-many-def infinite-nat-iff-unbounded)

lemma INF-nat-le: (∃∞n. P (n::nat)) = (∀m. ∃n. m≤n ∧ P n)
by (simp add : Inf-many-def infinite-nat-iff-unbounded-le)

lemma MOST-nat : (∀∞n. P (n::nat)) = (∃m. ∀n. m<n −→ P n)
by (simp add : Alm-all-def INF-nat)

lemma MOST-nat-le: (∀∞n. P (n::nat)) = (∃m. ∀n. m≤n −→ P n)
by (simp add : Alm-all-def INF-nat-le)

5.3 Enumeration of an Infinite Set

The set’s element type must be wellordered (e.g. the natural numbers).

consts
enumerate :: ′a::wellorder set => (nat => ′a::wellorder)

primrec
enumerate-0 : enumerate S 0 = (LEAST n. n ∈ S)
enumerate-Suc: enumerate S (Suc n) = enumerate (S − {LEAST n. n ∈ S}) n

62

lemma enumerate-Suc ′:
enumerate S (Suc n) = enumerate (S − {enumerate S 0}) n

by simp

lemma enumerate-in-set : infinite S =⇒ enumerate S n : S
apply (induct n arbitrary : S)
apply (fastsimp intro: LeastI dest !: infinite-imp-nonempty)

apply (fastsimp iff : finite-Diff-singleton)
done

declare enumerate-0 [simp del] enumerate-Suc [simp del]

lemma enumerate-step: infinite S =⇒ enumerate S n < enumerate S (Suc n)
apply (induct n arbitrary : S)
apply (rule order-le-neq-trans)
apply (simp add : enumerate-0 Least-le enumerate-in-set)

apply (simp only : enumerate-Suc ′)
apply (subgoal-tac enumerate (S − {enumerate S 0}) 0 : S − {enumerate S

0})
apply (blast intro: sym)

apply (simp add : enumerate-in-set del : Diff-iff)
apply (simp add : enumerate-Suc ′)
done

lemma enumerate-mono: m<n =⇒ infinite S =⇒ enumerate S m < enumerate S
n

apply (erule less-Suc-induct)
apply (auto intro: enumerate-step)
done

5.4 Miscellaneous

A few trivial lemmas about sets that contain at most one element. These
simplify the reasoning about deterministic automata.

definition
atmost-one :: ′a set ⇒ bool where
atmost-one S = (∀ x y . x∈S ∧ y∈S −→ x=y)

lemma atmost-one-empty : S = {} =⇒ atmost-one S
by (simp add : atmost-one-def)

lemma atmost-one-singleton: S = {x} =⇒ atmost-one S
by (simp add : atmost-one-def)

lemma atmost-one-unique [elim]: atmost-one S =⇒ x ∈ S =⇒ y ∈ S =⇒ y = x
by (simp add : atmost-one-def)

end

63

6 Definition of local nilpotency and Lemmas 2.2.1
to 2.2.6 in Aransay’s memoir

theory analytic-part-local
imports
lemma-2-2-14
∼∼/src/HOL/Library/Infinite-Set
begin

6.1 Definition of local nilpotent element and the bound func-
tion

locale local-nilpotent-term = ring-endomorphisms D R + var a + var bound-funct
+

constrains bound-funct :: ′a => nat
assumes a-in-R: a ∈ carrier R
and a-local-nilpot : ∀ x∈carrier D . (a (ˆ)R (bound-funct x)) x = 1D
and bound-is-least : bound-funct x =(LEAST n. (a (ˆ)R (n::nat)) x = 1D)

The following lemma maybe could be included in the Group.thy file; there
is already a lemma called 1 (ˆ) ?n = 1, about 1, but nothing about x (ˆ)
(1 :: ′c)

lemma (in monoid) nat-pow-1 : assumes x : x ∈ carrier G shows x (ˆ)G (1 ::nat)
= x

using nat-pow-Suc [of x 0] and nat-pow-0 [of x] and l-one [OF x] by simp

If the element a is nilpotent, with (a (ˆ)R bound x) x = 1, and bound-funct
x ≤ m, then (a (ˆ)R m) x = 1

lemma (in local-nilpotent-term) a-n-zero-a-m-zero: assumes bound-le-m: bound-funct
x ≤ m

shows (a(ˆ)R(m)) x = 1D
proof (cases x ∈ carrier D)

case True
then have x-in-D : x ∈ carrier D by simp
show (a (ˆ)R m) x = 1

using a-local-nilpot and bound-le-m proof (induct m)
case 0 assume bound-le-zero: bound-funct x ≤ 0 and alpha-n: ∀ x∈carrier D .

(a (ˆ)R bound-funct x) x = 1 with x-in-D
show (a (ˆ)R (0 ::nat)) x = 1D by auto

next
case (Suc m)
assume hypo: [[∀ x∈carrier D . (a (ˆ)R bound-funct x) x = 1; bound-funct x ≤

m]] =⇒ (a (ˆ)R m) x = 1
and a-bound-funct : ∀ x∈carrier D . (a (ˆ)R bound-funct x) x = 1 and

bound-funct-le-Suc-m: bound-funct x ≤ Suc m
then show (a (ˆ)R Suc m) x = 1
proof (cases bound-funct x = Suc m)

case True with a-bound-funct and x-in-D show ?thesis by auto

64

next
case False with bound-funct-le-Suc-m have bound-funct x ≤ m by arith
with hypo and a-bound-funct have a-m: (a (ˆ)R m) x = 1 by simp
have (a (ˆ)R Suc m) x = (a ⊗R (a (ˆ)R m)) x
proof −

have Suc m = (1 ::nat) + m by arith
with sym [OF nat-pow-mult [OF a-in-R, of 1 m]] and nat-pow-1 [OF a-in-R]

show ?thesis by (simp only : expand-fun-eq)
qed
also from ring-R and x-in-D and a-m have . . . = a 1 by simp
also from ring-R and hom-completion-one [of D D a] and D-diff-group and

a-in-R have . . . = 1
unfolding diff-group-def comm-group-def group-def by simp

finally show (a (ˆ)R Suc m) x = 1 by simp
qed

qed
next

case False
with nat-pow-closed [OF a-in-R, of m] and ring-R and completion-closed2 [of

a (ˆ)R m D D x]
show (a (ˆ)R m) x = 1 unfolding hom-completion-def completion-fun2-def by

simp
qed

The following definition is the power series of the local nilpotent endomor-
phism a in an element of its domain x ; the power series is defined as the
finite product in the differential group D of the powers λi . (a (ˆ)R i) x, up
to bound-funct x

A different solution would be to consider the finite sum in the ring of endo-
morphisms R of terms op (ˆ)R a and then apply it to each element of the
domain x

The first solution seems to me more coherent with the notion of ”local
nilpotency” we are dealing with, but both are identical

6.2 Definition of power series and some lemmas

context local-nilpotent-term
begin
definition power-series x == finprod D (λi ::nat . (a(ˆ)R i) x) {..bound-funct x}
end

Some results about the power series

lemma (in local-nilpotent-term) power-pi : (op (ˆ)R a) ∈ {..(k ::nat)} → carrier R
using nat-pow-closed [OF a-in-R] and Pi-def [of {..k} (λi ::nat . carrier R)] by

simp

65

lemma (in local-nilpotent-term) power-pi-D : (λi ::nat . (a(ˆ)R i) x) ∈ {..(k ::nat)}
→ carrier D
proof (unfold Pi-def , auto, cases x ∈ carrier D)

fix i
assume i ≤ k
from nat-pow-closed [OF a-in-R, of i] have a-i-in-R: (a (ˆ)R i) ∈ carrier R by

simp
case True with a-i-in-R and ring-R and hom-completion-closed [of (a(ˆ)R i)

D D x] show (a (ˆ)R i) x ∈ carrier D by simp
next

fix i
assume i ≤ k
from nat-pow-closed [OF a-in-R, of i] have a-i-in-R: (a (ˆ)R i) ∈ carrier R by

simp
case False with a-i-in-R completion-closed2 [of (a (ˆ)R i) D D x] and ring-R

show (a (ˆ)R i) x ∈ carrier D
unfolding hom-completion-def completion-fun2-def by simp

qed

As we already stated, λx .
⊗

i∈{..j}. (a (ˆ)R i) x is equal to finsum R (op
(ˆ)R a) {..j}
lemma (in local-nilpotent-term) finprod-eq-finsum-bound-funct :

shows finprod D (λi ::nat . (a(ˆ)R i) x) {..bound-funct x} = ((finsum R (λi ::nat .
(a(ˆ)R i)) {..bound-funct x}) x)
proof (induct bound-funct x)

case 0
from nat-pow-0 [of a] and finsum-0 [of op (ˆ)R a] and power-pi [of 0 ::nat] and

finprod-0 [of (λi ::nat . (a(ˆ)R i) x)]
and power-pi-D [of x 0 ::nat]

show (
⊗

i ::nat∈{..0 ::nat}. (a (ˆ)R i) x) = finsum R (op (ˆ)R a) {..0 ::nat} x
by simp
next

case (Suc n)
assume hypo: (

⊗
i∈{..n}. (a (ˆ)R i) x) = finsum R (op (ˆ)R a) {..n} x

show (
⊗

i∈{..Suc n}. (a (ˆ)R i) x) = finsum R (op (ˆ)R a) {..Suc n} x
proof (cases x ∈ carrier D)

case True
from finsum-Suc [OF power-pi , of n] have finsum R (op (ˆ)R a) {..Suc n} =

a (ˆ)R Suc n ⊕R finsum R (op (ˆ)R a) {..n} by simp
with ring-R and True have finsum R (op (ˆ)R a) {..Suc n} x = (a (ˆ)R Suc

n) x ⊗D (finsum R (op (ˆ)R a) {..n}) x by simp
moreover
from True and finprod-Suc [OF power-pi-D , of x n] have (

⊗
i∈{..Suc n}. (a

(ˆ)R i) x) = (a (ˆ)R Suc n) x ⊗ (
⊗

i∈{..n}. (a (ˆ)R i) x)
by simp

with hypo have (
⊗

i∈{..Suc n}. (a (ˆ)R i) x) = (a (ˆ)R Suc n) x ⊗ (finsum
R (op (ˆ)R a) {..n}) x by simp

ultimately show ?thesis by simp
next

66

case False
from finsum-closed [OF - power-pi] and finite-nat-iff-bounded [of {..Suc n}]

have finsum R (op (ˆ)R a) {..Suc n} ∈ carrier R by simp
with ring-R and completion-closed2 [of finsum R (op (ˆ)R a) {..Suc n} D D]

and False
have finsum-one: finsum R (op (ˆ)R a) {..Suc n} x = 1 unfolding hom-completion-def

completion-fun2-def by simp
moreover
have ∀ i∈{..Suc n}. (a (ˆ)R i) x = 1
proof

fix i assume i-in-nat : i ∈ {..Suc n}
from nat-pow-closed [OF a-in-R, of i] and ring-R and completion-closed2

[of - D D] and False show (a (ˆ)R i) x = 1
unfolding hom-completion-def completion-fun2-def by simp

qed
with finprod-cong [of {..Suc n} {..Suc n} (λi . (a (ˆ)R i) x) λx . 1] and

power-pi-D [of x Suc n]
have (

⊗
i∈{..Suc n}. (a (ˆ)R i) x) = (

⊗
i∈{..Suc n}. 1) by simp

with finprod-one [of {..Suc n}] and finite-nat-iff-bounded [of {..Suc n}] have
finprod-one: (

⊗
i∈{..Suc n}. (a (ˆ)R i) x) = 1

by simp
ultimately show ?thesis by simp

qed
qed

lemma (in local-nilpotent-term) power-series-closed : shows (
⊗

i∈{..m::nat}. (a
(ˆ)R i) x) ∈ carrier D
proof (rule finprod-closed)

from finite-nat-iff-bounded show finite {..m} by auto
from power-pi-D [of x m] show (λi ::nat . (a (ˆ)R i) x) ∈ {..m} → carrier D by

simp
qed

The following result is equal to the previous one but for the case of definition
of the power series

lemma (in local-nilpotent-term) power-series-closed2 : (
⊗

i∈{..bound-funct x}. (a
(ˆ)R i) x) ∈ carrier D
proof (rule finprod-closed)

from finite-nat-iff-bounded show finite {..bound-funct x} by auto
from power-pi-D [of x bound-funct x] and Pi-def [of {..bound-funct x} (λi ::nat .

carrier R)]
show (λi ::nat . (a (ˆ)R i) x) ∈ {..bound-funct x} → carrier D by simp

qed

lemma (in local-nilpotent-term) power-series-extended : assumes bf-le-m: bound-funct
x ≤ m

shows power-series x = finprod D (λi ::nat . (a (ˆ)R i) x) {..m}
using bf-le-m proof (induct m)
case 0

67

from this and power-series-def [of x] show power-series x = (
⊗

i∈{..(0 ::nat)}.
(a (ˆ)R i) x) by simp
next

case (Suc m)
assume hypo: bound-funct x ≤ m =⇒ power-series x = (

⊗
i∈{..m}. (a (ˆ)R i)

x) and bf-le-Suc-m: bound-funct x ≤ Suc m
show power-series x = (

⊗
i∈{..Suc m}. (a (ˆ)R i) x)

proof (cases bound-funct x = Suc m)
case True thus ?thesis unfolding power-series-def by simp

next
case False with bf-le-Suc-m and hypo have hypo-m: power-series x = (

⊗
i∈{..m}.

(a (ˆ)R i) x) by arith
from a-n-zero-a-m-zero [OF bf-le-Suc-m] have a-Suc-m-one: (a (ˆ)R Suc m)

x = 1.
from power-pi-D [of x Suc m] and finprod-Suc [of (λi ::nat . (a (ˆ)R i) x) m]
have (

⊗
i∈{..Suc m}. (a (ˆ)R i) x) = (a (ˆ)R Suc m) x ⊗ (

⊗
i∈{..m}. (a

(ˆ)R i) x) by simp
also from a-Suc-m-one have . . . = 1 ⊗ (

⊗
i∈{..m}. (a (ˆ)R i) x) by simp

also from hypo-m and D .l-one [OF power-series-closed [of x m]] have . . . =
power-series x by simp

finally show ?thesis by simp
qed

qed

The power series is itself an endomorphism of the differential group

lemma (in local-nilpotent-term) power-series-in-R: shows power-series ∈ carrier
R
proof −

have power-series ∈ hom-completion D D
proof (unfold hom-completion-def hom-def Pi-def , auto)

fix x
assume x-in-D : x ∈ carrier D
from power-series-closed [of x bound-funct x] and power-series-def [of x] show

power-series x ∈ carrier D by simp
next

fix x y
assume x-in-D : x ∈ carrier D and y-in-D : y ∈ carrier D
show power-series (x ⊗ y) = power-series x ⊗ power-series y
proof −

let ?max = max (bound-funct (x ⊗ y)) (max (bound-funct x) (bound-funct
y))

from power-series-extended [of x ⊗ y ?max] have p-s-ex-xy : power-series (x
⊗ y) = (

⊗
i∈{..?max}. (a (ˆ)R i) (x ⊗ y)) by arith

from power-series-extended [of x ?max] have p-s-ex-x : power-series x =
(
⊗

i∈{..?max}. (a (ˆ)R i) x) by arith
from power-series-extended [of y ?max] have p-s-ex-y : power-series y =

(
⊗

i∈{..?max}. (a (ˆ)R i) y) by arith
from p-s-ex-x and p-s-ex-y
have power-series x ⊗ power-series y = (

⊗
i∈{..?max}. (a (ˆ)R i) x) ⊗

68

(
⊗

i∈{..?max}. (a (ˆ)R i) y) by simp
also from sym [OF finprod-mult [of (λi ::nat . (a (ˆ)R i) x) ?max (λi ::nat .

(a (ˆ)R i) y)]]
and power-pi-D [of x ?max] power-pi-D [of y ?max] and finite-nat-iff-bounded

[of {..?max}]
have . . . = (

⊗
i∈{..?max}. (a (ˆ)R i) x ⊗ (a (ˆ)R i) y) by simp

also from nat-pow-closed [OF a-in-R] and hom-completion-mult [OF - x-in-D
y-in-D , of - D] and ring-R

have . . . = (
⊗

i∈{..?max}. (a (ˆ)R i) (x ⊗ y)) by simp
also from sym [OF p-s-ex-xy] have . . . = power-series (x ⊗ y) by simp
finally show ?thesis by simp

qed
next

show power-series ∈ completion-fun2 D D
proof (unfold completion-fun2-def completion-def expand-fun-eq , simp, intro

exI [of - power-series], auto)
fix x
assume x /∈ carrier D
with nat-pow-closed [OF a-in-R] and completion-closed2 [of - D D x] and

ring-R have (λi ::nat . (a (ˆ)R i) x) = (λi ::nat . 1)
by (unfold hom-completion-def expand-fun-eq , auto)

with finprod-one [of {..bound-funct x}] and power-series-def [of x]
show power-series x = 1 by auto

qed
qed
with ring-R show power-series ∈ carrier R by simp

qed

6.3 Some basic operations over finite series

Right distributivity of the product

lemma (in ring) finsum-dist-r : assumes a-in-R: a ∈ carrier R and b-in-R: b ∈
carrier R

shows b ⊗ finsum R (op (ˆ) a) {..(m::nat)} = (
⊕

i∈{..(m::nat)}. b ⊗ a (ˆ) i)
proof (induct m)

case 0
from finsum-0 [of λi ::nat . a(ˆ)i] and finsum-0 [of λi ::nat . b ⊗ a(ˆ)i] and

b-in-R
show b ⊗ finsum R (op (ˆ) a) {..(0 ::nat)} = (

⊕
i∈{..(0 ::nat)}. b ⊗ a (ˆ) i)

by simp
next

case (Suc m)
assume hypo: b ⊗ finsum R (op (ˆ) a) {..m} = (

⊕
i∈{..m}. b ⊗ a (ˆ) i)

show b ⊗ finsum R (op (ˆ) a) {..Suc m} = (
⊕

i∈{..Suc m}. b ⊗ a (ˆ) i)
proof −

from finsum-Suc [of (op (ˆ) a) m] and Pi-def [of {..Suc m} λi ::nat . carrier
R] nat-pow-closed [OF a-in-R]

have b ⊗ (
⊕

i∈{..Suc m}. a (ˆ) i) = b ⊗ (a(ˆ)(Suc m) ⊕ (
⊕

i∈{..m}. a (ˆ)
i)) by simp

69

also from r-distr [OF nat-pow-closed [OF a-in-R, of Suc m] - b-in-R, of finsum
R (op (ˆ) a) {..m}]

b-in-R nat-pow-closed [OF a-in-R, of Suc m] finsum-closed [of {..m} op (ˆ)
a]

and Pi-def [of {..m} λi ::nat . carrier R] nat-pow-closed [OF a-in-R] and
finite-nat-iff-bounded [of {..m}]

have . . . = b ⊗ a(ˆ)(Suc m) ⊕ b ⊗ (
⊕

i∈{..m}. a (ˆ) i) by simp
also from hypo have . . . = b ⊗ a(ˆ)(Suc m) ⊕ (

⊕
i∈{..m}. b ⊗ a (ˆ) i) by

simp
also from finsum-Suc [of (λi ::nat . b ⊗ a (ˆ) i), of m] and Pi-def [of {..Suc

m} λi ::nat . carrier R]
nat-pow-closed [OF a-in-R] and b-in-R

have . . . = (
⊕

i∈{..Suc m}. b ⊗ a (ˆ) i) by simp
finally show ?thesis by simp

qed
qed

lemma (in local-nilpotent-term) b-power-pi-D : assumes b-in-R: b ∈ carrier R
shows (λi . b ((a (ˆ)R i) x)) ∈ {..(k ::nat)} → carrier D
using power-pi-D [of x k] and ring-R and b-in-R unfolding hom-completion-def

completion-fun2-def completion-def hom-def Pi-def by auto

lemma (in local-nilpotent-term) nat-pow-closed-D : shows (a (ˆ)R (m::nat)) x ∈
carrier D
using ring-R and nat-pow-closed [OF a-in-R, of m] unfolding hom-completion-def

completion-fun2-def completion-def hom-def Pi-def by auto

Left distributivity of the product of a finite sum

lemma (in local-nilpotent-term) power-series-dist-l : assumes b-in-R: b ∈ carrier
R

shows b (
⊗

i∈{..(m::nat)}. (a (ˆ)R i) x) = (
⊗

i∈{..(m::nat)}. (b ((a (ˆ)R i)
x)))
proof (induct m)

case 0
from finprod-0 [of (λi . (a (ˆ)R i) x)] and power-pi-D [of x 0 ::nat] and finprod-0

[of (λi . b ((a (ˆ)R i) x))]
and b-power-pi-D [OF b-in-R, of x 0 ::nat] show b (

⊗
i∈{..0 ::nat}. (a (ˆ)R i)

x) = (
⊗

i∈{..0 ::nat}. b ((a (ˆ)R i) x)) by simp
next

case (Suc m)
assume hypo: b (

⊗
i∈{..m}. (a (ˆ)R i) x) = (

⊗
i∈{..m}. b ((a (ˆ)R i) x))

show b (
⊗

i∈{..Suc m}. (a (ˆ)R i) x) = (
⊗

i∈{..Suc m}. b ((a (ˆ)R i) x))
proof −

from finprod-Suc [OF power-pi-D [of x], of m] have b (
⊗

i∈{..Suc m}. (a
(ˆ)R i) x) = b ((a (ˆ)R Suc m) x ⊗ (

⊗
i∈{..m}. (a (ˆ)R i) x))

by simp
also from b-in-R and ring-R and hom-completion-mult [of b D D (a (ˆ)R Suc

m) x (
⊗

i∈{..m}. (a (ˆ)R i) x)]
and finprod-closed [of {..m} (λi . (a (ˆ)R i) x)] power-pi-D [of x m] nat-pow-closed-D

70

[of Suc m x]
have . . . = b ((a (ˆ)R Suc m) x) ⊗ b ((

⊗
i∈{..m}. (a (ˆ)R i) x)) by simp

also from hypo have . . . = b ((a (ˆ)R Suc m) x) ⊗ (
⊗

i∈{..m}. b ((a (ˆ)R
i) x)) by simp

also from sym [OF finprod-Suc [OF b-power-pi-D [OF b-in-R, of x], of m]]
have . . . = (

⊗
i∈{..Suc m}. b ((a (ˆ)R i) x)) by simp

finally show ?thesis by simp
qed

qed

lemma (in local-nilpotent-term) power-pi-b-D : assumes b-in-R: b ∈ carrier R
shows (λi . (a (ˆ)R i) (b x)) ∈ {..(k ::nat)} → carrier D

using power-pi-D [of b x k] and ring-R and b-in-R by simp

lemma (in local-nilpotent-term) power-series-dist-r : assumes b-in-R: b ∈ carrier
R

shows (λx . (
⊗

i∈{..m}. (a (ˆ)R i) x)) (b x) = (
⊗

i∈{..(m::nat)}. ((a (ˆ)R i)
(b x))) by simp

The following lemma showed to be useful in some situations

lemma (in comm-monoid) finprod-singleton [simp]:
f ∈ {i ::nat} −> carrier G ==> finprod G f {i} = f i by (simp add : Pi-def)

Finite series can be decomposed in the product of its first element and the
remaining part

lemma (in local-nilpotent-term) power-series-first-element :
shows finprod D (λi ::nat . (a (ˆ)R i) x) {..(i ::nat)} = (a(ˆ)R (0 ::nat)) x ⊗

finprod D (λi ::nat . (a (ˆ)R i) x) {1 ..(i ::nat)}
proof (induct i)

case 0
from ring-R have one-x : 1R x ∈ carrier D unfolding hom-completion-def

completion-fun2-def completion-def by auto
from finprod-0 [of (λi . (a (ˆ)R i) x)] and power-pi-D [of x 0] and D .r-one

[OF one-x]
show (

⊗
i∈{..(0 ::nat)}. (a (ˆ)R i) x) = (a (ˆ)R (0 ::nat)) x ⊗ (

⊗
i∈{(1 ::nat)..0}.

(a (ˆ)R i) x) by simp
next

case (Suc i)
assume hypo: (

⊗
i∈{..i}. (a (ˆ)R i) x) = (a (ˆ)R (0 ::nat)) x ⊗ (

⊗
i∈{1 ..i}.

(a (ˆ)R i) x)
show (

⊗
i∈{..Suc i}. (a (ˆ)R i) x) = (a (ˆ)R (0 ::nat)) x ⊗ (

⊗
i∈{1 ..Suc i}.

(a (ˆ)R i) x)
proof −

from finprod-Suc [of (λi ::nat . (a (ˆ)R i) x) i] and power-pi-D [of x Suc i]
have (

⊗
i∈{..Suc i}. (a (ˆ)R i) x) = (a (ˆ)R Suc i) x ⊗ (

⊗
i∈{..i}. (a (ˆ)R

i) x) by simp
also from hypo have . . . = (a (ˆ)R Suc i) x ⊗ ((a (ˆ)R (0 ::nat)) x ⊗

(
⊗

i∈{1 ..i}. (a (ˆ)R i) x)) by simp

71

also have . . . = ((a (ˆ)R Suc i) x ⊗ (a (ˆ)R (0 ::nat)) x) ⊗ (
⊗

i∈{1 ..i}. (a
(ˆ)R i) x)

proof (rule sym [OF D .m-assoc [of (a (ˆ)R Suc i) x (a (ˆ)R (0 ::nat)) x
(
⊗

i∈{1 ..i}. (a (ˆ)R i) x)]])
from nat-pow-closed-D [of Suc i x] show (a (ˆ)R Suc i) x ∈ carrier D by

simp
from nat-pow-closed-D [of 0 ::nat x] show (a (ˆ)R (0 ::nat)) x ∈ carrier D

by simp
from finprod-closed [of {1 ..i} (λi ::nat . (a(ˆ)Ri) x)] and finite-nat-iff-bounded

[of {1 ..i}]
and nat-pow-closed-D [of - x] and Pi-def [of {1 ..i} λi ::nat . carrier D]

show (
⊗

i∈{1 ..i}. (a (ˆ)R i) x) ∈ carrier D by simp
qed
also from m-comm [OF nat-pow-closed-D [of Suc i x] nat-pow-closed-D [of

0 ::nat x]]
have . . . = ((a (ˆ)R (0 ::nat)) x ⊗ (a (ˆ)R Suc i) x) ⊗ (

⊗
i∈{1 ..i}. (a (ˆ)R

i) x) by simp
also have . . . = (a (ˆ)R (0 ::nat)) x ⊗ ((a (ˆ)R Suc i) x ⊗ (

⊗
i∈{1 ..i}. (a

(ˆ)R i) x))
proof (rule D .m-assoc [of (a (ˆ)R (0 ::nat)) x (a (ˆ)R (Suc i)) x (

⊗
i∈{1 ..i}.

(a (ˆ)R i) x)])
from nat-pow-closed-D [of Suc i x] show (a (ˆ)R Suc i) x ∈ carrier D by

simp
from nat-pow-closed-D [of 0 ::nat x] show (a (ˆ)R (0 ::nat)) x ∈ carrier D

by simp
from finprod-closed [of {1 ..i} (λi ::nat . (a(ˆ)Ri) x)] and finite-nat-iff-bounded

[of {1 ..i}]
and nat-pow-closed-D [of - x] and Pi-def [of {1 ..i} λi ::nat . carrier D]

show (
⊗

i∈{1 ..i}. (a (ˆ)R i) x) ∈ carrier D by simp
qed
also from nat-pow-closed-D [of Suc i x]
have . . . = (a (ˆ)R (0 ::nat)) x ⊗ ((

⊗
i∈{Suc i}. (a (ˆ)R i) x) ⊗ (

⊗
i∈{1 ..i}.

(a (ˆ)R i) x)) by simp
also from sym [OF finprod-Un-disjoint [of {Suc i} {1 ..i} (λi ::nat . (a (ˆ)R i)

x)]]
and finite-nat-iff-bounded [of {1 ..i}] finite-nat-iff-bounded [of {Suc i}] and

Pi-def [of {(1 ::nat)..i} (λi ::nat . carrier D)]
Pi-def [of {Suc i} (λi ::nat . carrier D)] and nat-pow-closed-D [of Suc i x]

nat-pow-closed-D [of - x]
have (a (ˆ)R (0 ::nat)) x ⊗ ((

⊗
i∈{Suc i}. (a (ˆ)R i) x) ⊗ (

⊗
i∈{1 ..i}. (a

(ˆ)R i) x))
= (a (ˆ)R (0 ::nat)) x ⊗ (

⊗
i∈{1 ..i} ∪ {Suc i}. (a (ˆ)R i) x) by simp

also have . . . = (a (ˆ)R (0 ::nat)) x ⊗ (
⊗

i∈{1 ..Suc i}. (a (ˆ)R i) x)
proof −

have {1 ..i} ∪ {Suc i} = {1 ..Suc i} by auto
then show ?thesis by simp

qed
finally show ?thesis by simp

qed

72

qed

Finite series which start in index one can be seen as the product of the
generic term and the finite series in index zero

lemma (in local-nilpotent-term) power-series-factor : shows (
⊗

j∈{(1 ::nat)..Suc
i}. (a (ˆ)R j) x) = a (

⊗
j∈{..i}. (a (ˆ)R j) x)

proof (induct i)
case 0
have a x = a (1R x)
proof (cases x ∈ carrier D)

case True with ring-R show a x = a (1R x) by simp
next

case False with completion-closed2 [of a D D x] hom-completion-one [of D D
a] and D-diff-group and a-in-R and ring-R

show a x = a (1R x) unfolding diff-group-def comm-group-def group-def
hom-completion-def completion-fun2-def by simp

qed
with finprod-0 [of (λj ::nat . (a (ˆ)R j) x)] finprod-insert [of {} Suc 0 (λj ::nat .

(a (ˆ)R j) x)]
and nat-pow-closed-D [of Suc 0 x] and nat-pow-closed-D [of 0 x] a-in-R

finprod-singleton [of (λj ::nat . (a (ˆ)R j) x) Suc 0]
show (

⊗
j∈{1 ..Suc 0}. (a (ˆ)R j) x) = a (

⊗
j∈{..0 ::nat}. (a (ˆ)R j) x) by

simp
next

case (Suc i)
assume hypo: (

⊗
j∈{1 ..Suc i}. (a (ˆ)R j) x) = a (

⊗
j∈{..i}. (a (ˆ)R j) x)

show (
⊗

j∈{1 ..Suc (Suc i)}. (a (ˆ)R j) x) = a (
⊗

j∈{..Suc i}. (a (ˆ)R j) x)
proof −

have (
⊗

j∈{1 ..Suc (Suc i)}. (a (ˆ)R j) x) = (
⊗

j∈{1 ..Suc i} ∪ {Suc (Suc
i)}. (a (ˆ)R j) x)

proof −
have {1 ..Suc i} ∪ {Suc (Suc i)} = {1 ..Suc (Suc i)} by auto
thus ?thesis by simp

qed
also from finprod-Un-disjoint [of {1 ..Suc i} {Suc (Suc i)} (λj ::nat . (a (ˆ)R

j) x)]
and finite-nat-iff-bounded [of {1 ..Suc i}] finite-nat-iff-bounded [of {Suc (Suc

i)}] and
Pi-def [of {(1 ::nat)..Suc i} (λj ::nat . carrier D)]
Pi-def [of {Suc (Suc i)} (λj ::nat . carrier D)] and nat-pow-closed-D [of Suc

(Suc i) x] nat-pow-closed-D [of - x]
have . . . = (

⊗
j∈{1 ..Suc i}. (a (ˆ)R j) x) ⊗ (

⊗
j∈{Suc (Suc i)}. (a (ˆ)R j)

x) by simp
also from hypo and finprod-singleton [of (λj ::nat . (a (ˆ)R j) x) Suc (Suc i)]

and nat-pow-closed-D [of Suc (Suc i) x]
have . . . = a (

⊗
j∈{..i}. (a (ˆ)R j) x) ⊗ ((a (ˆ)R Suc (Suc i)) x) by simp

also from ring-R have . . . = a (
⊗

j∈{..i}. (a (ˆ)R j) x) ⊗ a ((a (ˆ)R Suc i)
x)

proof −

73

have 1 + Suc i = Suc (Suc i) by arith
with sym [OF nat-pow-mult [OF a-in-R, of 1 Suc i]] and nat-pow-1 [OF

a-in-R]
have a (ˆ)R Suc (Suc i) = a ⊗R (a (ˆ)R Suc i) by simp
with ring-R have ((a (ˆ)R Suc (Suc i)) x) = a ((a (ˆ)R Suc i) x) by simp
then show ?thesis by simp

qed
also have . . . = a ((

⊗
j∈{..i}. (a (ˆ)R j) x) ⊗ (a (ˆ)R Suc i) x)

proof (intro sym [OF hom-completion-mult [of a D D
⊗

j∈{..i}. (a (ˆ)R j) x
(a (ˆ)R Suc i) x]])

from ring-R and a-in-R show a ∈ hom-completion D D by simp
from finprod-closed [of {..i} (λj ::nat . (a (ˆ)R j) x)] and power-pi-D [of x i]
show (

⊗
j∈{..i}. (a (ˆ)R j) x) ∈ carrier D by simp

from nat-pow-closed-D [of Suc i x] show (a (ˆ)R Suc i) x ∈ carrier D by
simp

qed
also from nat-pow-closed-D [of Suc i x] have . . . = a ((

⊗
j∈{..i}. (a (ˆ)R j)

x) ⊗ (
⊗

j∈{Suc i}.(a (ˆ)R Suc i) x))
by simp

also from sym [OF finprod-Un-disjoint [of {..i} {Suc i} (λj ::nat . (a (ˆ)R j)
x)]]

and finite-nat-iff-bounded [of {..i}] finite-nat-iff-bounded [of {Suc i}] and
Pi-def [of {..i} (λj ::nat . carrier D)]

Pi-def [of {Suc i} (λj ::nat . carrier D)] and nat-pow-closed-D [of Suc i x]
nat-pow-closed-D [of - x]

have . . . = a (
⊗

j∈{..i} ∪ {Suc i}. (a (ˆ)R j) x) by simp
also have . . . = a (

⊗
j∈{..Suc i}. (a (ˆ)R j) x)

proof −
have {..i} ∪ {Suc i} = {..Suc i} by auto
thus ?thesis by simp

qed
finally show ?thesis by simp

qed
qed

If we were able to interpret locales, now the idea would be to interpret the
locale nilpotent-term with local nilpotent term α, as later defined in locale
alpha-beta

6.4 Definition and some lemmas of perturbations

Perturbations are a homomorphism of D (not a differential homomorphism!)
such that its addition with the differential is again a differential

constdefs (structure D)
pert :: - => (′a => ′a) set
pert D == {δ. δ ∈ hom-completion D D &
diff-group (| carrier = carrier D , mult = mult D , one = one D , diff = (λx . if x
∈ carrier D then ((differ) x) ⊗ (δ x) else 1)|) }

74

locale diff-group-pert = diff-group D + var δ +
assumes delta-pert : δ ∈ pert D

lemma (in diff-group-pert) diff-group-pert-is-diff-group:
shows diff-group (|carrier = carrier D , mult = mult D , one = one D , diff =

(λx . if x ∈ carrier D then ((differD) x) ⊗D (δ x) else 1D)|)
using diff-group-pert .delta-pert [of D δ] and prems unfolding diff-group-pert-def

pert-def by simp

lemma (in diff-group-pert) pert-is-hom: shows δ ∈ hom-completion D D
using diff-group-pert .delta-pert [of D δ] and prems unfolding diff-group-pert-def

pert-def by simp

lemma (in ring-endomorphisms) diff-group-pert-is-diff-group: assumes delta: δ ∈
pert D

shows diff-group (| carrier = carrier D , mult = mult D , one = one D , diff =
(differD) ⊕R δ |)
using diff-group-pert .diff-group-pert-is-diff-group [of D δ] and ring-R and prems
unfolding diff-group-pert-def diff-group-pert-axioms-def ring-endomorphisms-def

by simp

lemma (in ring-endomorphisms) pert-in-R [simp]: assumes delta: δ ∈ pert D
shows δ ∈ carrier R

using ring-R and diff-group-pert .pert-is-hom [of D δ] and prems
unfolding diff-group-pert-def diff-group-pert-axioms-def ring-endomorphisms-def

by simp

lemma (in ring-endomorphisms) diff-pert-in-R [simp]: assumes delta: δ ∈ pert D
shows (differD) ⊕R δ ∈ carrier R

using delta by simp

The reason to introduce α by means of a defines command is to get the
expected behavior when merging this locale with locale local-nilpotent-term
D R α bound-phi in the definition of locale local-nilpotent-alpha

locale alpha-beta = ring-endomorphisms + reduction + var δ + var α +
assumes delta-pert : δ ∈ pert D
defines alpha-def : α == 	R (δ ⊗R h)

context alpha-beta
begin

definition beta-def : β = 	R (h ⊗R δ)

end

locale local-nilpotent-alpha = alpha-beta + local-nilpotent-term D R α bound-phi

75

The definition of Φ corresponds with the one given in the Basic Perturbation
Lemma, Lemma 2.3.1 in Aransay’s memoir

context local-nilpotent-alpha
begin

definition phi-def : Φ == local-nilpotent-term.power-series D R α bound-phi

end

lemma (in alpha-beta) pert-in-R [simp]: shows δ ∈ carrier R
using delta-pert and ring-R by (unfold pert-def , simp)

lemma (in alpha-beta) h-in-R [simp]: shows h ∈ carrier R
using h-hom-compl and ring-R by simp

lemma (in alpha-beta) alpha-in-R: shows α ∈ carrier R
using alpha-def and pert-in-R and h-in-R by simp

lemma (in alpha-beta) beta-in-R: shows β ∈ carrier R
using beta-def and pert-in-R and h-in-R by simp

lemma (in alpha-beta) alpha-i-in-R: shows α(ˆ)R (i ::nat) ∈ carrier R
using alpha-in-R and R.nat-pow-closed by simp

lemma (in alpha-beta) beta-i-in-R: shows β(ˆ)R (i ::nat) ∈ carrier R
using beta-in-R and nat-pow-closed by simp

lemma (in ring) power-minus-a-b:
assumes a: a ∈ carrier R and b: b ∈ carrier R shows ((a ⊗ b)) (ˆ) Suc n

= 	 a ⊗ (((b ⊗ a)) (ˆ) n) ⊗ b
proof (induct n)

case 0
from a and b and nat-pow-0 [of a ⊗ b] show 	 (a ⊗ b) (ˆ) Suc 0 = 	 a ⊗
	 (b ⊗ a) (ˆ) (0 ::nat) ⊗ b by simp algebra
next

case (Suc n)
assume hypo: ((a ⊗ b)) (ˆ) Suc n = 	 a ⊗ 	 (b ⊗ a) (ˆ) n ⊗ b
have ((a ⊗ b)) (ˆ) Suc (Suc n) = 	 (a ⊗ b) (ˆ) (Suc n) ⊗ 	 (a ⊗ b) by

simp
also from hypo have . . . = 	 a ⊗ 	 (b ⊗ a) (ˆ) n ⊗ b ⊗ 	 (a ⊗ b) by simp
also from sym [OF l-minus [OF a b]] have . . . = 	 a ⊗ 	 (b ⊗ a) (ˆ) n ⊗ b
⊗ (a ⊗ b) by simp

also from sym [OF m-assoc [OF b - b, of 	 a]] and a-inv-closed [OF a] and
nat-pow-closed [of 	 (b ⊗ a) n]

and a-inv-closed [of b ⊗ a] and a b r-minus [OF b a]
have . . . = 	 a ⊗ 	 (b ⊗ a) (ˆ) n ⊗ ((b ⊗ a) ⊗ b) by algebra
also from nat-pow-closed [of 	 (b ⊗ a) n] and a-inv-closed [of b ⊗ a] and a b

and sym [OF m-assoc[of ((b ⊗ a)) (ˆ) n ((b ⊗ a)) b]]
have . . . = 	 a ⊗ ((b ⊗ a) (ˆ) n ⊗ ((b ⊗ a))) ⊗ b by algebra

76

also from sym [OF nat-pow-Suc [of 	 (b ⊗ a) n]]
have . . . = 	 a ⊗ ((b ⊗ a)) (ˆ) (Suc n) ⊗ b by simp
finally show 	 (a ⊗ b) (ˆ) Suc (Suc n) = 	 a ⊗ 	 (b ⊗ a) (ˆ) Suc n ⊗ b by

simp
qed

The following comment is already obsolete in the Isabelle-11−Feb−2007
repository version

Comment: At the moment, the ”definition” command is not inherited by
locales defined from old ones; in the following lemma, there would be two
ways of recovering the definition of β. The first one would be to give its long
name local-nilpotent-alpha.β δ, and the other way is to use abbreviations.

Due to aesthetic reasons, we choose the second solution, while waiting to
the ”definition” command to be properly inherited

abbreviation (in local-nilpotent-alpha) β == alpha-beta.β R h δ

The following lemma proves that whenever α is a local nilpotent term, so
will be β

lemma (in local-nilpotent-alpha) nilp-alpha-nilp-beta: shows local-nilpotent-term
D R β (λx . (LEAST n::nat . (β (ˆ)R n) x = 1D))
proof (unfold local-nilpotent-alpha-def local-nilpotent-term-def local-nilpotent-term-axioms-def ,
simp, intro conjI)

from prems show ring-endomorphisms D R by intro-locales
from beta-in-R show β ∈ carrier R by simp
show ∀ x∈carrier D . (β (ˆ)R (LEAST n::nat . (β (ˆ)R n) x = 1)) x = 1
proof (intro ballI)

fix x assume x-in-D : x ∈ carrier D
show (β (ˆ)R (LEAST n::nat . (β (ˆ)R n) x = 1)) x = 1
proof (rule LeastI-ex [of λn::nat . (β (ˆ)R n) x = 1])

from a-local-nilpot and pert-in-R and ring-R and hom-completion-closed
[OF - x-in-D , of δ D]

have alpha-nilpot : (α (ˆ)R bound-phi (δ x)) (δ x) = 1 by simp
from beta-def have (β (ˆ)R (Suc (bound-phi (δ x)))) x = ((R (h ⊗R δ))

(ˆ)R (Suc (bound-phi (δ x)))) x by simp
also from h-in-R and pert-in-R and power-minus-a-b [OF h-in-R pert-in-R,

of bound-phi (δ x)]
have . . . = (R h ⊗R (R (δ ⊗R h) (ˆ)R (bound-phi (δ x))) ⊗R δ) x by

simp
also from alpha-nilpot and alpha-def and ring-R have . . . = (R h) 1 by

simp
also from a-inv-closed [OF h-in-R] and ring-R and hom-completion-one [of

D D 	R h] and D-diff-group
have . . . = 1 by (unfold diff-group-def comm-group-def group-def , simp)
finally have beta-nil : (β (ˆ)R (Suc (bound-phi (δ x)))) x = 1 by simp
from exI [of λn::nat . (β (ˆ)R n) x = 1 (Suc (bound-phi (δ x)))] and beta-nil
show ∃n::nat . (β (ˆ)R n) x = 1 by simp

77

qed
qed

qed

lemma (in local-nilpotent-alpha) bound-psi-exists: shows ∃ bound-psi . local-nilpotent-term
D R β bound-psi

using nilp-alpha-nilp-beta by iprover

context local-nilpotent-alpha
begin

definition bound-psi ≡ (λx . (LEAST n::nat . (β (ˆ)R n) x = 1D))

The definition of Ψ below is equivalent to the one given in the statement of
Lemma 2.3.1 in Aransay’s memoir

definition psi-def : Ψ ≡ local-nilpotent-term.power-series D R β bound-psi

end

6.5 Some properties of the endomorphisms Φ, Ψ, α and β

lemma (in local-nilpotent-alpha) local-nilpotent-term-alpha: shows local-nilpotent-term
D R α bound-phi

using prems by (unfold local-nilpotent-alpha-def local-nilpotent-term-def , simp)

lemma (in local-nilpotent-alpha) local-nilpotent-term-beta: shows local-nilpotent-term
D R β bound-psi
using prems and nilp-alpha-nilp-beta and bound-psi-def by (unfold local-nilpotent-term-def ,

simp)

lemma (in local-nilpotent-alpha) phi-x-in-D [simp]: shows Φ x ∈ carrier D
using phi-def local-nilpotent-term.power-series-def [OF local-nilpotent-term-alpha,

of x]
D .finprod-closed [of {..bound-phi x} (λi ::nat . (α(ˆ)Ri) x)] and finite-nat-iff-bounded

[of {..bound-phi x}]
and local-nilpotent-term.power-pi-D [OF local-nilpotent-term-alpha, of x bound-phi

x] by simp

lemma (in local-nilpotent-alpha) phi-in-R [simp]: shows Φ ∈ carrier R
using phi-def local-nilpotent-term.power-series-in-R [OF local-nilpotent-term-alpha]

by simp

lemma (in local-nilpotent-alpha) phi-in-hom: shows Φ ∈ hom-completion D D
using phi-in-R and ring-R by simp

lemma (in local-nilpotent-alpha) psi-in-R [simp]: shows Ψ ∈ carrier R
using psi-def local-nilpotent-term.power-series-in-R [OF local-nilpotent-term-beta]

by simp

78

lemma (in local-nilpotent-alpha) psi-in-hom: shows Ψ ∈ hom-completion D D
using psi-in-R and ring-R by simp

lemma (in local-nilpotent-alpha) psi-x-in-D [simp]: shows Ψ x ∈ carrier D
using psi-def local-nilpotent-term.power-series-def [OF local-nilpotent-term-beta,

of x]
D .finprod-closed [of {..bound-psi x} (λi ::nat . (α(ˆ)Ri) x)] and finite-nat-iff-bounded

[of {..bound-psi x}]
and local-nilpotent-term.power-pi-D [OF local-nilpotent-term-beta, of x bound-psi

x] by simp

lemma (in local-nilpotent-alpha) h-alpha-eq-beta-h: h ⊗R α(ˆ)R(i ::nat) = β (ˆ)R
i ⊗R h
proof (induct i)

case 0
from h-in-R and R.nat-pow-0 show h ⊗R α (ˆ)R (0 ::nat) = β (ˆ)R (0 ::nat)
⊗R h by simp
next

case (Suc i)
assume hypo: h ⊗R α (ˆ)R i = β (ˆ)R i ⊗R h
from R.nat-pow-mult [OF beta-in-R, of (1 ::nat) i] and R.nat-pow-1 [OF beta-in-R]
have β (ˆ)R (Suc i) ⊗R h = β ⊗R β (ˆ)R i ⊗R h by simp
also from hypo and R.m-assoc [OF beta-in-R beta-i-in-R [of i] h-in-R] have . . .

= β ⊗R (h ⊗R α (ˆ)R i) by simp
also from sym [OF R.m-assoc [OF beta-in-R h-in-R alpha-i-in-R [of i]]] and

beta-def and h-in-R pert-in-R alpha-i-in-R [of i]
have . . . = h ⊗R 	R (δ ⊗R h) ⊗R α (ˆ)R i by algebra
also from R.m-assoc [OF h-in-R - alpha-i-in-R [of i], of 	R (δ ⊗R h)] pert-in-R

h-in-R
have . . . = h ⊗R (R (δ ⊗R h) ⊗R α (ˆ)R i) by simp
also from alpha-def and sym [OF R.nat-pow-1 [OF alpha-in-R]] and R.nat-pow-mult

[OF alpha-in-R, of (1 ::nat) i]
have . . . = h ⊗R α (ˆ)R (Suc i) by simp
finally show h ⊗R α (ˆ)R Suc i = β (ˆ)R Suc i ⊗R h by simp

qed

6.6 Lemmas 2.2.1 to 2.2.6

Lemma 2.2.1

lemma (in local-nilpotent-alpha) lemma-2-2-1 : shows bound-psi (h x) ≤ bound-phi
x
proof −

from h-alpha-eq-beta-h and ring-R have (β (ˆ)R bound-phi x) (h x) = (h ((α
(ˆ)R bound-phi x) x)) by (auto simp add : expand-fun-eq)

also have . . . = h (1)
proof (cases x ∈ carrier D)
case True with local-nilpotent-term.a-local-nilpot [OF local-nilpotent-term-alpha]

show ?thesis by simp
next

79

case False from alpha-i-in-R [of bound-phi x] and ring-R and completion-closed2
[OF - False, of α (ˆ)R bound-phi x D]

show ?thesis unfolding hom-completion-def by simp
qed
also from hom-completion-one [of D D h] h-in-R ring-R and D-diff-group have

. . . = 1 unfolding diff-group-def comm-group-def group-def by simp
finally have beta-x-h-x-eq-one: (β (ˆ)R bound-phi x) (h x) = 1 by simp
have beta-h-x-h-x-eq-one: (β (ˆ)R bound-psi (h x)) (h x) = 1
proof (cases h x ∈ carrier D)
case True with local-nilpotent-term.a-local-nilpot [OF local-nilpotent-term-beta]

show ?thesis by simp
next

case False with ring-R and h-in-R
show ?thesis unfolding hom-completion-def completion-fun2-def completion-def

hom-def Pi-def by auto
qed
from beta-x-h-x-eq-one and beta-h-x-h-x-eq-one

and local-nilpotent-term.bound-is-least [OF local-nilpotent-term-beta, of h x]
and Least-le [of λi ::nat . (β (ˆ)R i) (h x) = 1 bound-phi x] show ?thesis by

simp
qed

Lemma 2.2.3 with endomorphisms applied to elements

lemma (in local-nilpotent-alpha) lemma-2-2-3-elements: shows (h ◦ Φ) x = (Ψ ◦
h) x
proof −

let ?max = max (bound-phi x) (bound-psi x)
from ring-R have (h ◦ Φ) x = h (Φ x) by simp
also from phi-def have . . . = h (local-nilpotent-term.power-series D R α bound-phi

x) by simp
also from local-nilpotent-term.power-series-extended [OF local-nilpotent-term-alpha,

of x ?max]
and le-maxI1 [of bound-phi x bound-psi x]

have . . . = h (
⊗

i∈{..?max}. (α (ˆ)R i) x) by simp
also from local-nilpotent-term.power-series-dist-l [OF local-nilpotent-term-alpha

h-in-R, of x ?max] and h-in-R
have . . . = (

⊗
i∈{..?max}. h ((α (ˆ)R i) x)) by simp

also from h-alpha-eq-beta-h and ring-R have . . . = (
⊗

i∈{..?max}. ((β (ˆ)R
i) (h x))) by (auto simp add : expand-fun-eq)
also from sym [OF local-nilpotent-term.power-series-extended [OF local-nilpotent-term-beta,

of h x ?max]]
and lemma-2-2-1 [of x]

have . . . = local-nilpotent-term.power-series D R β bound-psi (h x) by arith
also from psi-def have . . . = Ψ (h x) by simp
also have . . . = (Ψ ◦ h) x by simp
finally show ?thesis by simp

qed

Lemma 2.2.3 with endomorphisms

80

corollary (in local-nilpotent-alpha) lemma-2-2-3 : shows (h ◦ Φ) = (Ψ ◦ h) using
lemma-2-2-3-elements by (simp add : expand-fun-eq)

The following lemma is simple a renaming of the previous one; the idea is
to give to the previous result the name it had before as a premise, to keep
the files correspoding to the equational part of the proof working

lemma (in local-nilpotent-alpha) psi-h-h-phi : shows Ψ ⊗R h = h ⊗R Φ using
lemma-2-2-3 and ring-R by simp

lemma (in local-nilpotent-alpha) alpha-delta-eq-delta-beta: shows α(ˆ)R(i ::nat)
⊗R δ = δ ⊗R β (ˆ)R i
proof (induct i)

case 0
from pert-in-R and R.nat-pow-0 show α (ˆ)R (0 ::nat) ⊗R δ = δ ⊗R β (ˆ)R

(0 ::nat) by simp
next

case (Suc i)
assume hypo: α (ˆ)R i ⊗R δ = δ ⊗R β (ˆ)R i
from R.nat-pow-mult [OF alpha-in-R, of (1 ::nat) i] and R.nat-pow-1 [OF

alpha-in-R]
have α (ˆ)R (Suc i) ⊗R δ = α ⊗R α (ˆ)R i ⊗R δ by simp
also from hypo and R.m-assoc [OF alpha-in-R alpha-i-in-R [of i] pert-in-R]

have . . . = α ⊗R (δ ⊗R β (ˆ)R i) by simp
also from sym [OF R.m-assoc [OF alpha-in-R pert-in-R beta-i-in-R [of i]]] and

alpha-def and h-in-R pert-in-R beta-i-in-R [of i]
have . . . = δ ⊗R 	R (h ⊗R δ) ⊗R β (ˆ)R i by algebra
also from R.m-assoc [OF pert-in-R - beta-i-in-R [of i], of 	R (h ⊗R δ)] pert-in-R

h-in-R
have . . . = δ ⊗R (R (h ⊗R δ) ⊗R β (ˆ)R i) by simp
also from beta-def and sym [OF R.nat-pow-1 [OF beta-in-R]] and R.nat-pow-mult

[OF beta-in-R, of (1 ::nat) i]
have . . . = δ ⊗R β (ˆ)R (Suc i) by simp
finally show α (ˆ)R Suc i ⊗R δ = δ ⊗R β (ˆ)R Suc i by simp

qed

Lemma 2.2.2 in Aransay’s memoir

lemma (in local-nilpotent-alpha) lemma-2-2-2 : shows bound-phi (δ x) ≤ bound-psi
x
proof −

from alpha-delta-eq-delta-beta and ring-R have (α (ˆ)R bound-psi x) (δ x) =
(δ ((β (ˆ)R bound-psi x) x)) by (auto simp add : expand-fun-eq)

also have . . . = δ (1)
proof (cases x ∈ carrier D)
case True with local-nilpotent-term.a-local-nilpot [OF local-nilpotent-term-beta]

show ?thesis by simp
next
case False from beta-i-in-R [of bound-psi x] and ring-R and completion-closed2

[OF - False, of β (ˆ)R bound-psi x D]
show ?thesis unfolding hom-completion-def by simp

81

qed
also from hom-completion-one [of D D δ] pert-in-R ring-R and D-diff-group

have . . . = 1
unfolding diff-group-def comm-group-def group-def by simp

finally have alpha-x-pert-x-eq-one: (α (ˆ)R bound-psi x) (δ x) = 1 by simp
have alpha-pert-x-pert-x-eq-one: (α (ˆ)R bound-phi (δ x)) (δ x) = 1
proof (cases δ x ∈ carrier D)
case True with local-nilpotent-term.a-local-nilpot [OF local-nilpotent-term-alpha]

show ?thesis by simp
next

case False with ring-R and pert-in-R
show ?thesis unfolding hom-completion-def completion-fun2-def completion-def

hom-def Pi-def by auto
qed
from alpha-x-pert-x-eq-one and alpha-pert-x-pert-x-eq-one

and local-nilpotent-term.bound-is-least [OF local-nilpotent-term-alpha, of δ x]
and Least-le [of λi ::nat . (α (ˆ)R i) (δ x) = 1 bound-psi x] show ?thesis by

simp
qed

Lemma 2.2.4 over endomorphisms applied to generic elements
lemma (in local-nilpotent-alpha) lemma-2-2-4-elements: shows (δ ◦ Ψ) x = (Φ ◦
δ) x
proof −

let ?max = max (bound-psi x) (bound-phi x)
from ring-R have (δ ◦ Ψ) x = δ (Ψ x) by simp
also from psi-def have . . . = δ (local-nilpotent-term.power-series D R β bound-psi

x) by simp
also from local-nilpotent-term.power-series-extended [OF local-nilpotent-term-beta,

of x ?max]
and le-maxI1 [of bound-psi x bound-phi x]

have . . . = δ (
⊗

i∈{..?max}. (β (ˆ)R i) x) by simp
also from local-nilpotent-term.power-series-dist-l [OF local-nilpotent-term-beta

pert-in-R, of x ?max] and pert-in-R
have . . . = (

⊗
i∈{..?max}. δ ((β (ˆ)R i) x)) by simp

also from alpha-delta-eq-delta-beta and ring-R have . . . = (
⊗

i∈{..?max}. ((α
(ˆ)R i) (δ x))) by (auto simp add : expand-fun-eq)
also from sym [OF local-nilpotent-term.power-series-extended [OF local-nilpotent-term-alpha,

of δ x ?max]]
and lemma-2-2-2 [of x] have . . . = local-nilpotent-term.power-series D R α

bound-phi (δ x) by arith
also from phi-def have . . . = (Φ ◦ δ) x by simp
finally show ?thesis by simp

qed

Lemma 2.2.4 over endomorphisms
corollary (in local-nilpotent-alpha) lemma-2-2-4 : shows (δ ◦ Ψ) = (Φ ◦ δ) using
lemma-2-2-4-elements by (simp add : expand-fun-eq)

The following lemma is simple a renaming of the previous one; the idea is

82

to give to the previous result the name it had before as a premise, to keep
the files correspoding to the equational part of the proof working

lemma (in local-nilpotent-alpha) delta-psi-phi-delta: shows δ ⊗R Ψ = Φ ⊗R δ
using lemma-2-2-4 and ring-R by simp

Lemma 2.2.5 over a generic element of the domain

lemma (in local-nilpotent-alpha) lemma-2-2-5-elements: shows Ψ x = (1R 	R (h
⊗R δ ⊗R Ψ)) x and Ψ x = (1R 	R (h ⊗R Φ ⊗R δ)) x

and Ψ x = (1R 	R (Ψ ⊗R h ⊗R δ)) x
proof −

from psi-def have Ψ x = local-nilpotent-term.power-series D R β bound-psi x
by simp
also from local-nilpotent-term.power-series-extended [OF local-nilpotent-term-beta,

of x Suc (bound-psi x)]
have . . . = (

⊗
j∈{..Suc (bound-psi x)}. (β (ˆ)R j) x) by simp

also from local-nilpotent-term.power-series-first-element [OF local-nilpotent-term-beta,
of x Suc (bound-psi x)]

have . . . = (β (ˆ)R (0 ::nat)) x ⊗ (
⊗

j∈{1 ..Suc (bound-psi x)}. (β (ˆ)R j) x)
by simp
also from local-nilpotent-term.power-series-factor [OF local-nilpotent-term-beta,

of x bound-psi x]
have . . . = (β (ˆ)R (0 ::nat)) x ⊗ (β (

⊗
j∈{..bound-psi x}. (β (ˆ)R j) x)) by

simp
also from R.nat-pow-0 [of β] and beta-def and psi-def

and local-nilpotent-term.power-series-def [OF local-nilpotent-term-beta, of x]
ring-R

have . . . = 1R x ⊗ (R (h ⊗R δ) ⊗R Ψ) x by simp
also have . . . = (1R ⊕R (R (h ⊗R δ) ⊗R Ψ)) x
proof (cases x ∈ carrier D)

case True with ring-R show ?thesis by simp
next

case False
with ring-R have one-x : 1R x = 1 by simp
moreover
from h-in-R pert-in-R and psi-in-R have (R (h ⊗R δ) ⊗R Ψ) ∈ carrier R

by simp
with False and ring-R and completion-closed2 [of (R (h ⊗R δ) ⊗R Ψ) D

D x] have h-pert-psi : (R (h ⊗R δ) ⊗R Ψ) x = 1
by (unfold hom-completion-def , simp)

moreover
from h-in-R pert-in-R and psi-in-R have 1R ⊕R (R (h ⊗R δ) ⊗R Ψ) ∈

carrier R by simp
with False and ring-R and completion-closed2 [of (R (h ⊗R δ) ⊗R Ψ) D

D x]
have one-h-pert-psi : (1R ⊕R 	R (h ⊗R δ) ⊗R Ψ) x = 1 by simp
ultimately show ?thesis by simp

qed
also from R.one-closed and pert-in-R and h-in-R and psi-in-R have . . . = (1R
	R (h ⊗R δ ⊗R Ψ)) x by algebra

83

finally show psi-eq : Ψ x = (1R 	R (h ⊗R δ ⊗R Ψ)) x by simp
from lemma-2-2-4 and R.m-assoc [OF h-in-R pert-in-R psi-in-R] and sym [OF

R.m-assoc [OF h-in-R phi-in-R pert-in-R]] and ring-R and psi-eq
show psi-eq2 : Ψ x = (1R 	R (h ⊗R Φ ⊗R δ)) x by simp
with lemma-2-2-3 and ring-R show Ψ x = (1R 	R (Ψ ⊗R h ⊗R δ)) x by simp

qed

Lemma 2.2.5 in generic terms

lemma (in local-nilpotent-alpha) lemma-2-2-5 : shows Ψ = 1R 	R (h ⊗R δ ⊗R
Ψ) and Ψ = 1R 	R (h ⊗R Φ ⊗R δ)
and Ψ = 1R 	R (Ψ ⊗R h ⊗R δ) using lemma-2-2-5-elements by (simp-all add :

expand-fun-eq)

The following lemma is simple a renaming of the previous one; the idea is
to give to the previous result the name it had before as a premise, to keep
the proofs correspoding to the equational part of the proof working

lemma (in local-nilpotent-alpha) psi-prop: shows Ψ = 1R 	R (h ⊗R δ ⊗R Ψ)
and Ψ = 1R 	R (h ⊗R Φ ⊗R δ)

and Ψ = 1R 	R (Ψ ⊗R h ⊗R δ) using lemma-2-2-5 .

Lemma 2.2.6 over a generic element of the domain

lemma (in local-nilpotent-alpha) lemma-2-2-6-elements: shows Φ x = (1R 	R (δ
⊗R h ⊗R Φ)) x and Φ x = (1R 	R (δ ⊗R Ψ ⊗R h)) x

and Φ x = (1R 	R (Φ ⊗R δ ⊗R h)) x
proof −

from phi-def have Φ x = local-nilpotent-term.power-series D R α bound-phi x
by simp
also from local-nilpotent-term.power-series-extended [OF local-nilpotent-term-alpha,

of x Suc (bound-phi x)]
have . . . = (

⊗
j∈{..Suc (bound-phi x)}. (α (ˆ)R j) x) by simp

also from local-nilpotent-term.power-series-first-element [OF local-nilpotent-term-alpha,
of x Suc (bound-phi x)]

have . . . = (α (ˆ)R (0 ::nat)) x ⊗ (
⊗

j∈{1 ..Suc (bound-phi x)}. (α (ˆ)R j) x)
by simp
also from local-nilpotent-term.power-series-factor [OF local-nilpotent-term-alpha,

of x bound-phi x]
have . . . = (α (ˆ)R (0 ::nat)) x ⊗ (α (

⊗
j∈{..bound-phi x}. (α (ˆ)R j) x)) by

simp
also from R.nat-pow-0 [of α] and alpha-def and phi-def and local-nilpotent-term.power-series-def

[OF local-nilpotent-term-alpha, of x]
ring-R

have . . . = 1R x ⊗ (R (δ ⊗R h) ⊗R Φ) x by simp
also have . . . = (1R ⊕R (R (δ ⊗R h) ⊗R Φ)) x
proof (cases x ∈ carrier D)

case True with ring-R show ?thesis by simp
next

case False
with ring-R have one-x : 1R x = 1 by simp

84

moreover
from h-in-R pert-in-R and phi-in-R have (R (δ ⊗R h) ⊗R Φ) ∈ carrier R

by simp
with False and ring-R and completion-closed2 [of (R (δ ⊗R h) ⊗R Φ) D D

x] have h-pert-psi : (R (δ ⊗R h) ⊗R Φ) x = 1
unfolding hom-completion-def by simp

moreover
from h-in-R pert-in-R and phi-in-R have 1R ⊕R (R (δ ⊗R h) ⊗R Φ) ∈

carrier R by simp
with False and ring-R and completion-closed2 [of (R (δ ⊗R h) ⊗R Φ) D D

x]
have one-h-pert-psi : (1R ⊕R 	R (δ ⊗R h) ⊗R Φ) x = 1 by simp
ultimately show ?thesis by simp

qed
also from R.one-closed and pert-in-R and h-in-R and phi-in-R have . . . = (1R
	R (δ ⊗R h ⊗R Φ)) x by algebra

finally show phi-eq : Φ x = (1R 	R (δ ⊗R h ⊗R Φ)) x by simp
from lemma-2-2-3 and R.m-assoc [OF pert-in-R h-in-R phi-in-R] and sym [OF

R.m-assoc [OF pert-in-R psi-in-R h-in-R]] and ring-R and phi-eq
show phi-eq2 : Φ x = (1R 	R (δ ⊗R Ψ ⊗R h)) x by simp
with lemma-2-2-4 and ring-R show Φ x = (1R 	R (Φ ⊗R δ ⊗R h)) x by simp

qed

Lemma 2.2.6

lemma (in local-nilpotent-alpha) lemma-2-2-6 : shows Φ = (1R 	R (δ ⊗R h ⊗R
Φ)) and Φ = (1R 	R (δ ⊗R Ψ ⊗R h))

and Φ = (1R 	R (Φ ⊗R δ ⊗R h)) using lemma-2-2-6-elements by (simp-all
add : expand-fun-eq)

The following lemma is simple a renaming of the previous one; the idea is
to give to the previous result the name it had before as a premise, to keep
the proofs correspoding to the equational part of the proof working

lemma (in local-nilpotent-alpha) phi-prop: shows Φ = 1R 	R (δ ⊗R h ⊗R Φ)
and Φ = 1R 	R (δ ⊗R Ψ ⊗R h)

and Φ = 1R 	R (Φ ⊗R δ ⊗R h) using lemma-2-2-6 .

end

7 Lemma 2.2.15 in Aransay’s memoir

theory lemma-2-2-15-local-nilpot
imports
analytic-part-local
begin

We define a locale setting merging the specifications introduced for lemma
2 .2 .14 and also the one created for the local nilpotent term alpha

A few definitions are also provided in this locale setting

85

locale lemma-2-2-15 = lemma-2-2-14 D R h + local-nilpotent-alpha D R C f g h
δ α bound-phi

context lemma-2-2-15
begin

definition h ′ where h ′ == h ⊗R Φ

definition p ′ where p ′ == ((differD) ⊕R δ) ⊗R h ′ ⊕R h ′ ⊗R ((differD) ⊕R δ)

definition diff ′ where diff ′ == differ ⊕R δ

definition D ′ where D ′ == (| carrier = carrier D , mult = mult D , one = one
D , diff = differ ⊕R δ|)

definition ker-p ′ where ker-p ′ == kernel (| carrier = carrier D , mult = mult D ,
one = one D , diff = differ ⊕R δ|)

(| carrier = carrier D , mult = mult D , one = one D , diff = differ ⊕R δ|) p ′

definition diff-group-ker-p ′

where diff-group-ker-p ′ == (|carrier = kernel (| carrier = carrier D , mult =
mult D , one = one D , diff = differ ⊕R δ|)

(| carrier = carrier D , mult = mult D , one = one D , diff = differ ⊕R δ|) p ′,
mult = mult D ,

one = one D , diff = completion ((|carrier = kernel (| carrier = carrier D , mult
= mult D , one = one D , diff = differ ⊕R δ|)

(| carrier = carrier D , mult = mult D , one = one D , diff = differ ⊕R δ|) p ′,
mult = mult D , one = one D , diff = differ ⊕R δ|))

(| carrier = carrier D , mult = mult D , one = one D , diff = differ ⊕R δ|) (differ
⊕R δ) |)

definition inc-ker-p ′ where inc-ker-p ′ == (λx . if x ∈ kernel (| carrier = carrier
D , mult = mult D , one = one D , diff = differ ⊕R δ|)

(| carrier = carrier D , mult = mult D , one = one D , diff = differ ⊕R δ|) p ′

then x else 1D ′)

end

lemma (in lemma-2-2-15) h ′-in-R [simp]: shows h ′ ∈ carrier R using h ′-def by
simp

lemma (in lemma-2-2-15) pert-in-R [simp]: shows δ ∈ carrier R using delta-pert
and pert-def [of D] by simp

lemma (in lemma-2-2-15) p ′-in-R [simp]: shows p ′ ∈ carrier R using p ′-def and
diff-pert-in-R [OF delta-pert] and h ′-in-R by simp

lemma (in lemma-2-2-15) diff ′-in-R [simp]: shows diff ′∈ carrier R using diff ′-def
diff-in-R pert-in-R by simp

86

The endomorphisms (not the differential endomorphisms) over a differential
group happen to be the same ones as the homomorphisms over a perturbed
version of this differential group

In other words, the definition of homomorphism over a differential group is
independient of the differential

In the case of differential homomorphisms, this is not always true

lemma (in ring-endomorphisms) hom-completion-eq : assumes δ ∈ pert D
shows hom-completion (|carrier = carrier D , mult = mult D , one = one D , diff

= differ ⊕R δ|)
(|carrier = carrier D , mult = mult D , one = one D , diff = differ ⊕R δ|) =

hom-completion D D
using ring-R unfolding hom-completion-def completion-fun2-def completion-def

hom-def expand-fun-eq by auto

lemma (in ring-endomorphisms) ring-endomorphisms-pert : assumes delta: δ ∈
pert D
shows ring-endomorphisms (|carrier = carrier D , mult = mult D , one = one D ,

diff = differ ⊕R δ|) R
(is ring-endomorphisms ?D ′ R)

proof −
from diff-group-pert-is-diff-group [OF delta] have diff-group-pert : diff-group ?D ′

by simp
moreover from prems have R-ring : ring R unfolding ring-endomorphisms-def

[of D R] by simp
moreover from ring-R have R = (|carrier = hom-completion ?D ′ ?D ′, mult =

op ◦,
one = λx . if x ∈ carrier ?D ′ then id x else 1?D ′,
zero = λx . if x ∈ carrier ?D ′ then 1?D ′ else 1?D ′,
add = λf g x . if x ∈ carrier ?D ′ then f x ⊗?D ′ g x else 1?D ′|)
proof −

from ring-R and hom-completion-eq [OF delta] have carrier R = hom-completion
?D ′ ?D ′ by simp

moreover from ring-R have mult R = op ◦ by simp
moreover from ring-R have one R = (λx . if x ∈ carrier ?D ′ then id x else

1?D ′) by (simp add : expand-fun-eq)
moreover from ring-R have zero R = (λx . if x ∈ carrier ?D ′ then 1?D ′ else

1?D ′) by simp
moreover from ring-R have add R = (λf g x . if x ∈ carrier ?D ′ then f x

⊗?D ′ g x else 1?D ′) by (simp add : expand-fun-eq)
ultimately show ?thesis by auto

qed
ultimately show ?thesis unfolding ring-endomorphisms-def ring-endomorphisms-axioms-def

Ring .ring-def diff-group-def by simp
qed

The two following lemmas prove that h ′ ⊗R h ′ = 0R and h ′ ⊗R diff ′ ⊗R

87

h ′ = h ′; these are the properties that will allow us to introduce reduction
D diff-group-ker-p (1R 	R p) inc-ker-p h in order to define the reduction
needed for Lemma 2 .2 .15

lemma (in lemma-2-2-15) h ′-nil : shows h ′ ⊗R h ′ = 0R
proof −

from h ′-def have h ′ ⊗R h ′ = (h ⊗R Φ) ⊗R (h ⊗R Φ) by simp
also from psi-h-h-phi and h-in-R phi-in-R psi-in-R and R.m-assoc [of Ψ h (h
⊗R Φ)] and R.m-assoc [of h h Φ]

have . . . = Ψ ⊗R (h ⊗R h ⊗R Φ) by simp
also from h-nil have . . . = 0R by simp
finally show ?thesis by simp

qed

lemma (in lemma-2-2-15) h ′d ′h ′-h ′: shows h ′ ⊗R diff ′ ⊗R h ′ = h ′

proof −
have h ′ ⊗R diff ′ ⊗R h ′ = (h ⊗R Φ) ⊗R diff ′ ⊗R (h ⊗R Φ) unfolding h ′-def

by simp
also from psi-h-h-phi have . . . = (Ψ ⊗R h) ⊗R diff ′ ⊗R (h ⊗R Φ) by simp
also from h-in-R phi-in-R psi-in-R diff ′-def diff-in-R pert-in-R
have . . . = (Ψ ⊗R (h ⊗R (differD) ⊗R h ⊗R Φ)) ⊕R (Ψ ⊗R h) ⊗R ((δ ⊗R h)
⊗R Φ) by algebra

also have . . . = (Ψ ⊗R (h ⊗R Φ)) ⊕R (Ψ ⊗R h) ⊗R (1R 	R Φ)
proof −

from phi-prop have Φ = 1R 	R δ ⊗R h ⊗R Φ by simp
with h-in-R phi-in-R pert-in-R have 1R 	R Φ = 1R 	R (1R 	R δ ⊗R h

⊗R Φ) by algebra
with h-in-R phi-in-R pert-in-R have r-h-p: 1R 	R Φ = δ ⊗R h ⊗R Φ by

algebra
from hdh-h have l-h-p: h ⊗R (differD) ⊗R h = h by simp
from r-h-p and l-h-p show ?thesis by simp

qed
also from h-in-R phi-in-R psi-in-R diff-in-R pert-in-R have . . . = Ψ ⊗R h ⊗R

Φ ⊕R Ψ ⊗R h 	R Ψ ⊗R h ⊗R Φ by algebra simp

also from h-in-R phi-in-R psi-in-R diff-in-R pert-in-R have . . . = Ψ ⊗R h by
algebra

also from psi-h-h-phi have . . . = h ⊗R Φ by simp
also from h ′-def have . . . = h ′ by simp
finally show ?thesis by simp

qed

The following lemma is an instantiation of lemma-2-2-14, where D ′ = (|carrier
= carrier D , mult = op ⊗, one = 1, diff = differ ⊕R δ|) R = R, and finally
h = h ⊗R Φ.

Therefore, the premises of locale lemma-2-2-14 have to be verified

88

It is not neccesary to explicitly prove that diff-group-ker-p ′ is a differential
group, since it is one of the premises in the definition of reduction

lemma (in lemma-2-2-15) lemma-2-2-15 : shows reduction D ′ diff-group-ker-p ′

(1R 	R p ′) inc-ker-p ′ h ′

proof −

from diff-group-pert-is-diff-group and delta-pert have diff-group-D ′: diff-group
D ′ unfolding D ′-def by simp

moreover
from h ′-in-R and ring-R and hom-completion-eq [OF delta-pert] have h ′ ∈

hom-completion D ′ D ′ unfolding D ′-def by simp
moreover
from h ′-nil have h ′-nilpot : h ′ ⊗R h ′ = 0R by simp
moreover
from h ′d ′h ′-h ′ have h ′ ⊗R diff ′ ⊗R h ′ = h ′ by simp
moreover
from ring-endomorphisms-pert [OF delta-pert] and D ′-def have ring-D ′: ring-endomorphisms

D ′ R unfolding ring-endomorphisms-def by simp

ultimately have lemma-2-2-14 : lemma-2-2-14 D ′ R h ′

unfolding lemma-2-2-14-def lemma-2-2-14-axioms-def diff-group-def ring-endomorphisms-def
diff ′-def D ′-def by simp

show ?thesis
using lemma-2-2-14 .lemma-2-2-14 [OF lemma-2-2-14]
unfolding lemma-2-2-14 .p-def [OF lemma-2-2-14] lemma-2-2-14 .inc-ker-p-def

[OF lemma-2-2-14]
lemma-2-2-14 .diff-group-ker-p-def [OF lemma-2-2-14]

unfolding diff-group-ker-p ′-def inc-ker-p ′-def inc-ker-p-def p ′-def D ′-def by
simp
qed

end

8 Proposition 2.2.16 and Lemma 2.2.17 in Aransay’s
memoir

theory lemma-2-2-17-local-nilpot
imports
lemma-2-2-15-local-nilpot

begin

8.1 Previous definitions

Locale proposition-2-2-16 does not introduce new facts; only some new def-
initions are given in the locale

locale proposition-2-2-16 = lemma-2-2-15

89

context proposition-2-2-16
begin

definition π where π = 1R 	R p

definition π ′ where π ′ = 1R 	R p ′

end

The following lemma has been extracted from the proof of Proposition
2 .2 .16 as stated in the memoir

lemma (in proposition-2-2-16) hp ′-h [simp]: shows h ⊗R p ′ = h and p ′ ⊗R h
= h

proof −
show h ⊗R p ′ = h
proof −

from p ′-def and diff ′-def have h ⊗R p ′ = h ⊗R ((differ ⊕R δ) ⊗R h ′ ⊕R
h ′ ⊗R (differ ⊕R δ)) by simp

also from diff-in-R and pert-in-R and h ′-in-R and h-in-R
have . . . = h ⊗R ((differ ⊕R δ) ⊗R h ′) ⊕R h ⊗R (h ′ ⊗R (differ ⊕R δ)) by

algebra
also from diff-in-R and pert-in-R and h ′-in-R and h-in-R
have . . . = h ⊗R (differ ⊗R h ′ ⊕R δ ⊗R h ′) ⊕R h ⊗R h ′ ⊗R (differ ⊕R δ)

by algebra
also from diff-in-R and pert-in-R and h ′-in-R and h-in-R and h ′-def
have . . . = h ⊗R (differ ⊗R (h ⊗R Φ)) ⊕R h ⊗R (δ ⊗R (h ⊗R Φ)) ⊕R h

⊗R (h ⊗R Φ) ⊗R (differ ⊕R δ) by algebra
also from diff-in-R and pert-in-R and h-in-R and phi-in-R
have . . . = h ⊗R differ ⊗R h ⊗R Φ ⊕R h ⊗R (δ ⊗R h ⊗R Φ) ⊕R h ⊗R h

⊗R Φ ⊗R (differ ⊕R δ) by algebra
also have . . . = h ⊗R Φ ⊕R h ⊗R (1R 	R Φ)
proof −

from phi-prop have Φ = 1R 	R δ ⊗R h ⊗R Φ by simp
with phi-in-R and h-in-R and pert-in-R have 1R 	R Φ = 1R 	R (1R 	R

δ ⊗R h ⊗R Φ) by algebra
with phi-in-R and h-in-R and pert-in-R have 1R 	R Φ = δ ⊗R h ⊗R Φ

by algebra
with diff-in-R and pert-in-R and h ′-in-R and h-in-R and phi-in-R and

hdh-h and h-nil
show ?thesis by algebra

qed
also from h-in-R and phi-in-R and R.r-one [OF h-in-R] have . . . = h by

algebra
finally show h ⊗R p ′ = h by simp

qed
next

show p ′ ⊗R h = h
proof −

90

from p ′-def and diff ′-def have p ′ ⊗R h = ((differ ⊕R δ) ⊗R h ′ ⊕R h ′ ⊗R
(differ ⊕R δ)) ⊗R h by simp

also from diff-in-R and h ′-in-R and h-in-R and pert-in-R
have . . . = ((differ ⊕R δ) ⊗R h ′) ⊗R h ⊕R (h ′ ⊗R (differ ⊕R δ)) ⊗R h by

algebra
also from diff-in-R and h ′-in-R and h-in-R and pert-in-R
have . . . = (differ ⊕R δ) ⊗R (h ′ ⊗R h) ⊕R ((h ′ ⊗R differ) ⊕R (h ′ ⊗R δ))

⊗R h by algebra
also from h ′-def and diff-in-R and h ′-in-R and h-in-R and pert-in-R
have . . . = (differ ⊕R δ) ⊗R (h ⊗R Φ ⊗R h) ⊕R h ′ ⊗R differ ⊗R h ⊕R h ′

⊗R δ ⊗R h by algebra
also from psi-h-h-phi h ′-def and diff-in-R and h ′-in-R and h-in-R and

pert-in-R
have . . . = (differ ⊕R δ) ⊗R (Ψ ⊗R h ⊗R h) ⊕R h ⊗R Φ ⊗R differ ⊗R h

⊕R h ⊗R Φ ⊗R δ ⊗R h by algebra
also have . . . = h ⊗R Φ ⊗R differ ⊗R h ⊕R (1R 	R Ψ) ⊗R h
proof −

from psi-prop have Ψ = (1R 	R h ⊗R Φ ⊗R δ) by simp
with psi-in-R and h-in-R and phi-in-R and pert-in-R have 1R 	R Ψ = 1R

	R (1R 	R h ⊗R Φ ⊗R δ) by algebra
with phi-in-R and h-in-R and pert-in-R have 1R 	R Ψ = h ⊗R Φ ⊗R δ

by algebra
with diff-in-R and pert-in-R and h-in-R and psi-in-R and phi-in-R and

hdh-h and h-nil and R.m-assoc [of Ψ h h]
show ?thesis by algebra

qed
also from psi-h-h-phi have . . . = (Ψ ⊗R h) ⊗R differ ⊗R h ⊕R (1R 	R Ψ)

⊗R h by algebra
also from phi-in-R and h-in-R and diff-in-R have . . . = Ψ ⊗R (h ⊗R differ

⊗R h) ⊕R (1R 	R Ψ) ⊗R h by (simp add : R.m-assoc)
also from hdh-h have . . . = Ψ ⊗R h ⊕R (1R 	R Ψ) ⊗R h by simp
also from psi-in-R and h-in-R and R.l-one [OF h-in-R] have . . . = h by

algebra
finally show p ′ ⊗R h = h by simp

qed
qed

Another rewriting step that will be later used

lemma (in lemma-2-2-14) ph-h[simp]: shows p ⊗R h = h and h ⊗R p = h
proof −

from p-def have p ⊗R h = ((differ ⊗R h ⊕R h ⊗R differ) ⊗R h) by simp
also from diff-in-R and h-in-R and hdh-h and h-nil have . . . = h by algebra
finally show p ⊗R h = h by simp

next
from p-def have h ⊗R p = (h ⊗R (differ ⊗R h ⊕R h ⊗R differ)) by simp
also from diff-in-R and h-in-R have . . . = h ⊗R (differ ⊗R h) ⊕R h ⊗R (h
⊗R differ) by algebra

also from diff-in-R and h-in-R have . . . = h ⊗R differ ⊗R h ⊕R h ⊗R h ⊗R
differ by algebra

91

also from h-in-R and diff-in-R and hdh-h and h-nil have . . . = h by algebra
finally show h ⊗R p = h by simp

qed

8.2 Proposition 2.2.16

The following lemma corresponds to the Proposition 2 .2 .16 as stated in
Aransay’s memoir

The previous lemmas h ⊗R p ′ = h
p ′ ⊗R h = h and p ⊗R h = h
h ⊗R p = h are now used

lemma (in proposition-2-2-16) proposition-2-2-16 [simp]:
shows h-π ′: h ⊗R π ′ = 0R and π ′-h: π ′ ⊗R h = 0R and π-h ′: π ⊗R h ′ = 0R

and h ′-π: h ′ ⊗R π = 0R
proof −
from π ′-def and h-in-R and p ′-in-R and R.r-one [OF h-in-R] and hp ′-h show

h ⊗R π ′ = 0R by algebra
next

from π ′-def and h-in-R and p ′-in-R and R.l-one [OF h-in-R] and hp ′-h show
π ′ ⊗R h = 0R by algebra
next

from π-def and h ′-def have π ⊗R h ′ = (1R 	R p) ⊗R (h ⊗R Φ) by simp
also from p-in-R and h-in-R and phi-in-R have . . . = (1R 	R p) ⊗R h ⊗R

Φ by algebra
also from ph-h and p-in-R and h-in-R and phi-in-R and R.l-one [OF h-in-R]

have . . . = 0R by algebra
finally show π ⊗R h ′ = 0R by simp

next
from π-def and h ′-def have h ′ ⊗R π = (h ⊗R Φ) ⊗R (1R 	R p) by simp
also from psi-h-h-phi have . . . = (Ψ ⊗R h) ⊗R (1R 	R p) by simp
also from psi-in-R and p-in-R and h-in-R have . . . = Ψ ⊗R (h ⊗R (1R 	R

p)) by algebra
also from p-in-R and h-in-R and psi-in-R and ph-h and R.r-one [OF h-in-R]

have . . . = 0R by algebra
finally show h ′ ⊗R π = 0R by simp

qed

lemma (in proposition-2-2-16) p ′-projector : shows p ′ ⊗R p ′ = p ′

proof −
have p ′ ⊗R p ′ = (diff ′ ⊗R h ′ ⊕R h ′ ⊗R diff ′) ⊗R (diff ′ ⊗R h ′ ⊕R h ′ ⊗R diff ′)

unfolding p ′-def diff ′-def by simp
also have . . . = (diff ′ ⊗R h ′ ⊕R h ′ ⊗R diff ′) (is - = ?d ′h ′ ⊕R ?h ′d ′)

proof (rule ring .idemp-prod)
from prems show ring R unfolding proposition-2-2-16-def lemma-2-2-15-def

lemma-2-2-14-def [of D R h] ring-endomorphisms-def by simp

92

from diff ′-in-R and h ′-in-R show ?d ′h ′ ∈ carrier R by simp
from diff ′-in-R and h ′-in-R show ?h ′d ′ ∈ carrier R by simp
from diff ′-in-R h ′-in-R and h ′d ′h ′-h ′ and R.m-assoc [of diff ′ h ′ ?d ′h ′] show

?d ′h ′ ⊗R ?d ′h ′ = ?d ′h ′ by algebra
from diff ′-in-R h ′-in-R and h ′d ′h ′-h ′ and sym [OF R.m-assoc [of diff ′ h ′

diff ′]] and sym [OF R.m-assoc [of h ′ ?d ′h ′ diff ′]]
show ?h ′d ′ ⊗R ?h ′d ′ = ?h ′d ′ by algebra
from diff ′-in-R h ′-in-R and h ′-nil and R.m-assoc [of diff ′ h ′ ?h ′d ′] and sym

[OF R.m-assoc [of h ′ h ′ diff ′]]
show ?d ′h ′ ⊗R ?h ′d ′ = 0R by algebra

from diff ′-in-R h ′-in-R and R.m-assoc [of h ′ diff ′ ?d ′h ′] and sym [OF
R.m-assoc [of diff ′ diff ′ h ′]]

and ring-endomorphisms.diff-nilpot [of D ′ R] and ring-endomorphisms-pert
[OF delta-pert]

show ?h ′d ′ ⊗R ?d ′h ′ = 0R unfolding D ′-def diff ′-def by simp
qed
also have diff ′ ⊗R h ′ ⊕R h ′ ⊗R diff ′ = p ′ unfolding p ′-def diff ′-def by simp
finally show ?thesis by simp

qed

The following lemmas π-projector and π ′-projector correspond to one of the
parts of the proof of Lemma 2.2.17, as stated in the memoir; here they have
been extracted as independent results, because later they will be used to get
some other results

lemma (in proposition-2-2-16) π-in-R [simp]: shows π ∈ carrier R using minus-closed
[OF R.one-closed p-in-R] and π-def and ring-R by simp

lemma (in proposition-2-2-16) π ′-in-R [simp]: shows π ′∈ carrier R using minus-closed
[OF R.one-closed p ′-in-R] and π ′-def and ring-R by simp

lemma (in proposition-2-2-16) π-projector : shows π ⊗R π = π
proof −

from π-def and p-in-R and minus-closed [OF R.one-closed p-in-R] and r-distr
[of 1R 	R p 1R 	R p] and a-inv-closed [OF p-in-R]

and R.r-one [OF minus-closed [OF R.one-closed p-in-R]]
have π ⊗R π = (1R 	R p) 	R (1R 	R p) ⊗R p by algebra
also from p-in-R and minus-closed [OF R.one-closed p-in-R] and p-projector

and l-distr [of 1R 	R p p] and a-inv-closed [OF p-in-R]
and R.l-one [OF p-in-R] have . . . = (1R 	R p) 	R p ⊕R p by algebra
also from π-def and p-in-R have . . . = π by algebra
finally show ?thesis by simp

qed

lemma (in proposition-2-2-16) π ′-projector : shows π ′ ⊗R π ′ = π ′

proof −
from π ′-def and p ′-in-R and minus-closed [OF R.one-closed p ′-in-R] and r-distr

[of 1R 	R p ′ 1R 	R p ′]
and a-inv-closed [OF p ′-in-R] and R.r-one [OF minus-closed [OF R.one-closed

p ′-in-R]]

93

have π ′ ⊗R π ′ = (1R 	R p ′) 	R (1R 	R p ′) ⊗R p ′ by algebra
also from p ′-in-R and minus-closed [OF R.one-closed p ′-in-R] and p ′-projector

and l-distr [of 1R 	R p ′ p ′]
and a-inv-closed [OF p ′-in-R] and R.l-one [OF p ′-in-R] have . . . = (1R 	R

p ′) 	R p ′ ⊕R p ′ by algebra
also from π ′-def and p ′-in-R have . . . = π ′ by algebra
finally show ?thesis by simp

qed

8.3 Lemma 2.2.17

Lemma 2 .2 .17 proves the existence of an isomorphism between the differ-
ential subgroups diff-group-im-π and diff-group-im-π ′

The isomorphism will be explicitly given

Lemma im-π-ker-p corresponds to the first part of the proof of Lemma 2.2.17
in Aransay’s memoir; in this part, we prove both im π ′ = kernel D ′ D ′ p ′,
where D ′ is the differential group perturbed, i.e., D ′ = (|carrier = carrier
D , mult = op ⊗, one = 1, diff = differ ⊕R δ|), and also im π = kernel D
D p

The reason to prove these equalities between sets is that later, it will be
easier to prove the existence of an isomorphism between diff-group-im-π
and diff-group-im-π ′ than between the kernel sets

The two following proofs in lemma im-π-ker-p are quite similar, but maybe
trying to extract the common parts and obtaining both goals just by in-
stantiation of the obtained common lemma would have been even, at least,
longer

lemma (in proposition-2-2-16) im-π-ker-p: shows image π (carrier D) = kernel
D D p and image π ′ (carrier D ′) = kernel D ′ D ′ p ′

proof −
show image π (carrier D) = kernel D D p
proof (intro equalityI)

show π ‘ carrier D ≤ kernel D D p
proof

fix x
assume x : x ∈ π ‘ carrier D then obtain y where y : y ∈ carrier D and

π-y : π (y) = x by auto
show x ∈ kernel D D p
proof (unfold kernel-def , simp, intro conjI)

from π-in-R and ring-R have π ∈ hom-completion D D by simp
with hom-completion-closed [OF - y , of π D] and π-y show x ∈ carrier

D by simp
next

from π-y have p x = p (π y) by simp

94

also have . . . = p (p (π y) ⊗ π (π y))
proof −

from π-def and p-in-R have 1R = p ⊕R π by algebra
then have 1R (π y) = (p ⊕R π) (π y) by simp
with y and hom-completion-closed [OF - y , of π D] and ring-R and

π-in-R have π y = p (π y) ⊗ π (π y) by simp
then show ?thesis by simp

qed
also from ring-R and y and p-in-R π-in-R and hom-completion-mult [of

p D D p (π y) π (π y)]
and hom-completion-closed [of π D D y] and hom-completion-closed [of

p D D π y] and hom-completion-closed [of π D D π y]
have . . . = p (p (π y)) ⊗ p (π (π y)) by simp
also from ring-R and p-projector and π-projector have . . . = p (π y) ⊗

p (π y) by (simp add : expand-fun-eq)
also have . . . = 1D
proof −

from π-def and p-in-R and p-projector and R.r-one [OF p-in-R] have
p ⊗R π = 0R by algebra

with ring-R and y have p (π y) = 1D by (simp add : expand-fun-eq)
then show ?thesis by simp

qed
finally show p x = 1D by simp

qed
qed
show kernel D D p ≤ π ‘ carrier D
proof (unfold image-def , auto)
fix x assume x : x ∈ kernel D D p then have x-in-D : x ∈ carrier D unfolding

kernel-def by simp
from π-def and p-in-R have 1R = π ⊕R p by algebra
then have 1R x = (π ⊕R p) x by simp
with x-in-D and ring-R have x = π x ⊗D p x by (simp add : expand-fun-eq)
with ring-R π-in-R and hom-completion-closed [of π D D x] and x and

D .r-one [of π x] have x = π x unfolding kernel-def by simp
with x-in-D show ∃ y∈carrier D . x = π y by auto

qed
qed

next
show π ′ ‘ carrier D ′ = kernel D ′ D ′ p ′

proof (intro equalityI)
show π ′ ‘ carrier D ′ ≤ kernel D ′ D ′ p ′

proof
fix x
assume x : x ∈ π ′ ‘ carrier D ′ then obtain y where y : y ∈ carrier D ′ and

π ′-y : π ′ (y) = x by auto
show x ∈ kernel D ′ D ′ p ′

proof (unfold D ′-def kernel-def , auto)
from π ′-in-R and ring-R have π ′ ∈ hom-completion D D by simp
with y and hom-completion-closed [of π ′ D D y] and π ′-y and D ′-def

95

show x ∈ carrier D by simp
next

from π ′-y have p ′ x = p ′ (π ′ y) by simp
also have . . . = p ′ (p ′ (π ′ y) ⊗ π ′ (π ′ y))
proof −

from π ′-def and p ′-in-R have 1R = p ′ ⊕R π ′ by algebra
then have 1R (π ′ y) = (p ′ ⊕R π ′) (π ′ y) by simp
with y and D ′-def and hom-completion-closed [of π ′ D D y] and ring-R

and π ′-in-R have π ′ y = p ′ (π ′ y) ⊗ π ′ (π ′ y) by simp
then show ?thesis by simp

qed
also from ring-R and y and D ′-def and p ′-in-R π ′-in-R and hom-completion-mult

[of p ′ D D p ′ (π ′ y) π ′ (π ′ y)]
and hom-completion-closed [of π ′ D D y] and hom-completion-closed [of

p ′ D D π ′ y]
and hom-completion-closed [of π ′ D D π ′ y]

have . . . = p ′ (p ′ (π ′ y)) ⊗ p ′ (π ′ (π ′ y)) by simp
also from ring-R and p ′-projector and π ′-projector have . . . = p ′ (π ′ y)

⊗ p ′ (π ′ y) by (simp add : expand-fun-eq)
also have . . . = 1D
proof −
from π ′-def and p ′-in-R and p ′-projector and R.r-one [OF p ′-in-R] have

p ′ ⊗R π ′ = 0R by algebra
with ring-R and y and D ′-def have p ′ (π ′ y) = 1D by (simp add :

expand-fun-eq)
then show ?thesis by simp

qed
finally show p ′ x = 1D by simp

qed
qed
show kernel D ′ D ′ p ′ ≤ π ′ ‘ carrier D ′

proof (unfold image-def , auto)
fix x assume x : x ∈ kernel D ′ D ′ p ′ then have x-in-D : x ∈ carrier D

unfolding kernel-def D ′-def by simp
from π ′-def and p ′-in-R have 1R = π ′ ⊕R p ′ by algebra
then have 1R x = (π ′ ⊕R p ′) x by simp

with x-in-D and ring-R have x = π ′ x ⊗D p ′ x by (simp add : expand-fun-eq)
with ring-R and π ′-in-R and hom-completion-closed [of π ′ D D x] and x

and D .r-one [of π ′ x] have x = π ′ x
unfolding kernel-def D ′-def by simp

with x-in-D show ∃ y∈carrier D ′. x = π ′ y unfolding D ′-def by auto
qed

qed
qed

The following definition is similar to the one of isomorphism given in Is-
abelle, but here we add the premise that the homomorphism has to be also
a completion. This is mainly to keep the coherence with the previous work

constdefs

96

iso-compl :: - => - => (′a => ′b) set (infixr ∼=compl 60)
D ∼=compl C == {h. h ∈ hom-completion D C & bij-betw h (carrier D) (carrier

C)}

The following is an introduction lemma for isomorphisms between groups;
maybe it could be introduced in the Group.thy file, avoiding the premise on
completions!!

lemma iso-complI : assumes closed :
∧

x . x ∈ carrier D =⇒ h x ∈ carrier C
and mult :

∧
x y . [[x ∈ carrier D ; y ∈ carrier D]] =⇒ h (x ⊗D y) = h x ⊗C h y

and complect : ∃ g . h = (λx . if x ∈ carrier D then g x else 1C)
and inj-on:

∧
x y . [[x ∈ carrier D ; y ∈ carrier D ; h (x) = h (y)]] =⇒ x=y

and image:
∧

y . y∈carrier C =⇒ ∃ x ∈ carrier D . y = h (x)
shows h ∈ D ∼=compl C
using prems
unfolding iso-compl-def unfolding hom-diff-def apply (simp add : expand-fun-eq)
unfolding hom-completion-def apply simp
unfolding completion-fun2-def completion-def apply (simp add : expand-fun-eq)
unfolding hom-def unfolding Pi-def apply simp
unfolding bij-betw-def inj-on-def apply simp
unfolding image-def by auto

Lemmas ππ ′π-π and π ′ππ ′-π have been also extracted from the proof of
Lemma 2 .2 .17 as stated in the memoir

They are used in order to prove injectivity and surjection of π and π ′

lemma (in proposition-2-2-16) ππ ′π-π: shows π ⊗R π ′ ⊗R π = π
proof −

from π ′-def have π ⊗R π ′ ⊗R π = π ⊗R (1R 	R p ′) ⊗R π by simp
also from π ′-in-R π-in-R p ′-in-R R.r-one [OF π-in-R] have . . . = (π 	R π ⊗R

p ′) ⊗R π by algebra
also from π ′-in-R π-in-R p ′-in-R and π-projector have . . . = π 	R π ⊗R p ′

⊗R π by algebra
also from p ′-def have . . . = π 	R π ⊗R ((differ ⊕R δ) ⊗R h ′ ⊕R h ′ ⊗R (differ
⊕R δ)) ⊗R π

(is - = π 	R π ⊗R (?diff ′ ⊗R h ′ ⊕R h ′ ⊗R ?diff ′) ⊗R π) by simp
also from π-in-R and diff-pert-in-R [OF delta-pert] and h ′-in-R and sym [OF

R.m-assoc [of π h ′ ?diff ′]]
have . . . = π 	R (π ⊗R (?diff ′ ⊗R h ′) ⊕R π ⊗R h ′ ⊗R ?diff ′) ⊗R π by algebra
also from proposition-2-2-16 and π-in-R and diff-pert-in-R [OF delta-pert] and

h ′-in-R
have . . . = π 	R (π ⊗R (?diff ′ ⊗R h ′)) ⊗R π by algebra
also from π-in-R and diff-pert-in-R [OF delta-pert] and h ′-in-R and R.m-assoc

[of π ?diff ′ ⊗R h ′ π] and R.m-assoc [of ?diff ′ h ′ π]
and proposition-2-2-16 have . . . = π by algebra

finally show π ⊗R π ′ ⊗R π = π by simp
qed

lemma (in proposition-2-2-16) π ′ππ ′-π ′: shows π ′ ⊗R π ⊗R π ′ = π ′

proof −

97

from π-def have π ′ ⊗R π ⊗R π ′ = π ′ ⊗R (1R 	R p) ⊗R π ′ by simp
also from π ′-in-R π-in-R p-in-R R.r-one [OF π ′-in-R] have . . . = (π ′ 	R π ′

⊗R p) ⊗R π ′ by algebra
also from π ′-in-R π-in-R p-in-R and π ′-projector have . . . = π ′ 	R π ′ ⊗R p
⊗R π ′ by algebra

also from p-def have . . . = π ′ 	R π ′ ⊗R (differ ⊗R h ⊕R h ⊗R differ) ⊗R π ′

by simp
also from π ′-in-R and diff-in-R and h-in-R and sym [OF R.m-assoc [of π ′ h

differ]]
have . . . = π ′ 	R (π ′ ⊗R (differ ⊗R h) ⊕R π ′ ⊗R h ⊗R differ) ⊗R π ′ by

algebra
also from proposition-2-2-16 and π ′-in-R and diff-in-R and h-in-R have . . .

= π ′ 	R (π ′ ⊗R (differ ⊗R h)) ⊗R π ′ by algebra
also from π ′-in-R and diff-in-R and h-in-R and R.m-assoc [of π ′ differ ⊗R h

π ′] and R.m-assoc [of differ h π ′] and proposition-2-2-16
have . . . = π ′ by algebra
finally show π ′ ⊗R π ⊗R π ′ = π ′ by simp

qed

The following locale definition only introduces some new definitions of con-
stants; they will improve the presentation of the results

locale lemma-2-2-17 = proposition-2-2-16

context lemma-2-2-17
begin

definition im-π where im-π == image π (carrier D)

definition im-π ′ where im-π ′ == image π ′ (carrier D ′)

definition diff-group-im-π where diff-group-im-π == (|carrier = image π (carrier
D), mult = mult D , one = one D ,

diff = completion (|carrier = image π (carrier D), mult = mult D , one = one
D , diff = diff D |) D (diff D)|)

definition diff-group-im-π ′where diff-group-im-π ′== (|carrier = image π ′ (carrier
D ′), mult = mult D , one = one D ,

diff = completion (|carrier = image π ′ (carrier D ′), mult = mult D , one = one
D , diff = (differ ⊕R δ)|)

(|carrier = carrier D , mult = mult D , one = one D , diff = (differ ⊕R δ)|) (differ
⊕R δ)|)

definition diff-im-π-def : diff-im-π == completion (|carrier = image π (carrier
D), mult = mult D , one = one D , diff = diff D |) D (diff D)

definition diff-im-π ′-def : diff-im-π ′ == completion (|carrier = image π ′ (carrier
D ′), mult = mult D , one = one D ,

diff =(differ ⊕R δ) |) (| carrier = carrier D , mult = mult D , one = one D , diff
= differ ⊕R δ|) (differ ⊕R δ)

98

definition τ where τ == completion
(| carrier = image π (carrier D), mult = mult D , one = one D ,
diff = completion (|carrier = image π (carrier D), mult = mult D , one = one

D , diff = diff D |) D (diff D)|)
(|carrier = image π ′ (carrier D ′), mult = mult D , one = one D ,
diff = completion (|carrier = image π ′ (carrier D ′), mult = mult D , one = one

D , diff = differ ⊕R δ|)
(|carrier = carrier D , mult = mult D , one = one D , diff = differ ⊕R δ|) (differ
⊕R δ) |) π ′

The following definition of τ ′ corresponds to the inverse of τ

definition
τ ′ where τ ′ == completion
(|carrier = image π ′ (carrier D ′), mult = mult D , one = one D ,
diff = completion (|carrier = image π ′ (carrier D ′), mult = mult D , one = one

D , diff = differ ⊕R δ|)
(|carrier = carrier D , mult = mult D , one = one D , diff = differ ⊕R δ|) (differ
⊕R δ) |)

(| carrier = image π (carrier D), mult = mult D , one = one D ,
diff = completion (|carrier = image π (carrier D), mult = mult D , one = one

D , diff = diff D |) D (diff D)|) π

end

As with Lemma 2 .2 .14, we divide the proof of Lemma 2 .2 .17 in four parts.
First we prove that there are two homomorphisms, one in each direction,
satisfying that they are isomorphisms. Then, in other two lemmas, we prove
that their compositions, also in both directions, are equal to the correspond-
ing identities

lemma (in lemma-2-2-17) lemma-2-2-17-first-part : shows τ ∈ (diff-group-im-π
∼=compl diff-group-im-π ′)
proof (intro iso-complI)

fix x assume x ∈ carrier diff-group-im-π then have x : x ∈ π‘ (carrier D)
unfolding diff-group-im-π-def by simp

then obtain y where y : y ∈ carrier D and π-y : π y = x by auto
with ring-R and π-in-R π ′-in-R and hom-completion-closed [of π D D y]

hom-completion-closed [of π ′ D D π y]
have π ′ x ∈ π ′ ‘ carrier D unfolding image-def by auto
with x show τ x ∈ carrier diff-group-im-π ′ unfolding diff-group-im-π ′-def and
τ -def and D ′-def

unfolding completion-def image-def by auto
next

fix x y assume x ∈ carrier diff-group-im-π and y ∈ carrier diff-group-im-π
then have x : x ∈ π‘ (carrier D) and y : y ∈ π‘ (carrier D) unfolding diff-group-im-π-def

by simp-all
then obtain x ′ y ′ where x ′: x ′ ∈ carrier D and y ′: y ′ ∈ carrier D and π-x ′:

π x ′ = x and π-y ′: π y ′ = y by auto

99

with ring-R and π ′-in-R and π-in-R and hom-completion-closed [of π D D x ′]
hom-completion-closed [of π D D y ′]

and D .m-closed [of (π x ′) (π y ′)] and hom-completion-mult [of π ′ D D x y]
and x y and sym [OF hom-completion-mult [of π D D x ′ y ′]]

show τ (x ⊗diff-group-im-π y) = τ x ⊗diff-group-im-π ′ τ y unfolding τ -def
diff-group-im-π-def diff-group-im-π ′-def completion-def by simp
next

from exI [of - τ] show ∃ g . τ = (λx . if x ∈ carrier diff-group-im-π then g x else
1diff-group-im-π ′)

unfolding τ -def diff-group-im-π-def diff-group-im-π ′-def completion-def by auto
next

fix x y assume x ∈ carrier diff-group-im-π and y ∈ carrier diff-group-im-π and
τ -eq : τ x = τ y
then have x : x ∈ π‘ (carrier D) and y : y ∈ π‘ (carrier D) unfolding diff-group-im-π-def

by simp-all
then obtain x ′ y ′ where x ′: x ′ ∈ carrier D and y ′: y ′ ∈ carrier D and π-x ′:

π x ′ = x and π-y ′: π y ′ = y by auto
with τ -eq and x y have π ′ (π x ′) = π ′ (π y ′) unfolding τ -def completion-def

image-def by auto
then have π (π ′ (π x ′)) = π (π ′ (π y ′)) by simp
with ring-R and π-in-R and π ′-in-R and ππ ′π-π have π x ′ = π y ′ by (simp

add : expand-fun-eq)
with π-x ′ and π-y ′ show x = y by simp

next
fix y assume y ∈ carrier diff-group-im-π ′

then have y ∈ π ′ ‘ (carrier D ′) unfolding diff-group-im-π ′-def by simp
with D ′-def obtain y ′ where y ′: y ′ ∈ carrier D and π ′-y ′: π ′ y ′ = y by auto
with π ′ππ ′-π ′ and ring-R and π-in-R and π ′-in-R have π ′ (π (π ′ y ′)) = π ′ y ′

by (auto simp add : expand-fun-eq)
with π ′-y ′ and y ′ and ring-R π-in-R π ′-in-R and hom-completion-closed [of π ′

D D y ′] hom-completion-closed [of π D D π ′ y ′]
have π ′ (π y) = y and π y ∈ π‘ (carrier D) unfolding image-def by auto
with diff-group-im-π-def τ -def show ∃ x∈carrier diff-group-im-π. y = τ x un-

folding completion-def by auto
qed

lemma-2-2-17-second-part proves that τ ′∈ diff-group-im-π ′∼=compl diff-group-im-π

lemma (in lemma-2-2-17) lemma-2-2-17-second-part : shows τ ′∈ (diff-group-im-π ′
∼=compl diff-group-im-π)

(is τ ′ ∈ (?IM-π ′ ∼=compl ?IM-π))
proof (intro iso-complI)

fix x assume x ∈ carrier ?IM-π ′ with diff-group-im-π ′-def have x : x ∈ π ′ ‘
carrier D ′ by simp

with D ′-def obtain y where y : y ∈ carrier D and π-y : π ′ y = x by auto
with ring-R and π-in-R π ′-in-R and hom-completion-closed [of π ′ D D y]

hom-completion-closed [of π D D π ′ y]
have π x ∈ π ‘ carrier D unfolding image-def by auto
with x show τ ′ x ∈ carrier diff-group-im-π unfolding diff-group-im-π-def τ ′-def

unfolding completion-def image-def by auto

100

next
fix x y assume x ∈ carrier ?IM-π ′ and y ∈ carrier ?IM-π ′

then have x : x ∈ π ′ ‘ (carrier D ′) and y : y ∈ π ′ ‘ (carrier D ′) unfolding
diff-group-im-π ′-def by simp-all

then obtain x ′ y ′ where x ′: x ′ ∈ carrier D and y ′: y ′ ∈ carrier D and π-x ′:
π ′ x ′ = x and π-y ′: π ′ y ′ = y unfolding D ′-def by auto
with ring-R and π ′-in-R and π-in-R and hom-completion-closed [of π ′ D D x ′]

hom-completion-closed [of π ′ D D y ′]
and D .m-closed [of π ′ x ′ π ′ y ′] and hom-completion-mult [of π D D x y] and

x y and sym [OF hom-completion-mult [of π ′ D D x ′ y ′]]
show τ ′ (x ⊗?IM-π ′ y) = τ ′ x ⊗?IM-π τ

′ y unfolding τ ′-def diff-group-im-π-def
diff-group-im-π ′-def D ′-def

unfolding completion-def by simp
next

from exI [of - τ ′] show ∃ g . τ ′ = (λx . if x ∈ carrier diff-group-im-π ′ then g x
else 1diff-group-im-π)

unfolding τ ′-def diff-group-im-π-def diff-group-im-π ′-def completion-def by
auto
next

fix x y assume x ∈ carrier diff-group-im-π ′ and y ∈ carrier diff-group-im-π ′

and τ ′-eq : τ ′ x = τ ′ y
then have x : x ∈ π ′‘ (carrier D ′) and y : y ∈ π ′‘ (carrier D ′) unfolding

diff-group-im-π ′-def by simp-all
then obtain x ′ y ′ where x ′: x ′ ∈ carrier D and y ′: y ′ ∈ carrier D and π ′-x ′:

π ′ x ′ = x and π ′-y ′: π ′ y ′ = y
unfolding D ′-def by auto

with τ ′-eq and x y have π (π ′ x ′) = π (π ′ y ′) unfolding τ ′-def completion-def
image-def by auto

then have π ′ (π (π ′ x ′)) = π ′ (π (π ′ y ′)) by simp
with ring-R and π-in-R and π ′-in-R and π ′ππ ′-π ′ have π ′ x ′ = π ′ y ′ by (simp

add : expand-fun-eq)
with π ′-x ′ and π ′-y ′ show x = y by simp

next
fix y assume y ∈ carrier ?IM-π
then have y ∈ π ‘ (carrier D) unfolding diff-group-im-π-def by simp
then obtain y ′ where y ′: y ′ ∈ carrier D and π-y ′: π y ′ = y by auto
with ππ ′π-π and ring-R and π-in-R and π ′-in-R have π (π ′ (π y ′)) = π y ′ by

(auto simp add : expand-fun-eq)
with π-y ′ and y ′ and ring-R π-in-R π ′-in-R and hom-completion-closed [of π

D D y ′] hom-completion-closed [of π ′ D D π y ′]
have π (π ′ y) = y and π ′ y ∈ π ′‘ (carrier D ′) unfolding D ′-def image-def by

auto
then show ∃ x∈carrier diff-group-im-π ′. y = τ ′ x unfolding diff-group-im-π ′-def
τ ′-def completion-def by auto
qed

In lemma-2-2-17-first-part and lemma-2-2-17-second-part we have proved
the isomorphism between diff-group-im-π and diff-group-im-π ′; now, with
the help of π ‘ carrier D = kernel D D p

101

π ′ ‘ carrier D ′ = kernel D ′ D ′ p ′, where we have proved both that im π
= ker p and also that im π ′ = ker p ′, we prove that ker p and ker p ′ are
also isomorphic. Then we obtain the statement as it is presented in Lemma
2 .2 .17 in Aransay’s memoir

lemma (in lemma-2-2-17) lemma-2-2-17-kernel : shows τ ∈ (diff-group-ker-p ∼=compl
diff-group-ker-p ′)

and τ ′ ∈ (diff-group-ker-p ′ ∼=compl diff-group-ker-p)
using im-π-ker-p lemma-2-2-17-first-part lemma-2-2-17-second-part
unfolding diff-group-ker-p-def diff-group-ker-p ′-def diff-group-im-π-def diff-group-im-π ′-def

D ′-def by simp-all

lemma (in lemma-2-2-17) lemma-2-2-17-third-part :
shows τ ◦ τ ′= (λx . if x ∈ carrier diff-group-im-π ′ then id x else 1diff-group-im-π ′)
(is τ ◦ τ ′ = ?id-image-π ′)

proof (rule ext)
fix x
show (τ ◦ τ ′) x = ?id-image-π ′ x
proof (cases x ∈ carrier diff-group-im-π ′)

case True then have x : x ∈ π ′‘ (carrier D) unfolding diff-group-im-π ′-def
and D ′-def by simp

then obtain y where y : y ∈ carrier D and π ′-y : π ′ y = x by auto
with x have (τ ◦ τ ′) x = τ (π (π ′ y)) unfolding τ ′-def D ′-def completion-def

by simp
also from π ′-in-R and ring-R hom-completion-closed [of π ′ D D y] and y

and imageI [of π ′ y carrier D π]
have . . . = π ′ (π (π ′ y)) unfolding τ -def completion-def by simp
also with π ′ππ ′-π ′ and π-in-R and π ′-in-R and ring-R have . . . = π ′ y

unfolding expand-fun-eq by simp
also with π ′-y and True have . . . = ?id-image-π ′ x by simp
finally show (τ ◦ τ ′) x = ?id-image-π ′ x by simp

next
case False then have (τ ◦ τ ′) x = τ 1 unfolding τ ′-def diff-group-im-π ′-def

completion-def by simp
also from group-hom.hom-one [of D D π] and π-in-R and π ′-in-R and ring-R

and imageI [OF D .one-closed , of π]
and group-hom.hom-one [of D D π ′] and D-diff-group have . . . = 1

unfolding group-hom-def group-hom-axioms-def diff-group-def comm-group-def
group-def hom-completion-def completion-def τ -def by simp

also from False have . . . = ?id-image-π ′ x unfolding diff-group-im-π ′-def by
simp

finally show (τ ◦ τ ′) x = ?id-image-π ′ x by simp
qed

qed

lemma (in lemma-2-2-17) lemma-2-2-17-fourth-part :

102

shows τ ′ ◦ τ = (λx . if x ∈ carrier diff-group-im-π then id x else 1diff-group-im-π)
(is τ ′ ◦ τ = ?id-image-π)

proof (rule ext)
fix x
show (τ ′ ◦ τ) x = ?id-image-π x
proof (cases x ∈ carrier diff-group-im-π)
case True then have x : x ∈ π‘ (carrier D) unfolding diff-group-im-π-def by

simp
then obtain y where y : y ∈ carrier D and π-y : π y = x by auto
with x have (τ ′ ◦ τ) x = τ ′ (π ′ (π y)) unfolding τ -def by simp
also from π-in-R and ring-R hom-completion-closed [of π D D y] and y and

imageI [of π y carrier D π ′]
have . . . = π (π ′ (π y)) unfolding τ ′-def D ′-def completion-def by simp
also with ππ ′π-π and π-in-R and π ′-in-R and ring-R have . . . = π y un-

folding expand-fun-eq by simp
also with π-y and True have . . . = ?id-image-π x by simp
finally show (τ ′ ◦ τ) x = ?id-image-π x by simp

next
case False then have (τ ′ ◦ τ) x = τ ′ 1 unfolding τ -def diff-group-im-π-def

completion-def by simp
also from group-hom.hom-one [of D D π ′] and π ′-in-R and π-in-R and ring-R

and imageI [OF D .one-closed , of π ′]
and group-hom.hom-one [of D D π] D-diff-group and prems have . . . = 1

unfolding τ ′-def group-hom-def group-hom-axioms-def diff-group-def comm-group-def
group-def hom-completion-def completion-def by simp

also from False have . . . = ?id-image-π x unfolding diff-group-im-π-def by
simp

finally show (τ ′ ◦ τ) x = ?id-image-π x by simp
qed

qed

In the following lemma, again we transfer the result obtained in τ ◦ τ ′ =
(λx . if x ∈ carrier diff-group-im-π ′ then id x else 1diff-group-im-π ′) and τ ′ ◦
τ = (λx . if x ∈ carrier diff-group-im-π then id x else 1diff-group-im-π) from
the image sets to the kernel sets

lemma (in lemma-2-2-17) lemma-2-2-17-identities: shows τ ′ ◦ τ = (λx . if x ∈
carrier diff-group-ker-p then id x else 1diff-group-ker-p)
and τ ◦ τ ′ = (λx . if x ∈ carrier diff-group-ker-p ′ then id x else 1diff-group-ker-p ′)
using lemma-2-2-17-third-part lemma-2-2-17-fourth-part im-π-ker-p
unfolding diff-group-ker-p-def diff-group-ker-p ′-def apply auto
unfolding diff-group-im-π-def diff-group-im-π ′-def D ′-def apply auto
by (auto simp add : expand-fun-eq)

We now define what we consider inverse isomorphisms between differential
groups (actually the definition also holds for monoids) by means of homo-
morphism

The previous definition, op ∼=invdiff, defined an isomorphism by means of
differential homomorphisms

103

constdefs
iso-inv-compl :: (′a, ′c) monoid-scheme => (′b, ′d) monoid-scheme => ((′a =>
′b) × (′b => ′a)) set (infixr ∼=invcompl 60)

D ∼=invcompl C == {(f , g). f ∈ (D ∼=compl C) & g ∈ (C ∼=compl D) & (f ◦ g
= completion C C id) & (g ◦ f = completion D D id)}

lemma iso-inv-complI : assumes f : f ∈ (D ∼=compl C) and g : g ∈ (C ∼=compl D)
and fg-id : (f ◦ g = completion C C id)

and gf-id : (g ◦ f = completion D D id) shows (f , g) ∈ (D ∼=invcompl C)
using f g fg-id gf-id unfolding iso-inv-compl-def by simp

lemma iso-inv-diff-impl-iso-inv-compl : assumes f-g : (f , g) ∈ (D ∼=invdiff C) shows
(f , g) ∈ (D ∼=invcompl C)

using f-g unfolding iso-inv-diff-def iso-diff-def iso-inv-compl-def iso-compl-def
hom-diff-def hom-completion-def by auto

lemma iso-inv-compl-iso-compl : assumes f-f ′: (f , f ′) ∈ (D ∼=invcompl C) shows
f ∈ (D ∼=compl C)

using f-f ′ unfolding iso-inv-compl-def by simp

lemma iso-inv-compl-iso-compl2 : assumes f-f ′: (f , f ′) ∈ (D ∼=invcompl C) shows
f ′ ∈ (C ∼=compl D)

using f-f ′ unfolding iso-inv-compl-def by simp

lemma iso-inv-compl-id : assumes f-f ′: (f , f ′) ∈ (D ∼=invcompl C) shows f ′ ◦ f
= completion D D id

using f-f ′ unfolding iso-inv-compl-def by simp

lemma iso-inv-compl-id2 : assumes f-f ′: (f , f ′) ∈ (D ∼=invcompl C) shows f ◦ f ′

= completion C C id
using f-f ′ unfolding iso-inv-compl-def by simp

lemma (in lemma-2-2-17) lemma-2-2-17 : shows (τ , τ ′) ∈ (diff-group-ker-p ∼=invcompl
diff-group-ker-p ′)
using lemma-2-2-17-identities and lemma-2-2-17-kernel and iso-inv-complI un-

folding completion-def by auto

end

9 Lemma 2.2.18 in Aransay’s memoir

theory lemma-2-2-18-local-nilpot
imports
lemma-2-2-17-local-nilpot
begin

Lemma 2.2.18 is generic, in the sense that the previous definitions and
premises from locales lemma-2-2-11 to lemma-2-2-17 are not needed. Only

104

the notion of differential groups and isomorphism of abelian groups are in-
troduced.

As far as we are in a generic setting, with homomorphisms instead of endo-
morphisms, the automation of the ring of endomorphisms is lost, and proofs
become a bit more obscure

Composition of completions is again a completion

lemma hom-completion-comp-closed : includes group A + group B + group C
assumes f : f ∈ hom-completion A B and g : g ∈ hom-completion B C
shows g ◦ f ∈ hom-completion A C
using f g
unfolding hom-completion-def hom-def Pi-def apply auto
unfolding completion-fun2-def completion-def apply simp
apply (intro exI [of - g ◦ f], auto simp add : expand-fun-eq)
apply (rule group-hom.hom-one)
unfolding group-hom-def group-hom-axioms-def hom-def Pi-def by (simp add :

prems)

lemma iso-inv-compl-coherent-iso-inv-diff : assumes fg : (f , g) ∈ (F ∼=invcompl G)
and f-coherent : f ◦ diff F = diff G ◦ f

and g-coherent : g ◦ diff G = diff F ◦ g shows (f , g) ∈ (F ∼=invdiff G)
using fg and f-coherent and g-coherent unfolding iso-inv-diff-def iso-inv-compl-def

iso-diff-def iso-compl-def hom-diff-def by simp

9.1 Lemma 2.2.18

The following lemma corresponds to Lemma 2 .2 .18 in the memoir

It illustrates quite precisely the difficulties of proving facts about homomor-
phisms and endomorphisms when we loose the automation supplied in the
previous lemmas

The difficulties are due to the neccesity of operating with endomorphisms
and homomorphisms between different domains, A and B

A suitable environment would be the one defined by the ring End (A), the
ring End (B), the commutative group hom (A, B) and the commutative
group hom (A, B), but then the question would be how to supply this
structure with any automation

In my opinion, the definition comm-group ?G ≡ comm-monoid ?G ∧ group
?G should be relaxed; in its actual version, when unfolded, the characteriza-
tion group G ∧ comm-monoid G is obtained, which unfolded again produces
group-axioms G ∧ monoid G ∧ comm-monoid-axioms G ∧ monoid G, which
is redundant. Two possible solutions would be to define comm-group G =
group G ∧ comm-monoid-axioms G or also comm-group G = group-axioms
G ∧ comm-monoid G

105

lemma lemma-2-2-18 : assumes A: diff-group A and B : comm-group B and F-F ′:
(F , F ′) ∈ (A ∼=invcompl B)

shows diff-group (|carrier = carrier B , mult = mult B , one = one B , diff = F
◦ (diff A) ◦ F ′|)

(is diff-group ?B ′)
and (F , F ′) ∈ (A ∼=invdiff (|carrier = carrier B , mult = mult B , one = one B ,

diff = F ◦ (diff A) ◦ F ′|))
(is - ∈ A ∼=invdiff ?B ′)

proof −
show diff-group ?B ′

proof (unfold diff-group-def diff-group-axioms-def comm-group-def group-def comm-monoid-def ,
intro conjI)

from B show monoid ?B ′ unfolding comm-group-def group-def monoid-def
by simp

from B show monoid ?B ′ unfolding comm-group-def group-def monoid-def
by simp

from B show comm-monoid-axioms ?B ′ unfolding comm-group-def comm-monoid-def
comm-monoid-axioms-def by simp

from B show group-axioms ?B ′ unfolding comm-group-def group-def group-axioms-def
Units-def by simp

next
from F-F ′ have F ′-hom: F ′∈ hom-completion B A unfolding iso-inv-compl-def

iso-compl-def by simp
from diff-group.diff-hom [OF A] have diff : differA ∈ hom-completion A A by

simp
from hom-completion-comp-closed [OF - - - F ′-hom diff] and A and B have

diff-F ′: differA ◦ F ′ ∈ hom-completion B A
unfolding diff-group-def comm-group-def group-def by simp

from F-F ′ have F-hom: F ∈ hom-completion A B unfolding iso-inv-compl-def
iso-compl-def by simp

from hom-completion-comp-closed [OF - - - diff-F ′ F-hom] and A and B have
differ?B ′ ∈ hom-completion B B

unfolding diff-group-def comm-group-def group-def by (simp add : o-assoc)
then show differ?B ′ ∈ hom-completion ?B ′ ?B ′

unfolding hom-completion-def completion-fun2-def completion-def hom-def
Pi-def expand-fun-eq by auto

next
from sym [OF o-assoc [of F ◦ differA F ′ F ◦ differA ◦ F ′]] and sym [OF

o-assoc [of F differA F ′]]
and o-assoc [of F ′ F (differA ◦ F ′)]

have differ?B ′ ◦ differ?B ′ = F ◦ differA ◦ ((F ′ ◦ F) ◦ (differA ◦ F ′)) by
simp

also from iso-inv-compl-id [OF F-F ′] have . . . = F ◦ differA ◦ ((λx . if x ∈
carrier A then id x else 1A) ◦ (differA ◦ F ′))

unfolding iso-inv-compl-def completion-def by simp
also from o-assoc [of (λx . if x ∈ carrier A then id x else 1A) differA F ′] have

. . . = F ◦ differA ◦ (differA ◦ F ′)
proof −

from diff-group.diff-hom [OF A] have (λx . if x ∈ carrier A then id x else

106

1A) ◦ (differA) = (differA)
unfolding hom-completion-def completion-fun2-def completion-def hom-def

Pi-def expand-fun-eq by auto
with o-assoc [of (λx . if x ∈ carrier A then id x else 1A) differA F ′] show

?thesis by simp
qed
also from sym [OF o-assoc [of F differA differA ◦ F ′]] and o-assoc [of differA

differA F ′]
have . . . = F ◦ ((differA ◦ differA) ◦ F ′) by simp
also from diff-group.diff-nilpot [OF A] have . . . = F ◦ ((λx . 1A) ◦ F ′) by

simp
also have . . . = F ◦ (λx . 1A) by (simp add : expand-fun-eq)

also from F-F ′ A B have . . . = (λx . 1B) by (unfold iso-inv-compl-def
iso-compl-def expand-fun-eq , auto)

(intro hom-completion-one, unfold group-def diff-group-def comm-group-def ,
simp-all)

also have . . . = (λx . 1?B ′) by simp
finally show differ?B ′ ◦ differ?B ′ = (λx . 1?B ′) by simp

qed
next

from F-F ′ have F-F ′-iso-compl : (F , F ′) ∈ A ∼=invcompl ?B ′

unfolding iso-inv-compl-def iso-compl-def completion-def expand-fun-eq hom-completion-def
hom-def Pi-def completion-fun2-def by auto

moreover have F-coherent : F ◦ diff A = diff ?B ′ ◦ F
proof −

have diff A = diff A ◦ completion A A id
proof (rule ext)

fix x
show (differA) x = (differA ◦ completion A A id) x
proof (cases x ∈ carrier A)

case True with diff-group.diff-hom [OF A] show (differA) x = (differA ◦
completion A A id) x

unfolding hom-completion-def completion-fun2-def completion-def by simp
next

case False with diff-group.diff-hom [OF A]
have l-h-s: (differA) x = 1A unfolding hom-completion-def completion-fun2-def

completion-def by auto
from False have (completion A A id) x = 1A by (unfold completion-def ,

simp)
with hom-completion-one [OF - - diff-group.diff-hom [OF A]] and A have

r-h-s: (differA ◦ completion A A id) x = 1A
unfolding diff-group-def comm-group-def group-def by simp

from r-h-s and l-h-s show (differA) x = (differA ◦ completion A A id) x
by simp

qed
qed
also from iso-inv-compl-id [OF F-F ′] and o-assoc [of diff A F ′ F] have . . . =

diff A ◦ F ′ ◦ F by simp
finally have diff A = diff A ◦ F ′ ◦ F by simp

107

with o-assoc [of F diff A ◦ F ′ F] and o-assoc [of F diff A F ′] show ?thesis
by simp

qed
moreover have F ′-coherent : F ′ ◦ diff ?B ′ = diff A ◦ F ′

proof −
have diff A = completion A A id ◦ diff A
proof (rule ext)

fix x
show (differA) x = (completion A A id ◦ differA) x
proof (cases x ∈ carrier A)
case True with diff-group.diff-hom [OF A] and diff-group.diff-hom [OF A]
and hom-completion-closed [of diff A A A x] show (differA) x = (completion

A A id ◦ differA) x
unfolding hom-completion-def completion-fun2-def completion-def by simp

next
case False with diff-group.diff-hom [OF A] have l-h-s: (differA) x = 1A
unfolding hom-completion-def completion-fun2-def completion-def by auto
with l-h-s have r-h-s: (completion A A id ◦ differA) x = 1A unfolding

completion-def by simp
from r-h-s and l-h-s show (differA) x = (completion A A id ◦ differA) x

by simp
qed

qed
also from iso-inv-compl-id [OF F-F ′] and sym [OF o-assoc [of F ′ F diff A]]

have . . . = F ′ ◦ F ◦ diff A by simp
finally have diff A = F ′ ◦ F ◦ diff A by simp
then show ?thesis by (auto simp add : o-assoc)

qed
ultimately show (F , F ′) ∈ A ∼=invdiff ?B ′ by (intro iso-inv-compl-coherent-iso-inv-diff)

qed

end

10 Lemma 2.2.19 in Aransay’s memoir

theory lemma-2-2-19-local-nilpot
imports
lemma-2-2-18-local-nilpot

begin

Lemma 2 .2 .19, as well as Lemma 2 .2 .18, is generic in the sense that the pre-
vious definitions and premises from locales lemma-2-2-11 to lemma-2-2-17
are not needed. Only the definition of reduction is used

lemma (in diff-group) diff-group-is-group: shows group D using prems unfold-
ing diff-group-def comm-group-def by simp

108

lemma hom-diffs-comp-closed : includes diff-group A includes diff-group B in-
cludes diff-group C

assumes f : f ∈ hom-diff A B and g : g ∈ hom-diff B C
shows g ◦ f ∈ hom-diff A C

proof (unfold hom-diff-def hom-completion-def , auto)
from f and g have f-compl : f ∈ completion-fun2 A B and g-compl : g ∈

completion-fun2 B C
unfolding hom-diff-def hom-completion-def by auto

with A.diff-group-is-group B .diff-group-is-group C .diff-group-is-group hom-diff-is-hom-completion
[OF f]

and hom-diff-is-hom-completion [OF g] and hom-completion-one [of B C g]
and completion-closed2 [OF f-compl]

show g ◦ f ∈ completion-fun2 A C
unfolding completion-fun2-def completion-def expand-fun-eq apply simp apply

(intro exI [of - g ◦ f]) by auto
next

show g ◦ f ∈ hom A C
proof (intro homI)

fix x
assume x : x ∈ carrier A from hom-diff-closed [OF f x] and hom-diff-closed

[OF g , of f x] show (g ◦ f) x ∈ carrier C by simp
next

fix x y
assume x : x ∈ carrier A and y : y ∈ carrier A from f g and hom-diff-mult

[OF f x y] and hom-diff-mult [OF g , of f x f y]
and hom-diff-closed [OF f x] hom-diff-closed [OF f y] show (g ◦ f) (x ⊗A

y) = (g ◦ f) x ⊗C (g ◦ f) y by (unfold hom-diff-def , simp)
qed

next
from hom-diff-coherent [OF f] and hom-diff-coherent [OF g] and o-assoc [of g

f differA] and o-assoc [of g differB f]
and o-assoc [of differC g f] show g ◦ f ◦ differA = differC ◦ (g ◦ f) by simp

qed

10.1 Lemma 2.2.19

The following lemma corresponds to Lemma 2 .2 .19 as stated in Aransay’s
memoir
lemma (in reduction) lemma-2-2-19 : assumes B : diff-group B and F-F ′-isom:
(F , F ′) ∈ (C ∼=invdiff B)

shows reduction D B (F ◦ f) (g ◦ F ′) h
proof (intro reductionI)

from prems show diff-group D by (unfold reduction-def , simp)
from B show diff-group B by simp

next
from hom-diffs-comp-closed [OF D-diff-group C-diff-group B f-hom-diff , of F]

and iso-diff-hom-diff [of F C B]
and iso-inv-diff-iso-diff [OF F-F ′-isom] show F ◦ f ∈ hom-diff D B by simp

next

109

from hom-diffs-comp-closed [OF B C-diff-group D-diff-group - g-hom-diff , of F ′]
and iso-diff-hom-diff [of F ′ B C]

and iso-inv-diff-iso-diff2 [OF F-F ′-isom] show g ◦ F ′ ∈ hom-diff B D by simp
next

from h-hom-compl show h ∈ hom-completion D D by simp
next

from sym [OF o-assoc [of F f (g ◦ F ′)]] and o-assoc [of f g F ′] and fg
have F ◦ f ◦ (g ◦ F ′) = F ◦ ((λx . if x ∈ carrier C then id x else 1C) ◦ F ′) by

simp
also from iso-inv-diff-iso-diff2 [OF F-F ′-isom] and iso-diff-hom-diff [of F ′ B

C] have . . . = F ◦ F ′

unfolding hom-diff-def hom-completion-def completion-fun2-def completion-def
hom-def Pi-def expand-fun-eq by auto

also from iso-inv-diff-id2 [OF F-F ′-isom] have . . . = (λx . if x ∈ carrier B then
id x else 1B) unfolding completion-def by simp

finally show F ◦ f ◦ (g ◦ F ′) = (λx . if x ∈ carrier B then id x else 1B) by
simp
next
from sym [OF o-assoc [of g F ′ (F ◦ f)]] and o-assoc [of F ′ F f] and iso-inv-diff-id

[OF F-F ′-isom]
have g ◦ F ′ ◦ (F ◦ f) = g ◦ ((λx . if x ∈ carrier C then id x else 1C) ◦ f)

unfolding completion-def by simp
also from f-hom-diff have . . . = g ◦ f
unfolding hom-diff-def hom-completion-def completion-fun2-def completion-def

hom-def Pi-def expand-fun-eq by auto
finally have g ◦ F ′ ◦ (F ◦ f) = g ◦ f by simp
with gf-dh-hd show (λx . if x ∈ carrier D then (g ◦ F ′ ◦ (F ◦ f)) x
⊗ (if x ∈ carrier D then (differ ◦ h) x ⊗ (h ◦ differ) x else 1) else 1) =
(λx . if x ∈ carrier D then id x else 1) by (simp only : expand-fun-eq) simp

next
from fh and sym [OF o-assoc [of F f h]] have F ◦ f ◦ h = F ◦ (λx . if x ∈

carrier D then 1C else 1C) by simp
also from B and iso-diff-hom-diff [of F C B] and iso-inv-diff-iso-diff [OF

F-F ′-isom] and C-diff-group
have . . . = (λx . if x ∈ carrier D then 1B else 1B)
by (unfold expand-fun-eq , simp) (intro hom-completion-one, unfold hom-diff-def

diff-group-def comm-group-def group-def , auto)
finally show F ◦ f ◦ h = (λx . if x ∈ carrier D then 1B else 1B) by simp

next
from hg and o-assoc [of h g F ′] have h ◦ (g ◦ F ′) = (λx . if x ∈ carrier C then

1 else 1) ◦ F ′ by simp
also have . . . = (λx . if x ∈ carrier B then 1 else 1) by (unfold expand-fun-eq ,

simp)
finally show h ◦ (g ◦ F ′) = (λx . if x ∈ carrier B then 1 else 1) by simp

next
from hh show h ◦ h = (λx . if x ∈ carrier D then 1 else 1) by simp

qed

end

110

11 Proof of the Basic Perturbation Lemma

theory Basic-Perturbation-Lemma-local-nilpot
imports
lemma-2-2-19-local-nilpot
begin

In the following locale we define an abbreviation that we will use later in
proofs, and we also join the results obtained in locale lemma-2-2-17 with
the ones reached in lemma-2-2-11. The combination of both locales give us
the set of premises in the Basic Perturbation Lemma (from now on, BPL)
statement

locale BPL = lemma-2-2-17 + lemma-2-2-11

context BPL
begin

definition f ′ where f ′ == (completion
(|carrier = kernel D D p, mult = op ⊗, one = 1,
diff = completion (|carrier = kernel D D p, mult = op ⊗, one = 1, diff = differ |)

D (differ)|) C f)

end

lemma (in BPL) π-gf : shows g ◦ f = π
proof −

let ?gf = g ◦ f

from g-f-hom-diff have ?gf ∈ hom-completion D D unfolding hom-diff-def by
simp

with ring-R have gf-in-R: ?gf ∈ carrier R by simp
from gf-dh-hd and ring-R have ?gf ⊕R (differ ⊗R h ⊕R h ⊗R differ) = 1R

by simp
then have ?gf ⊕R (differ ⊗R h ⊕R h ⊗R differ) 	R (differ ⊗R h ⊕R h ⊗R

differ) = 1R 	R (differ ⊗R h ⊕R h ⊗R differ) by simp
with gf-in-R and R.one-closed and diff-in-R and h-in-R have ?gf = 1R 	R

(differ ⊗R h ⊕R h ⊗R differ) by algebra
with π-def and p-def and ring-R show g ◦ f = π by simp

qed

11.1 BPL proof

The following lemma corresponds to the first part of Lemma 2 .2 .20 (i.e.,
the BPL) in Aransay’s memoir

The proof of the BPL is divided into two parts, as it is also in Aransay’s
memoir.

In the first part, proved in BPL-reduction, from the given premises, we

111

buid a new reduction from D ′ = (| carrier = carrier D , . . ., diff = differD
⊕R δ|) into C ′, where C ′ = (| carrier = carrier C , . . . , diff = f ′ ◦ (τ ′ ◦
differdiff-group-ker-p ′ ◦ τ) ◦ g |) (f ′ ◦ (τ ′ ◦ (1R 	R p ′)))

The reduction is given by the triple f ′ ◦ (τ ′ ◦ 1R 	R p ′), inc-ker-p ′ ◦ τ ◦
g, h ′

In the second part of the proof of the BPL, here stored in lemma BPL-simplifications,
the expressions f ′ ◦ (τ ′ ◦ 1R 	R p ′), inc-ker-p ′ ◦ τ ◦ g and f ′ ◦ (τ ′ ◦ dif-
ferdiff-group-ker-p ′ ◦ τ) ◦ g are simplified, obtaining the ones in the BPL
statement

By finally joining BPL-reduction and BPL-simplifications, we complete the
proof of the BPL

11.2 Existence of a reduction

lemma (in BPL) BPL-reduction:
shows reduction D ′

(| carrier = carrier C , mult = mult C , one = one C , diff = f ′ ◦ (τ ′ ◦ dif-
ferdiff-group-ker-p ′ ◦ τ) ◦ g |) (f ′ ◦ (τ ′ ◦ (1R 	R p ′)))

(inc-ker-p ′ ◦ τ ◦ g) h ′

proof −

from lemma-2-2-15 have red-D ′-ker-p ′: reduction D ′ diff-group-ker-p ′ (1R 	R
p ′) inc-ker-p ′ h ′ by simp

have iso-inv-diff-ker-p ′-ker-p:
(τ ′, τ) ∈ diff-group-ker-p ′ ∼=invdiff (| carrier = kernel D D p, mult = mult D ,

one = one D , diff = τ ′ ◦ differdiff-group-ker-p ′ ◦ τ |)
(is (τ ′, τ) ∈ diff-group-ker-p ′ ∼=invdiff ?ker-p-pert)

and diff-group-ker-p-pert : diff-group (| carrier = kernel D D p, mult = mult
D , one = one D , diff = τ ′ ◦ differdiff-group-ker-p ′ ◦ τ |)

(is diff-group ?ker-p-pert)
proof −

from lemma-2-2-17 have iso-inv-compl : (τ ′, τ) ∈ diff-group-ker-p ′ ∼=invcompl
diff-group-ker-p unfolding iso-inv-compl-def by simp

from lemma-2-2-15 have diff-group-ker-p ′: diff-group diff-group-ker-p ′ unfold-
ing reduction-def diff-group-def by simp

from lemma-2-2-14 have comm-group-ker-p: comm-group diff-group-ker-p un-
folding reduction-def diff-group-def comm-group-def by simp

from lemma-2-2-18 [OF diff-group-ker-p ′ comm-group-ker-p iso-inv-compl]
show (τ ′, τ) ∈ diff-group-ker-p ′ ∼=invdiff ?ker-p-pert and diff-group ?ker-p-pert

112

unfolding diff-group-ker-p-def by simp-all
qed

from reduction.lemma-2-2-19 [OF red-D ′-ker-p ′ diff-group-ker-p-pert iso-inv-diff-ker-p ′-ker-p]
have red-D ′-ker-p-pert : reduction D ′ ?ker-p-pert (τ ′ ◦ (1R 	R p ′)) (inc-ker-p ′ ◦

τ) h ′ by simp

have ker-p-isom-C : (f ′, g) ∈ (diff-group-ker-p ∼=invdiff C)
proof −
from iso-inv-diff-rev [OF lemma-2-2-11] have im-gf-isom-C : (completion diff-group-im-gf

C f , g) ∈ (diff-group-im-gf ∼=invdiff C) by simp
moreover from π-gf have g ◦ f = π by simp
moreover from im-π-ker-p have im-π-ker-p: π ‘ carrier D = kernel D D p

by simp
ultimately show ?thesis unfolding diff-group-im-gf-def im-gf-def diff-group-ker-p-def

f ′-def by simp
qed
then have ker-p-pert-isom-C : (f ′, g) ∈ (?ker-p-pert ∼=invcompl C)
unfolding iso-inv-diff-def iso-inv-compl-def diff-group-ker-p-def iso-diff-def iso-compl-def

hom-diff-def hom-completion-def
hom-def Pi-def completion-fun2-def completion-def by (auto simp add : expand-fun-eq)

from red-D ′-ker-p-pert have diff-group-ker-p-pert : diff-group ?ker-p-pert unfold-
ing reduction-def diff-group-def by simp
from C-diff-group have C : comm-group C unfolding diff-group-def comm-group-def

by simp
from lemma-2-2-18 [OF diff-group-ker-p-pert C ker-p-pert-isom-C]
have f ′-g-isom: (f ′, g) ∈ (?ker-p-pert ∼=invdiff

(| carrier = carrier C , mult = op ⊗C, one = 1C, diff = f ′ ◦ (τ ′ ◦ dif-
ferdiff-group-ker-p ′ ◦ τ) ◦ g |))

(is (f ′, g) ∈ (?ker-p-pert ∼=invdiff ?C ′))
and diff-group-C-pert :
diff-group (|carrier = carrier C , mult = op ⊗C, one = 1C, diff = f ′ ◦ (τ ′ ◦

differdiff-group-ker-p ′ ◦ τ) ◦ g |)
(is diff-group ?C ′) by simp-all

from reduction.lemma-2-2-19 [OF red-D ′-ker-p-pert diff-group-C-pert f ′-g-isom]
show reduction D ′ ?C ′ (f ′ ◦ (τ ′ ◦ 1R 	R p ′)) (inc-ker-p ′ ◦ τ ◦ g) h ′ by simp

qed

11.3 BPL previous simplifications

In order to prove the simplifications required in the second part of the proof,
i.e. lemma BPL-simplifications, we first have to prove some results concern-
ing the composition of some of the homomorphisms and endomorphisms we
have already introduced.

113

Therefore, we have the ring R and we prove that it behaves as expected
with some homomorphisms from Hom (D C) and Hom (C D), where the
operation to relate them is the composition

We will prove some properties such as distributivity of composition with
respect to addition of endomorphisms and the like

The results are stated in generic terms

lemma (in ring-endomorphisms) add-dist-comp: assumes C : diff-group C and g :
g ∈ hom-completion C D and a: a ∈ carrier R

and b: b ∈ carrier R shows (a ⊕R b) ◦ g = (λx . if x ∈ carrier C then (a ◦ g)
x ⊗ (b ◦ g) x else 1)

using ring-R and g and a and b and hom-completion-closed [OF g] and
completion-closed2 [of g C D] and group-hom.hom-one [of D D a]

group-hom.hom-one [of D D b] and D-diff-group
unfolding hom-completion-def completion-def diff-group-def comm-group-def group-hom-def

group-hom-axioms-def
by (auto simp add : expand-fun-eq)

lemma (in ring-endomorphisms) comp-hom-compl : assumes C : diff-group C and
g : g ∈ hom-completion C D and a: a ∈ carrier R

shows a ◦ g = (λx . if x ∈ carrier C then (a ◦ g) x else 1)
using ring-R and g and a and hom-completion-closed [OF g] and completion-closed2

[of g C D]
and group-hom.hom-one [of D D a] and D-diff-group

unfolding hom-completion-def completion-def diff-group-def comm-group-def group-hom-def
group-hom-axioms-def

by (auto simp add : expand-fun-eq)

lemma (in ring-endomorphisms) one-comp-g : assumes C : diff-group C and g : g
∈ hom-completion C D

shows 1R ◦ g = g
using ring-R and g and hom-completion-closed [OF g] and completion-closed2

[of g C D]
unfolding hom-completion-def completion-fun2-def completion-def apply simp

by (auto simp add : expand-fun-eq)

lemma (in ring-endomorphisms) minus-dist-comp: assumes C : diff-group C and
g : g ∈ hom-completion C D and a: a ∈ carrier R

and b: b ∈ carrier R shows (a 	R b) ◦ g = (λx . if x ∈ carrier C then (a ◦ g)
x ⊗ ((R b) ◦ g) x else 1)
using add-dist-comp [OF C g a a-inv-closed [OF b]] unfolding a-minus-def [OF

a b] by simp

lemma (in ring-endomorphisms) minus-comp-g : assumes C : diff-group C and
g : g ∈ hom-completion C D and a: a ∈ carrier R

and b: b ∈ carrier R and a-eq-b: a = b shows (R a) ◦ g = (R b) ◦ g
proof −

from a and b and a-eq-b have 	R a = 	R b by algebra

114

then show ?thesis by simp
qed

lemma (in ring-endomorphisms) minus-comp-g2 : assumes C : diff-group C and
g : g ∈ hom-completion C D and a: a ∈ carrier R

and b: b ∈ carrier R and a-eq-b: a ◦ g = b ◦ g shows (R a) ◦ g = (R b)
◦ g
using a-eq-b and minus-interpret [OF a] minus-interpret [OF b] and g by (simp

add : expand-fun-eq)

lemma (in ring-endomorphisms) l-add-dist-comp: includes diff-group C assumes
f : f ∈ hom-completion D C and a: a ∈ carrier R

and b: b ∈ carrier R shows f ◦ (a ⊕R b) = (λx . if x ∈ carrier D then (f ◦ a)
x ⊗C (f ◦ b) x else 1C)

using prems ring-R and f and a and b and hom-completion-closed [of a D D]
hom-completion-closed [of b D D]

and hom-completion-mult [of f D C] group-hom.hom-one [of D C f] and
D .diff-group-is-group C .diff-group-is-group
unfolding hom-completion-def [of D C] group-hom-def group-hom-axioms-def by

(simp add : expand-fun-eq)

lemma (in ring-endomorphisms) l-comp-hom-compl : assumes C : diff-group C
and f : f ∈ hom-completion D C and a: a ∈ carrier R

shows f ◦ a = (λx . if x ∈ carrier D then (f ◦ a) x else 1C)
using ring-R and f and a and hom-completion-closed [of a] and completion-closed2

[of a D D] and group-hom.hom-one [of D C f] and C
and D-diff-group

unfolding diff-group-def comm-group-def hom-completion-def group-hom-def group-hom-axioms-def
by (simp add : expand-fun-eq)

lemma (in ring-endomorphisms) l-minus-dist-comp: includes diff-group C as-
sumes f : f ∈ hom-completion D C and a: a ∈ carrier R

and b: b ∈ carrier R shows f ◦ (a 	R b) = (λx . if x ∈ carrier D then (f ◦ a)
x ⊗C (f ◦ (R b)) x else 1C)
using l-add-dist-comp [OF - f a a-inv-closed [OF b]] unfolding a-minus-def [OF

a b] by (simp add : prems)

lemma (in ring-endomorphisms) l-minus-comp-f : assumes C : diff-group C and
f : f ∈ hom-completion D C and a: a ∈ carrier R

and b: b ∈ carrier R and a-eq-b: f ◦ a = f ◦ b shows f ◦ (R a) = f ◦ (R
b)
proof −

from HomGroupsCompletion.hom-completion-groups-mult-comm-group [of D C]
and C and D-diff-group

have Hom-D-C : comm-group (|carrier = hom-completion D C , mult = λf g x . if
x ∈ carrier D then f x ⊗C g x else 1C,

one = λx . if x ∈ carrier D then 1C else 1C|) unfolding diff-group-def

115

comm-group-def by simp
let ?hom-D-C = (|carrier = hom-completion D C , mult = λf g x . if x ∈ carrier

D then f x ⊗C g x else 1C,
one = λx . if x ∈ carrier D then 1C else 1C|)

from ring-R and group-hom.hom-one [of D C f] and f and C and D-diff-group
have one-fzero: one ?hom-D-C = f ◦ 0R

unfolding diff-group-def comm-group-def group-def hom-completion-def group-hom-def
group-hom-axioms-def by (simp add : expand-fun-eq)

also from R.r-neg [OF a] have . . . = f ◦ (a ⊕R 	R a) by simp
also from l-add-dist-comp [OF C f a a-inv-closed [OF a]] have . . . = (λx . if x
∈ carrier D then (f ◦ a) x ⊗C (f ◦ 	R a) x else 1C)

by simp
also from a-eq-b have . . . = (λx . if x ∈ carrier D then (f ◦ b) x ⊗C (f ◦ 	R

a) x else 1C) by (simp add : expand-fun-eq)
also from Hom-D-C have . . . = (f ◦ b) ⊗?hom-D-C (f ◦ 	R a) by simp
finally have fb-f-minus-a: one ?hom-D-C = (f ◦ b) ⊗?hom-D-C (f ◦ 	R a) by

simp
from one-fzero have one ?hom-D-C = f ◦ 0R by simp
also from R.l-neg [OF b] have . . . = f ◦ (R b ⊕R b) by simp
also from l-add-dist-comp [OF C f a-inv-closed [OF b] b] and Hom-D-C have

. . . = (f ◦ 	R b) ⊗?hom-D-C (f ◦ b) by simp
finally have f-minus-b-fb: one ?hom-D-C = (f ◦ 	R b) ⊗?hom-D-C (f ◦ b) by

simp
from monoid .inv-unique [of ?hom-D-C (f ◦ 	R b) f ◦ b (f ◦ 	R a)] and

a-inv-closed [OF a] b a-inv-closed [OF b]
and sym [OF f-minus-b-fb] and sym [OF fb-f-minus-a] and ring-R
and lemma-2-2-18-local-nilpot .hom-completion-comp-closed [of D D C 	R a f]
and lemma-2-2-18-local-nilpot .hom-completion-comp-closed [of D D C b f]
and lemma-2-2-18-local-nilpot .hom-completion-comp-closed [of D D C 	R b f]
and C and D-diff-group and f and Hom-D-C

show (f ◦ 	R a) = (f ◦ 	R b) unfolding diff-group-def comm-group-def
group-def by simp
qed

The following properties are used later in lemma BPL-simplifications; just
in order to make the proof of BPL-simplification shorter, we have extracted
them, as far as they are not generic properties that can be used in other
different settings

lemma (in BPL) inc-ker-pτ -eq-τ : shows inc-ker-p ′ ◦ τ = τ
proof −

have image τ (π ‘ carrier D) ⊆ kernel D ′ D ′ p ′

proof (unfold image-def τ -def , auto)
fix x assume x : x ∈ carrier D with π-in-R and ring-R and hom-completion-closed

[of π D D x] have π x ∈ carrier D by simp
with im-π-ker-p and D ′-def show π ′ (π x) ∈ kernel D ′ D ′ p ′ unfolding

image-def by auto
qed
with inc-ker-p ′-def and τ -def and D ′-def show inc-ker-p ′ ◦ τ = τ unfolding

completion-def expand-fun-eq by auto

116

qed

lemma (in BPL) τg-eq-π ′g : shows τ ◦ g = π ′ ◦ g
proof −

from π-gf have im-g-im-π: image g (carrier C) ⊆ π‘ carrier D
proof (unfold image-def , auto simp add : expand-fun-eq)

fix x assume x : x ∈ carrier C with fg have fg-x : f (g x) = x by (simp add :
expand-fun-eq)

with hom-diff-closed [OF g-hom-diff x] have g (f (g x)) = g x and g x ∈
carrier D by (simp-all)

with π-gf show ∃ y∈carrier D . g x = π (y) by (force simp add : expand-fun-eq)
qed
show τ ◦ g = π ′ ◦ g
proof (rule ext)

fix x
show (τ ◦ g) x = (π ′ ◦ g) x
proof (cases x ∈ carrier C)

case True with im-g-im-π and τ -def and g-hom-diff show (τ ◦ g) x = (π ′

◦ g) x
unfolding completion-def hom-diff-def hom-completion-def hom-def Pi-def

by (auto simp add : expand-fun-eq)
next

case False with g-hom-diff and completion-closed2 [of g C D x] have g-x :
g x = 1D

unfolding hom-diff-def hom-completion-def by simp
with lemma-2-2-17 and hom-completion-one [of diff-group-ker-p diff-group-ker-p ′

τ] and lemma-2-2-14 and lemma-2-2-15
have r-h-s: τ (g x) = 1D

unfolding reduction-def diff-group-def comm-group-def group-def
unfolding τ -def iso-inv-compl-def iso-compl-def diff-group-ker-p-def diff-group-ker-p ′-def

by simp
from C-diff-group D-diff-group and g-x and π ′-in-R and ring-R and

hom-completion-one [of D D π ′]
have l-h-s: π ′ (g x) = 1D unfolding diff-group-def comm-group-def group-def

by simp
from r-h-s and l-h-s show (τ ◦ g) x = (π ′ ◦ g) x by simp

qed
qed

qed

lemma (in BPL) diff ′h ′g-eq-zero: shows (diff ′ ⊗R h ′) ◦ g = (λx . if x ∈ carrier
C then 1 else 1)
proof −

from ring-R have (diff ′ ⊗R h ′) ◦ g = (diff ′ ◦ h ′) ◦ g by simp
also have . . . = diff ′ ◦ (h ′ ◦ g) by (simp add : o-assoc)
also from h ′-def and psi-h-h-phi and ring-R have . . . = diff ′ ◦ ((Ψ ◦ h) ◦ g)

by simp
also have . . . = diff ′ ◦ (Ψ ◦ (h ◦ g)) by (simp add : o-assoc)
also from hg have . . . = diff ′ ◦ (Ψ ◦ (λx . if x ∈ carrier C then 1 else 1)) by

117

simp
also from psi-in-R and diff ′-in-R and ring-R and hom-completion-one [of D

D diff ′] hom-completion-one [of D D Ψ]
and C-diff-group and D-diff-group

have . . . = (λx . if x ∈ carrier C then 1 else 1) unfolding diff-group-def
comm-group-def group-def by (simp add : expand-fun-eq)

finally show ?thesis by simp
qed

lemma (in BPL) h ′diff ′g-eq-psihdeltag : shows (h ′ ⊗R diff ′) ◦ g = (Ψ ⊗R h ⊗R
δ) ◦ g
proof −

from ring-R and sym [OF o-assoc [of h ′ diff ′ g]] have (h ′ ⊗R diff ′) ◦ g = h ′

◦ (diff ′ ◦ g) by simp
also from add-dist-comp [of C g differ δ] and diff ′-def and diff-in-R and

pert-in-R and C-diff-group and g-hom-diff
have . . . = h ′ ◦ (λx . if x ∈ carrier C then (differD ◦ g) x ⊗D (δ ◦ g) x else 1)

unfolding hom-diff-def by simp
also from hom-diff-coherent [OF g-hom-diff]
have . . . = h ′ ◦ (λx . if x ∈ carrier C then (g ◦ differC) x ⊗D (δ ◦ g) x else 1)

by (simp add : expand-fun-eq)
also have . . . = (λx . if x ∈ carrier C then (h ′ ◦ (g ◦ differC)) x ⊗ (h ′ ◦ (δ ◦

g)) x else 1)
proof (auto simp add : expand-fun-eq)

fix x assume x : x ∈ carrier C
from ring-R and h ′-in-R and hom-completion-mult [of h ′ D D (g ((differC)

x)) δ (g x)]
and hom-completion-closed [OF diff-group.diff-hom [OF C-diff-group] x]
and hom-diff-closed [OF g-hom-diff , of (differC) x]
and hom-diff-closed [OF g-hom-diff x] and pert-in-R hom-completion-closed

[of δ D D g x]
show h ′ (g ((differC) x) ⊗ δ (g x)) = h ′ (g ((differC) x)) ⊗ h ′ (δ (g x)) by

simp
next

from D .diff-group-is-group have D : group D by simp
with ring-R and h ′-in-R show h ′ 1 = 1 by (intro hom-completion-one,

simp-all)
qed
also have . . . = (λx . if x ∈ carrier C then (h ′ ◦ g ◦ differC) x ⊗ (h ′ ◦ (δ ◦ g))

x else 1) by (simp add : expand-fun-eq o-assoc)
also from h ′-def and ring-R have . . . = (λx . if x ∈ carrier C then (h ◦ Φ ◦ g
◦ differC) x ⊗ (h ◦ Φ ◦ (δ ◦ g)) x else 1)

by (simp add : expand-fun-eq)
also from psi-h-h-phi and ring-R have . . . = (λx . if x ∈ carrier C then (Ψ ◦ h
◦ g ◦ differC) x ⊗ (Ψ ◦ h ◦ (δ ◦ g)) x else 1)

by (simp add : expand-fun-eq)
also have . . . = (λx . if x ∈ carrier C then (Ψ ◦ h ◦ (δ ◦ g)) x else 1)
proof (auto simp add : expand-fun-eq)

fix x assume x : x ∈ carrier C

118

from hg and psi-in-R and hom-completion-one [of D D Ψ] and ring-R and
D .diff-group-is-group

have Ψ (h (g ((differC) x))) = 1 by (simp add : expand-fun-eq)
moreover have Ψ (h (δ (g x))) ∈ carrier D
proof −

from pert-in-R and h-in-R and psi-in-R have Ψ ⊗R h ⊗R δ ∈ carrier R
by algebra

with ring-R have psi-h-pert : Ψ ◦ h ◦ δ ∈ hom-completion D D by simp
from hom-completion-closed [OF psi-h-pert , of g x] and hom-diff-closed [OF

g-hom-diff x]
show Ψ (h (δ (g x))) ∈ carrier D by simp

qed
ultimately show Ψ (h (g ((differC) x))) ⊗ Ψ (h (δ (g x))) = Ψ (h (δ (g x)))

by (simp add : D .r-one)
qed
also from ring-R have . . . = (λx . if x ∈ carrier C then (Ψ ⊗R h ⊗R δ ◦ g) x

else 1) by (simp add : expand-fun-eq)
also from comp-hom-compl [of C g Ψ ⊗R h ⊗R δ] and pert-in-R h-in-R psi-in-R

and g-hom-diff C-diff-group
have . . . = (Ψ ⊗R h ⊗R δ) ◦ g unfolding hom-diff-def by simp
finally show ?thesis by simp

qed

lemma (in BPL) p ′g-eq-psihdeltag : shows p ′ ◦ g = (Ψ ⊗R h ⊗R δ) ◦ g
proof −

from p ′-def and ring-R and diff ′-def have p ′ ◦ g = ((diff ′ ⊗R h ′) ⊕R (h ′ ⊗R
diff ′)) ◦ g by (simp add : expand-fun-eq)

also from add-dist-comp [of C g (diff ′ ⊗R h ′) (h ′ ⊗R diff ′)] and g-hom-diff
and diff ′-in-R h ′-in-R and C-diff-group

have . . . = (λx . if x ∈ carrier C then ((diff ′ ⊗R h ′) ◦ g) x ⊗ ((h ′ ⊗R diff ′) ◦
g) x else 1) by (unfold hom-diff-def , simp)

also from diff ′h ′g-eq-zero and h ′diff ′g-eq-psihdeltag have . . . = (λx . if x ∈
carrier C then (Ψ ⊗R h ⊗R δ ◦ g) x else 1)

proof (auto simp add : expand-fun-eq , intro D .l-one)
fix x assume x : x ∈ carrier C
from pert-in-R and h-in-R and psi-in-R have Ψ ⊗R h ⊗R δ ∈ carrier R by

algebra
with ring-R have psi-h-pert : Ψ ⊗R h ⊗R δ ∈ hom-completion D D by simp
from hom-completion-closed [OF psi-h-pert , of g x] and hom-diff-closed [OF

g-hom-diff x]
show (Ψ ⊗R h ⊗R δ) (g x) ∈ carrier D by simp

qed
also from comp-hom-compl [of C g Ψ ⊗R h ⊗R δ] and pert-in-R h-in-R psi-in-R

and g-hom-diff C-diff-group
have . . . = (Ψ ⊗R h ⊗R δ) ◦ g by (unfold hom-diff-def , simp)
finally show ?thesis by simp

qed

lemma (in BPL) τ ′π ′-eq-ππ ′: shows τ ′ ◦ π ′ = π ◦ π ′

119

proof (rule ext)
fix x
show (τ ′ ◦ π ′) x = (π ◦ π ′) x
proof (cases x ∈ carrier D)

case True with π ′-in-R ring-R and hom-completion-closed [of π ′ D D x]
have π ′-im: π ′ x ∈ π ′‘ (carrier D) and π ′-D : π ′ x ∈ carrier D unfolding

image-def by auto
with τ ′-def and D ′-def show (τ ′ ◦ π ′) x = (π ◦ π ′) x by (simp add :

expand-fun-eq)
next

case False with π ′-in-R and ring-R and completion-closed2 [of π ′ D D x]
have π ′-x : π ′ x = 1 unfolding hom-completion-def by simp

with lemma-2-2-17 and hom-completion-one [of diff-group-ker-p ′ diff-group-ker-p
τ ′] and lemma-2-2-14 and lemma-2-2-15

have r-h-s: τ ′ (π ′ x) = 1D
unfolding reduction-def diff-group-def comm-group-def group-def τ ′-def

unfolding iso-inv-compl-def iso-compl-def diff-group-ker-p-def diff-group-ker-p ′-def
by simp

from π-in-R and ring-R and hom-completion-one [of D D π] and π ′-x and
D .diff-group-is-group

have l-h-s: π (π ′ x) = 1 by simp
from r-h-s and l-h-s show ?thesis by simp

qed
qed

lemma (in BPL) f ′π-eq-f π: shows f ′ ◦ π = f ◦ π
proof (rule ext)

fix x
show (f ′ ◦ π) x = (f ◦ π) x
proof (cases x ∈ carrier D)

case True with π-in-R and ring-R and hom-completion-closed [of π D D]
have π-im: π x ∈ π‘ (carrier D)

and π-D : π x ∈ carrier D by (unfold image-def , auto)
then have π x ∈ kernel D D p using im-π-ker-p by simp

then show (f ′ ◦ π) x = (f ◦ π) x unfolding f ′-def by (simp add : expand-fun-eq)
next
case False with π-in-R and ring-R and completion-closed2 [of π D D x] have

π-x : π x = 1 unfolding hom-completion-def by simp
from iso-inv-diff-rev [OF lemma-2-2-11] and π-gf im-π-ker-p

have (f ′, g) ∈ (diff-group-im-gf ∼=invdiff C) unfolding f ′-def diff-group-im-gf-def
im-gf-def by simp

with hom-completion-one [of diff-group-im-gf C f ′] and π-x and C .diff-group-is-group
and image-g-f-diff-group

have r-h-s: f ′ (π x) = 1C unfolding diff-group-im-gf-def im-gf-def diff-group-def
comm-group-def

iso-inv-diff-def iso-diff-def hom-diff-def by simp
from hom-diff-is-hom-completion [OF f-hom-diff] and hom-completion-one [of

D C f] and π-x
and D .diff-group-is-group C .diff-group-is-group have l-h-s: f (π x) = 1C by

120

simp
from r-h-s and l-h-s show ?thesis by simp

qed
qed

lemma (in BPL) f π-eq-f : shows f ◦ π = f
proof −

from sym [OF π-gf] have f ◦ π = f ◦ g ◦ f by (simp add : o-assoc)
also from fg have . . . = (λx . if x ∈ carrier C then id x else 1C) ◦ f by simp
also from f-hom-diff have . . . = f
unfolding hom-diff-def hom-completion-def completion-fun2-def completion-def

hom-def Pi-def by (auto simp add : expand-fun-eq)
finally have f ◦ π = f by simp
then show ?thesis by (simp add : expand-fun-eq)

qed

lemma (in BPL) fh ′diff ′-eq-zero: shows f ◦ (h ′ ⊗R diff ′) = (λx . if x ∈ carrier
D then 1C else 1C)
proof −

from ring-R have f ◦ (h ′ ⊗R diff ′) = f ◦ h ′ ◦ diff ′ by (simp add : o-assoc)
also from ring-R and h ′-def and o-assoc [of f h Φ] have . . . = f ◦ h ◦ Φ ◦

diff ′ by simp
also from fh have . . . = (λx . if x ∈ carrier D then 1C else 1C) by (simp add :

expand-fun-eq)
finally show f ◦ (h ′ ⊗R diff ′) = (λx . if x ∈ carrier D then 1C else 1C) by

simp
qed

lemma (in BPL) fdiff ′h ′-eq-fdeltahphi : shows f ◦ (diff ′ ⊗R h ′) = f ◦ δ ⊗R h
⊗R Φ
proof −

from diff ′-def have f ◦ (diff ′ ⊗R h ′) = f ◦ (differ ⊕R δ) ⊗R h ′ by simp
also from diff-in-R and pert-in-R and h ′-in-R have . . . = f ◦ (differ ⊗R h ′

⊕R δ ⊗R h ′) by algebra
also from l-add-dist-comp [OF C-diff-group, of f differ ⊗R h ′ δ ⊗R h ′] and

diff-in-R and pert-in-R and h ′-in-R and f-hom-diff
have . . . = (λx . if x ∈ carrier D then (f ◦ differ ⊗R h ′) x ⊗C (f ◦ δ ⊗R h ′) x

else 1C) unfolding hom-diff-def by simp
also from ring-R have . . . = (λx . if x ∈ carrier D then (f ◦ differ ◦ h ′) x ⊗C

(f ◦ δ ⊗R h ′) x else 1C) by (simp add : expand-fun-eq)
also from hom-diff-coherent [OF f-hom-diff]
have . . . = (λx . if x ∈ carrier D then (differC ◦ f ◦ h ′) x ⊗C (f ◦ δ ⊗R h ′) x

else 1C) by (simp add : expand-fun-eq)
also from h ′-def and ring-R have . . . = (λx . if x ∈ carrier D then (differC ◦

f ◦ h ◦ Φ) x ⊗C (f ◦ δ ⊗R h ′) x else 1C)
by (simp add : expand-fun-eq)

also from fh and hom-completion-one [OF - - diff-hom] C .diff-group-is-group
and l-one and hom-completion-closed [of h ′ D D]

and hom-completion-closed [of δ D D] and hom-diff-closed [OF f-hom-diff]

121

and ring-R and h ′-in-R and pert-in-R
have . . . = (λx . if x ∈ carrier D then (f ◦ δ ⊗R h ′) x else 1C) by (simp add :

expand-fun-eq)
also from l-comp-hom-compl [OF C-diff-group, of f δ ⊗R h ′] and f-hom-diff

have . . . = f ◦ δ ⊗R h ′ unfolding hom-diff-def by simp
also from h ′-def and pert-in-R and h-in-R and phi-in-R have . . . = f ◦ δ ⊗R

h ⊗R Φ by algebra
finally show ?thesis by simp

qed

lemma (in BPL) fp ′-eq-fdeltahphi : shows f ◦ p ′ = f ◦ δ ⊗R h ⊗R Φ
proof −

from p ′-def and diff ′-def and l-add-dist-comp [OF C-diff-group, of f diff ′ ⊗R
h ′ h ′ ⊗R diff ′] f-hom-diff

and diff ′-in-R pert-in-R h ′-in-R
have f ◦ p ′ = (λx . if x ∈ carrier D then (f ◦ diff ′ ⊗R h ′) x ⊗C (f ◦ h ′ ⊗R

diff ′) x else 1C) by (unfold hom-diff-def , simp)
also from fh ′diff ′-eq-zero and fdiff ′h ′-eq-fdeltahphi and r-one and hom-completion-closed

[of h D D] and hom-completion-closed [of Φ D D]
and hom-completion-closed [of δ D D] and hom-diff-closed [OF f-hom-diff]

and ring-R and h-in-R and phi-in-R and pert-in-R
have . . . = (λx . if x ∈ carrier D then (f ◦ δ ⊗R h ⊗R Φ) x else 1C) by (simp

add : expand-fun-eq)
also from l-comp-hom-compl [OF C-diff-group, of f δ ⊗R h ⊗R Φ] and h-in-R

and phi-in-R and pert-in-R f-hom-diff
have . . . = f ◦ δ ⊗R h ⊗R Φ unfolding hom-diff-def by simp
finally show ?thesis by simp

qed

lemma (in BPL) diff-ker-p ′π ′-eq-diff ′π ′: shows differdiff-group-ker-p ′ ◦ π ′ = diff ′

◦ π ′
proof (rule ext)

fix x
show (differdiff-group-ker-p ′ ◦ π ′) x = (diff ′ ◦ π ′) x
proof (cases x ∈ carrier D)

case True from im-π-ker-p and D ′-def have im-π ′-ker-p ′: image π ′ (carrier
D) ⊆ kernel D ′ D ′ p ′ by simp

with True show (differdiff-group-ker-p ′ ◦ π ′) x = (diff ′ ◦ π ′) x
unfolding diff-group-ker-p ′-def diff ′-def D ′-def completion-def image-def by

(auto simp add : expand-fun-eq)
next

case False with π ′-in-R and ring-R and completion-closed2 [of π ′ D D x]
have π ′-x : π ′ x = 1 unfolding hom-completion-def by simp

with diff ′-in-R and ring-R and hom-completion-one [of D D diff ′] and
D .diff-group-is-group

have l-h-s: (diff ′ ◦ π ′) x = 1 by simp
from reduction.C-diff-group [OF lemma-2-2-15] and diff-group.diff-hom

have diff-ker-p ′: differdiff-group-ker-p ′ ∈ hom-completion diff-group-ker-p ′ diff-group-ker-p ′

by auto

122

from π ′-x and hom-completion-one [OF - - diff-ker-p ′] and reduction.C-diff-group
[OF lemma-2-2-15]

have r-h-s: (differdiff-group-ker-p ′ ◦ π ′) x = 1 unfolding diff-group-ker-p ′-def
diff-group-def comm-group-def group-def by simp

from l-h-s and r-h-s show ?thesis by simp
qed

qed

lemma (in BPL) τ ′diff ′-eq-πdiff ′: shows τ ′ ◦ differdiff-group-ker-p ′ = π ◦ dif-
ferdiff-group-ker-p ′

proof (rule ext)
fix x
show (τ ′ ◦ differdiff-group-ker-p ′) x = (π ◦ differdiff-group-ker-p ′) x
proof (cases x ∈ kernel D ′ D ′ p ′)
case True from reduction.C-diff-group [OF lemma-2-2-15] and diff-group.diff-hom
have differdiff-group-ker-p ′ ∈ hom-completion diff-group-ker-p ′ diff-group-ker-p ′

by auto
then have image (differdiff-group-ker-p ′) (kernel D ′ D ′ p ′) ⊆ kernel D ′ D ′ p ′

unfolding diff-group-ker-p ′-def hom-completion-def hom-def Pi-def image-def
kernel-def D ′-def by auto

with im-π-ker-p and D ′-def have image (differdiff-group-ker-p ′) (kernel D ′ D ′

p ′) ⊆ image π ′ (carrier D) by simp
with True and τ ′-def show (τ ′ ◦ differdiff-group-ker-p ′) x = (π ◦ differdiff-group-ker-p ′)

x
unfolding completion-def image-def D ′-def by (auto simp add : expand-fun-eq)

next
case False from reduction.C-diff-group [OF lemma-2-2-15] and diff-group.diff-hom
have differdiff-group-ker-p ′ ∈ hom-completion diff-group-ker-p ′ diff-group-ker-p ′

by auto
with completion-closed2 [of differdiff-group-ker-p ′ diff-group-ker-p ′ diff-group-ker-p ′

x] and False and D ′-def
have diff ′-x : (differdiff-group-ker-p ′) x = 1 unfolding hom-completion-def

diff-group-ker-p ′-def by simp
with lemma-2-2-17 and hom-completion-one [of diff-group-ker-p ′ diff-group-ker-p

τ ′] and lemma-2-2-14 and lemma-2-2-15
have r-h-s: τ ′ ((differdiff-group-ker-p ′) x) = 1D

unfolding reduction-def diff-group-def comm-group-def group-def τ ′-def iso-inv-compl-def
iso-compl-def diff-group-ker-p-def

diff-group-ker-p ′-def by simp
from π-in-R and ring-R and hom-completion-one [of D D π] and diff ′-x and

D .diff-group-is-group
have l-h-s: π ((differdiff-group-ker-p ′) x) = 1 by simp
from r-h-s and l-h-s show ?thesis by simp

qed
qed

lemma (in BPL) f π ′g-eq-id : shows f ◦ π ′ ◦ g = (λx . if x ∈ carrier C then id x

123

else 1C)
proof −

have f ◦ π ′ ◦ g = f ◦ (1R 	R p ′) ◦ g unfolding π ′-def by simp
also from l-minus-dist-comp [OF C-diff-group - R.one-closed , of f p ′] and p ′-in-R

and f-hom-diff and C-diff-group
have . . . = (λx . if x ∈ carrier D then (f ◦ 1R) x ⊗C (f ◦ (R p ′)) x else 1C)
◦ g unfolding hom-diff-def by simp

also from phi-in-R h-in-R pert-in-R and l-minus-comp-f [OF C-diff-group, of f
p ′ δ ⊗R h ⊗R Φ] and fp ′-eq-fdeltahphi and f-hom-diff

have . . . = (λx . if x ∈ carrier D then (f ◦ 1R) x ⊗C (f ◦ 	R (δ ⊗R h ⊗R Φ))
x else 1C) ◦ g

unfolding hom-diff-def by (auto simp add : expand-fun-eq)
also from sym [OF l-minus-dist-comp [OF C-diff-group - R.one-closed , of f (δ
⊗R h ⊗R Φ)]] and f-hom-diff and pert-in-R h-in-R phi-in-R

have . . . = f ◦ (1R 	R (δ ⊗R h ⊗R Φ)) ◦ g unfolding hom-diff-def by simp
also from phi-prop have . . . = f ◦ (1R 	R Φ ⊗R δ ⊗R h) ◦ g by simp
also from minus-dist-comp [OF C-diff-group - R.one-closed , of g Φ ⊗R δ ⊗R h]

and g-hom-diff and phi-in-R pert-in-R h-in-R
have . . . = f ◦ (λx . if x ∈ carrier C then (1R ◦ g) x ⊗ (R (Φ ⊗R δ ⊗R h) ◦

g) x else 1)
by (unfold hom-diff-def , simp add : expand-fun-eq)

also have . . . = f ◦ (λx . if x ∈ carrier C then (1R ◦ g) x else 1)
proof −

have (R (Φ ⊗R δ ⊗R h) ◦ g) = 	R 0R ◦ g
proof −
from hg and ring-R and hom-completion-one [of D D δ] hom-completion-one

[of D D Φ] and D .diff-group-is-group and pert-in-R and phi-in-R
have (Φ ⊗R δ ⊗R h) ◦ g = 0R ◦ g by (simp add : expand-fun-eq)
with minus-comp-g2 [OF C-diff-group - - R.zero-closed , of g Φ ⊗R δ ⊗R h]

and g-hom-diff and phi-in-R pert-in-R h-in-R
show (R (Φ ⊗R δ ⊗R h) ◦ g) = 	R 0R ◦ g unfolding hom-diff-def by

simp
qed
also have . . . = 0R ◦ g by simp
also from ring-R have . . . = (λx . 1) by (simp add : expand-fun-eq)
finally have 	R (Φ ⊗R δ ⊗R h) ◦ g = (λx . 1) by simp
with D .r-one and g-hom-diff and hom-completion-closed [of g C D] and

ring-R show ?thesis by (simp add : expand-fun-eq)
qed
also from comp-hom-compl [OF C-diff-group - R.one-closed , of g] and g-hom-diff

have . . . = f ◦ (1R ◦ g) unfolding hom-diff-def by simp
also from g-hom-diff and hom-completion-closed [of g C D] and ring-R have

. . . = f ◦ g
proof −

from g-hom-diff and hom-completion-closed [of g C D] and ring-R have (1R
◦ g) = g

unfolding hom-diff-def hom-completion-def completion-fun2-def completion-def
by (auto simp add : expand-fun-eq)

then show ?thesis by simp

124

qed
also from fg have . . . = (λx . if x ∈ carrier C then id x else 1C) by simp
finally show f ◦ π ′ ◦ g = (λx . if x ∈ carrier C then id x else 1C) by simp

qed

lemma (in BPL) π ′g-eq-psig : shows π ′ ◦ g = Ψ ◦ g
proof −

from π ′-def have π ′ ◦ g = (1R 	R p ′) ◦ g by simp
also from minus-dist-comp [of C g 1R p ′] and p ′-in-R and R.one-closed and

g-hom-diff and C-diff-group
have . . . = (λx . if x ∈ carrier C then (1R ◦ g) x ⊗ ((R p ′) ◦ g) x else 1) by

(unfold hom-diff-def , simp)
also from psi-in-R h-in-R pert-in-R and minus-comp-g2 [OF C-diff-group, of g

p ′ Ψ ⊗R h ⊗R δ] and p ′g-eq-psihdeltag and g-hom-diff
have . . . = (λx . if x ∈ carrier C then (1R ◦ g) x ⊗ (R (Ψ ⊗R h ⊗R δ) ◦ g) x

else 1)
unfolding hom-diff-def by (auto simp add : expand-fun-eq)

also from sym [OF minus-dist-comp [OF C-diff-group - R.one-closed , of g (Ψ
⊗R h ⊗R δ)]] and g-hom-diff and pert-in-R h-in-R phi-in-R

have . . . = (1R 	R (Ψ ⊗R h ⊗R δ)) ◦ g unfolding hom-diff-def by simp
also from psi-prop have . . . = Ψ ◦ g by simp
finally show ?thesis by simp

qed

11.4 BPL simplification

Now we can prove the simplifications of the terms in the reduction; these sim-
plification processes correspond to the ones in pages 56 and 57 of Aransay’s
memoir

lemma (in BPL) BPL-simplifications: shows f : (f ′ ◦ (τ ′ ◦ 1R 	R p ′)) = f ◦ Φ
and g : (inc-ker-p ′ ◦ τ ◦ g) = Ψ ◦ g

and diff-C : f ′ ◦ (τ ′ ◦ differdiff-group-ker-p ′ ◦ τ) ◦ g = (λx . if x ∈ carrier C then
(differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x else 1C)
proof −

show f ′ ◦ (τ ′ ◦ 1R 	R p ′) = f ◦ Φ

proof −
have f ′ ◦ (τ ′ ◦ 1R 	R p ′) = f ′ ◦ (τ ′ ◦ π ′) unfolding π ′-def by simp
also have . . . = f ′ ◦ (π ◦ π ′) unfolding τ ′π ′-eq-ππ ′ by simp
also have . . . = f ◦ π ◦ π ′ unfolding o-assoc unfolding f ′π-eq-f π by simp
also have . . . = f ◦ π ′ unfolding f π-eq-f by simp
also have . . . = f ◦ (1R 	R p ′) unfolding π ′-def by simp
also from l-minus-dist-comp [OF C-diff-group - R.one-closed , of f p ′] and

p ′-in-R and f-hom-diff and C-diff-group
have . . . = (λx . if x ∈ carrier D then (f ◦ 1R) x ⊗C (f ◦ (R p ′)) x else 1C)

unfolding hom-diff-def by simp

125

also from phi-in-R h-in-R pert-in-R and l-minus-comp-f [OF C-diff-group, of
f p ′ δ ⊗R h ⊗R Φ] and fp ′-eq-fdeltahphi and f-hom-diff

have . . . = (λx . if x ∈ carrier D then (f ◦ 1R) x ⊗C (f ◦ 	R (δ ⊗R h ⊗R
Φ)) x else 1C)

unfolding hom-diff-def by (auto simp add : expand-fun-eq)
also from sym [OF l-minus-dist-comp [OF C-diff-group - R.one-closed , of f (δ

⊗R h ⊗R Φ)]] and f-hom-diff and pert-in-R h-in-R phi-in-R
have . . . = f ◦ (1R 	R (δ ⊗R h ⊗R Φ)) unfolding hom-diff-def by simp
also from phi-prop have . . . = f ◦ Φ by simp
finally show ?thesis by simp

qed
next

show (inc-ker-p ′ ◦ τ ◦ g) = Ψ ◦ g
proof −

have inc-ker-p ′ ◦ τ ◦ g = τ ◦ g unfolding inc-ker-pτ -eq-τ by simp
also have . . . = π ′ ◦ g unfolding τg-eq-π ′g by simp

also have π ′ ◦ g = (1R 	R p ′) ◦ g unfolding π ′-def by simp
also from minus-dist-comp [of C g 1R p ′] and p ′-in-R and R.one-closed and

g-hom-diff and C-diff-group
have . . . = (λx . if x ∈ carrier C then (1R ◦ g) x ⊗ ((R p ′) ◦ g) x else 1)

unfolding hom-diff-def by simp
also from psi-in-R h-in-R pert-in-R and minus-comp-g2 [OF C-diff-group, of

g p ′ Ψ ⊗R h ⊗R δ] and p ′g-eq-psihdeltag and g-hom-diff
have . . . = (λx . if x ∈ carrier C then (1R ◦ g) x ⊗ (R (Ψ ⊗R h ⊗R δ) ◦ g)

x else 1)
unfolding hom-diff-def by (auto simp add : expand-fun-eq)

also from sym [OF minus-dist-comp [OF C-diff-group - R.one-closed , of g (Ψ
⊗R h ⊗R δ)]] and g-hom-diff and pert-in-R h-in-R phi-in-R

have . . . = (1R 	R (Ψ ⊗R h ⊗R δ)) ◦ g unfolding hom-diff-def by simp
also from psi-prop have . . . = Ψ ◦ g by simp
finally show ?thesis by simp

qed
next

show f ′ ◦ (τ ′ ◦ differdiff-group-ker-p ′ ◦ τ) ◦ g = (λx . if x ∈ carrier C then
(differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x else 1C)

(is f ′ ◦ (τ ′ ◦ ?diff-ker-p ′ ◦ τ) ◦ g = ?diff-C-pert)
proof −
have f ′ ◦ (τ ′ ◦ ?diff-ker-p ′ ◦ τ) ◦ g = (f ′ ◦ τ ′) ◦ ?diff-ker-p ′ ◦ (τ ◦ g) by (simp

add : o-assoc)
also from τg-eq-π ′g have . . . = (f ′ ◦ τ ′) ◦ ?diff-ker-p ′ ◦ (π ′ ◦ g) by simp
also have . . . = f ′ ◦ (τ ′ ◦ ?diff-ker-p ′) ◦ π ′ ◦ g by (simp add : o-assoc)
also from τ ′diff ′-eq-πdiff ′ have . . . = f ′ ◦ (π ◦ differdiff-group-ker-p ′) ◦ π ′ ◦ g

by (simp add : expand-fun-eq)
also have . . . = f ′ ◦ π ◦ (differdiff-group-ker-p ′ ◦ π ′) ◦ g by (simp add : o-assoc)
also from diff-ker-p ′π ′-eq-diff ′π ′ have . . . = f ′ ◦ π ◦ (diff ′ ◦ π ′) ◦ g by (simp

add : expand-fun-eq)
also from f ′π-eq-f π have . . . = f ◦ π ◦ (diff ′ ◦ π ′) ◦ g by simp
also from f π-eq-f have . . . = f ◦ (diff ′ ◦ π ′) ◦ g by simp

126

also have . . . = f ◦ diff ′ ◦ (π ′ ◦ g) by (simp add : o-assoc)
also from diff ′-def have . . . = f ◦ (differ ⊕R δ) ◦ (π ′ ◦ g) by simp
also have . . . = f ◦ ((differ ⊕R δ) ◦ π ′) ◦ g by (simp add : o-assoc)
also from ring-R have . . . = f ◦ ((differ ⊕R δ) ⊗R π ′) ◦ g by simp
also from π ′-in-R and diff-in-R and pert-in-R and R.one-closed have . . . =

f ◦ (differ ⊗R π ′ ⊕R δ ⊗R π ′) ◦ g by algebra
also from l-add-dist-comp [OF C-diff-group, of f differ ⊗R π ′ δ ⊗R π ′]

f-hom-diff diff-in-R π ′-in-R pert-in-R
have . . . = (λx . if x ∈ carrier D then (f ◦ (differ ⊗R π ′)) x ⊗C (f ◦ (δ ⊗R

π ′)) x else 1C) ◦ g by (unfold hom-diff-def , simp)
also from ring-R and o-assoc have . . . = (λx . if x ∈ carrier D then (f ◦ differ

◦ π ′) x ⊗C (f ◦ (δ ⊗R π ′)) x else 1C) ◦ g
by (simp add : expand-fun-eq)

also from hom-diff-coherent [OF f-hom-diff]
have . . . = (λx . if x ∈ carrier D then (differC ◦ f ◦ π ′) x ⊗C (f ◦ (δ ⊗R

π ′)) x else 1C) ◦ g by (simp add : expand-fun-eq)
also have . . . = (λx . if x ∈ carrier C then ((differC ◦ f ◦ π ′) ◦ g) x ⊗C ((f

◦ (δ ⊗R π ′)) ◦ g) x else 1C)
proof (auto simp add : expand-fun-eq)

fix x
assume x : x ∈ carrier C and g x /∈ carrier D with g-hom-diff and

hom-completion-closed [of g C D]
show 1C = (differC) (f (π ′ (g x))) ⊗C f ((δ ⊗R π ′) (g x)) by (unfold

hom-diff-def , simp)
next

fix x
assume x /∈ carrier C with completion-closed2 [of g C D x] and g-hom-diff

have g-x : g x = 1
by (unfold hom-diff-def hom-completion-def , simp)

with hom-completion-one [of D D π ′] and π ′-in-R and ring-R and D .diff-group-is-group
and hom-completion-one [of D C f] and C .diff-group-is-group and f-hom-diff

and hom-completion-one [of C C differC] and diff-group.diff-hom [OF
C-diff-group]

and hom-completion-one [of D D δ ⊗R π ′] and pert-in-R and R.m-closed
[of δ π ′]

show (differC) (f (π ′ (g x))) ⊗C f ((δ ⊗R π ′) (g x)) = 1C by (unfold
hom-diff-def , auto)

qed
also from ring-R have . . . = (λx . if x ∈ carrier C then (differC ◦ (f ◦ π ′ ◦

g)) x ⊗C (f ◦ δ ◦ π ′ ◦ g) x else 1C)
by (simp add : o-assoc expand-fun-eq)

also from f π ′g-eq-id and diff-group.diff-hom [OF C-diff-group]
have . . . = (λx . if x ∈ carrier C then (differC) x ⊗C (f ◦ δ ◦ π ′ ◦ g) x else

1C)
by (unfold hom-completion-def completion-fun2-def completion-def , auto simp

add : expand-fun-eq)
also from π ′g-eq-psig have . . . = (λx . if x ∈ carrier C then (differC) x ⊗C (f

◦ δ ◦ Ψ ◦ g) x else 1C) by (simp add : expand-fun-eq)
finally show f ′ ◦ (τ ′ ◦ differdiff-group-ker-p ′ ◦ τ) ◦ g = (λx . if x ∈ carrier C

127

then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x else 1C)
by simp

qed
qed

By joining reduction D ′ (|carrier = carrier C , mult = op ⊗C, one = 1C, diff
= f ′ ◦ (τ ′ ◦ differdiff-group-ker-p ′ ◦ τ) ◦ g |) (f ′ ◦ (τ ′ ◦ 1R 	R p ′)) (inc-ker-p ′

◦ τ ◦ g) h ′ and f ′ ◦ (τ ′ ◦ 1R 	R p ′) = f ◦ Φ
inc-ker-p ′ ◦ τ ◦ g = Ψ ◦ g
f ′ ◦ (τ ′ ◦ differdiff-group-ker-p ′ ◦ τ) ◦ g = (λx . if x ∈ carrier C then (differC)
x ⊗C (f ◦ δ ◦ Ψ ◦ g) x else 1C) we get the proof of the BPL, stated as in
Lemma 2 .2 .20 in Aransay’s memoir

lemma (in BPL) BPL: shows reduction D ′

(| carrier = carrier C , mult = mult C , one = one C , diff = (λx . if x ∈ carrier
C then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x else 1C)|)

(f ◦ Φ) (Ψ ◦ g) h ′

using BPL-reduction and BPL-simplifications by simp

end
theory Acc-tools imports Main
begin

12 Definition of some results about the accesible
part of a relation.

term acc
thm accp.intros

lemma wf-imp-subset-accP [rule-format]: wf {(y ,x) . Q y ∧ Q x ∧ r y x} =⇒ (∀
y x . Q x −→ r y x −→ Q y) =⇒ Q x −→ accp r x

apply (erule wf-induct)
apply clarify
apply (rule accp.intros)
apply (simp (no-asm-use))
apply blast
done

lemma subset-accP-imp-wf :
assumes Q-subset : ∀ x . Q x −→ accp r x
shows wf ({(a,b). Q b ∧ r a b})

proof −
let ?s = λ y x . Q x ∧ r y x
have !! y x . ?s y x =⇒ r y x by simp
then have Q-sub-accP-s: !! x . Q x =⇒ accp ?s x

apply (rule accp-subset [simplified le-fun-def le-bool-def , rule-format])
apply (auto simp add : Q-subset)
done

128

{
fix x
have ¬ (Q x) =⇒ accp ?s x

apply (rule accp.intros)
apply auto
done

with Q-sub-accP-s have accp ?s x by auto
}
note accP-univ = this
show ?thesis

apply (rule accp-wfPI [simplified wfP-def])
apply (simp add : accP-univ)
done

qed

lemma downchain-contra-imp-subset-accP :
assumes downchain:

∧
f . (

∧
i . Q (f i)) =⇒ (

∧
i . r (f (Suc i)) (f i)) =⇒ False

and downclosed :
∧

y x . [[Q x ; r y x]] =⇒ Q y
shows Q x =⇒ accp r x
apply (rule wf-imp-subset-accP [where Q=Q])
prefer 3
apply simp
prefer 2
apply (rule-tac y=y and x=xa in downclosed)
apply simp-all
apply (simp add : wf-iff-no-infinite-down-chain)
apply (insert downchain)
apply blast
done

lemma accP-subset-induct :
assumes Q-subset : ∀ x . Q x −→ accp r x
assumes Q-downward : ∀ x y . Q x −→ r y x −→ Q y
assumes Q-a: Q a
assumes Q-induct : !! x . Q x =⇒ ∀ y . r y x −→ P y =⇒ P x
shows P a

proof −
show ?thesis

apply (rule-tac accp-subset-induct [where x=a and D=Q and R=r])
apply (simp add : le-fun-def Q-subset le-bool-def)
apply (auto simp add : Q-a Q-subset)
apply (erule Q-downward [rule-format])
apply simp
apply (erule Q-induct [rule-format])
apply simp
done

qed

end

129

theory Orbit
imports Main
begin

13 Definition of orbits of functions and termina-
tion conditions.

lemma funpow-1 : (f :: ′a⇒ ′a)ˆ(1 ::nat) = f
proof −

have 1 : 1 = Suc 0 by simp
show ?thesis by (simp add : 1)

qed

lemma funpow-2 : fˆ2 = f o f
proof −

have wow : (2 ::nat) = (Suc (Suc 0)) by auto
show ?thesis by (simp add : wow)

qed

lemma funpow-zip: (fˆn) (f x) = (fˆ(n+1)) x
apply (induct n)
apply auto
done

lemma funpow-mult : (f :: ′a ⇒ ′a)ˆ(m∗n) = (fˆm)ˆn
apply (induct n)
apply simp
apply (simp add : funpow-add)
done

lemma funpow-swap: (fˆn)((fˆm) x) = (fˆm)((fˆn) x)
apply (induct n arbitrary : m)
apply (auto simp add : funpow-zip)
done

lemma nat-remainder-div : 0 < (n::nat) =⇒ ∃ q r . r < n ∧ m = q ∗ n + r
apply (rule exI [where x = m div n])
apply (rule exI [where x = m mod n])
apply simp
done

lemma cyclic-fun-range: assumes n: 0 < n and cycle: (fˆn) v = v shows ∃ r .
r < n ∧ (fˆm) v = (fˆr) v
proof −

from nat-remainder-div [where m=m and n=n, OF n]
obtain q r where qr : r < n ∧ m = q ∗ n + r by auto
have q-pow [rule-format]: ((fˆn)ˆq) v = v

apply (induct q)

130

apply (auto simp add : cycle)
done

have (fˆm) v = (fˆr) v
apply (simp add : qr)
apply (subst add-commute)
apply (simp add : funpow-add)
apply (subst mult-commute)
apply (simp add : funpow-mult q-pow)
done

with qr show ?thesis by auto
qed

13.1 Definition of the orbit of a function over a given point.

constdefs
Orbit :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a set
Orbit f d ≡ { (fˆn) d | n. True}

lemma Orbit-refl [simp]: x ∈ Orbit f x
apply (simp add : Orbit-def)
apply (rule-tac x=0 in exI)
by simp

lemma Orbit-next [dest]: y ∈ Orbit f (f x) =⇒ y ∈ Orbit f x
apply (auto simp add : Orbit-def)
apply (rule-tac x=Suc n in exI)
apply (simp add : funpow-zip)
done

lemma Orbit-reduce:
shows Orbit f x = { (fˆm)(x) | m. ∀ i ≤ m. i > 0 −→ (fˆi) x 6= x } (is ?L =

?R)
proof −

have case1 : ?R ⊆ ?L
by (auto simp add : Orbit-def)

{
assume terminates: ∃ n. n > 0 ∧ (fˆn) x = x
let ?M = LEAST m. m > 0 ∧ (fˆm) x = x
have M : ?M > 0 ∧ (fˆ?M) x = x

apply (rule LeastI-ex)
apply (rule terminates)
done

{
fix N ::nat
assume N1 : N > 0
assume N2 : (fˆN) x = x
with N1 N2 have ?M ≤ N by (simp add : Least-le)

}
note M-least = this

131

have ?L ⊆ ?R
apply (auto simp add : Orbit-def)
proof −

fix n
have ? r . r < ?M ∧ (fˆn) x = (fˆr) x

apply (rule cyclic-fun-range)
apply (simp-all add : M)
done

then obtain r where r : r < ?M ∧ (fˆn) x = (fˆr) x by blast
show ∃m. (f ˆ n) x = (f ˆ m) x ∧ (∀ i≤m. 0 < i −→ (f ˆ i) x 6= x)

apply (rule-tac x=r in exI)
apply (auto simp add : r)
apply (drule M-least)
apply auto
apply (subgoal-tac r < ?M)
apply simp
apply (simp add : r)
done

qed
}
note case2a = this
{

assume not-terminates: ¬ (∃ n. n > 0 ∧ (fˆn) x = x)
then have ?L ⊆ ?R

apply (auto simp add : Orbit-def)
apply (rule-tac x=n in exI)
apply auto
apply (drule-tac x=i in spec)
apply simp
done

}
note case2b = this
from case1 case2a case2b show ?thesis by blast

qed

lemma Orbit-unfold1 : Orbit f x = {x} ∪ Orbit f (f x)
apply (auto simp add : Orbit-def)
apply (rule-tac x=n − 1 in exI)
apply (case-tac n=0)
apply (auto simp add : funpow-zip)
apply (rule-tac x=0 in exI)
apply simp
apply (rule-tac x=n+1 in exI)
apply (simp add : funpow-zip)
done

13.2 Definition of the section of a function over a given point.

constdefs

132

Section continue (f :: ′a⇒ ′a) x0 ≡ { (fˆn) x0 | n. (∀ m. m ≤ n −→ continue
((fˆm)(x0))) }

lemma Section-x-x : ¬ (continue x) =⇒ Section continue f x = {}
apply (simp add : Section-def)
apply auto
done

lemma Section-unfold : continue i =⇒ Section continue f i = insert i (Section
continue f (f i))

apply (auto simp add : Section-def)
apply (case-tac n)
apply simp
apply (rule-tac x=n − 1 in exI)
apply (simp add : funpow-zip)
apply clarsimp
apply (drule-tac x=m+1 in spec)
apply simp
apply (rule-tac x=0 in exI)
apply simp
apply (rule-tac x=n+1 in exI)
apply (auto simp add : funpow-zip)
apply (case-tac m)
apply auto
done

lemma Section-rightopen[dest]: y ∈ Section continue f x =⇒ continue y
by (auto simp add : Section-def)

lemma Section-is-Orbit :
assumes x0-elem-S : x0 ∈ Section continue f (f x0) (is x0 ∈ ?S)
shows ?S = Orbit f x0

proof −
have x0-noteq-x1 : continue x0

apply (insert x0-elem-S)
apply blast
done

have ∃ n. n > 0 ∧ (fˆn) x0 = x0 ∧ (∀ m ≤ n. continue ((fˆm) x0))
apply (insert x0-elem-S)
apply (auto simp add : Section-def)
apply (rule-tac x=n+1 in exI)
apply (auto simp add : funpow-zip)
apply (case-tac m)
apply auto
done

then obtain N where N :N > 0 ∧ (fˆN) x0 = x0 ∧ (∀ m ≤ N . continue
((fˆm) x0)) by auto

{
fix n::nat

133

assume n: n > 0
have ? r . r < N ∧ (fˆn) x0 = (fˆr) x0

apply (rule cyclic-fun-range)
apply (simp-all add : N)
done

then obtain r where r : r < N ∧ (fˆn) x0 = (fˆr) x0 by blast
then have continue ((fˆn) x0)

apply (case-tac n=0)
apply (insert n)
apply (auto simp add : N)
done

}
note hammer = this
{

fix n :: nat
note h = hammer [of n+1 , simplified]

}
note hammer = this
show ?thesis

apply (auto simp add : Orbit-def Section-def)
apply (rule-tac x=n+1 in exI)
apply (simp add : funpow-zip)
apply (case-tac n=0)
apply simp
apply (rule-tac x=N − 1 in exI)
apply (auto simp add : N funpow-zip hammer)
apply (subgoal-tac ? m. n = Suc m)
apply auto
apply arith
done

qed

thm Section-is-Orbit

thm Section-def

term continue y = (∀ m. y = (fˆm) x −→ (∀ n. n > 0 ∧ n ≤ m −→ (fˆm) x 6=
x))

lemma Section-is-Orbit ′: insert x (Section (λy . y 6= x) f (f x)) = Orbit f x
apply auto
apply (simp add : Section-def Orbit-def)
apply clarsimp
apply (rule-tac x=n+1 in exI)
apply (simp add : funpow-zip)
apply (auto simp add : Section-def Orbit-reduce)
apply (case-tac m)
apply (simp-all add : funpow-zip)

134

apply (drule-tac x=nat in spec)
apply clarsimp
apply (case-tac ma = nat)
apply auto
done

13.3 Definition of a termination condition in terms of orbits.

fun terminates :: (′a ⇒ bool) × (′a ⇒ ′a) × ′a ⇒ bool
where

terminates (continue, f , x) = (∃ y . (y ∈ Orbit f x) ∧ ¬ (continue y))

declare terminates.simps[simp del]

lemmas terminates-simp = terminates.simps

lemma finite-Section:
assumes terminates: terminates (continue, f , x)
shows finite (Section continue f x)

proof −
have ? N . ¬ continue ((fˆN) x)

apply (insert terminates)
apply (auto simp add : terminates-simp Orbit-def)
done

then obtain N where N : ¬ continue ((fˆN) x) by auto
have Section continue f x ⊆ image (λ n. (fˆn) x) {..N }

apply (auto simp add : Section-def image-def Bex-def)
apply (rule-tac x=n in exI)
apply simp
apply (drule-tac x=N in spec)
apply (auto simp add : N)
done

note finite-sub = finite-subset [OF this, simplified]
then show ?thesis by blast

qed

lemma terminates-imp-notin-Section:
assumes terminates: terminates (continue, f , x)
shows x /∈ Section continue f (f x)

proof −
{

assume x ∈ Section continue f (f x)
then have SO : Section continue f (f x) = Orbit f x

by (rule Section-is-Orbit)
from terminates[simplified terminates-simp]
obtain y where y : y ∈ Orbit f x ∧ ¬ continue y by blast
have y /∈ Orbit f x

by (auto simp add : SO [symmetric] y)
with y have False

135

by auto
}
then show ?thesis by auto

qed

lemma orbit-stepback : i 6= x =⇒ (x ∈ Orbit f (f i)) = (x ∈ Orbit f i)
apply (auto simp add : Orbit-def)
apply (rule-tac x = n+1 in exI)
apply (simp add : funpow-zip)
apply (case-tac n)
apply (auto simp add : funpow-zip)
done

lemma terminates-rec: terminates (continue, f , x) = (if continue x then terminates
(continue, f , f x) else True)

apply (auto simp add : terminates-simp)
apply (rule-tac x=y in exI)
apply (simp add : Orbit-unfold1 [of f x])
apply clarsimp
apply (rule-tac x=x in exI)
apply simp
done

lemma Suc-card-Section-eq :
assumes x0-neq-x1 : continue x0
and terminates: terminates (continue, f , f x0)
and finite-A: finite A
and x0-elem-A: x0 ∈ A
shows Suc (card (Section continue f (f x0) ∩ A)) = card (Section continue f x0
∩ A)
proof −

have insert : insert x0 (Section continue f (f x0) ∩ A) = Section continue f x0
∩ A (is ?L=?R)

by (auto simp add : Section-unfold [of continue, OF x0-neq-x1] x0-elem-A)
have x0-notin-Section: x0 /∈ Section continue f (f x0)

apply (rule terminates-imp-notin-Section)
apply (simp add : terminates-rec[where x=x0 and continue=continue] x0-neq-x1

terminates)
done

from x0-notin-Section finite-A have card-L: card ?L = Suc (card (Section con-
tinue f (f x0) ∩ A))

by simp
then show ?thesis

by (simp add : card-L[symmetric] insert)
qed

end
theory Cycle imports Main
begin

136

constdefs
closed :: ′a set ⇒ (′a ⇒ ′a) ⇒ bool
closed A f ≡ ∀ x ∈ A. f x ∈ A

constdefs
cyclic :: ′a set ⇒ (′a ⇒ ′a) ⇒ bool
cyclic A f ≡ ∀ d ∈ A. ∃ n. n > 0 ∧ (fˆn) d = d

constdefs
cyclic-equiv :: ′a set ⇒ (′a ⇒ ′a) ⇒ (′a × ′a) set
cyclic-equiv A f ≡ { (a,b) . a ∈ A ∧ b ∈ A ∧ (? n. (fˆn) a = b) }

lemma refl-cyclic-equiv : refl A (cyclic-equiv A f)
apply (auto simp add : cyclic-equiv-def refl-def)
apply (rule exI [where x=0])
apply simp
done

lemma archimedian-law : (m::nat) > 0 =⇒ ? q . n < q∗m
apply (induct n)
apply auto
apply (rule-tac x=q+1 in exI)
apply simp
done

lemma cyclic-wrap:
assumes c: cyclic A f
assumes x : x ∈ A
shows ? n ′. (fˆn ′) ((fˆn) x) = x

proof −
from c x have ? m. m > 0 ∧ (fˆm)(x) = x by (auto simp add : Ball-def

cyclic-def)
then obtain m where m: m > 0 ∧ (fˆm)(x) = x ..
with archimedian-law have ? q . n < q∗m by auto
then obtain q where n < q∗m ..
then have q : q∗m − n + n = q ∗ m by simp
show ? n ′. (fˆn ′)((fˆn) x) = x

apply (rule exI [where x=q∗m−n])
apply (simp only : o-apply [where f =f ˆ (q ∗ m − n) and g=(f ˆ n), symmetric]

funpow-add [symmetric] q)
apply (induct q)
apply (simp-all add : funpow-add m)
done

qed

lemma sym-cyclic-equiv : cyclic A f =⇒ sym (cyclic-equiv A f)
by (auto simp add : sym-def cyclic-equiv-def cyclic-wrap)

137

lemma trans-cyclic-equiv : trans (cyclic-equiv A f)
apply (auto simp add : cyclic-equiv-def trans-def)
apply (rule-tac x=na+n in exI)
apply (simp add : funpow-add)
done

lemma cyclic A f =⇒ equiv A (cyclic-equiv A f)
by (simp add : equiv-def refl-cyclic-equiv sym-cyclic-equiv trans-cyclic-equiv)

constdefs
cyclic-on A f ≡ closed A f ∧ cyclic A f

constdefs
representing A f R ≡ closed A f ∧ cyclic A f ∧ R ⊆ A ∧ (∀ x y . (x ∈ R ∧ y ∈

R ∧ (∃ n. (fˆn) (x) = y)) −→ x = y) ∧ A = { (fˆn) (x) | n x . x ∈ R }

end
theory While imports Acc-tools Orbit Cycle
begin

14 Definition of while loops as tail recursive func-
tions.

function (tailrec) While :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a
where

While continue f s = (if continue s then While continue f (f s) else s)
by auto

We delete the definition from the simplifier to avoid infinite loops.

declare While.simps[simp del]
lemmas While-simp = While.simps

An alternative definition for termination sets.

fun terminates-slice :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ (′a ⇒ bool) × (′a ⇒ ′a) × ′a
⇒ bool
where

terminates-slice continue0 f0 (continue, f , x) = (continue = continue0 ∧ f = f0
∧ terminates (continue, f , x))

lemma lfp-const : lfp (λ p. P) = P
proof −

have mono: mono (λ p. P) by (simp add : mono-def)
then show ?thesis

by (simp add : lfp-unfold [OF mono])
qed

Definition of the relation condition of While loops.

lemmas While-rel-def ′ = While-rel-def [simplified lfp-const]

138

lemma While-rel-continue: While-rel q (continue, f , s) =⇒ continue s
apply (erule While-rel .cases)
apply simp
done

lemma assumes n-g-0 : 0 < (n::nat) shows ∃m. n = Suc m
using n-g-0 by arith

lemma helper : shows
∧

n::nat . 0 < n ==> ∃m. n = Suc m by arith

lemma terminates-downward : terminates x =⇒ While-rel y x =⇒ terminates y
apply (auto simp add : While-rel-def ′ terminates-simp)
apply (auto simp add : Orbit-def)
apply (rule-tac x=(fˆn) s in exI)
apply (case-tac n=0)
apply simp
apply simp
apply (subgoal-tac ? m. n = Suc m)
apply auto
apply (rule-tac x=m in exI)
apply (simp add : funpow-zip)
apply (simp add : helper)
done

lemma terminates-slice-downward : terminates-slice continue f x =⇒ While-rel y x
=⇒ terminates-slice continue f y

apply (cases x , cases y) apply auto
unfolding While-rel-def ′ apply auto using terminates-rec [of continue f -] by

auto

lemma terminates-subset-dom[rule-format]: terminates (continue, f , s) −→While-dom
(continue, f , s)
proof −

let ?Q = terminates
let ?r = While-rel
note Q = terminates-downward
{

fix F
assume F-Q : !! i ::nat . ?Q (F i)
assume F-r : !! i ::nat . ?r (F (Suc i)) (F i)
{ fix i

have ? continue f s. F i = (continue, f , s)
apply (cases F i)
apply simp
done

}
note F-split = this

139

{
fix continue0 f0 s0
assume F0 :F 0 = (continue0 , f0 , s0)
{

fix i
fix continue f s
have F i = (continue, f , s) =⇒ continue s

apply (subgoal-tac ?r (F (Suc i)) (F i))
apply simp
apply (rule While-rel-continue[where q=(F (Suc i)) and f =f])
apply simp
apply (rule F-r)
done

}
note continue = this
{

fix i
have ∀ continue f s. F i = (continue, f , s) −→ s = (f0ˆi) s0 ∧ f = f0 ∧

continue = continue0
apply (induct i)
apply (simp add : continue)
apply (simp add : F0)
apply clarsimp
apply (subgoal-tac ? continue f s. F i = (continue, f , s))
prefer 2
apply (simp add : F-split)
apply clarsimp
apply (subgoal-tac ?r (F (Suc i)) (F i))
prefer 2
apply (rule F-r)
apply (simp add : While-rel-def ′)
done

}
note calc-F = this
{

fix n
have continue0 ((f0ˆn) s0)

apply (insert calc-F [of n])
apply (cases F n)
apply simp
apply (simp add : continue)
done

}
note no-Orbit = this
have Orbit : ∃ y0 ∈ Orbit f0 s0 . ¬ (continue0 y0)

apply (insert F0)
apply (insert F-Q [of 0])
apply (simp add : terminates-simp Bex-def)
done

140

then have ∃ n. ¬ (continue0 ((f0ˆn) s0))
by (auto simp add : Orbit-def)

with no-Orbit have False by auto
}
then have False

apply (cases F 0)
apply simp
apply blast
done

}
note r = this
show ?thesis

apply (rule-tac impI)
apply (rule downchain-contra-imp-subset-accP [where Q=?Q])
prefer 3
apply simp
apply (drule r)
apply simp
apply simp
apply (rule Q)
apply simp-all
done

qed

lemma terminates-slice-subset-dom: terminates-slice continue f x =⇒ While-dom
x

apply (cases x)
apply simp
apply (rule terminates-subset-dom)
apply (auto)
done

Some additional induction rules for the previous While definition.

lemma While-pinduct :
assumes terminates: terminates (continue, f , s)
and I : !! s. [[terminates (continue, f , s); continue s =⇒ P (f s)]] =⇒ P s
shows P s

proof −
show ?thesis

apply (subgoal-tac P s = (λ (continue, f , s). P s) (continue, f , s))
prefer 2
apply clarify
apply (simp only :)
apply (rule accP-subset-induct [where r=While-rel and Q=terminates-slice

continue f])
apply (simp add : terminates-slice-subset-dom)
apply (simp add : terminates-slice-downward)
apply (simp add : terminates)
apply clarsimp

141

apply (simp add : While-rel-def ′ I)
done

qed

lemma While-pinduct-weak :
assumes terminates: terminates (continue, f , s)
and I : !! s. [[continue s =⇒ P (f s)]] =⇒ P s
shows P s
apply (rule While-pinduct [where P=P])
apply (rule terminates)
apply (rule I)
apply simp
done

lemma While-hoare-total :
assumes wf-R: wf R
and R-down: !! x . P x =⇒ continue x =⇒ (f x , x) ∈ R
and P-cont : !! x . P x =⇒ continue x =⇒ P (f x)
and P-not-cont : !! x . P x =⇒ ¬ (continue x) =⇒ Q x
and P-start : P s
shows Q (While continue f s)

proof −
{

fix x
assume Px : P x
assume ¬ (terminates (continue, f , x))

then have continue: !! n. continue ((fˆn) x) by (auto simp add : terminates-simp
Orbit-def)

{
fix n
have P : P ((fˆn) x)

apply (induct n)
apply (simp add : Px)
apply (simp)
apply (rule P-cont)
apply (simp-all add : continue)
done

note R = R-down[OF P , OF continue]
}
then have ¬ (wf R)

apply (simp add : wf-iff-no-infinite-down-chain)
apply (rule-tac x=λ n. (fˆn) x in exI)
apply (auto)
done

with wf-R have False by auto
}
then have !! x . P x =⇒ terminates (continue, f , x) by auto
with P-start have terminates: terminates (continue, f , s) by auto
have P s −→ Q (While continue f s)

142

proof (induct rule: While-pinduct-weak [OF terminates])
case (1 x)
show ?case

apply (subst While-simp)
apply (case-tac continue x)
apply (auto simp add : P-not-cont)
apply (rule 1 [rule-format])
apply (simp-all add : P-cont)
done

qed
then show ?thesis by (simp add : P-start)

qed

15 Definition of For loops.

constdefs
For ′ :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ (′a ⇒ ′b ⇒ ′b) ⇒ ′a ⇒ ′b ⇒ (′b × ′a)
For ′ continue f Ac x ac ≡ While (λ (ac, x). continue x) (λ (ac, x). (Ac x ac, f

x)) (ac, x)
For continue f Ac x ac ≡ fst (For ′ continue f Ac x ac)

term For

lemma For ′-simp: For ′ continue f Ac x ac = (if continue x then For ′ continue f
Ac (f x) (Ac x ac) else (ac, x))
proof −

have trivial1 : split (λac. continue) (ac, x) = continue x
by simp

have trivial2 : ((λ(ac, x). (Ac x ac, f x)) (ac, x)) = (Ac x ac, f x)
by simp

show ?thesis
apply (subst For ′-def)
thm While-simp
apply (subst For ′-def)
apply (subst While-simp[of (λ (ac, x). continue x) (λ (ac, x). (Ac x ac, f x))

(ac, x)])
apply (simp only : trivial1 trivial2)
done

qed

lemma For-simp: For continue f Ac x ac = (if continue x then For continue f Ac
(f x) (Ac x ac) else ac)
proof −

note unfold-For ′ = For ′-simp[of continue f Ac x ac]
show ?thesis by (auto simp add : For-def unfold-For ′)

qed

lemma split-power-of-for-state: ? ac ′. (((λ(ac, x). ((Ac :: ′a ⇒ ′b ⇒ ′b) x ac, (f
:: ′a ⇒ ′a) x)) ˆ n) (a, b) = (ac ′, (fˆn) b))

143

apply (induct n)
apply auto
done

lemma swap-Ex : (∃ a b. P a b) = (∃ b a. P a b) by blast

lemma terminates-For : terminates (λ(ac, x). continue x , λ(ac, x). (Ac x ac, f x),
s) = terminates (continue, f , snd s)

apply (cases s)
apply simp
apply (auto simp add : terminates-simp Bex-def Orbit-def)
apply (rule-tac x=ba in exI)
apply clarsimp
apply (rule-tac x=n in exI)
apply (subgoal-tac ? ac ′. (((λ(ac, x). (Ac x ac, f x)) ˆ n) (a, b) = (ac ′, (fˆn)

b)))
apply clarsimp
apply (rule split-power-of-for-state)
apply (subst swap-Ex)
apply (rule-tac x=(fˆn) b in exI)
apply clarsimp
apply (subst swap-Ex)
apply (rule-tac x=n in exI)
apply (subgoal-tac ∃ aa. ((λ(ac, x). (Ac x ac, f x)) ˆ n) (a, b) = (aa, (f ˆ n) b))
prefer 2
apply (rule split-power-of-for-state)
apply clarsimp
done

Additional induction rules for For loops.

lemma For-pinduct :
assumes terminates: terminates (continue, f , i)
and I :

∧
i s. [[terminates (continue, f , i); continue i =⇒ P (f i) (Ac (i :: ′a)

(s:: ′b::type))]] =⇒ P i s
shows P i s
apply (rule While-pinduct [of (λ (ac, x). continue x) (λ (ac, x). (Ac x ac, f x)),

simplified terminates-For , where s=(s,i) and P = λ (s,i). P i s, simplified])
apply (simp add : terminates)
apply (subgoal-tac ? s ′ i ′. s = (s ′, i ′))
prefer 2
apply simp
apply (auto simp add : I)
done

lemma For-pinduct-weak :
assumes terminates: terminates (continue, f , i)
and I :

∧
i s. [[continue i =⇒ P (f i) (Ac (i :: ′a) (s:: ′b::type))]] =⇒ P i s

shows P i s
apply (rule For-pinduct [where P=P])

144

apply (rule terminates)
apply (rule I)
apply simp
done

constdefs
find f x ≡ While (λ x . f x 6= x) f x
step1 f ≡ {(y ,x). y = f x ∧ y 6= x}

thm find-def [symmetric]
thm While-simp

lemma find-simp: find f x = (if f x 6= x then find f (f x) else x)
apply (simp only : find-def)
apply (rule While-simp)
done

lemma find-wf-step1-terminates: wf (step1 f) =⇒ terminates (λ x . f x 6= x , f , i)
apply (erule wf-induct)
apply (auto simp add : step1-def terminates-simp)
done

lemmas find-pinduct = While-pinduct-weak [of (λ x . f x 6= x) f x]

lemma find :
assumes terminates: terminates (λ x . f x 6= x , f , x)
shows f (find f x) = find f x

proof (induct rule: find-pinduct)
case 1
show ?case by (simp add : terminates)
case (2 x)
show ?case

by (auto simp add : find-simp[of f x] 2)
qed

constdefs
section continue f x0 ≡ For continue f insert x0
card-section continue f x0 ≡ For continue f (λ x y . y + (1 ::nat)) x0

lemmas section-pinduct=For-pinduct [where Ac=insert]
lemmas section-pinduct-weak=For-pinduct-weak [where Ac=insert]
lemmas card-section-pinduct-weak=For-pinduct-weak [where Ac=λ x y . y + (1 ::nat)]

lemma section-simp: section continue f x A = (if continue x then section continue
f (f x) (insert x A) else A)

apply (simp only : section-def)
apply (rule For-simp)

145

done

lemma card-section-simp:card-section continue f x A = (if continue x then card-section
continue f (f x) (A + 1) else A)

apply (simp only : card-section-def)
apply (rule For-simp)
done

lemma section-is-Section:
assumes terminates: terminates (continue, f , x0)
shows section continue f x0 A = A ∪ (Section continue f x0)

proof (induct rule: section-pinduct-weak [where f =f and continue=continue and
i=x0 and P=λ x0 A. section continue f x0 A = A ∪ (Section continue f x0)])

case 1
show ?case by (simp add : terminates)
case (2 i A)
{

assume i-eq-x1 : ¬ continue i
have e: Section continue f i = {} by (simp add : i-eq-x1 Section-x-x)
have ?case

apply (simp add : e)
apply (subst section-simp)
apply (simp add : i-eq-x1)
done

}
note eq = this
{

assume i-neq-x1 : continue i
have ?case

apply (subst section-simp)
apply (simp add : i-neq-x1 2 [OF i-neq-x1])
apply (simp only : Un-insert-right [symmetric])
apply (simp add : Section-unfold [where continue=continue, OF i-neq-x1])
done

}
note neq = this
from eq neq show ?case by auto

qed

constdefs
orbit f x ≡ section (λ y . y 6= x) f (f x) {x}
card-orbit f x ≡ card-section (λ y . y 6= x) f (f x) 1

lemma terminates-implies: terminates (cond , f , x) =⇒ ∃ n. ¬ (cond ((fˆn) x))
by (auto simp add : terminates-simp Orbit-def)

lemma orbit-is-Orbit :
assumes terminates: terminates (λ y . y 6= x , f , f x)
shows orbit f x = Orbit f x

146

by (simp add : orbit-def section-is-Section[OF terminates] Section-is-Orbit ′)

lemma card-section-add :
assumes terminates: terminates (continue, f , x0)
shows card-section continue f x0 (a + b) = a + (card-section continue f x0

(b::nat))
proof (induct x0 b arbitrary : a rule: card-section-pinduct-weak [where continue=continue
and f =f])

case 1
show ?case by (rule terminates)
case (2 i y x)
show ?case

by (auto simp add : card-section-simp[where x0 =i] 2 [of x , simplified])
qed

lemma card-section-suc:
assumes terminates: terminates (continue, f , x0)
shows card-section continue f x0 (Suc a) = Suc (card-section continue f x0 a)
by (rule card-section-add [OF terminates, where a=1 and b=a, simplified])

lemma terminates-imp: terminates (continue, f , i) =⇒ continue i =⇒ terminates
(continue, f , f i)

by (simp add : terminates-rec[where x=i])

lemma Suc-first : Suc (a + b) = Suc a + b by simp

lemma card-section-eq [rule-format]:
terminates (continue, f , x0) =⇒ finite A −→ card-section continue f x0 (card A)

= card (section continue f x0 A) + card (Section continue f x0 ∩ A)
apply (rule section-pinduct [where P=λ x0 A. finite A −→ card-section continue

f x0 (card A) = card (section continue f x0 A) + card (Section continue f x0 ∩
A)])

apply (assumption)
apply (subst section-simp)
apply (subst card-section-simp)
apply (case-tac ¬ (continue i))
apply clarsimp
apply (simp add : Section-x-x)
apply clarsimp
apply (case-tac i ∈ s)
apply (simp add : insert-absorb)
apply (subst card-section-suc)
apply (subgoal-tac terminates (continue, f , i) = (if continue i then terminates

(continue, f , f i) else True))
apply simp
apply (rule terminates-rec)
apply simp
apply (subst Suc-card-Section-eq)

147

apply simp-all
apply (subgoal-tac terminates (continue, f , i) = (if continue i then terminates

(continue, f , f i) else True))
apply simp
apply (rule terminates-rec)
apply (case-tac i ∈ Section continue f (f i))
apply (simp add : terminates-imp-notin-Section)
apply (drule Section-unfold [where f =f and continue=continue])
apply (subgoal-tac insert i (Section continue f (f i)) ∩ s = Section continue f (f

i) ∩ insert i s)
apply simp
apply auto
done

lemma
assumes terminates: terminates (continue, f , x)
shows card-section continue f x 0 = card (Section continue f x)
by (simp add : card-section-eq [OF terminates, of {}, simplified] section-is-Section[OF

terminates])

constdefs
orbit-terminates f x x ′ ≡ terminates (λ y . y 6= x , f , f x ′)

lemma card-orbit-is-card-Orbit :
assumes terminates: orbit-terminates f x x
shows card-orbit f x = card (Orbit f x)
apply (simp add : card-orbit-def)
apply (simp add : orbit-is-Orbit [OF terminates[simplified orbit-terminates-def],

symmetric])
apply (auto simp add : card-section-eq [OF terminates[simplified orbit-terminates-def],

where A={x}, simplified] orbit-def)
done

lemma orbit-terminates-rec: orbit-terminates f x x ′= (if f x ′ 6= x then orbit-terminates
f x (f x ′) else True)

apply (simp only : orbit-terminates-def)
apply (rule terminates-rec)
done

constdefs
fold-section-def : fold-section continue h f g z a == For continue h (λ z a. f (g

z) a) z a

148

lemma finite-Orbit :
assumes terminates: orbit-terminates f a a
shows finite (Orbit f a)

proof −
from terminates show ?thesis

apply (simp add : Section-is-Orbit ′[symmetric])
apply (rule finite-Section)
apply (simp add : orbit-terminates-def)
done

qed

lemma
fold-section-simp:

fold-section continue h f g x ac =
(if continue x
then fold-section continue h f g (h x) (f (g x) ac) else ac)

apply (subst fold-section-def)+
apply (rule For-simp)
done

The following locale is simply a rewriting, or an interpretation, of ab-semigroup-mult,
and is only used to use f as a a binary operation instead of op ∗
locale ACf =

fixes f :: ′a => ′a => ′a (infixl · 70)
assumes commute: x · y = y · x

and assoc: (x · y) · z = x · (y · z)
begin

lemma left-commute: x · (y · z) = y · (x · z)
proof −

have x · (y · z) = (y · z) · x by (simp only : commute)
also have ... = y · (z · x) by (simp only : assoc)
also have z · x = x · z by (simp only : commute)
finally show ?thesis .

qed

lemmas AC = assoc commute left-commute

end

interpretation ACf ⊆ ab-semigroup-mult f (infixl · 70)
by unfold-locales (simp-all add : AC)

lemma (in ACf) fold-Section-eq :
assumes terminates: terminates (continue, h, z)
shows fold f g a (Section continue h z) = fold-section continue h f g z a

proof −
let ?Ac = λ z a. f (g z) a

149

show ?thesis
proof (rule For-pinduct [where P=λ z a. fold f g a (Section continue h z) =

fold-section continue h f g z a and Ac=?Ac])
show terminates (continue, h, z) using terminates by simp
fix i s
assume termin: terminates (continue, h, i)

and continue: continue i =⇒ fold op · g (g i · s) (Section continue h (h i))
= fold-section continue h op · g (h i) (g i · s)

show fold op · g s (Section continue h i) = fold-section continue h op · g i s
proof (cases continue i)
case False with Section-x-x [of continue i h] show ?thesis using fold-section-simp

[of continue h f g i s] by auto
next

case True show ?thesis
unfolding fold-section-simp [of continue h f g i s]
using True apply simp
unfolding Section-unfold [of continue i h]
unfolding sym [OF continue]
using finite-Section [OF terminates-imp [OF termin]] using True apply

simp
using fold-commute [of (Section continue h (h i)) g i g s] using terminates-imp-notin-Section

[OF termin]
using fold-insert [of (Section continue h (h i)) i g s] by simp

qed
qed

qed

lemma (in ACf) fold-Orbit-eq :
assumes terminates: orbit-terminates h z z
shows fold f g a (Orbit h z) = fold-section (λ y . y 6= z) h f g (h z) (f (g z) a)

proof −
note t = terminates[simplified orbit-terminates-def]
show ?thesis

apply (subst fold-Section-eq [symmetric])
prefer 2
apply (subst Section-is-Orbit ′[symmetric])
apply (subst fold-commute[symmetric])
prefer 2
apply (subst fold-insert)
prefer 3
apply (simp-all add : t finite-Section)
apply (rule terminates-imp-notin-Section)
apply (subst terminates-rec)
apply simp
done

qed

lemma While-postcondition:
assumes terminates: terminates (continue, f , x)

150

shows ¬ (continue (While continue f x))
apply (rule While-pinduct-weak [OF terminates])
apply (subst While-simp)
apply (case-tac continue s)
apply simp-all
done

end

theory BPL-classes-2008
imports
Basic-Perturbation-Lemma-local-nilpot
While

begin

16 Additional type classes

In this section we introduce some additional type classes to those provided
by the Isabelle standard distribution

For instance, we need a class diff-group-add that can be defined from the
ab-group-add type class from the Isabelle library:

class diff-group-add = ab-group-add +
fixes diff :: ′a => ′a (d - [81] 80)
assumes diff-hom: d (x + y) = (d x) + (d y)
and diff-nilpot : diff ◦ diff = (λx . 0)

lemma (in diff-group-add) [simp]: d (d x) = 0
using diff-nilpot
unfolding expand-fun-eq by simp

According to the previous syntax definitions, diff-group-add-class.diff is to
be used with the parameter over which it is applied, and diff-group-add-class.diff
remains to be used as a function

We can indeed prove instances of the specified type classes. An instance of
a type class makes the type class sound.

instantiation int :: diff-group-add
begin

definition diff-int-def : diff ≡ (λx . 0 ::int)

instance
proof

show diff ◦ diff = (λx ::int . 0)
unfolding diff-int-def
unfolding expand-fun-eq by simp

151

fix x y ::int
show d (x + y) = (d x) + (d y)

unfolding diff-int-def by arith
qed

end

A limitation of type classes can be observed in the following definition; using
the op + symbol for fun is not possible. In a type class definition, symbols
only refer to the type class being defined.

The following type class definition is not valid; the + operation can only be
used for the type class being defined

The following type class represents a differential group and a perturbation
over it.

class diff-group-add-pert = diff-group-add +
fixes pert :: ′a ⇒ ′a (δ - [81] 80)
assumes pert-hom-ab: δ (a + b) = δ a + δ b
and pert-preserv-diff-group-add :
diff-group-add (op −) (λx . − x) 0 (op +) (λx . d x + δ x)

instantiation int :: diff-group-add-pert
begin

definition pert-int-def : pert ≡ (λx . 0 ::int)

instance proof
fix a b :: int
show δ (a + b) = δ a + δ b

unfolding pert-int-def by simp
next

show diff-group-add op − uminus (0 ::int) op + (λx . d x + δ x)
unfolding diff-group-add-def
unfolding diff-group-add-axioms-def

proof (intro conjI)
show ab-group-add op − uminus (0 ::int) op +

by intro-locales
next

show ∀ x (y ::int). d (x + y) + δ (x + y) = d x + δ x + (d y + δ y)
proof (rule allI)+

fix a b :: int
show d (a + b) + δ (a + b) = d a + δ a + (d b + δ b)

unfolding diff-int-def
unfolding pert-int-def by arith

qed
next

show (λx ::int . d x + δ x) ◦ (λx . d x + δ x) = (λx . 0)
unfolding diff-int-def

152

unfolding pert-int-def by (simp add : expand-fun-eq)
qed

qed

end

We now prove some facts about generic functions. With appropriate restric-
tions over the type classes over which they are defined, functions can be
proved to be also instances of some type classes.

instantiation fun :: (ab-semigroup-add , ab-semigroup-add) ab-semigroup-add
begin

definition plus-fun-def : f + g == (%x . f x + g x)

instance proof
fix x y z :: ′a => ′b
show x + y + z = x + (y + z)

unfolding plus-fun-def by (auto simp add : add-assoc)
next

fix x y :: ′a => ′b
show x + y = y + x

unfolding plus-fun-def by (auto simp add : add-commute)
qed

end

instantiation fun :: (comm-monoid-add , comm-monoid-add) comm-monoid-add
begin

definition zero-fun-def : 0 == (λx . 0)

instance proof
fix a :: ′a => ′b
show 0 + a = a

unfolding zero-fun-def plus-fun-def by simp
qed

end

The Isabelle release 2008 already contains the definition of the difference of
functions and also the unary minus

instantiation fun :: (ab-group-add , ab-group-add) ab-group-add
begin

instance proof
fix a :: ′a => ′b
show − a + a = 0

unfolding fun-Compl-def
unfolding zero-fun-def

153

unfolding plus-fun-def by simp
next

fix a b :: ′a => ′b
show a − b = a + − b

unfolding plus-fun-def
unfolding fun-diff-def
unfolding fun-Compl-def by (simp add : expand-fun-eq)

qed

end

The following type class specifies a differential group with a perturbation
and also a homotopy operator.

The previous fact about the fun datatype contructor allows us now to use
op − to define α in a more readable way

class diff-group-add-pert-hom = diff-group-add-pert +
fixes hom-oper :: ′a => ′a (h - [81] 80)
assumes h-hom-ab: h (a + b) = h a + h b
and h-nilpot : (λx . h x) ◦ (λx . h x) = (λx . 0)

begin

definition α :: ′a => ′a
where α = (λx . − (pert (hom-oper x)))

end

instantiation int :: diff-group-add-pert-hom
begin

definition hom-oper-int-def : hom-oper ≡ (λx . 0 ::int)

instance proof
fix a b :: int
show h (a + b) = h a + h b

unfolding hom-oper-int-def by arith
next

show (λx . h x) ◦ (λx . h x) = (λx ::int . 0)
unfolding hom-oper-int-def
unfolding expand-fun-eq by auto

qed

end

lemma [code]: shows α = (− ((λ x . δ x) ◦ (λx . h x)))
unfolding α-def
unfolding fun-Compl-def by simp

154

17 Local nilpotency

We add now the notion of local-bounded-funcin a purely existential way;
from the existential definition we will later define the function providing
this local bound for every x.

The reason to introduce now this notion is that α is the function verifying
the local nilpotency condition

context ab-group-add
begin

definition local-bounded-func :: (′a => ′a) => bool
where local-bounded-func f = (∀ x . ∃ n. (fˆn) x = 0)

Here is a relevant difference with the previous proof of the BPL; there,
the local bound was defined as the Least natural number n satisfying the
property (α ˆ n) x = (0 :: ′a). Now, in our attempt to make this definition
computable, or executable, we define it as an iterating structure (a For loop),
where the boolean condition in the loop is expressed as λy . y 6= (0 :: ′a)

Later we will try to apply the code generator over these definitions

definition local-bound-gen :: (′a => ′a) => ′a => nat => nat
where local-bound-gen f x n == For (λ y . y 6= 0) f (λ y n. n + (1 ::nat)) x n

definition local-bound :: (′a => ′a) => ′a => nat
where local-bound f x = local-bound-gen f x 0

end

We now define the simplification rule for local-bound-gen:

lemmas local-bound-gen-simp =
For-simp[of (λ y . y 6= (0 :: ′a::ab-group-add)) - λ y n. n+(1 ::nat),
simplified local-bound-gen-def [symmetric]]

Two simple ”calculations” with local-bound :

lemma local-bound f 0 = 0
unfolding local-bound-def
unfolding local-bound-gen-simp [of f 0 0] by simp

lemma x 6= 0 =⇒ local-bound (λ x . 0) x = 1
unfolding local-bound-def
using local-bound-gen-simp by simp

Now, we connect the neccesary termination of For with our termination
condition, local-bounded-func.

Then, under the local-bounded-func premise the loop will be terminating.

155

lemma local-bounded-func-impl-terminates-loop:
local-bounded-func f = (∀ x . terminates (λ y . y 6= 0 , f , x))
unfolding local-bounded-func-def
unfolding terminates-simp
unfolding Orbit-def by simp

lemma LEAST-local-bound-0 :
(LEAST n::nat . (f ˆ n) (0 :: ′a::ab-group-add) = (0 :: ′a)) = 0
using Least-le [of λn. (f ˆn) 0 = 0 0] by simp

lemma local-bound-gen-correct :
terminates (λ y . y 6= (0 :: ′a::ab-group-add), f , x)
=⇒ local-bound-gen f x m = m + (LEAST n::nat . (fˆn) x = 0)
apply (rule For-pinduct [where i=x and s=m and Ac=λ y n. n+1])
apply simp
apply (subst local-bound-gen-simp)
apply (case-tac i = 0)
apply (simp add : LEAST-local-bound-0)
apply simp
apply (frule-tac x=i in terminates-implies)
apply (frule-tac i=i in terminates-imp)
apply simp
apply (frule-tac x=f i in terminates-implies)
apply auto
apply (rule Least-Suc2 [symmetric])
apply (auto simp add : funpow-zip)
done

The following lemma exactly represents the difference between our old def-
initions, with which we proved the BPL, and the new ones, from which we
are trying to generate code; under the termination premise, both LEAST n.
(f ˆ n) x = (0 :: ′b), the old definition of local nilpotency, and local-bound f
x, the loop computing the lower bound, are equivalent

Whereas LEAST n. (f ˆ n) x = (0 :: ′b) does not have a computable in-
terpretation, local-bound f x does have it, and code can be generated from
it.

lemma local-bound-correct :
terminates (λ y . y 6= (0 :: ′a::ab-group-add), f , x)
=⇒ local-bound f x = (LEAST n::nat . (fˆn) x = 0)
unfolding local-bound-def
unfolding local-bound-gen-correct [of f x 0] by arith

lemma local-bounded-func-impl-local-bound-is-Least :
assumes lbf-f :local-bounded-func f
shows local-bound f x = (LEAST n::nat . (fˆn) x = 0)
using lbf-f
unfolding local-bounded-func-impl-terminates-loop [OF]
using local-bound-correct [of f x] ..

156

Both local-bound and terminates are executable.

This is another possible definition of our iterative process as a tail recursion,
instead of using While, suggested by Alexander Krauss; code generation is
also possible from this definition.

A good motivation to use the While operator instead of this one, is that
some additional induction principles have been provided for the For and
While operators.

function (tailrec) local-bound ′ :: (′a::zero ⇒ ′a) ⇒ ′a ⇒ nat ⇒ nat
where
local-bound ′ f x n
= (if (fˆn) x = 0 then n else local-bound ′ f x (Suc n))
by pat-completeness auto

lemma [code func]:
local-bound ′ f (x :: ′a::zero) n
= (if (fˆn) x = 0 then n else local-bound ′ f x (Suc n))
by simp

export-code local-bound ′

in SML file local-bound .ML

lemma [code func]:
While continue f s
= (if continue s then While continue f (f s) else s)
unfolding While-simp [of continue f s] ..

export-code While
in SML file Loop.ML

export-code local-bound
in SML file local-bound2 .ML

18 Finite sums

The following definition of fin-sum will replace the definitions for sums of
series used in the formal proof of the BPL.

That definitions were based on the fold operator over sets, from which direct
code generation cannot be obtained.

The finite sum of a series is defined as a primitive recursive function over
the natural numbers.

This definition will have to be proved later equivalent, in our setting, to the
sums appearing in the BPL proof.

primrec fin-sum :: ((′a::ab-group-add) => ′a) => nat => (′a => ′a)

157

where
fin-sum f 0 =id
| fin-sum f (Suc n) = fˆ(Suc n) + (fin-sum f n)

The following definition of diff-group-add-pert-hom-bound-exist contains the
local nilpotency condition. It is based on an existential statement.

For all x belonging to our differential group, we state the existence of a
natural number n which is a bound for α

We then prove that it is equivalent to the previously given definition of
locale-bounded-func.

Finally, we link this fact to the previous results about computation of the
bounds as a For operator.

class diff-group-add-pert-hom-bound-exist =
diff-group-add-pert-hom +
assumes local-nilp-cond : ∀ x .∃n::nat . (αˆn) x = 0

lemma diff-group-add-pert-hom-bound-exist-impl-local-bounded-func-alpha:
assumes diff-group-add-pert-hom-bound-exist :
diff-group-add-pert-hom-bound-exist
op − (λx . − x) 0 op + (λx . d x) (λx . δ x) (λx . h x)
shows local-bounded-func (α:: ′a::diff-group-add-pert-hom-bound-exist => ′a)
unfolding local-bounded-func-def
using local-nilp-cond .

lemma diff-group-add-pert-hom-bound-exist-impl-local-bound-is-Least :
assumes diff :
diff-group-add-pert-hom-bound-exist
op − (λx . − x) 0 op + (λx . d x) (λx . δ x) (λx . h x)
shows local-bound α (x :: ′a::diff-group-add-pert-hom-bound-exist)
= (LEAST n::nat . (αˆn) x = 0)
unfolding local-bounded-func-impl-local-bound-is-Least
[OF diff-group-add-pert-hom-bound-exist-impl-local-bounded-func-alpha

[OF diff]] ..

Apparently, ′a does not belong to the appropriate type class.

It does not seem either a good option to use long qualifiers with the locale
name

Instead, we have to use the following explicit restriction of the type param-
eter

The following definitions will have to be later compared with the ones Φ,
. . .

Additionally, code generation from them must be possible.

158

definition Φ ::
(′a::diff-group-add-pert-hom-bound-exist => ′a)
where Φ = (λx . fin-sum α (local-bound α x) x)

definition β :: (′a::diff-group-add-pert-hom-bound-exist => ′a)
where β = (− ((λx . h x) ◦ (λ x . δ x)))

definition Ψ :: (′a::diff-group-add-pert-hom-bound-exist ⇒ ′a)
where Ψ = (λx . fin-sum β (local-bound β x) x)

The following definitions are also to be compared with the ones appearing
in the output of the BPL ?D ?R ?h ?C ?f ?g ?δ ?bound-phi =⇒ reduction
(lemma-2-2-15 .D ′ ?D ?R ?δ) (|carrier = carrier ?C , mult = op ⊗?C, one
= 1?C, diff-group.diff = λx . if x ∈ carrier ?C then diff-group.diff ?C x
⊗?C (?f ◦ ?δ ◦ local-nilpotent-alpha.Ψ ?D ?R ?h ?δ ◦ ?g) x else 1?C|) (?f
◦ local-nilpotent-alpha.Φ ?D ?R ?h ?δ ?bound-phi) (local-nilpotent-alpha.Ψ
?D ?R ?h ?δ ◦ ?g) (lemma-2-2-15 .h ′ ?D ?R ?h ?δ ?bound-phi)

definition dC ′ :: (′a::diff-group-add-pert-hom-bound-exist => ′b::diff-group-add)
=> (′b => ′a) => (′b => ′b)
where dC ′ f g = diff + (f ◦ (λx . δ x) ◦ Ψ ◦ g)

definition f ′ :: (′a::diff-group-add-pert-hom-bound-exist => ′b::diff-group-add)
=> (′a => ′b)
where f ′ f = f ◦ Φ

definition g ′ :: (′b::diff-group-add => ′a::diff-group-add-pert-hom-bound-exist)
=> (′b => ′a)
where g ′-def : g ′ g == Ψ ◦ g

definition h ′ :: (′a::diff-group-add-pert-hom-bound-exist ⇒ ′a)
where h ′ == (λx . h x) ◦ Φ

export-code Φ Ψ f ′ g ′ h ′ dC ′ in SML file output-reduction.ML

Some facts about the product of types:

instantiation ∗ :: (ab-semigroup-add , ab-semigroup-add) ab-semigroup-add
begin

definition mult-plus-def :
x + y ≡ (let (x1 , x2) = x ; (y1 , y2) = y in (x1 + y1 , x2 + y2))

instance proof
fix a:: ′a::ab-semigroup-add × ′b::ab-semigroup-add
obtain i j where a-split : a = (i , j) by force
fix b:: ′a × ′b
obtain k l where b-split : b = (k , l) by force
fix c:: ′a × ′b
obtain m n where c-split : c = (m, n) by force

159

show a + b + c = a + (b + c)
unfolding a-split b-split c-split
unfolding mult-plus-def
by (auto simp add : add-assoc)

show a + b = b + a
unfolding a-split b-split
unfolding mult-plus-def
by (auto simp add : add-commute)

qed

end

definition x5 :: (int × int)
where x5 = ((3 ::int), (5 ::int)) + (5 , 7)

definition x6 :: (int × int) × (int × int)
where x6 = (((3 ::int), (5 ::int)), ((3 ::int), (5 ::int))) + ((5 , 7), (5 , 7))

export-code x5 x6
in SML file x6 .ML

instantiation ∗ :: (comm-monoid-add , comm-monoid-add) comm-monoid-add
begin

definition mult-zero-def : 0 ≡ (0 , 0)

instance by default (simp add : split-paired-all mult-plus-def mult-zero-def)

end

19 Equivalence of both approaches

19.1 Algebraic structures

In the following section we prove that the results already proved using the
definitions provided by the Algebra Isabelle Library (leading to the reduction
D ′ (|carrier = carrier C , mult = op ⊗C, one = 1C, diff-group.diff = λx . if x
∈ carrier C then diff-group.diff C x ⊗C (f ◦ δ ◦ D-R-C-f-g-h-δ-α-bound-phi .Ψ
◦ g) x else 1C|) (f ◦ D-R-C-f-g-h-δ-α-bound-phi .Φ) (D-R-C-f-g-h-δ-α-bound-phi .Ψ
◦ g) D-R-h-C-f-g-δ-α-bound-phi .h ′) also hold for the new definitions, where
algebraic structures are implemented by means of type classes.

This does not mean that the proof of the BPL can be developed only by using
type classes; the degree of expressivity needed in its proofs should be quite
hard to achieve using type classes; specially, the parts where restrictions of
domains of functions have to be used.

We only pretend to prove that the new definitions, to some extent simplified

160

(see for instance the new proposed series in relation to the previous imple-
mentation of series), are equivalent to the old ones, and thus, also satisfy
the BPL.

Functions (or functors) translating type classes into algebraic structures
implemented as recods are used; these translations are the natural ones

definition monoid-functor :: (′a => ′a => ′a) => (′a) => ′a monoid
where monoid-functor A B == (| carrier = UNIV , mult = A, one = B |)

lemma monoid-add-impl-monoid :
assumes mon-add : monoid-add zero ′ plus ′

shows monoid (| carrier = UNIV , mult = plus ′, one = zero ′|)
using mon-add
unfolding monoid-def
unfolding monoid-add-def monoid-add-axioms-def
unfolding ab-semigroup-add-def
unfolding ab-semigroup-add-axioms-def
unfolding semigroup-add-def by simp

lemma monoid-functor-preserv :
assumes monoid-add :monoid-add zero ′ plus ′

shows monoid (monoid-functor plus ′ zero ′)
using monoid-add-impl-monoid [OF monoid-add]
unfolding monoid-functor-def [of plus ′ zero ′] .

lemma comm-monoid-add-impl-monoid-add :
assumes comm-monoid-add : comm-monoid-add zero ′ plus ′

shows monoid-add zero ′ plus ′

using comm-monoid-add
unfolding comm-monoid-add-def
unfolding monoid-add-def
unfolding ab-semigroup-add-def
unfolding comm-monoid-add-axioms-def
unfolding monoid-add-axioms-def
unfolding ab-semigroup-add-axioms-def by auto

lemma comm-monoid-add-impl-monoid :
assumes c-m: comm-monoid-add zero ′ plus ′

shows monoid (| carrier = UNIV , mult = plus ′, one = zero ′|)
using monoid-add-impl-monoid [OF comm-monoid-add-impl-monoid-add

[OF c-m]] .

lemma ab-group-add-impl-comm-monoid-add :
assumes ab-gr-add : ab-group-add uminus ′ minus ′ zero ′ plus ′

shows comm-monoid-add zero ′ plus ′

using ab-gr-add
unfolding ab-group-add-def ..

lemma ab-group-class-impl-group:

161

assumes ab-gr-class: ab-group-add uminus ′ minus ′ zero ′ plus ′

shows group (| carrier = UNIV , mult = plus ′, one = zero ′|)
proof (intro-locales)

show monoid (|carrier = UNIV , mult = plus ′, one = zero ′|)
using monoid-add-impl-monoid
[OF comm-monoid-add-impl-monoid-add

[OF ab-group-add-impl-comm-monoid-add
[OF ab-gr-class]]] .

show group-axioms (|carrier = UNIV , mult = plus ′, one = zero ′|)
using ab-gr-class
unfolding group-axioms-def
unfolding Units-def
unfolding ab-group-add-def
unfolding comm-monoid-add-def
unfolding ab-group-add-axioms-def
unfolding ab-semigroup-add-def

ab-semigroup-add-axioms-def by auto+
qed

lemma monoid-functor-preserv-group:
assumes ab-gr : ab-group-add uminus ′ minus ′ zero ′ plus ′

shows group (monoid-functor plus ′ zero ′)
using ab-group-class-impl-group [OF ab-gr]
unfolding monoid-functor-def [of plus ′ zero ′] .

lemma ab-group-add-impl-comm-group:
assumes ab-gr-add : ab-group-add uminus ′ minus ′ zero ′ plus ′

shows comm-group (| carrier = UNIV , mult = plus ′, one = zero ′|)
proof (intro-locales)

show monoid (|carrier = UNIV , mult = plus ′, one = zero ′|)
using comm-monoid-add-impl-monoid
[OF ab-group-add-impl-comm-monoid-add

[OF ab-gr-add]] .
show comm-monoid-axioms (|carrier = UNIV , mult = plus ′, one = zero ′|)

using ab-gr-add
unfolding comm-monoid-axioms-def
unfolding ab-group-add-def
unfolding comm-monoid-add-def
unfolding ab-group-add-axioms-def
unfolding ab-semigroup-add-def
unfolding ab-semigroup-add-axioms-def by auto

show group-axioms (|carrier = UNIV , mult = plus ′, one = zero ′|)
using ab-gr-add
unfolding group-axioms-def
unfolding Units-def
unfolding ab-group-add-def
unfolding comm-monoid-add-def
unfolding ab-group-add-axioms-def
unfolding ab-semigroup-add-def

162

unfolding ab-semigroup-add-axioms-def by auto+
qed

lemma monoid-functor-preserv-ab-group:
assumes ab-gr-add : ab-group-add uminus ′ minus ′ zero ′ plus ′

shows comm-group (monoid-functor plus ′ zero ′)
using ab-group-add-impl-comm-group [OF ab-gr-add]
unfolding monoid-functor-def [of plus ′ zero ′] .

lemma diff-group-add-impl-comm-group:
assumes diff-gr-add : diff-group-add uminus ′ minus ′ zero ′ plus ′ diff ′

shows comm-group (|carrier = UNIV , mult = plus ′, one = zero ′|)
proof (rule ab-group-add-impl-comm-group)

show ab-group-add uminus ′ minus ′ zero ′ plus ′

using diff-gr-add
unfolding diff-group-add-def by simp

qed

lemma diff-group-add-impl-diff-group:
assumes diff-gr-add : diff-group-add uminus ′ minus ′ zero ′ prod ′ diff ′

shows diff-group (|carrier = UNIV , mult = prod ′, one = zero ′, diff-group.diff
= diff ′ |)
proof (intro-locales)

from diff-group-add-impl-comm-group [OF diff-gr-add]
have comm-gr : comm-group (|carrier = UNIV , mult = prod ′, one = zero ′|)

by simp
show monoid (|carrier = UNIV , mult = prod ′, one = zero ′, diff-group.diff =

diff ′|)
using comm-gr
unfolding comm-group-def
unfolding comm-monoid-def
unfolding monoid-def by simp

show comm-monoid-axioms (|carrier = UNIV , mult = prod ′, one = zero ′,
diff-group.diff = diff ′|)

using comm-gr
unfolding comm-group-def
unfolding comm-monoid-def
unfolding comm-monoid-axioms-def by simp

show group-axioms (|carrier = UNIV , mult = prod ′, one = zero ′, diff-group.diff
= diff ′|)

using comm-gr
unfolding comm-group-def
unfolding group-def
unfolding group-axioms-def
unfolding Units-def by simp

show diff-group-axioms (|carrier = UNIV , mult = prod ′, one = zero ′, diff-group.diff
= diff ′|)

using diff-gr-add
unfolding diff-group-add-def

163

unfolding diff-group-add-axioms-def
unfolding diff-group-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding completion-fun2-def
unfolding completion-def by auto

qed

definition diff-group-functor ::
(′a => ′a) => (′a => ′a => ′a) => (′a)
=> (′a => ′a => ′a) => (′a => ′a) => ′a diff-group
where diff-group-functor uminus ′ minus ′ zero ′ prod ′ diff ′ =
(| carrier = UNIV , mult = prod ′, one = zero ′, diff-group.diff = diff ′|)

lemma diff-group-functor-preserves:
assumes diff-gr-add : diff-group-add minus ′ uminus ′ zero ′ prod ′ diff ′

shows diff-group (diff-group-functor uminus ′ minus ′ zero ′ prod ′ diff ′)
using diff-group-add-impl-diff-group [OF diff-gr-add]
unfolding diff-group-functor-def [of uminus ′ minus ′ zero ′ prod ′ diff ′] .

After the previous equivalences between algebraic structures, now we prove
the equivalence between the old definitions about homomorphisms and the
new ones:

19.2 Homomorphisms and endomorphisms.

definition homo-ab :: (′a::comm-monoid-add => ′b::comm-monoid-add) => bool

where homo-ab f = (ALL a b. f (a + b) = f a + f b)

lemma homo-ab-apply :
assumes h-f : homo-ab f
shows f (a + b) = f a + f b
using homo-ab-def [of f] h-f by simp

lemma homo-ab-preserves-hom-completion:
assumes homo-ab-f : homo-ab f
shows f ∈ hom-completion (monoid-functor (op +) 0) (monoid-functor (op +)

0)
using homo-ab-f
unfolding hom-completion-def
unfolding homo-ab-def
unfolding monoid-functor-def
unfolding completion-fun2-def
unfolding completion-def
unfolding hom-def by auto

lemma plus-fun-apply :
(f + g) (x :: ′a::ab-semigroup-add) = f x + g x

164

using plus-fun-def [of f g] by simp

lemma homo-ab-plus-closed :
assumes comm-monoid-add-A: comm-monoid-add (0 :: ′a::comm-monoid-add) op

+
and comm-monoid-add-B : comm-monoid-add (0 :: ′b::comm-monoid-add) op +
and x : homo-ab (x :: ′a::comm-monoid-add => ′b::comm-monoid-add)
and y : homo-ab y
shows homo-ab (x + y)

proof (unfold homo-ab-def , rule allI , rule allI)
have ab-semigroup-add-plus: ab-semigroup-add (op +:: ′b ⇒ ′b ⇒ ′b)

using comm-monoid-add-B
unfolding comm-monoid-add-def ..

fix a b :: ′a
show (x + y) (a + b) = (x + y) a + (x + y) b
proof −

have (x + y) (a + b) = x (a + b) + y (a + b)
using plus-fun-apply [of x y a + b] .

also have . . . = x a + x b + (y a + y b)
unfolding homo-ab-apply [OF x]
unfolding homo-ab-apply [OF y] ..

also have . . . = x a + (x b + y a + y b)
by (auto simp add : add-assoc)

also have . . . = x a + (y a + x b + y b)
by (auto simp add : add-commute add-assoc)

also have . . . = x a + y a + (x b + y b)
by (auto simp add : add-assoc)

also have . . . = (x + y) a + (x + y) b
unfolding sym [OF plus-fun-apply [of x y a]]
unfolding sym [OF plus-fun-apply [of x y b]] ..

finally show ?thesis .
qed

qed

lemma end-comm-monoid-add-closed :
assumes comm-monoid-add : comm-monoid-add (0 :: ′a::comm-monoid-add) op +
and x : homo-ab (x :: ′a::comm-monoid-add => ′a)
and y : homo-ab y
shows homo-ab (x + y)
using homo-ab-plus-closed [OF comm-monoid-add comm-monoid-add x y] .

lemma comm-monoid-add-impl-homo-abelian-monoid :
assumes comm-monoid-add : comm-monoid-add (0 :: ′a::comm-monoid-add) op

+
shows abelian-monoid (|carrier = {f :: ′a::comm-monoid-add => ′a. homo-ab f },

mult = op ◦,
one = id ,
zero = 0 ,

165

add = op +|)
proof (intro abelian-monoidI , auto)

fix x y :: ′a => ′a
assume x : homo-ab x and y : homo-ab y
show homo-ab (x + y)

using end-comm-monoid-add-closed [OF comm-monoid-add x y] .
next

show homo-ab (0 :: ′a => ′a)
unfolding zero-fun-def homo-ab-def by simp

next
fix x y z :: ′a => ′a
assume x : homo-ab x and y : homo-ab y and z : homo-ab z
show x + y + z = x + (y + z)

unfolding plus-fun-def by (simp only : add-assoc)
next

fix x y :: ′a => ′a
assume x : homo-ab x and y : homo-ab y
show x + y = y + x unfolding plus-fun-def expand-fun-eq by (simp add :

add-ac)
qed

lemma ab-group-add-impl-uminus-fun-closed :
assumes ab-group-add : ab-group-add op − (λx . − x) (0 :: ′a::ab-group-add) op +

and f : homo-ab (f :: ′a::ab-group-add => ′a)
shows homo-ab (− f)

proof (unfold fun-Compl-def homo-ab-def , rule allI , rule allI)
fix a b :: ′a
show − f (a + b) = − f a + − f b
proof −
have l-h-s: f (a + b) + − f (a + b) = 0

using sym [OF add-commute [of − f (a + b) f (a + b)]]
unfolding ab-left-minus [of f (a + b)] .

have f (a + b) + (− f a + − f b) = − f a + − f b + f (a + b)
using sym [OF add-commute [of − f a + − f b f (a + b)]] .

also have − f a + − f b + f (a + b) = − f a + − f b + (f a + f b)
unfolding homo-ab-apply [OF f] ..

also have . . . = ((− f a + − f b) + f a) + f b
unfolding sym [OF add-assoc [of − f a + − f b f a f b]] ..

also have . . . = (− f a + (− f b + f a)) + f b
unfolding add-assoc [of − f a − f b f a] ..

also have . . . = (− f a + (f a + − f b)) + f b
unfolding add-commute [of − f b f a] ..

also have . . . = ((− f a + f a) + − f b) + f b
unfolding sym [OF add-assoc [of − f a f a − f b]] ..

also have . . . = 0 + − f b + f b
unfolding ab-left-minus [of f a] ..

also have . . . = 0 + (− f b + f b)
unfolding add-assoc [of 0 − f b f b] ..

166

also have . . . = 0 + 0 unfolding ab-left-minus [of f b] ..
also have . . . = 0 by simp
finally have r-h-s: f (a + b) + (− f a + − f b) = 0 .
with l-h-s have f (a + b) + − f (a + b) = f (a + b) + (− f a + − f b) by

simp
then have − (f :: ′a => ′a) ((a:: ′a) + (b:: ′a)) + (f (a + b) + − f (a + b))

= − f (a + b) + (f (a + b) + (− f a + − f b)) by simp
with sym [OF add-assoc [of − f (a + b) f (a + b) − f (a + b)]]

sym [OF add-assoc [of − f (a + b) f (a + b) − f a + − f b]]
have (− (f :: ′a => ′a) ((a:: ′a) + (b:: ′a)) + f (a + b)) + − f (a + b)

= (− f (a + b) + f (a + b)) + (− f a + − f b) by simp
with ab-left-minus [of f (a + b)]
have 0 + − f (a + b) = 0 + (− f a + − f b) by simp
with left-minus [of − f (a + b)] left-minus [of (− f a + − f b)]
show ?thesis by simp

qed
qed

lemma ab-group-add-impl-homo-abelian-group-axioms:
assumes ab-group-add : ab-group-add op − (λx . − x) (0 :: ′a::ab-group-add) op +
shows abelian-group-axioms (|carrier = {f :: ′a::ab-group-add => ′a. homo-ab f },

mult = op ◦,
one = id ,
zero = 0 ,
add = op +|)

proof (unfold abelian-group-axioms-def , simp)
show comm-group (|carrier = Collect homo-ab, mult = op +, one = (0 :: ′a =>
′a)|)

proof (intro-locales)
show monoid (|carrier = Collect homo-ab, mult = op +, one = (0 :: ′a => ′a)|)
proof (intro monoidI , simp-all)

fix x y :: ′a => ′a
assume x : homo-ab x and y : homo-ab y
show homo-ab (x + y)

using ab-group-add end-comm-monoid-add-closed [OF - x y]
unfolding ab-group-add-def by simp

next
show homo-ab (0 :: ′a => ′a)

unfolding zero-fun-def homo-ab-def by simp
qed

next
show comm-monoid-axioms (|carrier = Collect homo-ab,

monoid .mult = op +,
one = (0 :: ′a => ′a)|)
unfolding comm-monoid-axioms-def by auto

next
show group-axioms (|carrier = Collect homo-ab,

monoid .mult = op +,

167

one = (0 :: ′a => ′a)|)
proof (unfold group-axioms-def Units-def , auto)

fix x :: ′a => ′a
assume x : homo-ab x
show ∃ y :: ′a ⇒ ′a. homo-ab y ∧ y + x = 0 ∧ x + y = 0
proof (rule exI [of - − x], intro conjI)

show homo-ab (− x)
using ab-group-add-impl-uminus-fun-closed [OF ab-group-add x] .

show (− x) + x = 0 by simp
show x + (− x) = 0 by simp

qed
qed

qed
qed

The previous lemma, ab-group-add op − uminus (0 ::? ′a) op + =⇒ abelian-group-axioms
(|carrier = {f . homo-ab f }, mult = op ◦, one = id , zero = 0 , add = op
+|), proves the elements of homo-ab to be an abelian monoid under suitable
operations.

In order to show that composition gives place to a monoid, the underlying
structure needs not to be even a monoid

lemma homo-monoid :
shows monoid (|carrier = {f . homo-ab f },
monoid .mult = op ◦,
one = id ,
zero = 0 ,
add = op +|)
(is monoid ?HOMO-AB)

proof (intro monoidI , auto)
fix x y :: ′a => ′a
assume x : homo-ab x and y : homo-ab y
then show homo-ab (x ◦ y) unfolding homo-ab-def by simp

next
show homo-ab id unfolding homo-ab-def by simp

next
fix x y z :: ′a => ′a
assume x : homo-ab x and y : homo-ab y and z : homo-ab z
show x ◦ y ◦ z = x ◦ (y ◦ z) by (simp add : expand-fun-eq)

qed

A couple of lemmas completing the proof of the set homo-ab being a ring,
with suitable operations

lemma ab-group-add-impl-homo-ring-axioms:
assumes ab-group-add : ab-group-add op − (λx . − x) (0 :: ′a::ab-group-add) op +
shows ring-axioms (|carrier = {f . homo-ab f },
mult = op ◦,
one = id ,
zero = (0 :: ′a::ab-group-add => ′a),

168

add = op +|)
proof (intro ring-axioms.intro, auto)

fix x y z :: ′a => ′a
assume x : homo-ab x and y : homo-ab y and z : homo-ab z
show (x :: ′a => ′a) + y ◦ z = (x ◦ z) + (y ◦ z)

unfolding plus-fun-def
unfolding expand-fun-eq by auto

show (z :: ′a => ′a) ◦ x + y = (z ◦ x) + (z ◦ y)
using z
unfolding expand-fun-eq plus-fun-def homo-ab-def by auto

qed

lemma ab-group-add-impl-homo-ring :
assumes ab-group-add : ab-group-add op − (λx . − x) (0 :: ′a::ab-group-add) op +
shows ring (|carrier = {f :: ′a::ab-group-add => ′a. homo-ab f },
mult = op ◦,
one = id ,
zero = (0 :: ′a => ′a),
add = op +|)
using ab-group-add
using comm-monoid-add-impl-homo-abelian-monoid
using ab-group-add-impl-homo-abelian-group-axioms
using homo-monoid
using ab-group-add-impl-homo-ring-axioms by (unfold ab-group-add-def , intro-locales,

auto)

The following definition includes the notion of differential homomorphism,
a homomorphism that additionally commutes with the corresponding differ-
entials.

definition homo-diff :: (′a::diff-group-add => ′b::diff-group-add) => bool
where homo-diff f = ((ALL a b. f (a + b) = f a + f b) ∧ f ◦ diff = diff ◦ f)

lemma homo-diff-preserves-hom-diff :
assumes homo-diff-f : homo-diff f
shows f ∈ hom-diff (diff-group-functor (λx . − x) op − 0 (op +) diff)
(diff-group-functor (λx . − x) op − 0 (op +) diff)
using homo-diff-f
unfolding hom-diff-def
unfolding hom-completion-def
unfolding homo-diff-def
unfolding diff-group-functor-def
unfolding completion-fun2-def
unfolding completion-def
unfolding hom-def
by auto

169

19.3 Definition of constants.

The following definition of reduction is to be understand as follows: a pair of
homomorphisms (f , g) will be a reduction iff: the underlying algebraic struc-
tures (given as classes) are, respectively, a differential group class with a per-
turbation and a homology operator (i.e, class diff-group-add-pert-hom-bound-exists)
satisfying the local nilpotency condition, and a differential group class (diff-group-add),
and the homomorphisms f, g and h satisfy the properties required by the
usual reduction definition.

In the definition it can be noted the convenience of using overloading symbols
provided by the class mechanism.

definition
reduction-class-ext ::
(′a::diff-group-add-pert-hom-bound-exist => ′b::diff-group-add)
=> (′b => ′a) => bool
where reduction-class-ext f g =
((diff-group-add-pert-hom-bound-exist op − (λx :: ′a. − x) 0 (op +) diff pert

hom-oper)
∧ (diff-group-add op − (λx :: ′b. − x) 0 (op +) diff)
∧ (homo-diff f) ∧ (homo-diff g)
∧ (f ◦ g = id)
∧ ((g ◦ f) + (diff ◦ hom-oper) + (hom-oper ◦ diff) = id)
∧ (f ◦ hom-oper = (0 :: ′a => ′b))
∧ (hom-oper ◦ g = (0 :: ′b => ′a)))

The previous definition contains all the ingredients required to apply the old
proof of the BPL.

lemma reduction-class-ext-impl-diff-group-add-pert-hom-bound-exist :
assumes r-c-e: reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows (diff-group-add-pert-hom-bound-exist op −
(λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) 0 (op +) diff pert hom-oper)
using r-c-e unfolding reduction-class-ext-def ..

lemma reduction-class-ext-impl-diff-group-add :
assumes r-c-e: reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows (diff-group-add op − (λx :: ′b::diff-group-add . − x) 0 (op +) diff)
using r-c-e unfolding reduction-class-ext-def by fast

lemma reduction-class-ext-impl-homo-diff-f :
assumes r-c-e: reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows homo-diff f
using r-c-e unfolding reduction-class-ext-def by fast

lemma reduction-class-ext-impl-homo-diff-g :

170

assumes r-c-e: reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows homo-diff g
using r-c-e unfolding reduction-class-ext-def by fast

lemma reduction-class-ext-impl-fg-id :
assumes r-c-e: reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows f ◦ g = id
using r-c-e unfolding reduction-class-ext-def by fast

lemma reduction-class-ext-impl-gf-dh-hd-id :
assumes r-c-e: reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows (g ◦ f) + (diff ◦ hom-oper) + (hom-oper ◦ diff) = id
using r-c-e unfolding reduction-class-ext-def by fast

lemma reduction-class-ext-impl-fh-0 :
assumes r-c-e: reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows f ◦ hom-oper = 0
using r-c-e unfolding reduction-class-ext-def by fast

lemma reduction-class-ext-impl-hg-0 :
assumes r-c-e: reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows hom-oper ◦ g = 0
using r-c-e unfolding reduction-class-ext-def by fast

The following lemma will be useful later, when we verify the premises of the
BPL

lemma hdh-eq-h:
assumes r-c-e: reduction-class-ext f (g :: ′b::diff-group-add
=> ′a::diff-group-add-pert-hom-bound-exist)
shows (hom-oper :: ′a::diff-group-add-pert-hom-bound-exist => ′a)
◦ diff ◦ hom-oper = hom-oper

proof −
have hom-oper = hom-oper ◦ id by simp
also have . . . = hom-oper ◦ ((g ◦ f) + (diff ◦ hom-oper) + (hom-oper ◦ diff))

using r-c-e
unfolding reduction-class-ext-def by simp

also have . . . = hom-oper ◦ (diff ◦ hom-oper)
using reduction-class-ext-impl-diff-group-add-pert-hom-bound-exist
[OF r-c-e]
using reduction-class-ext-impl-hg-0 [OF r-c-e]
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding expand-fun-eq plus-fun-def zero-fun-def by auto

171

finally show ?thesis by (simp add : o-assoc)
qed

lemma diff-group-add-pert-hom-bound-exist-impl-diff-group-add :
assumes d-g : (diff-group-add-pert-hom-bound-exist op −
(λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) 0 (op +) diff pert hom-oper)
shows diff-group-add op −
(λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) 0 (op +) diff
using d-g
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-def by fast

The new definition of reduction-class-ext preserves the previous definition
of reduction in the old approach, reduction

lemma reduction-class-ext-preserves-reduction:
assumes r-c-e: reduction-class-ext f g
shows reduction (diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist .
− x)

(op −) 0 (op +) diff)
(diff-group-functor (λx :: ′b::diff-group-add . − x) (op −) 0 (op +) diff)
f g hom-oper
(is reduction ?D ?C f g hom-oper)

proof (unfold reduction-def reduction-axioms-def , auto)
have dga: diff-group-add-pert-hom-bound-exist op − uminus (0 :: ′a) op + diff pert

hom-oper
using reduction-class-ext-impl-diff-group-add-pert-hom-bound-exist [OF r-c-e] .

show diff-group ?D
using diff-group-functor-preserves [of op − uminus (0 :: ′a) op + diff]
diff-group-add-pert-hom-bound-exist-impl-diff-group-add [OF dga] by simp

next
show diff-group ?C

using r-c-e diff-group-functor-preserves [of op − uminus (0 :: ′b) op + diff]
unfolding reduction-class-ext-def [of f g] by simp

next
show f ∈ hom-diff ?D ?C

using r-c-e homo-diff-preserves-hom-diff [of f]
unfolding reduction-class-ext-def [of f g] by simp

next
show g ∈ hom-diff ?C ?D

using r-c-e homo-diff-preserves-hom-diff [of g]
unfolding reduction-class-ext-def [of f g] by simp

next
show hom-oper ∈ hom-completion ?D ?D

using diff-group-add-pert-hom.h-hom-ab
[of op − uminus (0 :: ′a) op + diff pert hom-oper]
using homo-ab-preserves-hom-completion [of (λx :: ′a. h x)]
using r-c-e
unfolding hom-completion-def

172

unfolding hom-def
unfolding completion-fun2-def
unfolding completion-def
unfolding reduction-class-ext-def
unfolding diff-group-functor-def
unfolding diff-group-add-pert-hom-bound-exist-def by auto

next
show (λx . h x) ◦ (λx . h x) = (λx :: ′a. monoid .one ?D)

using diff-group-add-pert-hom.h-nilpot
[of op − uminus (0 :: ′a) op + diff pert hom-oper]
using r-c-e
unfolding reduction-class-ext-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding zero-fun-def
unfolding reduction-class-ext-def
unfolding diff-group-functor-def by simp

next
show f ◦ g = (λx :: ′b. if x ∈ carrier ?C then id x else monoid .one ?C)

using r-c-e
unfolding reduction-class-ext-def
unfolding diff-group-functor-def expand-fun-eq by simp

next
show f ◦ (λx . h x) = (λx :: ′a. monoid .one ?C)

using r-c-e
unfolding reduction-class-ext-def diff-group-functor-def zero-fun-def
by simp

next
show (λx . h x) ◦ g = (λx :: ′b. monoid .one ?D)

using r-c-e
unfolding reduction-class-ext-def diff-group-functor-def zero-fun-def
by simp

next
show (λx :: ′a. if x ∈ carrier ?D then monoid .mult ?D ((g ◦ f) x)

(if x ∈ carrier ?D then monoid .mult ?D ((diff-group.diff ?D ◦ hom-oper) x)
((hom-oper ◦ diff-group.diff ?D) x) else monoid .one ?D)
else monoid .one ?D) =
(λx :: ′a. if x ∈ carrier ?D then id x else monoid .one ?D)
using r-c-e
unfolding reduction-class-ext-def
unfolding diff-group-functor-def
unfolding plus-fun-def
by (auto simp add : expand-fun-eq add-assoc)

qed

The new definition of perturbation, included in the definition of diff-group-add-pert,
also preserves the old definition of perturbation, analytic-part-local .pert

lemma diff-group-add-pert-hom-bound-exist-preserves-pert :
assumes diff-group-add-pert-hom-bound-exist :
diff-group-add-pert-hom-bound-exist (op −)

173

(λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) 0 (op +) diff pert hom-oper
shows pert ∈ analytic-part-local .pert
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) (op −) 0

(op +) diff)
(is pert ∈ analytic-part-local .pert ?D)

proof (unfold pert-def , auto)
show pert ∈ hom-completion ?D ?D

using diff-group-add-pert-hom-bound-exist
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-def
unfolding diff-group-add-pert-axioms-def
unfolding diff-group-functor-def
unfolding monoid-functor-def
unfolding hom-completion-def
unfolding completion-fun2-def completion-def hom-def by simp

next
have diff-group-add : diff-group-add (op −) uminus (0 :: ′a) op + diff

using diff-group-add-pert-hom-bound-exist-impl-diff-group-add
[OF diff-group-add-pert-hom-bound-exist] .

show diff-group (|carrier = carrier ?D , mult = mult ?D , one = one ?D ,
diff-group.diff = λx :: ′a. if x ∈ carrier ?D
then mult ?D (diff-group.diff ?D x) (δ x) else one ?D |)

using diff-group-add-pert-hom-bound-exist
using diff-group-functor-preserves [of op − uminus (0 :: ′a) op + diff + pert]
unfolding plus-fun-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-def
unfolding diff-group-add-pert-axioms-def diff-group-functor-def by auto

qed

From the premises stated in diff-group-add-pert-hom-bound-exist, α is nilpo-
tent

lemma α-locally-nilpotent :
assumes diff-group-add-pert-hom-bound-exist :
diff-group-add-pert-hom-bound-exist (op −)
(λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) 0 (op +) diff pert hom-oper
shows (αˆ(local-bound α x)) (x :: ′a::diff-group-add-pert-hom-bound-exist) = 0
unfolding diff-group-add-pert-hom-bound-exist-impl-local-bound-is-Least
[OF diff-group-add-pert-hom-bound-exist , of x]

proof (rule LeastI-ex)
show ∃ k . (α ˆ k) x = (0 :: ′a)
proof −

obtain n where n-bound : (αˆ n) (x :: ′a::diff-group-add-pert-hom-bound-exist)
= 0

using diff-group-add-pert-hom-bound-exist-impl-local-bounded-func-alpha
[OF diff-group-add-pert-hom-bound-exist]
unfolding local-bounded-func-def by auto

174

then show ?thesis using exI by auto
qed

qed

The algebraic structure given by the endomorphisms of a diff-group-add with
suitable operations is a ring

lemma (in group-add) shows op − = (λx y . x + (− y))
unfolding expand-fun-eq unfolding diff-minus by simp

lemma (in diff-group-add) hom-completion-ring :
shows ring (|carrier = hom-completion
(diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff)
(diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff),
mult = op ◦,
one = λx :: ′a. if x ∈ carrier (diff-group-functor (λx :: ′a. − x) (op −) 0 (op +)

diff) then id x
else one (diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff),
zero = λx :: ′a. if x ∈ carrier (diff-group-functor (λx :: ′a. − x) (op −) 0 (op +)

diff)
then one (diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff)
else one (diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff),
add = λ(f :: ′a ⇒ ′a) (g :: ′a ⇒ ′a) x :: ′a.
if x ∈ carrier (diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff) then
mult (diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff) (f x) (g x)
else one (diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff)|)
using diff-group-functor-preserves [OF prems]
using comm-group.hom-completion-ring
[of (diff-group-functor (λx :: ′a. − x) op − 0 (op +) diff)]
using diff-minus
unfolding diff-group-def by simp

lemma homo-ab-is-hom-completion:
assumes homo-ab-f : homo-ab f
and diff-group-add : diff-group-add (op −)
(λx :: ′a::diff-group-add . − x) 0 (op +) diff
shows f ∈ hom-completion
(diff-group-functor (λx :: ′a::diff-group-add . − x) (op −) 0 (op +) diff)
(diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff)
using homo-ab-f
using diff-group-add
unfolding hom-completion-def
unfolding homo-ab-def
unfolding diff-group-functor-def
unfolding hom-def
unfolding completion-fun2-def
unfolding completion-def by auto

lemma hom-completion-is-homo-ab:
assumes f-hom-compl : f ∈ hom-completion

175

(diff-group-functor (λx :: ′a::diff-group-add . − x) (op −) 0 (op +) diff)
(diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff)
and diff-group-add : diff-group-add (op −) (λx :: ′a::diff-group-add . − x) 0 (op +)

diff
shows homo-ab f
using f-hom-compl
using diff-group-add
unfolding hom-completion-def
unfolding homo-ab-def
unfolding diff-group-functor-def
unfolding hom-def
unfolding completion-fun2-def
unfolding completion-def by auto

lemma hom-completion-equiv-homo-ab:
assumes diff-group-add : diff-group-add (op −) (λx :: ′a::diff-group-add . − x) 0

(op +) diff
shows homo-ab f ←→ f ∈ hom-completion
(diff-group-functor (λx :: ′a::diff-group-add . − x) (op −) 0 (op +) diff)
(diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff)
using homo-ab-is-hom-completion [of f]
using hom-completion-is-homo-ab [of f]
using diff-group-add by auto

Equivalence between the definition of power in the Isabelle Algebra Library,
nat-pow-def, over the ring of endomorphisms, and the definition of power for
functions, definition fun-pow

definition ring-hom-compl :: (′a diff-group) => (′a => ′a) ring
where ring-hom-compl D == (|carrier = hom-completion D D ,
mult = op ◦,
one = λx :: ′a. if x ∈ carrier D then id x else one D ,
zero = λx :: ′a. if x ∈ carrier D then one D else one D ,
add = λ(f :: ′a ⇒ ′a) (g :: ′a ⇒ ′a) x :: ′a. if x ∈ carrier D then mult D (f x) (g x)

else one D |)

lemma ring-nat-pow-equiv-funpow :
assumes diff-group-add : diff-group-add (op −) (λx :: ′a::diff-group-add . − x) 0

(op +) diff
and f-hom-completion: f ∈ hom-completion
(diff-group-functor (λx :: ′a::diff-group-add . − x) (op −) 0 (op +) diff)
(diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff)
shows f (ˆ)ring-hom-compl (diff-group-functor (λx :: ′a::diff-group-add . − x) (op −) 0 (op +) diff)

(n::nat) = fˆn
(is f (ˆ)?R n = fˆn)

proof (induct n)
case 0
show f (ˆ)?R (0 ::nat) = fˆ0

176

unfolding ring-hom-compl-def
unfolding nat-pow-def
unfolding diff-group-functor-def expand-fun-eq by auto

next
case Suc
fix n :: nat
assume hypo: f (ˆ)?R n = fˆn
show f (ˆ)?R (Suc n) = fˆ(Suc n)
proof −

have fˆ(Suc n) = f ◦ (fˆn) by simp
also have . . . = mult ?R (f (ˆ)?R (1 ::nat)) (f (ˆ)?R n)

using hypo analytic-part-local .monoid .nat-pow-1 [of ?R f]
using f-hom-completion
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding Ring .ring-def ring-hom-compl-def by simp

also have . . . = f (ˆ)?R (1 + n)
using monoid .nat-pow-mult [of ?R f 1 n]

using f-hom-completion diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding Ring .ring-def ring-hom-compl-def by simp

also have . . . = f (ˆ)?R (Suc n) by simp
finally show ?thesis by simp

qed
qed

Equivalence between the uminus definition in the ring of endomorphisms,
and the − ?A = (λx . − ?A x)

lemma minus-ring-homo-equal-uminus-fun:
assumes diff-group-add : diff-group-add (op −) (λx :: ′a::diff-group-add . − x) 0

(op +) diff
and homo-ab-f : homo-ab f
shows 	ring-hom-compl (diff-group-functor (λx :: ′a::diff-group-add . − x) (op −) 0 (op +) diff)

(f :: ′a::diff-group-add => ′a) = − f
(is 	?R f = − f)
using diff-group-add .hom-completion-ring [OF diff-group-add]
using abelian-group.minus-equality [of ?R f − f]
using homo-ab-is-hom-completion [OF homo-ab-f diff-group-add]
using homo-ab-is-hom-completion
[OF ab-group-add-impl-uminus-fun-closed

[OF - homo-ab-f]]
using diff-group-add
unfolding ring-hom-compl-def
[of diff-group-functor (λx :: ′a::diff-group-add . − x) (op −) 0 (op +) diff]
unfolding Ring .ring-def
unfolding abelian-group-def
unfolding diff-group-add-def
unfolding ab-group-add-def
unfolding ab-group-add-axioms-def
unfolding fun-Compl-def
unfolding plus-fun-def zero-fun-def

177

unfolding diff-group-functor-def expand-fun-eq by auto

lemma minus-ring-hom-completion-equal-uminus-fun:
assumes diff-group-add : diff-group-add (op −) (λx :: ′a::diff-group-add . − x) 0

(op +) diff
and f-hom-completion: f ∈ hom-completion
(diff-group-functor (λx :: ′a::diff-group-add . − x) (op −) 0 (op +) diff)
(diff-group-functor (λx :: ′a. − x) (op −) 0 (op +) diff)
shows 	ring-hom-compl (diff-group-functor (λx :: ′a::diff-group-add . − x) (op −) 0 (op +) diff)

f = − f
(is 	?R f = − f)
using minus-ring-homo-equal-uminus-fun
using hom-completion-equiv-homo-ab
using diff-group-add
using f-hom-completion by auto

lemma α-in-hom-completion:
assumes diff-group-add-pert-hom:
diff-group-add-pert-hom (op −) (λx :: ′a::diff-group-add-pert-hom. − x)
0 op + diff pert hom-oper
shows α ∈ hom-completion
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom. − x) op − 0 op + diff)
(diff-group-functor (λx :: ′a. − x) op − 0 op + diff)
(is α ∈ hom-completion ?D ?D)

proof −
let ?R = ring-hom-compl ?D
have diff-group-add : diff-group-add op − uminus (0 :: ′a) op + diff

using diff-group-add-pert-hom by (intro-locales)
have delta-in-R: pert ∈ carrier ?R and h-in-R: hom-oper ∈ carrier ?R

using diff-group-add-pert-hom
unfolding ring-hom-compl-def
unfolding reduction-class-ext-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-def
unfolding diff-group-add-pert-axioms-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding Pi-def
unfolding completion-fun2-def completion-def
unfolding diff-group-functor-def by auto

have deltah-in-R: pert ◦ hom-oper ∈ carrier ?R
using delta-in-R
using h-in-R
using diff-group-add .hom-completion-ring [OF diff-group-add]
using monoid .m-closed [of ?R pert hom-oper]
unfolding Ring .ring-def ring-hom-compl-def by simp

show ?thesis
using deltah-in-R

178

using abelian-group.a-inv-closed [OF - deltah-in-R]
using diff-group-add .hom-completion-ring [OF diff-group-add]
using minus-ring-hom-completion-equal-uminus-fun
[of pert ◦ hom-oper , OF diff-group-add]
unfolding ring-hom-compl-def α-def Ring .ring-def fun-Compl-def by simp

qed

lemma β-in-hom-completion:
assumes diff-group-add-pert-hom:
diff-group-add-pert-hom op − (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x)
0 op + diff pert hom-oper
shows β ∈ hom-completion
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(diff-group-functor (λx :: ′a. − x) op − 0 op + diff)
(is β ∈ hom-completion ?D ?D)

proof −
let ?R = ring-hom-compl ?D
have diff-group-add : diff-group-add op − uminus (0 :: ′a) op + diff

using diff-group-add-pert-hom by (intro-locales)
have delta-in-R: pert ∈ carrier ?R and h-in-R: hom-oper ∈ carrier ?R

using diff-group-add-pert-hom
unfolding ring-hom-compl-def
unfolding reduction-class-ext-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-def
unfolding diff-group-add-pert-axioms-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding Pi-def
unfolding completion-fun2-def completion-def
unfolding diff-group-functor-def by auto

have hdelta-in-R: hom-oper ◦ pert ∈ carrier ?R
using delta-in-R
using h-in-R
using diff-group-add .hom-completion-ring [OF diff-group-add]
using monoid .m-closed [of ?R hom-oper pert]
unfolding Ring .ring-def ring-hom-compl-def by simp

show ?thesis
using hdelta-in-R
using abelian-group.a-inv-closed [OF - hdelta-in-R]
using diff-group-add .hom-completion-ring [OF diff-group-add]
using minus-ring-hom-completion-equal-uminus-fun
[of hom-oper ◦ pert , OF diff-group-add]
unfolding ring-hom-compl-def β-def Ring .ring-def fun-Compl-def by simp

qed

Our previous deinition of reduction-class-ext satisfies the definition of the

179

locale local-nilpotent-term

lemma reduction-class-ext-preserves-local-nilpotent-term:
assumes reduction-class-ext-f-g :
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist => ′b::diff-group-add)

g
shows local-nilpotent-term
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
α (local-bound α)
(is local-nilpotent-term ?D ?R α (local-bound α))

proof (intro-locales)
have diff-group-add-pert-hom-bound-exist :
diff-group-add-pert-hom-bound-exist op − (λx :: ′a. − x) 0 op + diff pert hom-oper
using reduction-class-ext-f-g
unfolding reduction-class-ext-def [of f g] by simp

then have diff-group-add-pert-hom:
diff-group-add-pert-hom op − (λx :: ′a. − x) 0 op + diff pert hom-oper
unfolding diff-group-add-pert-hom-bound-exist-def by simp

have diff-group-add : diff-group-add op − (λx :: ′a. − x) 0 op + diff
using diff-group-add-pert-hom-bound-exist-impl-diff-group-add
[OF diff-group-add-pert-hom-bound-exist]
by simp

show monoid ?D
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def comm-group-def comm-monoid-def by fast

show comm-monoid-axioms ?D
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def comm-group-def comm-monoid-def by fast

show group-axioms ?D
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def comm-group-def group-def by simp

show diff-group-axioms ?D
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def by simp

show abelian-monoid ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding ring-hom-compl-def Ring .ring-def abelian-group-def by simp

show abelian-group-axioms ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding ring-hom-compl-def Ring .ring-def abelian-group-def by simp

show ring-axioms ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding Ring .ring-def ring-hom-compl-def by simp

show monoid ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding Ring .ring-def abelian-group-def ring-hom-compl-def by simp

show ring-endomorphisms-axioms ?D ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]

180

unfolding ring-hom-compl-def ring-endomorphisms-axioms-def by simp
show local-nilpotent-term-axioms ?D ?R α (local-bound α)
proof (unfold local-nilpotent-term-axioms-def , intro conjI)

show alpha-in-R: α ∈ carrier ?R
using α-in-hom-completion [OF diff-group-add-pert-hom]
unfolding α-def Ring .ring-def ring-hom-compl-def by simp

show ∀ x ∈ carrier ?D . (α (ˆ)?R (local-bound α x)) x = one ?D
proof (rule ballI)

fix x
assume x-in-D : x ∈ carrier ?D
show (α (ˆ)?R (local-bound α x)) x = monoid .one ?D
proof −

have (α (ˆ)?R (local-bound α x)) x = (αˆ(local-bound α x)) x
using ring-nat-pow-equiv-funpow [OF diff-group-add , of α] alpha-in-R
unfolding ring-hom-compl-def by simp

also have (α ˆ local-bound α (x :: ′a::diff-group-add-pert-hom-bound-exist))
x = 0

using α-locally-nilpotent [OF diff-group-add-pert-hom-bound-exist , of x :: ′a]
by simp

also have . . . = one ?D unfolding diff-group-functor-def by simp
finally show ?thesis by simp

qed
qed
show ∀ x :: ′a. (local-bound α x) = (LEAST n::nat . (α (ˆ)?R n) x = one ?D)

using diff-group-add-pert-hom-bound-exist-impl-local-bounded-func-alpha
[OF diff-group-add-pert-hom-bound-exist]
using local-bounded-func-impl-terminates-loop [of α:: ′a ⇒ ′a]
using local-bound-correct [of α:: ′a ⇒ ′a]
using ring-nat-pow-equiv-funpow [OF diff-group-add , of α:: ′a ⇒ ′a]
using alpha-in-R
unfolding ring-hom-compl-def diff-group-functor-def by auto

qed
qed

The following lemma states that the reduction-class-ext definition together
with local-bound-exists satisifies the premises of the BPL ?D ?R ?h ?C ?f
?g ?δ ?bound-phi =⇒ reduction (lemma-2-2-15 .D ′ ?D ?R ?δ) (|carrier =
carrier ?C , mult = op ⊗?C, one = 1?C, diff-group.diff = λx . if x ∈ carrier
?C then diff-group.diff ?C x ⊗?C (?f ◦ ?δ ◦ local-nilpotent-alpha.Ψ ?D
?R ?h ?δ ◦ ?g) x else 1?C|) (?f ◦ local-nilpotent-alpha.Φ ?D ?R ?h ?δ
?bound-phi) (local-nilpotent-alpha.Ψ ?D ?R ?h ?δ ◦ ?g) (lemma-2-2-15 .h ′

?D ?R ?h ?δ ?bound-phi).

In addition to this result, we also have to prove later that the definitions
given in this file for f ′, g ′, Φ, are equivalent to the ones given inside of the
local BPL

lemma reduction-class-ext-preserves-BPL:
assumes r-c-e:

181

reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist => ′b::diff-group-add)
g

shows BPL
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
hom-oper
(diff-group-functor (λx :: ′b::diff-group-add . − x) op − 0 op + diff)
f g pert
(local-bound α)
(is BPL ?D ?R hom-oper ?C f g pert (local-bound α))

proof (intro-locales)
have diff-group-add-pert-hom-bound-exist :
diff-group-add-pert-hom-bound-exist op − (λx :: ′a. − x) 0 op + diff pert hom-oper
using r-c-e
unfolding reduction-class-ext-def [of f g] ..

have diff-group-add : diff-group-add op − (λx :: ′a. − x) 0 op + diff
using diff-group-add-pert-hom-bound-exist-impl-diff-group-add
[OF diff-group-add-pert-hom-bound-exist] .

show monoid ?D
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def comm-group-def
unfolding comm-monoid-def by fast

show comm-monoid-axioms ?D
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def comm-group-def
unfolding comm-monoid-def by fast

show group-axioms ?D
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def comm-group-def group-def by fast

show diff-group-axioms ?D
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def ..

have diff-group-add-C : diff-group-add op − (λx :: ′b. − x) 0 op + diff
using r-c-e
unfolding reduction-class-ext-def by simp

show monoid ?C
using diff-group-functor-preserves [OF diff-group-add-C]
unfolding diff-group-def
unfolding comm-group-def
unfolding comm-monoid-def by fast

show comm-monoid-axioms ?C
using diff-group-functor-preserves [OF diff-group-add-C]
unfolding diff-group-def
unfolding comm-group-def
unfolding comm-monoid-def by fast

show group-axioms ?C
using diff-group-functor-preserves [OF diff-group-add-C]
unfolding diff-group-def

182

unfolding comm-group-def
unfolding group-def by fast

show diff-group-axioms ?C
using diff-group-functor-preserves [OF diff-group-add-C]
unfolding diff-group-def by fast

show abelian-monoid ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding ring-hom-compl-def
unfolding Ring .ring-def
unfolding abelian-group-def by fast

show abelian-group-axioms ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding Ring .ring-def
unfolding abelian-group-def
unfolding ring-hom-compl-def by fast

show ring-axioms ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding ring-hom-compl-def
unfolding Ring .ring-def by fast

show monoid ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding Ring .ring-def
unfolding abelian-group-def
unfolding ring-hom-compl-def by fast

show ring-endomorphisms-axioms ?D ?R
using diff-group-add .hom-completion-ring [OF diff-group-add]
unfolding ring-hom-compl-def
unfolding ring-endomorphisms-axioms-def by fast

show lemma-2-2-14-axioms ?D ?R (λx . h x)
proof (unfold lemma-2-2-14-axioms-def ring-hom-compl-def , simp, intro conjI)

show hom-oper ∈ hom-completion ?D ?D
using r-c-e
unfolding reduction-class-ext-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding Pi-def
unfolding completion-fun2-def
unfolding completion-def
unfolding diff-group-functor-def by simp

show (λx . h x) ◦ (λx . h x) = (λx :: ′a. one ?D)
using r-c-e
unfolding reduction-class-ext-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding zero-fun-def

183

unfolding diff-group-functor-def by simp
show (λx . h x) ◦ diff-group.diff ?D ◦ (λx . h x) = (λx . h x)

unfolding diff-group-functor-def
apply simp
using hdh-eq-h [OF r-c-e] .

qed
show reduction-axioms ?D ?C f g (λx . h x)

using reduction-class-ext-preserves-reduction [OF r-c-e]
unfolding reduction-def by fast

show alpha-beta-axioms ?D (λx . δ x)
using diff-group-add-pert-hom-bound-exist-preserves-pert
[OF diff-group-add-pert-hom-bound-exist]
unfolding alpha-beta-axioms-def .

show local-nilpotent-term-axioms
?D ?R (?R mult ?R (λx . δ x) (λx . h x)) (local-bound α)

proof −
have delta-in-R: (λx . δ x) ∈ carrier ?R

and h-in-R: (λx . h x) ∈ carrier ?R
using r-c-e
unfolding ring-hom-compl-def
unfolding reduction-class-ext-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding diff-group-add-pert-def
unfolding diff-group-add-pert-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding Pi-def
unfolding completion-fun2-def
unfolding completion-def
unfolding diff-group-functor-def by simp-all

have deltah-in-R: (λx . δ x) ◦ (λx . h x) ∈ carrier ?R
using delta-in-R h-in-R
using diff-group-add .hom-completion-ring [OF diff-group-add]
using monoid .m-closed [of ?R λx . δ x λx . h x]
unfolding ring-hom-compl-def
unfolding Ring .ring-def by simp

have minus-eq : (?R mult ?R (λx . δ x) (λx . h x))
= − ((λx . δ x) ◦ (λx . h x))
using deltah-in-R
using diff-group-add .hom-completion-ring [OF diff-group-add]
using abelian-group.a-inv-closed [OF - deltah-in-R]
using minus-ring-hom-completion-equal-uminus-fun
[OF diff-group-add , of (λx . δ x) ◦ (λx . h x)]
unfolding ring-hom-compl-def by simp

show ?thesis
using reduction-class-ext-preserves-local-nilpotent-term
[OF r-c-e]

184

unfolding minus-eq
unfolding local-nilpotent-term-def
unfolding α-def
unfolding fun-Compl-def unfolding o-apply ..

qed
qed

The definition of reduction-class-ext satisfies the definition of the locale
lemma-2-2-15.

lemma reduction-class-ext-preserves-lemma-2-2-15 :
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows lemma-2-2-15
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x)
op − 0 op + diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
hom-oper (diff-group-functor (λx :: ′b::diff-group-add . − x) op − 0 op + diff)
f g pert
(local-bound α)
using reduction-class-ext-preserves-BPL [OF r-c-e]
unfolding BPL-def
unfolding lemma-2-2-17-def
unfolding proposition-2-2-16-def ..

The definition of reduction-class-ext satisfies the definiton of the locale
local-nilpotent-alpha

lemma reduction-class-ext-preserves-local-nilpotent-alpha:
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows local-nilpotent-alpha
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x)
op − 0 op + diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
(diff-group-functor (λx :: ′b::diff-group-add . − x) op − 0 op + diff)
f g hom-oper pert
(local-bound α)
using reduction-class-ext-preserves-BPL [OF r-c-e]
unfolding BPL-def
unfolding lemma-2-2-17-def
unfolding proposition-2-2-16-def
unfolding lemma-2-2-15-def by fast

The definition λx . fin-sum α (local-bound α x) x in reduction-class-ext is
equivalent to the previous definition of power-series in locale local-nilpotent-term.

lemma reduction-class-ext-preserves-power-series:
assumes r-c-e:

185

reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows local-nilpotent-term.power-series
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
α
(local-bound α) = (λx :: ′a. fin-sum α (local-bound α x) x)
(is local-nilpotent-term.power-series ?D ?R α (local-bound α)

= (λx . fin-sum α (local-bound α x) x))
proof (unfold expand-fun-eq , rule allI)

fix x :: ′a
show local-nilpotent-term.power-series ?D ?R α (local-bound α) x

= fin-sum α (local-bound α x) x
proof −

have local-nilpotent-term: local-nilpotent-term ?D ?R α (local-bound α)
using reduction-class-ext-preserves-local-nilpotent-term [OF r-c-e] .

have diff-group-add-pert-hom-bound-exist :
diff-group-add-pert-hom-bound-exist op − (λx :: ′a. − x) 0 op + diff pert

hom-oper
using r-c-e
unfolding reduction-class-ext-def [of f g] ..

have diff-group-add-pert-hom:
diff-group-add-pert-hom op − (λx :: ′a. − x) 0 op + diff pert hom-oper
using diff-group-add-pert-hom-bound-exist
by (intro-locales)

have diff-group-add : diff-group-add op − (λx :: ′a. − x) 0 op + diff
using diff-group-add-pert-hom-bound-exist-impl-diff-group-add
[OF diff-group-add-pert-hom-bound-exist] .

have local-nilpotent-term.power-series ?D ?R α (local-bound α) x
= (

⊗
?Di ::nat∈{..local-bound α x}. (α (ˆ)?R i) x)

using local-nilpotent-term.power-series-def [OF local-nilpotent-term]
by simp

also have (
⊗

?Di ::nat∈{..local-bound α x}. (α (ˆ)?R i) x)
= (

⊗
?Di ::nat∈{..local-bound α x}. (αˆi) x)

unfolding ring-nat-pow-equiv-funpow [OF diff-group-add
α-in-hom-completion [OF diff-group-add-pert-hom]] ..

also have . . . = fin-sum α (local-bound α x) x
proof (induct local-bound α x)

case 0
{

have (
⊗

?Di ::nat∈{..0 ::nat}. (αˆi) x) = (αˆ(0 ::nat)) x
using comm-monoid .finprod-0 [of ?D]
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def
unfolding comm-group-def
unfolding diff-group-functor-def by simp

also have . . . = fin-sum α (0 ::nat) x by simp
finally show (

⊗
?Di ::nat∈{..0 ::nat}. (αˆi) x) = fin-sum α (0 ::nat) x .

186

}
next

case Suc
{

fix n :: nat
assume hypo: (

⊗
?Di ::nat∈{..n}. (αˆi) x) = fin-sum α n x

have (
⊗

?Di ::nat∈{..Suc n}. (αˆi) x)
= monoid .mult ?D ((αˆ(Suc n)) x) (

⊗
?Di ::nat∈{..n}. (αˆi) x)

using comm-monoid .finprod-Suc [of ?D]
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def
unfolding comm-group-def
unfolding diff-group-functor-def by simp

also have . . . = monoid .mult ?D ((αˆ(Suc n)) x) (fin-sum α n x)
unfolding hypo ..

also have . . . = ((αˆ(Suc n)) x) + (fin-sum α n x)
unfolding diff-group-functor-def
unfolding monoid .select-convs (1) ..

also have . . . = ((αˆ(Suc n)) + (fin-sum α (n))) x
unfolding plus-fun-def [of ((α:: ′a ⇒ ′a)ˆ(Suc n)) (fin-sum α (n))] ..

also have . . . = (fin-sum α (Suc n) x)
unfolding fin-sum.simps (2) ..

finally
show (

⊗
?Di ::nat∈{..Suc (n::nat)}. (αˆi) (x :: ′a)) = fin-sum α (Suc n) x .

}
qed
finally show ?thesis .

qed
qed

The definition of Φ = (λx . fin-sum α (local-bound α x) x) is equivalent to the
previous definition of D-R-C-f-g-h-δ-α-bound-phi .Φ in locale-nilpotent-alpha

lemma reduction-class-ext-preserves-Φ:
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows local-nilpotent-alpha.Φ
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x)
op − 0 op + diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
hom-oper
pert
(local-bound α) = Φ
(is local-nilpotent-alpha.Φ ?D ?R hom-oper pert (local-bound α) = Φ)
unfolding local-nilpotent-alpha.phi-def
[OF reduction-class-ext-preserves-local-nilpotent-alpha

[OF r-c-e]]
unfolding local-nilpotent-term.power-series-def [OF -, of x]

proof −

187

show local-nilpotent-term.power-series ?D ?R
(?R monoid .mult ?R pert hom-oper) (local-bound α) = Φ

proof −
have local-nilpotent-term.power-series ?D ?R

(?R monoid .mult ?R (λx . δ x) (λx . h x)) (local-bound α) =
local-nilpotent-term.power-series ?D ?R α (local-bound α)

proof −
have diff-group-add-pert-hom-bound-exist :

diff-group-add-pert-hom-bound-exist op − (λx :: ′a. − x) 0
op + diff pert hom-oper
using r-c-e
unfolding reduction-class-ext-def [of f g] by fast

have diff-group-add : diff-group-add op − (λx :: ′a. − x) 0 op + diff
using diff-group-add-pert-hom-bound-exist-impl-diff-group-add
[OF diff-group-add-pert-hom-bound-exist] .

have delta-in-R: pert ∈ carrier ?R and h-in-R: (λx . h x) ∈ carrier ?R
using r-c-e
unfolding ring-hom-compl-def
unfolding reduction-class-ext-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding diff-group-add-pert-def
unfolding diff-group-add-pert-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding Pi-def
unfolding completion-fun2-def
unfolding completion-def
unfolding diff-group-functor-def by auto

have deltah-in-R: (λx . δ x) ◦ (λx . h x) ∈ carrier ?R
using delta-in-R h-in-R
using diff-group-add .hom-completion-ring [OF diff-group-add]
using monoid .m-closed [of ?R (λx . δ x) (λx . h x)]
unfolding Ring .ring-def ring-hom-compl-def by simp

have minus-equiv : 	?R mult ?R (λx . δ x) (λx . h x) = α
using abelian-group.a-inv-closed [OF - deltah-in-R]
using diff-group-add .hom-completion-ring [OF diff-group-add]
using minus-ring-hom-completion-equal-uminus-fun
[of (λx . δ x) ◦ (λx . h x), OF diff-group-add]
using deltah-in-R
unfolding α-def
unfolding ring-hom-compl-def
unfolding fun-Compl-def by simp

show ?thesis unfolding minus-equiv ..
qed
also have . . . = (λx :: ′a. (fin-sum α (local-bound α x)) x)

unfolding reduction-class-ext-preserves-power-series
[OF r-c-e] ..

188

also have . . . = Φ unfolding Φ-def α-def ..
finally show ?thesis .

qed
qed

Now, as a corollary, we prove that the previous definition of the output
D-R-h-C-f-g-δ-α-bound-phi .f ′ of the BPL, is equivalent to the definition f ◦
Φ.

corollary reduction-class-ext-preserves-output-f :
assumes r-c-e: reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows f ◦
local-nilpotent-alpha.Φ
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
hom-oper
pert
(local-bound α)
= f ◦ Φ
unfolding reduction-class-ext-preserves-Φ [OF r-c-e] ..

Now, as a corollary, we prove that the previous definition of the output h ′

of the BPL, is equivalent to the definition h ′ ≡ hom-oper ◦ Φ.

corollary reduction-class-ext-preserves-output-h:
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows lemma-2-2-15 .h ′

(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op
+ diff)

(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
hom-oper
pert
(local-bound α)
= h ′

unfolding lemma-2-2-15 .h ′-def
[OF reduction-class-ext-preserves-lemma-2-2-15

[OF r-c-e]]
unfolding reduction-class-ext-preserves-Φ [OF r-c-e]
unfolding h ′-def
unfolding ring-hom-compl-def
unfolding monoid .select-convs (1) ..

The definition of reduction-class-ext satisfies the definition of the locale
alpha-beta

lemma reduction-class-ext-preserves-alpha-beta:
assumes r-c-e:

189

reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows alpha-beta (diff-group-functor (λx :: ′a. − x) op − 0 op + diff)
(ring-hom-compl
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff))
(diff-group-functor (λx :: ′b::diff-group-add . − x) op − 0 op + diff)
f
g (λx . h x) (λx . δ x)
using reduction-class-ext-preserves-BPL [OF r-c-e]
unfolding BPL-def
unfolding lemma-2-2-17-def
unfolding proposition-2-2-16-def
unfolding lemma-2-2-15-def
unfolding lemma-2-2-14-def
unfolding local-nilpotent-alpha-def by fast

The new definition of the power series over β = − (hom-oper ◦ diff-group-add-pert-class.pert)
is equivalent to the definition of the power series over β in the previous ver-
sion.

lemma reduction-class-ext-preserves-beta-bound :
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows local-bounded-func (β:: ′a::diff-group-add-pert-hom-bound-exist => ′a)

proof −
let ?D = (diff-group-functor (λx :: ′a. − x) op − 0 op + diff)
let ?R = ring-hom-compl ?D
obtain bound-psi

where local-nilp-term:
local-nilpotent-term ?D ?R (alpha-beta.β ?R hom-oper pert) bound-psi
using local-nilpotent-alpha.bound-psi-exists
[OF reduction-class-ext-preserves-local-nilpotent-alpha

[OF r-c-e]] by auto
have diff-group-add-pert-hom-bound-exist :
diff-group-add-pert-hom-bound-exist op − (λx :: ′a. − x) 0 op + diff pert hom-oper
using r-c-e
unfolding reduction-class-ext-def [of f g] by fast

have diff-group-add : diff-group-add op − (λx :: ′a. − x) 0 op + diff
using diff-group-add-pert-hom-bound-exist-impl-diff-group-add
[OF diff-group-add-pert-hom-bound-exist] .

have delta-in-R: pert ∈ carrier ?R and h-in-R: hom-oper ∈ carrier ?R
using r-c-e
unfolding ring-hom-compl-def
unfolding reduction-class-ext-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding diff-group-add-pert-def

190

unfolding diff-group-add-pert-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding Pi-def
unfolding completion-fun2-def
unfolding completion-def
unfolding diff-group-functor-def by auto

have hdelta-in-R: (λx . h x) ◦ (λx . δ x) ∈ carrier ?R
using delta-in-R h-in-R
using diff-group-add .hom-completion-ring [OF diff-group-add]
using monoid .m-closed [of ?R (λx . h x) (λx . δ x)]
unfolding Ring .ring-def ring-hom-compl-def by simp

have β-equiv : alpha-beta.β ?R (λx . h x) (λx . δ x) = β
proof −

have alpha-beta.β ?R (λx . h x) (λx . δ x)
= 	?R monoid .mult ?R (λx . h x) (λx . δ x)
unfolding alpha-beta.beta-def
[OF reduction-class-ext-preserves-alpha-beta

[OF r-c-e]] ..
also have 	?R monoid .mult ?R (λx . h x) (λx . δ x)

= − ((λx . h x) ◦ (λx . δ x))
using hdelta-in-R
using minus-ring-hom-completion-equal-uminus-fun
[OF diff-group-add]
unfolding ring-hom-compl-def by simp

finally show ?thesis unfolding β-def .
qed
have lnt : local-nilpotent-term ?D ?R β bound-psi

unfolding sym [OF β-equiv]
using local-nilp-term .

have bound-ex :∀ x :: ′a. ∃n::nat . (β (ˆ)?R n) x = 0
using lnt
unfolding local-nilpotent-term-def
unfolding local-nilpotent-term-axioms-def
unfolding diff-group-functor-def by auto

have ∀ x :: ′a. ∃n::nat . (β ˆ n) x = 0
using ring-nat-pow-equiv-funpow
[OF diff-group-add β-in-hom-completion]
using diff-group-add-pert-hom-bound-exist
using bound-ex
unfolding diff-group-add-pert-hom-bound-exist-def by simp

then show ?thesis
unfolding local-bounded-func-def .

qed

lemma reduction-class-ext-preserves-power-series-β:
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g

191

shows local-nilpotent-term.power-series
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
β (local-bound β)
= (λx :: ′a. fin-sum β (local-bound β x) x)
(is local-nilpotent-term.power-series ?D ?R β (local-bound β)

= (λx :: ′a. fin-sum β (local-bound β x) x))
proof (unfold expand-fun-eq , rule allI)

fix x :: ′a
show local-nilpotent-term.power-series ?D ?R β (local-bound β) x

= fin-sum β (local-bound β x) x
proof −

have diff-group-add-pert-hom-bound-exist :
diff-group-add-pert-hom-bound-exist op − (λx :: ′a. − x) 0 op + diff pert

hom-oper
using r-c-e
unfolding reduction-class-ext-def [of f g] by fast

have diff-group-add : diff-group-add op − (λx :: ′a. − x) 0 op + diff
using diff-group-add-pert-hom-bound-exist-impl-diff-group-add
[OF diff-group-add-pert-hom-bound-exist] .

have delta-in-R: pert ∈ carrier ?R and h-in-R: hom-oper ∈ carrier ?R
using r-c-e
unfolding reduction-class-ext-def
unfolding ring-hom-compl-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding diff-group-add-pert-def
unfolding diff-group-add-pert-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding Pi-def
unfolding completion-fun2-def
unfolding completion-def
unfolding diff-group-functor-def by auto

have hdelta-in-R: (λx . h x) ◦ (λx . δ x) ∈ carrier ?R
using delta-in-R h-in-R
using diff-group-add .hom-completion-ring [OF diff-group-add]
using monoid .m-closed [of ?R (λx . h x) (λx . δ x)]
unfolding ring-hom-compl-def
unfolding Ring .ring-def by simp

have β-equiv : alpha-beta.β ?R (λx . h x) (λx . δ x) = β
proof −

have alpha-beta.β ?R (λx . h x) (λx . δ x)
= 	?R monoid .mult ?R (λx . h x) (λx . δ x)
unfolding alpha-beta.beta-def
[OF reduction-class-ext-preserves-alpha-beta

[OF r-c-e]] ..

192

also have 	?R monoid .mult ?R (λx . h x) (λx . δ x)
= − ((λx . h x) ◦ (λx . δ x))
using hdelta-in-R
using minus-ring-hom-completion-equal-uminus-fun
[of (λx . h x) ◦ (λx . δ x), OF diff-group-add]
unfolding ring-hom-compl-def by simp

finally show ?thesis unfolding β-def .
qed
have bound-equiv : (λx . LEAST n. (β (ˆ)?R n) x = one ?D) = (local-bound β)

using local-bounded-func-impl-local-bound-is-Least
[OF reduction-class-ext-preserves-beta-bound

[OF r-c-e]]
using ring-nat-pow-equiv-funpow [OF diff-group-add β-in-hom-completion]
using diff-group-add-pert-hom-bound-exist
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-functor-def by (simp add : expand-fun-eq)

have local-nilpotent-term: local-nilpotent-term ?D ?R β (local-bound β)
using local-nilpotent-alpha.nilp-alpha-nilp-beta
[OF reduction-class-ext-preserves-local-nilpotent-alpha

[OF r-c-e]]
using local-nilpotent-alpha.nilp-alpha-nilp-beta
using β-equiv
using bound-equiv by simp

have local-nilpotent-term.power-series ?D ?R β (local-bound β) x
= (

⊗
?Di ::nat∈{..local-bound β x}. (β (ˆ)?R i) x)

unfolding local-nilpotent-term.power-series-def [OF local-nilpotent-term] ..
also have (

⊗
?Di ::nat∈{..local-bound β x}. (β (ˆ)?R i) x)

= (
⊗

?Di ::nat∈{..local-bound β x}. (βˆi) x)
using ring-nat-pow-equiv-funpow [OF diff-group-add β-in-hom-completion]
using diff-group-add-pert-hom-bound-exist
unfolding diff-group-add-pert-hom-bound-exist-def by simp

also have . . . = fin-sum β (local-bound β x) x
proof (induct local-bound β x)

case 0
{

have (
⊗

?Di ::nat∈{..0 ::nat}. (βˆi) x) = (βˆ(0 ::nat)) x
using comm-monoid .finprod-0 [of ?D]
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def
unfolding comm-group-def
unfolding diff-group-functor-def by simp

also have . . . = fin-sum β (0 ::nat) x by simp
finally show (

⊗
?Di ::nat∈{..0 ::nat}. (βˆi) x) = fin-sum β (0 ::nat) x by

simp
}

next
case Suc
{

fix n :: nat

193

assume hypo: (
⊗

?Di ::nat∈{..n}. (βˆi) x) = fin-sum β n x
have (

⊗
?Di ::nat∈{..Suc n}. (βˆi) x)

= mult ?D ((βˆ(Suc n)) x) (
⊗

?Di ::nat∈{..n}. (βˆi) x)
using comm-monoid .finprod-Suc [of ?D]
using diff-group-functor-preserves [OF diff-group-add]
unfolding diff-group-def
unfolding comm-group-def
unfolding diff-group-functor-def by simp

also have . . . = monoid .mult ?D ((βˆ(Suc n)) x) (fin-sum β n x)
unfolding hypo ..

also have . . . = ((βˆ(Suc n)) x) + (fin-sum β n x)
unfolding diff-group-functor-def
unfolding monoid .select-convs (1) ..

also have . . . = ((βˆ(Suc n)) + (fin-sum β (n))) x
unfolding plus-fun-def [of ((β:: ′a ⇒ ′a)ˆ(Suc n)) (fin-sum β (n))] ..

also have . . . = (fin-sum β (Suc n) x) by simp
finally show (

⊗
?Di ::nat∈{..Suc (n::nat)}. (βˆi) (x :: ′a))

= fin-sum β (Suc n) x .
}
qed

finally show ?thesis by simp
qed

qed

As well as the equivalence between both definitions of the power series, also
the definitions of the bounds are equivalent.

lemma reduction-class-ext-preserves-bound-psi :
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows local-nilpotent-alpha.bound-psi
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
hom-oper pert
= (local-bound β)
(is local-nilpotent-alpha.bound-psi ?D ?R (λx . h x) (λx . δ x) = (local-bound β))

proof −
have diff-group-add-pert-hom-bound-exist :

diff-group-add-pert-hom-bound-exist
op − (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x)
0 op + diff pert hom-oper
using r-c-e
unfolding reduction-class-ext-def [of f g] by fast

have diff-group-add : diff-group-add op − (λx :: ′a. − x) 0 op + diff
using diff-group-add-pert-hom-bound-exist-impl-diff-group-add
[OF diff-group-add-pert-hom-bound-exist] .

have delta-in-R: pert ∈ carrier ?R and h-in-R: hom-oper ∈ carrier ?R
using r-c-e

194

unfolding reduction-class-ext-def
unfolding ring-hom-compl-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding diff-group-add-pert-def
unfolding diff-group-add-pert-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding Pi-def
unfolding completion-fun2-def
unfolding completion-def
unfolding diff-group-functor-def by auto

have hdelta-in-R: (λx . h x) ◦ (λx . δ x) ∈ carrier ?R
using delta-in-R h-in-R
using diff-group-add .hom-completion-ring [OF diff-group-add]
using monoid .m-closed [of ?R (λx . h x) (λx . δ x)]
unfolding Ring .ring-def ring-hom-compl-def by simp

have local-nilpotent-alpha.bound-psi ?D ?R (λx . h x) (λx . δ x)
= (λx :: ′a. LEAST n::nat . (alpha-beta.β ?R (λx . h x) (λx . δ x) (ˆ)?R n) x =

one ?D)
using local-nilpotent-alpha.bound-psi-def
[OF reduction-class-ext-preserves-local-nilpotent-alpha

[OF r-c-e]] by simp
also have . . . = (λx :: ′a. LEAST n::nat . (β (ˆ)?R n) x = one ?D)
proof −

have β-equiv : alpha-beta.β ?R (λx . h x) (λx . δ x) = β
proof −

have alpha-beta.β ?R (λx . h x) (λx . δ x)
= 	?R mult ?R (λx . h x) (λx . δ x)
unfolding alpha-beta.beta-def
[OF reduction-class-ext-preserves-alpha-beta

[OF r-c-e]] ..
also have 	?R monoid .mult ?R (λx . h x) (λx . δ x)

= − ((λx . h x) ◦ (λx . δ x))
using hdelta-in-R
using minus-ring-hom-completion-equal-uminus-fun
[of (λx . h x) ◦ (λx . δ x), OF diff-group-add]
unfolding ring-hom-compl-def by simp

finally show ?thesis unfolding β-def .
qed
then show ?thesis by simp

qed
also have . . . = (λx :: ′a. LEAST n::nat . (β (ˆ)?R n) x = (0 :: ′a))

unfolding diff-group-functor-def
unfolding monoid .select-convs ..

also have . . . = (λx :: ′a. LEAST n::nat . (βˆn) x = (0 :: ′a))
using ring-nat-pow-equiv-funpow
[OF diff-group-add β-in-hom-completion]

195

using diff-group-add-pert-hom-bound-exist
unfolding diff-group-add-pert-hom-bound-exist-def by simp

also have bound-equiv : . . . = (local-bound β)
unfolding expand-fun-eq
unfolding local-bounded-func-impl-local-bound-is-Least
[OF reduction-class-ext-preserves-beta-bound

[OF r-c-e]] by fast
finally show ?thesis .

qed

From the equivalence betwen the power series and the equality of the bounds,
it follows the equivalence between the old and the new definition of D-R-C-f-g-h-δ-α-bound-phi .Ψ

lemma reduction-class-ext-preserves-Ψ:
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows local-nilpotent-alpha.Ψ
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
hom-oper pert
= Ψ
(is local-nilpotent-alpha.Ψ ?D ?R (λx . h x) (λx . δ x) = Ψ)

proof −
have diff-group-add-pert-hom-bound-exist :

diff-group-add-pert-hom-bound-exist
op − (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x)
0 op + diff pert hom-oper
using r-c-e
unfolding reduction-class-ext-def [of f g] by fast

have diff-group-add : diff-group-add op − (λx :: ′a. − x) 0 op + diff
using diff-group-add-pert-hom-bound-exist-impl-diff-group-add
[OF diff-group-add-pert-hom-bound-exist] .

have delta-in-R: pert ∈ carrier ?R and h-in-R: hom-oper ∈ carrier ?R
using r-c-e
unfolding reduction-class-ext-def
unfolding ring-hom-compl-def
unfolding diff-group-add-pert-hom-bound-exist-def
unfolding diff-group-add-pert-hom-def
unfolding diff-group-add-pert-hom-axioms-def
unfolding diff-group-add-pert-def
unfolding diff-group-add-pert-axioms-def
unfolding hom-completion-def
unfolding hom-def
unfolding Pi-def
unfolding completion-fun2-def
unfolding completion-def
unfolding diff-group-functor-def by auto

have hdelta-in-R: (λx . h x) ◦ (λx . δ x) ∈ carrier ?R

196

using delta-in-R h-in-R
using diff-group-add .hom-completion-ring [OF diff-group-add]
using monoid .m-closed [of ?R (λx . h x) (λx . δ x)]
unfolding ring-hom-compl-def Ring .ring-def by simp

have local-nilpotent-alpha.Ψ ?D ?R (λx . h x) (λx . δ x)
= local-nilpotent-term.power-series ?D ?R (alpha-beta.β ?R (λx . h x) (λx . δ

x))
(local-nilpotent-alpha.bound-psi ?D ?R (λx . h x) (λx . δ x))
unfolding local-nilpotent-alpha.psi-def
[OF reduction-class-ext-preserves-local-nilpotent-alpha

[OF r-c-e]] ..
also have . . .

= local-nilpotent-term.power-series ?D ?R (alpha-beta.β ?R
(λx . h x) (λx . δ x)) (local-bound β)
using reduction-class-ext-preserves-bound-psi [OF r-c-e] by simp

also have . . . = local-nilpotent-term.power-series ?D ?R β (local-bound β)
proof −

have β-equiv : alpha-beta.β ?R (λx . h x) (λx . δ x) = β
proof −

have alpha-beta.β ?R (λx . h x) (λx . δ x)
= 	?R monoid .mult ?R (λx . h x) (λx . δ x)
using alpha-beta.beta-def
[OF reduction-class-ext-preserves-alpha-beta

[OF r-c-e]] .
also have 	?R monoid .mult ?R (λx . h x) (λx . δ x) = β

using hdelta-in-R
using minus-ring-hom-completion-equal-uminus-fun
[of (λx . h x) ◦ (λx . δ x), OF diff-group-add]
unfolding ring-hom-compl-def by (fold β-def , simp)

finally show ?thesis .
qed
then show ?thesis by simp

qed
also have . . . = (λx . fin-sum β (local-bound β x) x)

using reduction-class-ext-preserves-power-series-β [OF r-c-e] .
also have . . . = Ψ unfolding Ψ-def β-def ..
finally show ?thesis .

qed

Now, as a corollary, we prove the equivalence between the previous definition
of the output g of the BPL, and the one in this new approach

corollary reduction-class-ext-preserves-output-g :
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows local-nilpotent-alpha.Ψ
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))

197

hom-oper pert ◦ g
= Ψ ◦ g
unfolding reduction-class-ext-preserves-Ψ [OF r-c-e] ..

It also follows the equality of the previous definition of d C ′ and the new defi-
nition, dC ′ ?f ?g = diff-group-add-class.diff + (?f ◦ diff-group-add-pert-class.pert
◦ Ψ ◦ ?g)

corollary reduction-class-ext-preserves-output-dC :
assumes r-c-e:
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows (λx :: ′b.
if x ∈ carrier (diff-group-functor (λx :: ′b::diff-group-add . − x) op − 0 op + diff)

then mult (diff-group-functor (λx :: ′b::diff-group-add . − x) op − 0 op + diff)
(diff-group.diff (diff-group-functor (λx :: ′b::diff-group-add . − x) op − 0 op + diff)

x)
((f ◦ pert ◦
(local-nilpotent-alpha.Ψ
(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op

+ diff)
(ring-hom-compl (diff-group-functor (λx :: ′a. − x) op − 0 op + diff))
hom-oper pert) ◦ g) x) else one (diff-group-functor (λx :: ′b. − x) op − 0 op +

diff))
= dC ′ f g
unfolding reduction-class-ext-preserves-Ψ
[OF r-c-e]
unfolding dC ′-def [of f g]
unfolding diff-group-functor-def
unfolding plus-fun-def by simp

Now, from he previous equivalences, we are ready to give the proof of the re-
duction D ′ (|carrier = carrier C , mult = op ⊗C, one = 1C, diff-group.diff =
λx . if x ∈ carrier C then diff-group.diff C x ⊗C (f ◦ δ ◦ D-R-C-f-g-h-δ-α-bound-phi .Ψ
◦ g) x else 1C|) (f ◦ D-R-C-f-g-h-δ-α-bound-phi .Φ) (D-R-C-f-g-h-δ-α-bound-phi .Ψ
◦ g) D-R-h-C-f-g-δ-α-bound-phi .h ′ with the new introduced definitions in
terms of classes:

lemma assumes reduction-class-ext-f-g :
reduction-class-ext (f :: ′a::diff-group-add-pert-hom-bound-exist
=> ′b::diff-group-add) g
shows reduction
(lemma-2-2-15 .D ′

(diff-group-functor (λx :: ′a::diff-group-add-pert-hom-bound-exist . − x) op − 0 op
+ diff)

(ring-hom-compl
(diff-group-functor (λx :: ′a. − x) op − 0 op + diff)) pert)
(|carrier = carrier (diff-group-functor (λx :: ′b::diff-group-add . − x) op − 0 op +

diff),

198

mult = mult (diff-group-functor (λx :: ′b. − x) op − 0 op + diff),
one = one (diff-group-functor (λx :: ′b. − x) op − 0 op + diff),
diff-group.diff = dC ′ f g |)
(f ′ f)
(g ′ g)
(h ′)
using BPL.BPL
[OF reduction-class-ext-preserves-BPL

[OF reduction-class-ext-f-g]]
unfolding reduction-class-ext-preserves-output-f [OF reduction-class-ext-f-g]
unfolding reduction-class-ext-preserves-output-g [OF reduction-class-ext-f-g]
unfolding reduction-class-ext-preserves-output-h [OF reduction-class-ext-f-g]
unfolding reduction-class-ext-preserves-output-dC [OF reduction-class-ext-f-g]
unfolding f ′-def [of f]
unfolding g ′-def [of g]
unfolding h ′-def
unfolding dC ′-def [of f g] .

end

20 Pretty integer literals for code generation

theory Code-Integer
imports ATP-Linkup
begin

HOL numeral expressions are mapped to integer literals in target languages,
using predefined target language operations for abstract integer operations.
code-type int

(SML IntInf .int)
(OCaml Big ′-int .big ′-int)
(Haskell Integer)

code-instance int :: eq
(Haskell −)

setup 〈〈
fold (Numeral .add-code @{const-name number-int-inst .number-of-int}

true true) [SML, OCaml , Haskell]
〉〉

code-const Int .Pls and Int .Min and Int .Bit0 and Int .Bit1
(SML raise/ Fail/ Pls

and raise/ Fail/ Min
and !((-);/ raise/ Fail/ Bit0)
and !((-);/ raise/ Fail/ Bit1))

(OCaml failwith/ Pls
and failwith/ Min
and !((-);/ failwith/ Bit0)

199

and !((-);/ failwith/ Bit1))
(Haskell error/ Pls

and error/ Min
and error/ Bit0
and error/ Bit1)

code-const Int .pred
(SML IntInf .− ((-), 1))
(OCaml Big ′-int .pred ′-big ′-int)
(Haskell !(-/ −/ 1))

code-const Int .succ
(SML IntInf .+ ((-), 1))
(OCaml Big ′-int .succ ′-big ′-int)
(Haskell !(-/ +/ 1))

code-const op + :: int ⇒ int ⇒ int
(SML IntInf .+ ((-), (-)))
(OCaml Big ′-int .add ′-big ′-int)
(Haskell infixl 6 +)

code-const uminus :: int ⇒ int
(SML IntInf .∼)
(OCaml Big ′-int .minus ′-big ′-int)
(Haskell negate)

code-const op − :: int ⇒ int ⇒ int
(SML IntInf .− ((-), (-)))
(OCaml Big ′-int .sub ′-big ′-int)
(Haskell infixl 6 −)

code-const op ∗ :: int ⇒ int ⇒ int
(SML IntInf .∗ ((-), (-)))
(OCaml Big ′-int .mult ′-big ′-int)
(Haskell infixl 7 ∗)

code-const op = :: int ⇒ int ⇒ bool
(SML !((- : IntInf .int) = -))
(OCaml Big ′-int .eq ′-big ′-int)
(Haskell infixl 4 ==)

code-const op ≤ :: int ⇒ int ⇒ bool
(SML IntInf .<= ((-), (-)))
(OCaml Big ′-int .le ′-big ′-int)
(Haskell infix 4 <=)

code-const op < :: int ⇒ int ⇒ bool
(SML IntInf .< ((-), (-)))
(OCaml Big ′-int .lt ′-big ′-int)

200

(Haskell infix 4 <)

code-reserved SML IntInf
code-reserved OCaml Big-int

end

21 Type of indices

theory Code-Index
imports ATP-Linkup
begin

Indices are isomorphic to HOL nat but mapped to target-language builtin
integers

21.1 Datatype of indices

typedef index = UNIV :: nat set
morphisms nat-of-index index-of-nat by rule

lemma index-of-nat-nat-of-index [simp]:
index-of-nat (nat-of-index k) = k
by (rule nat-of-index-inverse)

lemma nat-of-index-index-of-nat [simp]:
nat-of-index (index-of-nat n) = n
by (rule index-of-nat-inverse)

(unfold index-def , rule UNIV-I)

lemma index :
(
∧

n::index . PROP P n) ≡ (
∧

n::nat . PROP P (index-of-nat n))
proof

fix n :: nat
assume

∧
n::index . PROP P n

then show PROP P (index-of-nat n) .
next

fix n :: index
assume

∧
n::nat . PROP P (index-of-nat n)

then have PROP P (index-of-nat (nat-of-index n)) .
then show PROP P n by simp

qed

lemma index-case:
assumes

∧
n. k = index-of-nat n =⇒ P

shows P
by (rule assms [of nat-of-index k]) simp

lemma index-induct-raw :

201

assumes
∧

n. P (index-of-nat n)
shows P k

proof −
from assms have P (index-of-nat (nat-of-index k)) .
then show ?thesis by simp

qed

lemma nat-of-index-inject [simp]:
nat-of-index k = nat-of-index l ←→ k = l
by (rule nat-of-index-inject)

lemma index-of-nat-inject [simp]:
index-of-nat n = index-of-nat m ←→ n = m
by (auto intro!: index-of-nat-inject simp add : index-def)

instantiation index :: zero
begin

definition [simp, code func del]:
0 = index-of-nat 0

instance ..

end

definition [simp]:
Suc-index k = index-of-nat (Suc (nat-of-index k))

lemma index-induct : P 0 =⇒ (
∧

k . P k =⇒ P (Suc-index k)) =⇒ P k
proof −

assume P 0 then have init : P (index-of-nat 0) by simp
assume

∧
k . P k =⇒ P (Suc-index k)

then have
∧

n. P (index-of-nat n) =⇒ P (Suc-index (index-of-nat (n))) .
then have step:

∧
n. P (index-of-nat n) =⇒ P (index-of-nat (Suc n)) by simp

from init step have P (index-of-nat (nat-of-index k))
by (induct nat-of-index k) simp-all

then show P k by simp
qed

lemma Suc-not-Zero-index : Suc-index k 6= 0
by simp

lemma Zero-not-Suc-index : 0 6= Suc-index k
by simp

lemma Suc-Suc-index-eq : Suc-index k = Suc-index l ←→ k = l
by simp

rep-datatype index

202

distinct Suc-not-Zero-index Zero-not-Suc-index
inject Suc-Suc-index-eq
induction index-induct

lemmas [code func del] = index .recs index .cases

declare index-case [case-names nat , cases type: index]
declare index-induct [case-names nat , induct type: index]

lemma [code func]:
index-size = nat-of-index

proof (rule ext)
fix k
have index-size k = nat-size (nat-of-index k)

by (induct k rule: index .induct) (simp-all del : zero-index-def Suc-index-def ,
simp-all)

also have nat-size (nat-of-index k) = nat-of-index k by (induct nat-of-index k)
simp-all

finally show index-size k = nat-of-index k .
qed

lemma [code func]:
size = nat-of-index

proof (rule ext)
fix k
show size k = nat-of-index k
by (induct k) (simp-all del : zero-index-def Suc-index-def , simp-all)

qed

lemma [code func]:
k = l ←→ nat-of-index k = nat-of-index l
by (cases k , cases l) simp

21.2 Indices as datatype of ints

instantiation index :: number
begin

definition
number-of = index-of-nat o nat

instance ..

end

lemma nat-of-index-number [simp]:
nat-of-index (number-of k) = number-of k
by (simp add : number-of-index-def nat-number-of-def number-of-is-id)

203

code-datatype number-of :: int ⇒ index

21.3 Basic arithmetic

instantiation index :: {minus, ordered-semidom, Divides.div , linorder}
begin

lemma zero-index-code [code inline, code func]:
(0 ::index) = Numeral0
by (simp add : number-of-index-def Pls-def)

lemma [code post]: Numeral0 = (0 ::index)
using zero-index-code ..

definition [simp, code func del]:
(1 ::index) = index-of-nat 1

lemma one-index-code [code inline, code func]:
(1 ::index) = Numeral1
by (simp add : number-of-index-def Pls-def Bit1-def)

lemma [code post]: Numeral1 = (1 ::index)
using one-index-code ..

definition [simp, code func del]:
n + m = index-of-nat (nat-of-index n + nat-of-index m)

lemma plus-index-code [code func]:
index-of-nat n + index-of-nat m = index-of-nat (n + m)
by simp

definition [simp, code func del]:
n − m = index-of-nat (nat-of-index n − nat-of-index m)

definition [simp, code func del]:
n ∗ m = index-of-nat (nat-of-index n ∗ nat-of-index m)

lemma times-index-code [code func]:
index-of-nat n ∗ index-of-nat m = index-of-nat (n ∗ m)
by simp

definition [simp, code func del]:
n div m = index-of-nat (nat-of-index n div nat-of-index m)

definition [simp, code func del]:
n mod m = index-of-nat (nat-of-index n mod nat-of-index m)

lemma div-index-code [code func]:
index-of-nat n div index-of-nat m = index-of-nat (n div m)
by simp

204

lemma mod-index-code [code func]:
index-of-nat n mod index-of-nat m = index-of-nat (n mod m)
by simp

definition [simp, code func del]:
n ≤ m ←→ nat-of-index n ≤ nat-of-index m

definition [simp, code func del]:
n < m ←→ nat-of-index n < nat-of-index m

lemma less-eq-index-code [code func]:
index-of-nat n ≤ index-of-nat m ←→ n ≤ m
by simp

lemma less-index-code [code func]:
index-of-nat n < index-of-nat m ←→ n < m
by simp

instance by default (auto simp add : left-distrib index)

end

lemma Suc-index-minus-one: Suc-index n − 1 = n by simp

lemma index-of-nat-code [code]:
index-of-nat = of-nat

proof
fix n :: nat
have of-nat n = index-of-nat n

by (induct n) simp-all
then show index-of-nat n = of-nat n

by (rule sym)
qed

lemma index-not-eq-zero: i 6= index-of-nat 0 ←→ i ≥ 1
by (cases i) auto

definition
nat-of-index-aux :: index ⇒ nat ⇒ nat

where
nat-of-index-aux i n = nat-of-index i + n

lemma nat-of-index-aux-code [code]:
nat-of-index-aux i n = (if i = 0 then n else nat-of-index-aux (i − 1) (Suc n))
by (auto simp add : nat-of-index-aux-def index-not-eq-zero)

lemma nat-of-index-code [code]:
nat-of-index i = nat-of-index-aux i 0
by (simp add : nat-of-index-aux-def)

205

21.4 ML interface

ML 〈〈
structure Index =
struct

fun mk k = HOLogic.mk-number @{typ index} k ;

end ;
〉〉

21.5 Specialized op −, op div and op mod operations

definition
minus-index-aux :: index ⇒ index ⇒ index

where
[code func del]: minus-index-aux = op −

lemma [code func]: op − = minus-index-aux
using minus-index-aux-def ..

definition
div-mod-index :: index ⇒ index ⇒ index × index

where
[code func del]: div-mod-index n m = (n div m, n mod m)

lemma [code func]:
div-mod-index n m = (if m = 0 then (0 , n) else (n div m, n mod m))
unfolding div-mod-index-def by auto

lemma [code func]:
n div m = fst (div-mod-index n m)
unfolding div-mod-index-def by simp

lemma [code func]:
n mod m = snd (div-mod-index n m)
unfolding div-mod-index-def by simp

21.6 Code serialization

Implementation of indices by bounded integers

code-type index
(SML int)
(OCaml int)
(Haskell Int)

code-instance index :: eq
(Haskell −)

206

setup 〈〈
fold (Numeral .add-code @{const-name number-index-inst .number-of-index}

false false) [SML, OCaml , Haskell]
〉〉

code-reserved SML Int int
code-reserved OCaml Pervasives int

code-const op + :: index ⇒ index ⇒ index
(SML Int .+/ ((-),/ (-)))
(OCaml Pervasives.(+))
(Haskell infixl 6 +)

code-const minus-index-aux :: index ⇒ index ⇒ index
(SML Int .max/ (-/ −/ -,/ 0 : int))
(OCaml Pervasives.max/ (-/ −/ -)/ (0 : int))
(Haskell max/ (-/ −/ -)/ (0 :: Int))

code-const op ∗ :: index ⇒ index ⇒ index
(SML Int .∗/ ((-),/ (-)))
(OCaml Pervasives.(∗))
(Haskell infixl 7 ∗)

code-const div-mod-index
(SML (fn n => fn m =>/ (n div m, n mod m)))
(OCaml (fun n −> fun m −>/ (n ′/ m, n mod m)))
(Haskell divMod)

code-const op = :: index ⇒ index ⇒ bool
(SML !((- : Int .int) = -))
(OCaml !((- : int) = -))
(Haskell infixl 4 ==)

code-const op ≤ :: index ⇒ index ⇒ bool
(SML Int .<=/ ((-),/ (-)))
(OCaml !((- : int) <= -))
(Haskell infix 4 <=)

code-const op < :: index ⇒ index ⇒ bool
(SML Int .</ ((-),/ (-)))
(OCaml !((- : int) < -))
(Haskell infix 4 <)

end

207

22 Implementation of natural numbers by target-
language integers

theory Efficient-Nat
imports Code-Integer Code-Index
begin

When generating code for functions on natural numbers, the canonical rep-
resentation using 0 and Suc is unsuitable for computations involving large
numbers. The efficiency of the generated code can be improved drastically
by implementing natural numbers by target-language integers. To do this,
just include this theory.

22.1 Basic arithmetic

Most standard arithmetic functions on natural numbers are implemented
using their counterparts on the integers:

code-datatype number-nat-inst .number-of-nat

lemma zero-nat-code [code, code unfold]:
0 = (Numeral0 :: nat)
by simp

lemmas [code post] = zero-nat-code [symmetric]

lemma one-nat-code [code, code unfold]:
1 = (Numeral1 :: nat)
by simp

lemmas [code post] = one-nat-code [symmetric]

lemma Suc-code [code]:
Suc n = n + 1
by simp

lemma plus-nat-code [code]:
n + m = nat (of-nat n + of-nat m)
by simp

lemma minus-nat-code [code]:
n − m = nat (of-nat n − of-nat m)
by simp

lemma times-nat-code [code]:
n ∗ m = nat (of-nat n ∗ of-nat m)
unfolding of-nat-mult [symmetric] by simp

Specialized op div and op mod operations.

definition

208

divmod-aux :: nat ⇒ nat ⇒ nat × nat
where

[code func del]: divmod-aux = divmod

lemma [code func]:
divmod n m = (if m = 0 then (0 , n) else divmod-aux n m)
unfolding divmod-aux-def divmod-div-mod by simp

lemma divmod-aux-code [code]:
divmod-aux n m = (nat (of-nat n div of-nat m), nat (of-nat n mod of-nat m))
unfolding divmod-aux-def divmod-div-mod zdiv-int [symmetric] zmod-int [symmetric]

by simp

lemma eq-nat-code [code]:
n = m ←→ (of-nat n :: int) = of-nat m
by simp

lemma less-eq-nat-code [code]:
n ≤ m ←→ (of-nat n :: int) ≤ of-nat m
by simp

lemma less-nat-code [code]:
n < m ←→ (of-nat n :: int) < of-nat m
by simp

22.2 Case analysis

Case analysis on natural numbers is rephrased using a conditional expres-
sion:

lemma [code func, code unfold]:
nat-case = (λf g n. if n = 0 then f else g (n − 1))
by (auto simp add : expand-fun-eq dest !: gr0-implies-Suc)

22.3 Preprocessors

In contrast to Suc n, the term n + 1 is no longer a constructor term. There-
fore, all occurrences of this term in a position where a pattern is expected
(i.e. on the left-hand side of a recursion equation or in the arguments of an
inductive relation in an introduction rule) must be eliminated. This can be
accomplished by applying the following transformation rules:

lemma Suc-if-eq : (
∧

n. f (Suc n) = h n) =⇒ f 0 = g =⇒
f n = (if n = 0 then g else h (n − 1))
by (case-tac n) simp-all

lemma Suc-clause: (
∧

n. P n (Suc n)) =⇒ n 6= 0 =⇒ P (n − 1) n
by (case-tac n) simp-all

The rules above are built into a preprocessor that is plugged into the code

209

generator. Since the preprocessor for introduction rules does not know any-
thing about modes, some of the modes that worked for the canonical repre-
sentation of natural numbers may no longer work.

22.4 Target language setup

For ML, we map nat to target language integers, where we assert that values
are always non-negative.

code-type nat
(SML int)
(OCaml Big ′-int .big ′-int)

types-code
nat (int)

attach (term-of) 〈〈
val term-of-nat = HOLogic.mk-number HOLogic.natT ;
〉〉
attach (test) 〈〈
fun gen-nat i =

let val n = random-range 0 i
in (n, fn () => term-of-nat n) end ;
〉〉

For Haskell we define our own nat type. The reason is that we have to
distinguish type class instances for nat and int.

code-include Haskell Nat 〈〈
newtype Nat = Nat Integer deriving (Show , Eq);

instance Num Nat where {
fromInteger k = Nat (if k >= 0 then k else 0);
Nat n + Nat m = Nat (n + m);
Nat n − Nat m = fromInteger (n − m);
Nat n ∗ Nat m = Nat (n ∗ m);
abs n = n;
signum - = 1 ;
negate n = error negate Nat ;
};

instance Ord Nat where {
Nat n <= Nat m = n <= m;
Nat n < Nat m = n < m;
};

instance Real Nat where {
toRational (Nat n) = toRational n;
};

instance Enum Nat where {

210

toEnum k = fromInteger (toEnum k);
fromEnum (Nat n) = fromEnum n;
};

instance Integral Nat where {
toInteger (Nat n) = n;
divMod n m = quotRem n m;
quotRem (Nat n) (Nat m) = (Nat k , Nat l) where (k , l) = quotRem n m;
};
〉〉

code-reserved Haskell Nat

code-type nat
(Haskell Nat)

code-instance nat :: eq
(Haskell −)

Natural numerals.
lemma [code inline, symmetric, code post]:

nat (number-of i) = number-nat-inst .number-of-nat i
— this interacts as desired with number-of ?v = nat (number-of ?v)
by (simp add : number-nat-inst .number-of-nat)

setup 〈〈
fold (Numeral .add-code @{const-name number-nat-inst .number-of-nat}

true false) [SML, OCaml , Haskell]
〉〉

Since natural numbers are implemented using integers in ML, the coercion
function of-nat of type nat ⇒ int is simply implemented by the identity
function. For the nat function for converting an integer to a natural number,
we give a specific implementation using an ML function that returns its input
value, provided that it is non-negative, and otherwise returns 0.
definition

int :: nat ⇒ int
where

[code func del]: int = of-nat

lemma int-code ′ [code func]:
int (number-of l) = (if neg (number-of l :: int) then 0 else number-of l)
unfolding int-nat-number-of [folded int-def] ..

lemma nat-code ′ [code func]:
nat (number-of l) = (if neg (number-of l :: int) then 0 else number-of l)
by auto

lemma of-nat-int [code unfold]:

211

of-nat = int by (simp add : int-def)
declare of-nat-int [symmetric, code post]

code-const int
(SML -)
(OCaml -)

consts-code
int ((-))
nat (〈module〉nat)

attach 〈〈
fun nat i = if i < 0 then 0 else i ;
〉〉

code-const nat
(SML IntInf .max/ (/0 ,/ -))
(OCaml Big ′-int .max ′-big ′-int/ Big ′-int .zero ′-big ′-int)

For Haskell, things are slightly different again.

code-const int and nat
(Haskell toInteger and fromInteger)

Conversion from and to indices.

code-const index-of-nat
(SML IntInf .toInt)
(OCaml Big ′-int .int ′-of ′-big ′-int)
(Haskell toEnum)

code-const nat-of-index
(SML IntInf .fromInt)
(OCaml Big ′-int .big ′-int ′-of ′-int)
(Haskell fromEnum)

Using target language arithmetic operations whenever appropriate

code-const op + :: nat ⇒ nat ⇒ nat
(SML IntInf .+ ((-), (-)))
(OCaml Big ′-int .add ′-big ′-int)
(Haskell infixl 6 +)

code-const op ∗ :: nat ⇒ nat ⇒ nat
(SML IntInf .∗ ((-), (-)))
(OCaml Big ′-int .mult ′-big ′-int)
(Haskell infixl 7 ∗)

code-const divmod-aux
(SML IntInf .divMod/ ((-),/ (-)))
(OCaml Big ′-int .quomod ′-big ′-int)
(Haskell divMod)

212

code-const op = :: nat ⇒ nat ⇒ bool
(SML !((- : IntInf .int) = -))
(OCaml Big ′-int .eq ′-big ′-int)
(Haskell infixl 4 ==)

code-const op ≤ :: nat ⇒ nat ⇒ bool
(SML IntInf .<= ((-), (-)))
(OCaml Big ′-int .le ′-big ′-int)
(Haskell infix 4 <=)

code-const op < :: nat ⇒ nat ⇒ bool
(SML IntInf .< ((-), (-)))
(OCaml Big ′-int .lt ′-big ′-int)
(Haskell infix 4 <)

consts-code
0 (0)
Suc ((- +/ 1))
op + :: nat ⇒ nat ⇒ nat ((- +/ -))
op ∗ :: nat ⇒ nat ⇒ nat ((- ∗/ -))
op ≤ :: nat ⇒ nat ⇒ bool ((- <=/ -))
op < :: nat ⇒ nat ⇒ bool ((- </ -))

Module names

code-modulename SML
Nat Integer
Divides Integer
Efficient-Nat Integer

code-modulename OCaml
Nat Integer
Divides Integer
Efficient-Nat Integer

code-modulename Haskell
Nat Integer
Divides Integer
Efficient-Nat Integer

hide const int

end

theory example-Z4Z2
imports
BPL-classes-2008
Efficient-Nat

213

begin

23 An example of the BPL: a reduction from Z4

to Z2

We fit a concrete example of the BPL into the code previously generated

The example is the following: we have a ”big” differential group, D = Z4,
with componentwise addition, and a differential defined as dDx = (0, 2 ∗
fst(x), 0, thrd(x)); the homotopy operator is given by hx = (0, 0, frthx, 0)
and the perturbation is δDx = (0, fst(x)+thrd(x), 0, fst(x)); the nilpotency
condition in this example is globally satisfied for n = 2

This means that ∀x.(δD ◦ h)2(x) = 0; we will later prove this in Isabelle.

The small differential group is defined as C = Z2, with componentwise
addition, and a differential defined as dC(x) = (0, fst(x) + fst(x))

Then, f(x) = (fst(x), snd(x)), g(x) = (fst(x), snd(x), 0, 0) and h(x) =
(0, 0, frth(x), 0)

In order to apply the example in Isabelle, we first define a type representing
the 4-tuples, which will be our representation of Z4

The following definitions and concrete syntax have been mainly extracted
from file Product-Type.thy, resembling the ones given there for pairs.

The generic product was not instantiable with a single parameter type (int
in our case), since this gave place to a too restrictive instance. This is why
we produced our own single parameterized product type for pairs and four
tuples.

The data type has been defined just to allow us to generate code, which
means that a very small number of facts are available about it

23.1 Type definition for Z2

The following type definition represents tuples. We will use it to represent
Z2. There exists already a type representing products in HOL, but it cannot
be instantiated with a single parameter type (in our case, Z), since the type
obtained is too restrictive with respect to the type representation.

Therefore, we defined our own product type with only a single type param-
eter.

This type will be also used later to obtain a type representing Z4.

214

datatype ′a SProd = SPair ′a ′a

Some basic definitions over the previous type:

definition fst-spair :: ′a SProd => ′a
where fst-spair p = (THE a. EX b. p = SPair a b)

definition snd-spair :: ′a SProd => ′a
where snd-spair p == (THE b. EX a. p = SPair a b)

We omit the previous definitions from the code generator, since they do not
have an executable content.

lemmas [code del] = fst-spair-def snd-spair-def

23.2 Concrete syntax

Special syntax for the produced type:

translations [(x , y)] == SPair x y

instance SProd :: (type) type ..

23.3 Lemmas and proof tool setup

lemma SPair-eq [iff]:
([(a, b)] = [(a ′, b ′)]) = (a = a ′ & b = b ′)
by simp

lemma fst-spair-conv [simp,code]:
fst-spair [(a, b)] = a
unfolding fst-spair-def by blast

lemma snd-spair-conv [simp,code]:
snd-spair [(a, b)] = b
unfolding snd-spair-def by blast

lemma fst-spair-eqD :
fst-spair [(x , y)] = a ==> x = a
by simp

lemma snd-spair-eqD :
snd-spair [(x , y)] = a ==> y = a
by simp

lemma surjective-spair :
p = [(fst-spair p, snd-spair p)]
— Do not add as rewrite rule: invalidates some proofs in IMP
by (cases p) simp

lemma split-SPair-all :

215

(!!x . PROP P x) == (!!a b. PROP P [(a, b)])
proof

fix a b
assume !!x . PROP P x
then show PROP P [(a, b)] .

next
fix x
assume !!a b. PROP P [(a, b)]
show PROP P x

using surjective-spair [of x :: ′a SProd]
using 〈PROP P [(fst-spair (x :: ′a SProd), snd-spair x)]〉
by simp

qed

We now prove that the introduced datatype is an instance of the type classes
needed in the BPL

As far as int is not a type class, but a type constructor, we will use Ring .ring
as a type class.

Therefore, we prove that our type constructor SProd with suitable opera-
tions is a valid instance of the type class (ring) diff-group-add

Being int a valid instance of Ring .ring, we can then, in the code generation
phase, replace Ring .ring with the concrete structure int

instance SProd :: (eq) eq ..

lemma [code func]:
[(x1 :: ′a::eq , x2)] = [(y1 , y2)] ←→ x1 = y1 ∧ x2 = y2
by auto

instantiation SProd :: ({eq ,ring}) ab-semigroup-add
begin

definition SProd-plus-def :
a + b = [((fst-spair a + fst-spair b), (snd-spair a + snd-spair b))]

instance
by default (simp-all add : split-SPair-all SProd-plus-def)

end

instantiation SProd :: ({eq ,ring}) comm-monoid-add
begin

definition SProd-zero-def : 0 = [(0 , 0)]

instance by default (simp-all add : split-SPair-all SProd-plus-def SProd-zero-def)

216

end

instantiation SProd :: ({eq ,ring}) ab-group-add
begin

definition SProd-uminus-def :
− x = [(− fst-spair x , − snd-spair x)]

definition SProd-minus-def :
(x :: ′a SProd) − y = (x + (− y))

instance
apply default
unfolding split-SPair-all
unfolding SProd-zero-def
unfolding SProd-minus-def
unfolding SProd-uminus-def
unfolding SProd-plus-def by simp-all

end

instantiation SProd :: ({eq ,ring}) diff-group-add
begin

definition SProd-diff-def :
diff x ≡ [(0 , fst-spair x + fst-spair x)]

instance
apply default
unfolding split-SPair-all
unfolding expand-fun-eq
unfolding o-apply
unfolding SProd-diff-def
unfolding SProd-plus-def
unfolding SProd-zero-def by simp-all

end

23.4 Type definition for Z4

datatype ′a Quad-type-const = Quad ′a SProd ′a SProd

23.5 Definitions over the given type.

definition fst-quad :: ′a Quad-type-const => ′a
where fst-quad p == THE a. EX b c e. p = Quad (SPair a b) (SPair c e)

definition snd-quad :: ′a Quad-type-const => ′a
where snd-quad p == THE b. EX a c e. p = Quad (SPair a b) (SPair c e)

217

definition thrd-quad :: ′a Quad-type-const => ′a
where thrd-quad p == THE c. EX a b e. p = Quad (SPair a b) (SPair c e)

definition frth-quad :: ′a Quad-type-const => ′a
where frth-quad p == THE e. EX a b c. p = Quad (SPair a b) (SPair c e)

We delete the previous definitions from the code genrator setup, soince they
do not have an executable meaning.

lemmas [code del] = fst-quad-def snd-quad-def thrd-quad-def frth-quad-def

23.6 Concrete syntax.

translations
[(x , y , z , t)] == Quad (SPair x y) (SPair z t)

instance Quad-type-const :: (type) type ..

23.7 Lemmas and proof tool setup.

lemma [(a, b, c, e)] = [(a ′, b ′, c ′, e ′)]
= (a = a ′ & b = b ′ & c = c ′ & e = e ′)
by simp

lemma Quad-eq [iff]:
([(a, b, c, e)] = [(a ′, b ′, c ′, e ′)])
= (a = a ′ & b = b ′ & c = c ′ & e = e ′)
by auto

lemma fst-quad-conv [simp,code]:
fst-quad [(a, b, c, e)] = a
unfolding fst-quad-def by blast

lemma snd-quad-conv [simp,code]:
snd-quad [(a, b, c, e)] = b
unfolding snd-quad-def by blast

lemma thrd-quad-conv [simp,code]:
thrd-quad [(a, b, c, e)] = c
unfolding thrd-quad-def by blast

lemma frth-quad-conv [simp,code]:
frth-quad [(a, b, c, e)] = e
unfolding frth-quad-def by blast

lemma fst-quad-eqD :
fst-quad [(x , y , z , t)] = a ==> x = a
by simp

lemma snd-quad-eqD :

218

snd-quad [(x , y , z , t)] = a ==> y = a
by simp

lemma thrd-quad-eqD :
thrd-quad [(x , y , z , t)] = a ==> z = a
by simp

lemma frth-quad-eqD :
frth-quad [(x , y , z , t)] = a ==> t = a
by simp

lemma surjective-quad :
p = [(fst-quad p, snd-quad p, thrd-quad p, frth-quad p)]

proof (cases p)
fix SProd1 SProd2
show p = Quad SProd1 SProd2 =⇒

p = Quad
(SPair (fst-quad p) (snd-quad p))
(SPair (thrd-quad p) (frth-quad p))
by (cases SProd1 , cases SProd2 , auto simp add : surjective-spair)

qed

lemma split-Quad-all :
(!!x . PROP P x) == (!!a b c e. PROP P [(a, b, c, e)])

proof
fix a b c e
assume !!x . PROP P x
then show PROP P [(a, b, c, e)] .

next
fix x
assume !!a b c e. PROP P [(a, b, c, e)]
from 〈PROP P [(fst-quad (x :: ′a Quad-type-const),

snd-quad x , thrd-quad x , frth-quad x)]〉
sym [OF surjective-quad [of x :: ′a Quad-type-const]]

show PROP P x by simp
qed

We now prove that the introduced four tuples data type is an instance of
the type classes needed in the BPL

As far as int is not a type class, but a type constructor, we will use ring as
a type class.

Therefore, we prove that our type constructor Quad-type-const with suitable
operations is a valid instance of the type class (ring) diff-group-add-pert-hom-bound-exist

Being int a valid instance of ring, we can then, in the code generation phase,
replace ring by its concrete structure int

Note that giving an instance of diff-group-add-pert-hom-bound-exist requires

219

proving that (ring) diff-group-add-pert-hom-bound-exist is a differential group,
with a perturbation and a homotopy operator, which also satisfy the nilpo-
tency condition. This type class contains all definitions involved in the
specification of the series Φ and Ψ
instance Quad-type-const :: (eq) eq ..

lemma [code func]:
[(x1 :: ′a::eq , x2 , x3 , x4)] = [(y1 , y2 , y3 , y4)]
←→ x1 = y1 ∧ x2 = y2 ∧ x3 = y3 ∧ x4 = y4
by auto

instantiation Quad-type-const :: ({eq ,ring}) ab-semigroup-add
begin

definition Quad-type-const-plus-def :
a + b = [((fst-quad a + fst-quad b), (snd-quad a + snd-quad b),
(thrd-quad a + thrd-quad b), (frth-quad a + frth-quad b))]

instance
by default (simp-all add : split-Quad-all Quad-type-const-plus-def)

end

instantiation Quad-type-const :: ({eq ,ring}) comm-monoid-add
begin

definition Quad-type-const-zero-def :
0 ≡ [(0 , 0 , 0 , 0)]

instance by default (simp-all add : split-Quad-all
Quad-type-const-plus-def Quad-type-const-zero-def)

end

instantiation Quad-type-const :: ({eq ,ring}) ab-group-add
begin

definition Quad-type-const-uminus-def :
− x = [(− fst-quad x , − snd-quad x , − thrd-quad x , − frth-quad x)]

definition Quad-type-const-minus-def :
(x :: ′a Quad-type-const) − y = x + (− y)

instance
apply default
unfolding Quad-type-const-uminus-def
unfolding Quad-type-const-plus-def
unfolding Quad-type-const-zero-def
unfolding Quad-type-const-minus-def

220

unfolding Quad-type-const-uminus-def
unfolding Quad-type-const-plus-def by simp-all

end

instantiation Quad-type-const :: ({eq ,ring}) diff-group-add
begin

definition Quad-type-const-diff-def :
diff x ≡ [(0 , fst-quad x + fst-quad x , 0 , thrd-quad x)]

instance
apply default
unfolding expand-fun-eq
unfolding o-apply
unfolding Quad-type-const-diff-def
unfolding Quad-type-const-plus-def
unfolding Quad-type-const-zero-def
unfolding Quad-type-const-minus-def
unfolding Quad-type-const-uminus-def by simp-all

end

instantiation Quad-type-const :: ({eq ,ring}) diff-group-add-pert
begin

definition Quad-type-const-pert-def :
pert x ≡ [(0 , fst-quad x + thrd-quad x , 0 , fst-quad x)]

instance apply default
unfolding Quad-type-const-pert-def
unfolding Quad-type-const-plus-def
apply simp
unfolding diff-group-add-def
unfolding diff-group-add-axioms-def
unfolding ab-group-add-def
unfolding ab-group-add-axioms-def
unfolding comm-monoid-add-def
unfolding comm-monoid-add-axioms-def
unfolding ab-semigroup-add-def
unfolding ab-semigroup-add-axioms-def
unfolding semigroup-add-def
unfolding Quad-type-const-plus-def
unfolding Quad-type-const-zero-def
unfolding Quad-type-const-uminus-def Quad-type-const-minus-def
unfolding Quad-type-const-diff-def
unfolding Quad-type-const-plus-def
unfolding expand-fun-eq
by (simp add : sym [OF surjective-quad])

221

end

instantiation Quad-type-const :: ({eq ,ring}) diff-group-add-pert-hom
begin

definition Quad-type-const-hom-oper-def :
hom-oper x ≡ [(0 , 0 , frth-quad x , 0)]

instance apply default
unfolding split-Quad-all
unfolding Quad-type-const-hom-oper-def
unfolding Quad-type-const-plus-def
unfolding Quad-type-const-zero-def
unfolding Quad-type-const-minus-def
unfolding Quad-type-const-uminus-def
unfolding expand-fun-eq by auto

end

lemma funpow-2 :
shows fˆ(2 ::nat) = f ◦ f
unfolding numerals (3)
unfolding funpow .simps (2)
unfolding funpow .simps (1)
unfolding o-id ..

instantiation Quad-type-const
:: ({eq ,ring}) diff-group-add-pert-hom-bound-exist

begin

instance proof default
show ∀ x :: ′a Quad-type-const . ∃n. (α ˆ n) x = 0

proof (rule allI)
fix x :: ′a Quad-type-const
show ∃n. (α ˆ n) x = (0)

unfolding α-def
unfolding Quad-type-const-pert-def
unfolding Quad-type-const-hom-oper-def
unfolding Quad-type-const-uminus-def
unfolding Quad-type-const-zero-def
apply (rule exI [of - 2 ::nat])
unfolding funpow-2 by simp

qed
qed

end

222

23.8 Code generation and examples of execution

definition foos :: int Quad-type-const
where foos = Φ [((5 ::int), 3 , 8 , 9)]

definition foos-2 :: int Quad-type-const
where foos-2 = Φ [((5 ::int), (− 6), 8 , 9)]

definition foos-3 :: int Quad-type-const
where foos-3 = Ψ [((5 ::int), 3 , 8 , 9)]

definition foos-4 :: int Quad-type-const
where foos-4 = Ψ [((5 ::int), (− 6), 8 , 9)]

definition foos-local-bound-alpha :: nat
where foos-local-bound-alpha = local-bound α [((5 ::int), 3 , 8 , 9)]

definition foos-f :: int Quad-type-const => int SProd
where foos-f = f ′ (λx ::int Quad-type-const .
(SPair (fst-quad x) (snd-quad x)))

definition foos-f2 :: int SProd
where foos-f2 = foos-f [((4 ::int), 23 , 17 , 1)]

definition foos-g :: int SProd => int Quad-type-const
where foos-g = g ′ (λx ::int SProd .
[(fst-spair x , snd-spair x , 0 , 0)])

definition foos-g2 :: int Quad-type-const
where foos-g2 = foos-g [((15 ::int), 8)]

definition foos-h:: int Quad-type-const => int Quad-type-const
where foos-h = (h ′::(int Quad-type-const => int Quad-type-const))

definition foos-h2 :: int Quad-type-const
where foos-h2 = foos-h [((12 ::int), 22 , 19 , 6)]

definition foos-dC ′:: (int SProd => int SProd)
where foos-dC ′ =
dC ′ (λx ::int Quad-type-const . SPair (fst-quad x) (snd-quad x))
(λx ::int SProd . [(fst-spair x , snd-spair x , 0 , 0)])

definition foos-dC ′2 :: int SProd
where foos-dC ′2 = foos-dC ′ [((5 ::int), 3)]

export-code
foos
foos-2
foos-local-bound-alpha
foos-3

223

foos-4
foos-f
foos-f2 foos-g foos-g2 foos-h foos-h2 foos-dC ′ foos-dC ′2
in SML module-name ExampleZ4Z2 file example-Z4Z2 .ML

use example-Z4Z2 .ML
ML open ExampleZ4Z2

ML foos
ML foos-2
ML foos-3
ML foos-4
ML foos-f2
ML foos-g2
ML foos-h2
ML foos-dC ′2
ML foos-local-bound-alpha

end

224

	Definition of a ring of completion homomorphisms
	Definition of completion functions and some related lemmas
	Homomorphisms defined as completions
	Completion homomorphisms with usual composition form a monoid
	Preliminary facts about addition of homomorphisms
	Completion homomorphisms are a commutative group with the underlying operation
	Endomorphisms with suitable operations form a ring
	Definition of differential group
	Definition of homomorphisms between differential groups
	Completion homomorphisms between differential structures form a commutative group with the underlying operation
	Differential homomorphisms form a commutative group with the underlying operation
	Homomorphisms seen as algebraic structures
	Completion homomorphisms between two algebraic structures form a commutative group
	Previous facts about homomorphisms of differential structures

	Previous definitions and Propositions 2.2.9, 2.2.10 and Lemma 2.2.11 in Aransay's memoir
	Definition of isomorphic differential groups
	Previous facts for Lemma 2.2.11
	Lemma 2.2.11

	Propositions 2.2.12, 2.2.13 and Lemma 2.2.14 in Aransay's memoir
	Previous definitions for Lemma 2.2.14
	Proposition 2.2.12
	Proposition 2.2.13
	Lemma 2.2.14

	Infinite Sets and Related Concepts
	Infinite Sets
	Infinitely Many and Almost All
	Enumeration of an Infinite Set
	Miscellaneous

	Definition of local nilpotency and Lemmas 2.2.1 to 2.2.6 in Aransay's memoir
	Definition of local nilpotent element and the bound function
	Definition of power series and some lemmas
	Some basic operations over finite series
	Definition and some lemmas of perturbations
	Some properties of the endomorphisms , , and
	Lemmas 2.2.1 to 2.2.6

	Lemma 2.2.15 in Aransay's memoir
	Proposition 2.2.16 and Lemma 2.2.17 in Aransay's memoir
	Previous definitions
	Proposition 2.2.16
	Lemma 2.2.17

	Lemma 2.2.18 in Aransay's memoir
	Lemma 2.2.18

	Lemma 2.2.19 in Aransay's memoir
	Lemma 2.2.19

	Proof of the Basic Perturbation Lemma
	BPL proof
	Existence of a reduction
	BPL previous simplifications
	BPL simplification

	Definition of some results about the accesible part of a relation.
	Definition of orbits of functions and termination conditions.
	Definition of the orbit of a function over a given point.
	Definition of the section of a function over a given point.
	Definition of a termination condition in terms of orbits.

	Definition of while loops as tail recursive functions.
	Definition of For loops.
	Additional type classes
	Local nilpotency
	Finite sums
	Equivalence of both approaches
	Algebraic structures
	Homomorphisms and endomorphisms.
	Definition of constants.

	Pretty integer literals for code generation
	Type of indices
	Datatype of indices
	Indices as datatype of ints
	Basic arithmetic
	ML interface
	Specialized op -, op div and op mod operations
	Code serialization

	Implementation of natural numbers by target-language integers
	Basic arithmetic
	Case analysis
	Preprocessors
	Target language setup

	An example of the BPL: a reduction from Z4 to Z2
	Type definition for Z2
	Concrete syntax
	Lemmas and proof tool setup
	Type definition for Z4
	Definitions over the given type.
	Concrete syntax.
	Lemmas and proof tool setup.
	Code generation and examples of execution

