Up to index of Isabelle/HOL/HOL-Algebra/example_Bicomplex
theory RealVector(* Title : RealVector.thy ID: $Id: RealVector.thy,v 1.40 2007/12/07 14:08:05 haftmann Exp $ Author : Brian Huffman *) header {* Vector Spaces and Algebras over the Reals *} theory RealVector imports RealPow begin subsection {* Locale for additive functions *} locale additive = fixes f :: "'a::ab_group_add => 'b::ab_group_add" assumes add: "f (x + y) = f x + f y" lemma (in additive) zero: "f 0 = 0" proof - have "f 0 = f (0 + 0)" by simp also have "… = f 0 + f 0" by (rule add) finally show "f 0 = 0" by simp qed lemma (in additive) minus: "f (- x) = - f x" proof - have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) also have "… = - f x + f x" by (simp add: zero) finally show "f (- x) = - f x" by (rule add_right_imp_eq) qed lemma (in additive) diff: "f (x - y) = f x - f y" by (simp add: diff_def add minus) lemma (in additive) setsum: "f (setsum g A) = (∑x∈A. f (g x))" apply (cases "finite A") apply (induct set: finite) apply (simp add: zero) apply (simp add: add) apply (simp add: zero) done subsection {* Real vector spaces *} class scaleR = type + fixes scaleR :: "real => 'a => 'a" (infixr "*R" 75) begin abbreviation divideR :: "'a => real => 'a" (infixl "'/R" 70) where "x /R r == scaleR (inverse r) x" end instantiation real :: scaleR begin definition real_scaleR_def [simp]: "scaleR a x = a * x" instance .. end class real_vector = scaleR + ab_group_add + assumes scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y" and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x" and scaleR_scaleR [simp]: "scaleR a (scaleR b x) = scaleR (a * b) x" and scaleR_one [simp]: "scaleR 1 x = x" class real_algebra = real_vector + ring + assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)" and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)" class real_algebra_1 = real_algebra + ring_1 class real_div_algebra = real_algebra_1 + division_ring class real_field = real_div_algebra + field instance real :: real_field apply (intro_classes, unfold real_scaleR_def) apply (rule right_distrib) apply (rule left_distrib) apply (rule mult_assoc [symmetric]) apply (rule mult_1_left) apply (rule mult_assoc) apply (rule mult_left_commute) done lemma scaleR_left_commute: fixes x :: "'a::real_vector" shows "scaleR a (scaleR b x) = scaleR b (scaleR a x)" by (simp add: mult_commute) interpretation scaleR_left: additive ["(λa. scaleR a x::'a::real_vector)"] by unfold_locales (rule scaleR_left_distrib) interpretation scaleR_right: additive ["(λx. scaleR a x::'a::real_vector)"] by unfold_locales (rule scaleR_right_distrib) lemmas scaleR_zero_left [simp] = scaleR_left.zero lemmas scaleR_zero_right [simp] = scaleR_right.zero lemmas scaleR_minus_left [simp] = scaleR_left.minus lemmas scaleR_minus_right [simp] = scaleR_right.minus lemmas scaleR_left_diff_distrib = scaleR_left.diff lemmas scaleR_right_diff_distrib = scaleR_right.diff lemma scaleR_eq_0_iff [simp]: fixes x :: "'a::real_vector" shows "(scaleR a x = 0) = (a = 0 ∨ x = 0)" proof cases assume "a = 0" thus ?thesis by simp next assume anz [simp]: "a ≠ 0" { assume "scaleR a x = 0" hence "scaleR (inverse a) (scaleR a x) = 0" by simp hence "x = 0" by simp } thus ?thesis by force qed lemma scaleR_left_imp_eq: fixes x y :: "'a::real_vector" shows "[|a ≠ 0; scaleR a x = scaleR a y|] ==> x = y" proof - assume nonzero: "a ≠ 0" assume "scaleR a x = scaleR a y" hence "scaleR a (x - y) = 0" by (simp add: scaleR_right_diff_distrib) hence "x - y = 0" by (simp add: nonzero) thus "x = y" by simp qed lemma scaleR_right_imp_eq: fixes x y :: "'a::real_vector" shows "[|x ≠ 0; scaleR a x = scaleR b x|] ==> a = b" proof - assume nonzero: "x ≠ 0" assume "scaleR a x = scaleR b x" hence "scaleR (a - b) x = 0" by (simp add: scaleR_left_diff_distrib) hence "a - b = 0" by (simp add: nonzero) thus "a = b" by simp qed lemma scaleR_cancel_left: fixes x y :: "'a::real_vector" shows "(scaleR a x = scaleR a y) = (x = y ∨ a = 0)" by (auto intro: scaleR_left_imp_eq) lemma scaleR_cancel_right: fixes x y :: "'a::real_vector" shows "(scaleR a x = scaleR b x) = (a = b ∨ x = 0)" by (auto intro: scaleR_right_imp_eq) lemma nonzero_inverse_scaleR_distrib: fixes x :: "'a::real_div_algebra" shows "[|a ≠ 0; x ≠ 0|] ==> inverse (scaleR a x) = scaleR (inverse a) (inverse x)" by (rule inverse_unique, simp) lemma inverse_scaleR_distrib: fixes x :: "'a::{real_div_algebra,division_by_zero}" shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" apply (case_tac "a = 0", simp) apply (case_tac "x = 0", simp) apply (erule (1) nonzero_inverse_scaleR_distrib) done subsection {* Embedding of the Reals into any @{text real_algebra_1}: @{term of_real} *} definition of_real :: "real => 'a::real_algebra_1" where "of_real r = scaleR r 1" lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" by (simp add: of_real_def) lemma of_real_0 [simp]: "of_real 0 = 0" by (simp add: of_real_def) lemma of_real_1 [simp]: "of_real 1 = 1" by (simp add: of_real_def) lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" by (simp add: of_real_def scaleR_left_distrib) lemma of_real_minus [simp]: "of_real (- x) = - of_real x" by (simp add: of_real_def) lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" by (simp add: of_real_def scaleR_left_diff_distrib) lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" by (simp add: of_real_def mult_commute) lemma nonzero_of_real_inverse: "x ≠ 0 ==> of_real (inverse x) = inverse (of_real x :: 'a::real_div_algebra)" by (simp add: of_real_def nonzero_inverse_scaleR_distrib) lemma of_real_inverse [simp]: "of_real (inverse x) = inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})" by (simp add: of_real_def inverse_scaleR_distrib) lemma nonzero_of_real_divide: "y ≠ 0 ==> of_real (x / y) = (of_real x / of_real y :: 'a::real_field)" by (simp add: divide_inverse nonzero_of_real_inverse) lemma of_real_divide [simp]: "of_real (x / y) = (of_real x / of_real y :: 'a::{real_field,division_by_zero})" by (simp add: divide_inverse) lemma of_real_power [simp]: "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n" by (induct n) (simp_all add: power_Suc) lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" by (simp add: of_real_def scaleR_cancel_right) lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] lemma of_real_eq_id [simp]: "of_real = (id :: real => real)" proof fix r show "of_real r = id r" by (simp add: of_real_def) qed text{*Collapse nested embeddings*} lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" by (induct n) auto lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" by (cases z rule: int_diff_cases, simp) lemma of_real_number_of_eq: "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})" by (simp add: number_of_eq) text{*Every real algebra has characteristic zero*} instance real_algebra_1 < ring_char_0 proof fix m n :: nat have "(of_real (of_nat m) = (of_real (of_nat n)::'a)) = (m = n)" by (simp only: of_real_eq_iff of_nat_eq_iff) thus "(of_nat m = (of_nat n::'a)) = (m = n)" by (simp only: of_real_of_nat_eq) qed subsection {* The Set of Real Numbers *} definition Reals :: "'a::real_algebra_1 set" where "Reals ≡ range of_real" notation (xsymbols) Reals ("\<real>") lemma Reals_of_real [simp]: "of_real r ∈ Reals" by (simp add: Reals_def) lemma Reals_of_int [simp]: "of_int z ∈ Reals" by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) lemma Reals_of_nat [simp]: "of_nat n ∈ Reals" by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) lemma Reals_number_of [simp]: "(number_of w::'a::{number_ring,real_algebra_1}) ∈ Reals" by (subst of_real_number_of_eq [symmetric], rule Reals_of_real) lemma Reals_0 [simp]: "0 ∈ Reals" apply (unfold Reals_def) apply (rule range_eqI) apply (rule of_real_0 [symmetric]) done lemma Reals_1 [simp]: "1 ∈ Reals" apply (unfold Reals_def) apply (rule range_eqI) apply (rule of_real_1 [symmetric]) done lemma Reals_add [simp]: "[|a ∈ Reals; b ∈ Reals|] ==> a + b ∈ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_add [symmetric]) done lemma Reals_minus [simp]: "a ∈ Reals ==> - a ∈ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_minus [symmetric]) done lemma Reals_diff [simp]: "[|a ∈ Reals; b ∈ Reals|] ==> a - b ∈ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_diff [symmetric]) done lemma Reals_mult [simp]: "[|a ∈ Reals; b ∈ Reals|] ==> a * b ∈ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_mult [symmetric]) done lemma nonzero_Reals_inverse: fixes a :: "'a::real_div_algebra" shows "[|a ∈ Reals; a ≠ 0|] ==> inverse a ∈ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (erule nonzero_of_real_inverse [symmetric]) done lemma Reals_inverse [simp]: fixes a :: "'a::{real_div_algebra,division_by_zero}" shows "a ∈ Reals ==> inverse a ∈ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_inverse [symmetric]) done lemma nonzero_Reals_divide: fixes a b :: "'a::real_field" shows "[|a ∈ Reals; b ∈ Reals; b ≠ 0|] ==> a / b ∈ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (erule nonzero_of_real_divide [symmetric]) done lemma Reals_divide [simp]: fixes a b :: "'a::{real_field,division_by_zero}" shows "[|a ∈ Reals; b ∈ Reals|] ==> a / b ∈ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_divide [symmetric]) done lemma Reals_power [simp]: fixes a :: "'a::{real_algebra_1,recpower}" shows "a ∈ Reals ==> a ^ n ∈ Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_power [symmetric]) done lemma Reals_cases [cases set: Reals]: assumes "q ∈ \<real>" obtains (of_real) r where "q = of_real r" unfolding Reals_def proof - from `q ∈ \<real>` have "q ∈ range of_real" unfolding Reals_def . then obtain r where "q = of_real r" .. then show thesis .. qed lemma Reals_induct [case_names of_real, induct set: Reals]: "q ∈ \<real> ==> (!!r. P (of_real r)) ==> P q" by (rule Reals_cases) auto subsection {* Real normed vector spaces *} class norm = type + fixes norm :: "'a => real" instantiation real :: norm begin definition real_norm_def [simp]: "norm r ≡ ¦r¦" instance .. end class sgn_div_norm = scaleR + norm + sgn + assumes sgn_div_norm: "sgn x = x /R norm x" class real_normed_vector = real_vector + sgn_div_norm + assumes norm_ge_zero [simp]: "0 ≤ norm x" and norm_eq_zero [simp]: "norm x = 0 <-> x = 0" and norm_triangle_ineq: "norm (x + y) ≤ norm x + norm y" and norm_scaleR: "norm (scaleR a x) = ¦a¦ * norm x" class real_normed_algebra = real_algebra + real_normed_vector + assumes norm_mult_ineq: "norm (x * y) ≤ norm x * norm y" class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + assumes norm_one [simp]: "norm 1 = 1" class real_normed_div_algebra = real_div_algebra + real_normed_vector + assumes norm_mult: "norm (x * y) = norm x * norm y" class real_normed_field = real_field + real_normed_div_algebra instance real_normed_div_algebra < real_normed_algebra_1 proof fix x y :: 'a show "norm (x * y) ≤ norm x * norm y" by (simp add: norm_mult) next have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" by (rule norm_mult) thus "norm (1::'a) = 1" by simp qed instance real :: real_normed_field apply (intro_classes, unfold real_norm_def real_scaleR_def) apply (simp add: real_sgn_def) apply (rule abs_ge_zero) apply (rule abs_eq_0) apply (rule abs_triangle_ineq) apply (rule abs_mult) apply (rule abs_mult) done lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0" by simp lemma zero_less_norm_iff [simp]: fixes x :: "'a::real_normed_vector" shows "(0 < norm x) = (x ≠ 0)" by (simp add: order_less_le) lemma norm_not_less_zero [simp]: fixes x :: "'a::real_normed_vector" shows "¬ norm x < 0" by (simp add: linorder_not_less) lemma norm_le_zero_iff [simp]: fixes x :: "'a::real_normed_vector" shows "(norm x ≤ 0) = (x = 0)" by (simp add: order_le_less) lemma norm_minus_cancel [simp]: fixes x :: "'a::real_normed_vector" shows "norm (- x) = norm x" proof - have "norm (- x) = norm (scaleR (- 1) x)" by (simp only: scaleR_minus_left scaleR_one) also have "… = ¦- 1¦ * norm x" by (rule norm_scaleR) finally show ?thesis by simp qed lemma norm_minus_commute: fixes a b :: "'a::real_normed_vector" shows "norm (a - b) = norm (b - a)" proof - have "norm (- (b - a)) = norm (b - a)" by (rule norm_minus_cancel) thus ?thesis by simp qed lemma norm_triangle_ineq2: fixes a b :: "'a::real_normed_vector" shows "norm a - norm b ≤ norm (a - b)" proof - have "norm (a - b + b) ≤ norm (a - b) + norm b" by (rule norm_triangle_ineq) thus ?thesis by simp qed lemma norm_triangle_ineq3: fixes a b :: "'a::real_normed_vector" shows "¦norm a - norm b¦ ≤ norm (a - b)" apply (subst abs_le_iff) apply auto apply (rule norm_triangle_ineq2) apply (subst norm_minus_commute) apply (rule norm_triangle_ineq2) done lemma norm_triangle_ineq4: fixes a b :: "'a::real_normed_vector" shows "norm (a - b) ≤ norm a + norm b" proof - have "norm (a + - b) ≤ norm a + norm (- b)" by (rule norm_triangle_ineq) thus ?thesis by (simp only: diff_minus norm_minus_cancel) qed lemma norm_diff_ineq: fixes a b :: "'a::real_normed_vector" shows "norm a - norm b ≤ norm (a + b)" proof - have "norm a - norm (- b) ≤ norm (a - - b)" by (rule norm_triangle_ineq2) thus ?thesis by simp qed lemma norm_diff_triangle_ineq: fixes a b c d :: "'a::real_normed_vector" shows "norm ((a + b) - (c + d)) ≤ norm (a - c) + norm (b - d)" proof - have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" by (simp add: diff_minus add_ac) also have "… ≤ norm (a - c) + norm (b - d)" by (rule norm_triangle_ineq) finally show ?thesis . qed lemma abs_norm_cancel [simp]: fixes a :: "'a::real_normed_vector" shows "¦norm a¦ = norm a" by (rule abs_of_nonneg [OF norm_ge_zero]) lemma norm_add_less: fixes x y :: "'a::real_normed_vector" shows "[|norm x < r; norm y < s|] ==> norm (x + y) < r + s" by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) lemma norm_mult_less: fixes x y :: "'a::real_normed_algebra" shows "[|norm x < r; norm y < s|] ==> norm (x * y) < r * s" apply (rule order_le_less_trans [OF norm_mult_ineq]) apply (simp add: mult_strict_mono') done lemma norm_of_real [simp]: "norm (of_real r :: 'a::real_normed_algebra_1) = ¦r¦" unfolding of_real_def by (simp add: norm_scaleR) lemma norm_number_of [simp]: "norm (number_of w::'a::{number_ring,real_normed_algebra_1}) = ¦number_of w¦" by (subst of_real_number_of_eq [symmetric], rule norm_of_real) lemma norm_of_int [simp]: "norm (of_int z::'a::real_normed_algebra_1) = ¦of_int z¦" by (subst of_real_of_int_eq [symmetric], rule norm_of_real) lemma norm_of_nat [simp]: "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" apply (subst of_real_of_nat_eq [symmetric]) apply (subst norm_of_real, simp) done lemma nonzero_norm_inverse: fixes a :: "'a::real_normed_div_algebra" shows "a ≠ 0 ==> norm (inverse a) = inverse (norm a)" apply (rule inverse_unique [symmetric]) apply (simp add: norm_mult [symmetric]) done lemma norm_inverse: fixes a :: "'a::{real_normed_div_algebra,division_by_zero}" shows "norm (inverse a) = inverse (norm a)" apply (case_tac "a = 0", simp) apply (erule nonzero_norm_inverse) done lemma nonzero_norm_divide: fixes a b :: "'a::real_normed_field" shows "b ≠ 0 ==> norm (a / b) = norm a / norm b" by (simp add: divide_inverse norm_mult nonzero_norm_inverse) lemma norm_divide: fixes a b :: "'a::{real_normed_field,division_by_zero}" shows "norm (a / b) = norm a / norm b" by (simp add: divide_inverse norm_mult norm_inverse) lemma norm_power_ineq: fixes x :: "'a::{real_normed_algebra_1,recpower}" shows "norm (x ^ n) ≤ norm x ^ n" proof (induct n) case 0 show "norm (x ^ 0) ≤ norm x ^ 0" by simp next case (Suc n) have "norm (x * x ^ n) ≤ norm x * norm (x ^ n)" by (rule norm_mult_ineq) also from Suc have "… ≤ norm x * norm x ^ n" using norm_ge_zero by (rule mult_left_mono) finally show "norm (x ^ Suc n) ≤ norm x ^ Suc n" by (simp add: power_Suc) qed lemma norm_power: fixes x :: "'a::{real_normed_div_algebra,recpower}" shows "norm (x ^ n) = norm x ^ n" by (induct n) (simp_all add: power_Suc norm_mult) subsection {* Sign function *} lemma norm_sgn: "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)" by (simp add: sgn_div_norm norm_scaleR) lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0" by (simp add: sgn_div_norm) lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)" by (simp add: sgn_div_norm) lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)" by (simp add: sgn_div_norm) lemma sgn_scaleR: "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))" by (simp add: sgn_div_norm norm_scaleR mult_ac) lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" by (simp add: sgn_div_norm) lemma sgn_of_real: "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)" unfolding of_real_def by (simp only: sgn_scaleR sgn_one) lemma sgn_mult: fixes x y :: "'a::real_normed_div_algebra" shows "sgn (x * y) = sgn x * sgn y" by (simp add: sgn_div_norm norm_mult mult_commute) lemma real_sgn_eq: "sgn (x::real) = x / ¦x¦" by (simp add: sgn_div_norm divide_inverse) lemma real_sgn_pos: "0 < (x::real) ==> sgn x = 1" unfolding real_sgn_eq by simp lemma real_sgn_neg: "(x::real) < 0 ==> sgn x = -1" unfolding real_sgn_eq by simp subsection {* Bounded Linear and Bilinear Operators *} locale bounded_linear = additive + constrains f :: "'a::real_normed_vector => 'b::real_normed_vector" assumes scaleR: "f (scaleR r x) = scaleR r (f x)" assumes bounded: "∃K. ∀x. norm (f x) ≤ norm x * K" lemma (in bounded_linear) pos_bounded: "∃K>0. ∀x. norm (f x) ≤ norm x * K" proof - obtain K where K: "!!x. norm (f x) ≤ norm x * K" using bounded by fast show ?thesis proof (intro exI impI conjI allI) show "0 < max 1 K" by (rule order_less_le_trans [OF zero_less_one le_maxI1]) next fix x have "norm (f x) ≤ norm x * K" using K . also have "… ≤ norm x * max 1 K" by (rule mult_left_mono [OF le_maxI2 norm_ge_zero]) finally show "norm (f x) ≤ norm x * max 1 K" . qed qed lemma (in bounded_linear) nonneg_bounded: "∃K≥0. ∀x. norm (f x) ≤ norm x * K" proof - from pos_bounded show ?thesis by (auto intro: order_less_imp_le) qed locale bounded_bilinear = fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector] => 'c::real_normed_vector" (infixl "**" 70) assumes add_left: "prod (a + a') b = prod a b + prod a' b" assumes add_right: "prod a (b + b') = prod a b + prod a b'" assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" assumes bounded: "∃K. ∀a b. norm (prod a b) ≤ norm a * norm b * K" lemma (in bounded_bilinear) pos_bounded: "∃K>0. ∀a b. norm (a ** b) ≤ norm a * norm b * K" apply (cut_tac bounded, erule exE) apply (rule_tac x="max 1 K" in exI, safe) apply (rule order_less_le_trans [OF zero_less_one le_maxI1]) apply (drule spec, drule spec, erule order_trans) apply (rule mult_left_mono [OF le_maxI2]) apply (intro mult_nonneg_nonneg norm_ge_zero) done lemma (in bounded_bilinear) nonneg_bounded: "∃K≥0. ∀a b. norm (a ** b) ≤ norm a * norm b * K" proof - from pos_bounded show ?thesis by (auto intro: order_less_imp_le) qed lemma (in bounded_bilinear) additive_right: "additive (λb. prod a b)" by (rule additive.intro, rule add_right) lemma (in bounded_bilinear) additive_left: "additive (λa. prod a b)" by (rule additive.intro, rule add_left) lemma (in bounded_bilinear) zero_left: "prod 0 b = 0" by (rule additive.zero [OF additive_left]) lemma (in bounded_bilinear) zero_right: "prod a 0 = 0" by (rule additive.zero [OF additive_right]) lemma (in bounded_bilinear) minus_left: "prod (- a) b = - prod a b" by (rule additive.minus [OF additive_left]) lemma (in bounded_bilinear) minus_right: "prod a (- b) = - prod a b" by (rule additive.minus [OF additive_right]) lemma (in bounded_bilinear) diff_left: "prod (a - a') b = prod a b - prod a' b" by (rule additive.diff [OF additive_left]) lemma (in bounded_bilinear) diff_right: "prod a (b - b') = prod a b - prod a b'" by (rule additive.diff [OF additive_right]) lemma (in bounded_bilinear) bounded_linear_left: "bounded_linear (λa. a ** b)" apply (unfold_locales) apply (rule add_left) apply (rule scaleR_left) apply (cut_tac bounded, safe) apply (rule_tac x="norm b * K" in exI) apply (simp add: mult_ac) done lemma (in bounded_bilinear) bounded_linear_right: "bounded_linear (λb. a ** b)" apply (unfold_locales) apply (rule add_right) apply (rule scaleR_right) apply (cut_tac bounded, safe) apply (rule_tac x="norm a * K" in exI) apply (simp add: mult_ac) done lemma (in bounded_bilinear) prod_diff_prod: "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" by (simp add: diff_left diff_right) interpretation mult: bounded_bilinear ["op * :: 'a => 'a => 'a::real_normed_algebra"] apply (rule bounded_bilinear.intro) apply (rule left_distrib) apply (rule right_distrib) apply (rule mult_scaleR_left) apply (rule mult_scaleR_right) apply (rule_tac x="1" in exI) apply (simp add: norm_mult_ineq) done interpretation mult_left: bounded_linear ["(λx::'a::real_normed_algebra. x * y)"] by (rule mult.bounded_linear_left) interpretation mult_right: bounded_linear ["(λy::'a::real_normed_algebra. x * y)"] by (rule mult.bounded_linear_right) interpretation divide: bounded_linear ["(λx::'a::real_normed_field. x / y)"] unfolding divide_inverse by (rule mult.bounded_linear_left) interpretation scaleR: bounded_bilinear ["scaleR"] apply (rule bounded_bilinear.intro) apply (rule scaleR_left_distrib) apply (rule scaleR_right_distrib) apply simp apply (rule scaleR_left_commute) apply (rule_tac x="1" in exI) apply (simp add: norm_scaleR) done interpretation scaleR_left: bounded_linear ["λr. scaleR r x"] by (rule scaleR.bounded_linear_left) interpretation scaleR_right: bounded_linear ["λx. scaleR r x"] by (rule scaleR.bounded_linear_right) interpretation of_real: bounded_linear ["λr. of_real r"] unfolding of_real_def by (rule scaleR.bounded_linear_left) end
lemma zero:
f (0::'a) = (0::'b)
lemma minus:
f (- x) = - f x
lemma diff:
f (x - y) = f x - f y
lemma setsum:
f (setsum g A) = (∑x∈A. f (g x))
lemma scaleR_left_commute:
a *R b *R x = b *R a *R x
lemma scaleR_zero_left:
0 *R x = (0::'a)
lemma scaleR_zero_right:
a *R (0::'a) = (0::'a)
lemma scaleR_minus_left:
- x *R xa = - (x *R xa)
lemma scaleR_minus_right:
a *R - x = - (a *R x)
lemma scaleR_left_diff_distrib:
(x - y) *R xa = x *R xa - y *R xa
lemma scaleR_right_diff_distrib:
a *R (x - y) = a *R x - a *R y
lemma scaleR_eq_0_iff:
(a *R x = (0::'a)) = (a = 0 ∨ x = (0::'a))
lemma scaleR_left_imp_eq:
[| a ≠ 0; a *R x = a *R y |] ==> x = y
lemma scaleR_right_imp_eq:
[| x ≠ (0::'a); a *R x = b *R x |] ==> a = b
lemma scaleR_cancel_left:
(a *R x = a *R y) = (x = y ∨ a = 0)
lemma scaleR_cancel_right:
(a *R x = b *R x) = (a = b ∨ x = (0::'a))
lemma nonzero_inverse_scaleR_distrib:
[| a ≠ 0; x ≠ (0::'a) |] ==> inverse (a *R x) = inverse x /R a
lemma inverse_scaleR_distrib:
inverse (a *R x) = inverse x /R a
lemma scaleR_conv_of_real:
r *R x = of_real r * x
lemma of_real_0:
of_real 0 = (0::'a)
lemma of_real_1:
of_real 1 = (1::'a)
lemma of_real_add:
of_real (x + y) = of_real x + of_real y
lemma of_real_minus:
of_real (- x) = - of_real x
lemma of_real_diff:
of_real (x - y) = of_real x - of_real y
lemma of_real_mult:
of_real (x * y) = of_real x * of_real y
lemma nonzero_of_real_inverse:
x ≠ 0 ==> of_real (inverse x) = inverse (of_real x)
lemma of_real_inverse:
of_real (inverse x) = inverse (of_real x)
lemma nonzero_of_real_divide:
y ≠ 0 ==> of_real (x / y) = of_real x / of_real y
lemma of_real_divide:
of_real (x / y) = of_real x / of_real y
lemma of_real_power:
of_real (x ^ n) = of_real x ^ n
lemma of_real_eq_iff:
(of_real x = of_real y) = (x = y)
lemma of_real_eq_0_iff:
(of_real x = (0::'a)) = (x = 0)
lemma of_real_eq_id:
of_real = id
lemma of_real_of_nat_eq:
of_real (real_of_nat n) = of_nat n
lemma of_real_of_int_eq:
of_real (real_of_int z) = of_int z
lemma of_real_number_of_eq:
of_real (number_of w) = number_of w
lemma Reals_of_real:
of_real r ∈ Reals
lemma Reals_of_int:
of_int z ∈ Reals
lemma Reals_of_nat:
of_nat n ∈ Reals
lemma Reals_number_of:
number_of w ∈ Reals
lemma Reals_0:
(0::'a) ∈ Reals
lemma Reals_1:
(1::'a) ∈ Reals
lemma Reals_add:
[| a ∈ Reals; b ∈ Reals |] ==> a + b ∈ Reals
lemma Reals_minus:
a ∈ Reals ==> - a ∈ Reals
lemma Reals_diff:
[| a ∈ Reals; b ∈ Reals |] ==> a - b ∈ Reals
lemma Reals_mult:
[| a ∈ Reals; b ∈ Reals |] ==> a * b ∈ Reals
lemma nonzero_Reals_inverse:
[| a ∈ Reals; a ≠ (0::'a) |] ==> inverse a ∈ Reals
lemma Reals_inverse:
a ∈ Reals ==> inverse a ∈ Reals
lemma nonzero_Reals_divide:
[| a ∈ Reals; b ∈ Reals; b ≠ (0::'a) |] ==> a / b ∈ Reals
lemma Reals_divide:
[| a ∈ Reals; b ∈ Reals |] ==> a / b ∈ Reals
lemma Reals_power:
a ∈ Reals ==> a ^ n ∈ Reals
lemma Reals_cases:
[| q ∈ Reals; !!r. q = of_real r ==> thesis |] ==> thesis
lemma Reals_induct:
[| q ∈ Reals; !!r. P (of_real r) |] ==> P q
lemma norm_zero:
norm (0::'a) = 0
lemma zero_less_norm_iff:
(0 < norm x) = (x ≠ (0::'a))
lemma norm_not_less_zero:
¬ norm x < 0
lemma norm_le_zero_iff:
(norm x ≤ 0) = (x = (0::'a))
lemma norm_minus_cancel:
norm (- x) = norm x
lemma norm_minus_commute:
norm (a - b) = norm (b - a)
lemma norm_triangle_ineq2:
norm a - norm b ≤ norm (a - b)
lemma norm_triangle_ineq3:
¦norm a - norm b¦ ≤ norm (a - b)
lemma norm_triangle_ineq4:
norm (a - b) ≤ norm a + norm b
lemma norm_diff_ineq:
norm a - norm b ≤ norm (a + b)
lemma norm_diff_triangle_ineq:
norm (a + b - (c + d)) ≤ norm (a - c) + norm (b - d)
lemma abs_norm_cancel:
¦norm a¦ = norm a
lemma norm_add_less:
[| norm x < r; norm y < s |] ==> norm (x + y) < r + s
lemma norm_mult_less:
[| norm x < r; norm y < s |] ==> norm (x * y) < r * s
lemma norm_of_real:
norm (of_real r) = ¦r¦
lemma norm_number_of:
norm (number_of w) = ¦number_of w¦
lemma norm_of_int:
norm (of_int z) = ¦real_of_int z¦
lemma norm_of_nat:
norm (of_nat n) = real_of_nat n
lemma nonzero_norm_inverse:
a ≠ (0::'a) ==> norm (inverse a) = inverse (norm a)
lemma norm_inverse:
norm (inverse a) = inverse (norm a)
lemma nonzero_norm_divide:
b ≠ (0::'a) ==> norm (a / b) = norm a / norm b
lemma norm_divide:
norm (a / b) = norm a / norm b
lemma norm_power_ineq:
norm (x ^ n) ≤ norm x ^ n
lemma norm_power:
norm (x ^ n) = norm x ^ n
lemma norm_sgn:
norm (sgn x) = (if x = (0::'a) then 0 else 1)
lemma sgn_zero:
sgn (0::'a) = (0::'a)
lemma sgn_zero_iff:
(sgn x = (0::'a)) = (x = (0::'a))
lemma sgn_minus:
sgn (- x) = - sgn x
lemma sgn_scaleR:
sgn (r *R x) = sgn r *R sgn x
lemma sgn_one:
sgn (1::'a) = (1::'a)
lemma sgn_of_real:
sgn (of_real r) = of_real (sgn r)
lemma sgn_mult:
sgn (x * y) = sgn x * sgn y
lemma real_sgn_eq:
sgn x = x / ¦x¦
lemma real_sgn_pos:
0 < x ==> sgn x = 1
lemma real_sgn_neg:
x < 0 ==> sgn x = -1
lemma pos_bounded:
∃K>0. ∀x. norm (f x) ≤ norm x * K
lemma nonneg_bounded:
∃K≥0. ∀x. norm (f x) ≤ norm x * K
lemma pos_bounded:
∃K>0. ∀a b. norm (a ** b) ≤ norm a * norm b * K
lemma nonneg_bounded:
∃K≥0. ∀a b. norm (a ** b) ≤ norm a * norm b * K
lemma additive_right:
additive (op ** a)
lemma additive_left:
additive (λa. a ** b)
lemma zero_left:
(0::'a) ** b = (0::'c)
lemma zero_right:
a ** (0::'b) = (0::'c)
lemma minus_left:
- a ** b = - (a ** b)
lemma minus_right:
a ** - b = - (a ** b)
lemma diff_left:
(a - a') ** b = a ** b - a' ** b
lemma diff_right:
a ** (b - b') = a ** b - a ** b'
lemma bounded_linear_left:
bounded_linear (λa. a ** b)
lemma bounded_linear_right:
bounded_linear (op ** a)
lemma prod_diff_prod:
x ** y - a ** b = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)