Up to index of Isabelle/HOL/HOL-Algebra/example_Bicomplex
theory RComplete(* Title : HOL/Real/RComplete.thy ID : $Id: RComplete.thy,v 1.30 2007/10/23 21:27:24 nipkow Exp $ Author : Jacques D. Fleuriot, University of Edinburgh Author : Larry Paulson, University of Cambridge Author : Jeremy Avigad, Carnegie Mellon University Author : Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen *) header {* Completeness of the Reals; Floor and Ceiling Functions *} theory RComplete imports Lubs RealDef begin lemma real_sum_of_halves: "x/2 + x/2 = (x::real)" by simp subsection {* Completeness of Positive Reals *} text {* Supremum property for the set of positive reals Let @{text "P"} be a non-empty set of positive reals, with an upper bound @{text "y"}. Then @{text "P"} has a least upper bound (written @{text "S"}). FIXME: Can the premise be weakened to @{text "∀x ∈ P. x≤ y"}? *} lemma posreal_complete: assumes positive_P: "∀x ∈ P. (0::real) < x" and not_empty_P: "∃x. x ∈ P" and upper_bound_Ex: "∃y. ∀x ∈ P. x<y" shows "∃S. ∀y. (∃x ∈ P. y < x) = (y < S)" proof (rule exI, rule allI) fix y let ?pP = "{w. real_of_preal w ∈ P}" show "(∃x∈P. y < x) = (y < real_of_preal (psup ?pP))" proof (cases "0 < y") assume neg_y: "¬ 0 < y" show ?thesis proof assume "∃x∈P. y < x" have "∀x. y < real_of_preal x" using neg_y by (rule real_less_all_real2) thus "y < real_of_preal (psup ?pP)" .. next assume "y < real_of_preal (psup ?pP)" obtain "x" where x_in_P: "x ∈ P" using not_empty_P .. hence "0 < x" using positive_P by simp hence "y < x" using neg_y by simp thus "∃x ∈ P. y < x" using x_in_P .. qed next assume pos_y: "0 < y" then obtain py where y_is_py: "y = real_of_preal py" by (auto simp add: real_gt_zero_preal_Ex) obtain a where "a ∈ P" using not_empty_P .. with positive_P have a_pos: "0 < a" .. then obtain pa where "a = real_of_preal pa" by (auto simp add: real_gt_zero_preal_Ex) hence "pa ∈ ?pP" using `a ∈ P` by auto hence pP_not_empty: "?pP ≠ {}" by auto obtain sup where sup: "∀x ∈ P. x < sup" using upper_bound_Ex .. from this and `a ∈ P` have "a < sup" .. hence "0 < sup" using a_pos by arith then obtain possup where "sup = real_of_preal possup" by (auto simp add: real_gt_zero_preal_Ex) hence "∀X ∈ ?pP. X ≤ possup" using sup by (auto simp add: real_of_preal_lessI) with pP_not_empty have psup: "!!Z. (∃X ∈ ?pP. Z < X) = (Z < psup ?pP)" by (rule preal_complete) show ?thesis proof assume "∃x ∈ P. y < x" then obtain x where x_in_P: "x ∈ P" and y_less_x: "y < x" .. hence "0 < x" using pos_y by arith then obtain px where x_is_px: "x = real_of_preal px" by (auto simp add: real_gt_zero_preal_Ex) have py_less_X: "∃X ∈ ?pP. py < X" proof show "py < px" using y_is_py and x_is_px and y_less_x by (simp add: real_of_preal_lessI) show "px ∈ ?pP" using x_in_P and x_is_px by simp qed have "(∃X ∈ ?pP. py < X) ==> (py < psup ?pP)" using psup by simp hence "py < psup ?pP" using py_less_X by simp thus "y < real_of_preal (psup {w. real_of_preal w ∈ P})" using y_is_py and pos_y by (simp add: real_of_preal_lessI) next assume y_less_psup: "y < real_of_preal (psup ?pP)" hence "py < psup ?pP" using y_is_py by (simp add: real_of_preal_lessI) then obtain "X" where py_less_X: "py < X" and X_in_pP: "X ∈ ?pP" using psup by auto then obtain x where x_is_X: "x = real_of_preal X" by (simp add: real_gt_zero_preal_Ex) hence "y < x" using py_less_X and y_is_py by (simp add: real_of_preal_lessI) moreover have "x ∈ P" using x_is_X and X_in_pP by simp ultimately show "∃ x ∈ P. y < x" .. qed qed qed text {* \medskip Completeness properties using @{text "isUb"}, @{text "isLub"} etc. *} lemma real_isLub_unique: "[| isLub R S x; isLub R S y |] ==> x = (y::real)" apply (frule isLub_isUb) apply (frule_tac x = y in isLub_isUb) apply (blast intro!: order_antisym dest!: isLub_le_isUb) done text {* \medskip Completeness theorem for the positive reals (again). *} lemma posreals_complete: assumes positive_S: "∀x ∈ S. 0 < x" and not_empty_S: "∃x. x ∈ S" and upper_bound_Ex: "∃u. isUb (UNIV::real set) S u" shows "∃t. isLub (UNIV::real set) S t" proof let ?pS = "{w. real_of_preal w ∈ S}" obtain u where "isUb UNIV S u" using upper_bound_Ex .. hence sup: "∀x ∈ S. x ≤ u" by (simp add: isUb_def setle_def) obtain x where x_in_S: "x ∈ S" using not_empty_S .. hence x_gt_zero: "0 < x" using positive_S by simp have "x ≤ u" using sup and x_in_S .. hence "0 < u" using x_gt_zero by arith then obtain pu where u_is_pu: "u = real_of_preal pu" by (auto simp add: real_gt_zero_preal_Ex) have pS_less_pu: "∀pa ∈ ?pS. pa ≤ pu" proof fix pa assume "pa ∈ ?pS" then obtain a where "a ∈ S" and "a = real_of_preal pa" by simp moreover hence "a ≤ u" using sup by simp ultimately show "pa ≤ pu" using sup and u_is_pu by (simp add: real_of_preal_le_iff) qed have "∀y ∈ S. y ≤ real_of_preal (psup ?pS)" proof fix y assume y_in_S: "y ∈ S" hence "0 < y" using positive_S by simp then obtain py where y_is_py: "y = real_of_preal py" by (auto simp add: real_gt_zero_preal_Ex) hence py_in_pS: "py ∈ ?pS" using y_in_S by simp with pS_less_pu have "py ≤ psup ?pS" by (rule preal_psup_le) thus "y ≤ real_of_preal (psup ?pS)" using y_is_py by (simp add: real_of_preal_le_iff) qed moreover { fix x assume x_ub_S: "∀y∈S. y ≤ x" have "real_of_preal (psup ?pS) ≤ x" proof - obtain "s" where s_in_S: "s ∈ S" using not_empty_S .. hence s_pos: "0 < s" using positive_S by simp hence "∃ ps. s = real_of_preal ps" by (simp add: real_gt_zero_preal_Ex) then obtain "ps" where s_is_ps: "s = real_of_preal ps" .. hence ps_in_pS: "ps ∈ {w. real_of_preal w ∈ S}" using s_in_S by simp from x_ub_S have "s ≤ x" using s_in_S .. hence "0 < x" using s_pos by simp hence "∃ px. x = real_of_preal px" by (simp add: real_gt_zero_preal_Ex) then obtain "px" where x_is_px: "x = real_of_preal px" .. have "∀pe ∈ ?pS. pe ≤ px" proof fix pe assume "pe ∈ ?pS" hence "real_of_preal pe ∈ S" by simp hence "real_of_preal pe ≤ x" using x_ub_S by simp thus "pe ≤ px" using x_is_px by (simp add: real_of_preal_le_iff) qed moreover have "?pS ≠ {}" using ps_in_pS by auto ultimately have "(psup ?pS) ≤ px" by (simp add: psup_le_ub) thus "real_of_preal (psup ?pS) ≤ x" using x_is_px by (simp add: real_of_preal_le_iff) qed } ultimately show "isLub UNIV S (real_of_preal (psup ?pS))" by (simp add: isLub_def leastP_def isUb_def setle_def setge_def) qed text {* \medskip reals Completeness (again!) *} lemma reals_complete: assumes notempty_S: "∃X. X ∈ S" and exists_Ub: "∃Y. isUb (UNIV::real set) S Y" shows "∃t. isLub (UNIV :: real set) S t" proof - obtain X where X_in_S: "X ∈ S" using notempty_S .. obtain Y where Y_isUb: "isUb (UNIV::real set) S Y" using exists_Ub .. let ?SHIFT = "{z. ∃x ∈S. z = x + (-X) + 1} ∩ {x. 0 < x}" { fix x assume "isUb (UNIV::real set) S x" hence S_le_x: "∀ y ∈ S. y <= x" by (simp add: isUb_def setle_def) { fix s assume "s ∈ {z. ∃x∈S. z = x + - X + 1}" hence "∃ x ∈ S. s = x + -X + 1" .. then obtain x1 where "x1 ∈ S" and "s = x1 + (-X) + 1" .. moreover hence "x1 ≤ x" using S_le_x by simp ultimately have "s ≤ x + - X + 1" by arith } then have "isUb (UNIV::real set) ?SHIFT (x + (-X) + 1)" by (auto simp add: isUb_def setle_def) } note S_Ub_is_SHIFT_Ub = this hence "isUb UNIV ?SHIFT (Y + (-X) + 1)" using Y_isUb by simp hence "∃Z. isUb UNIV ?SHIFT Z" .. moreover have "∀y ∈ ?SHIFT. 0 < y" by auto moreover have shifted_not_empty: "∃u. u ∈ ?SHIFT" using X_in_S and Y_isUb by auto ultimately obtain t where t_is_Lub: "isLub UNIV ?SHIFT t" using posreals_complete [of ?SHIFT] by blast show ?thesis proof show "isLub UNIV S (t + X + (-1))" proof (rule isLubI2) { fix x assume "isUb (UNIV::real set) S x" hence "isUb (UNIV::real set) (?SHIFT) (x + (-X) + 1)" using S_Ub_is_SHIFT_Ub by simp hence "t ≤ (x + (-X) + 1)" using t_is_Lub by (simp add: isLub_le_isUb) hence "t + X + -1 ≤ x" by arith } then show "(t + X + -1) <=* Collect (isUb UNIV S)" by (simp add: setgeI) next show "isUb UNIV S (t + X + -1)" proof - { fix y assume y_in_S: "y ∈ S" have "y ≤ t + X + -1" proof - obtain "u" where u_in_shift: "u ∈ ?SHIFT" using shifted_not_empty .. hence "∃ x ∈ S. u = x + - X + 1" by simp then obtain "x" where x_and_u: "u = x + - X + 1" .. have u_le_t: "u ≤ t" using u_in_shift and t_is_Lub by (simp add: isLubD2) show ?thesis proof cases assume "y ≤ x" moreover have "x = u + X + - 1" using x_and_u by arith moreover have "u + X + - 1 ≤ t + X + -1" using u_le_t by arith ultimately show "y ≤ t + X + -1" by arith next assume "~(y ≤ x)" hence x_less_y: "x < y" by arith have "x + (-X) + 1 ∈ ?SHIFT" using x_and_u and u_in_shift by simp hence "0 < x + (-X) + 1" by simp hence "0 < y + (-X) + 1" using x_less_y by arith hence "y + (-X) + 1 ∈ ?SHIFT" using y_in_S by simp hence "y + (-X) + 1 ≤ t" using t_is_Lub by (simp add: isLubD2) thus ?thesis by simp qed qed } then show ?thesis by (simp add: isUb_def setle_def) qed qed qed qed subsection {* The Archimedean Property of the Reals *} theorem reals_Archimedean: assumes x_pos: "0 < x" shows "∃n. inverse (real (Suc n)) < x" proof (rule ccontr) assume contr: "¬ ?thesis" have "∀n. x * real (Suc n) <= 1" proof fix n from contr have "x ≤ inverse (real (Suc n))" by (simp add: linorder_not_less) hence "x ≤ (1 / (real (Suc n)))" by (simp add: inverse_eq_divide) moreover have "0 ≤ real (Suc n)" by (rule real_of_nat_ge_zero) ultimately have "x * real (Suc n) ≤ (1 / real (Suc n)) * real (Suc n)" by (rule mult_right_mono) thus "x * real (Suc n) ≤ 1" by simp qed hence "{z. ∃n. z = x * (real (Suc n))} *<= 1" by (simp add: setle_def, safe, rule spec) hence "isUb (UNIV::real set) {z. ∃n. z = x * (real (Suc n))} 1" by (simp add: isUbI) hence "∃Y. isUb (UNIV::real set) {z. ∃n. z = x* (real (Suc n))} Y" .. moreover have "∃X. X ∈ {z. ∃n. z = x* (real (Suc n))}" by auto ultimately have "∃t. isLub UNIV {z. ∃n. z = x * real (Suc n)} t" by (simp add: reals_complete) then obtain "t" where t_is_Lub: "isLub UNIV {z. ∃n. z = x * real (Suc n)} t" .. have "∀n::nat. x * real n ≤ t + - x" proof fix n from t_is_Lub have "x * real (Suc n) ≤ t" by (simp add: isLubD2) hence "x * (real n) + x ≤ t" by (simp add: right_distrib real_of_nat_Suc) thus "x * (real n) ≤ t + - x" by arith qed hence "∀m. x * real (Suc m) ≤ t + - x" by simp hence "{z. ∃n. z = x * (real (Suc n))} *<= (t + - x)" by (auto simp add: setle_def) hence "isUb (UNIV::real set) {z. ∃n. z = x * (real (Suc n))} (t + (-x))" by (simp add: isUbI) hence "t ≤ t + - x" using t_is_Lub by (simp add: isLub_le_isUb) thus False using x_pos by arith qed text {* There must be other proofs, e.g. @{text "Suc"} of the largest integer in the cut representing @{text "x"}. *} lemma reals_Archimedean2: "∃n. (x::real) < real (n::nat)" proof cases assume "x ≤ 0" hence "x < real (1::nat)" by simp thus ?thesis .. next assume "¬ x ≤ 0" hence x_greater_zero: "0 < x" by simp hence "0 < inverse x" by simp then obtain n where "inverse (real (Suc n)) < inverse x" using reals_Archimedean by blast hence "inverse (real (Suc n)) * x < inverse x * x" using x_greater_zero by (rule mult_strict_right_mono) hence "inverse (real (Suc n)) * x < 1" using x_greater_zero by simp hence "real (Suc n) * (inverse (real (Suc n)) * x) < real (Suc n) * 1" by (rule mult_strict_left_mono) simp hence "x < real (Suc n)" by (simp add: ring_simps) thus "∃(n::nat). x < real n" .. qed lemma reals_Archimedean3: assumes x_greater_zero: "0 < x" shows "∀(y::real). ∃(n::nat). y < real n * x" proof fix y have x_not_zero: "x ≠ 0" using x_greater_zero by simp obtain n where "y * inverse x < real (n::nat)" using reals_Archimedean2 .. hence "y * inverse x * x < real n * x" using x_greater_zero by (simp add: mult_strict_right_mono) hence "x * inverse x * y < x * real n" by (simp add: ring_simps) hence "y < real (n::nat) * x" using x_not_zero by (simp add: ring_simps) thus "∃(n::nat). y < real n * x" .. qed lemma reals_Archimedean6: "0 ≤ r ==> ∃(n::nat). real (n - 1) ≤ r & r < real (n)" apply (insert reals_Archimedean2 [of r], safe) apply (subgoal_tac "∃x::nat. r < real x ∧ (∀y. r < real y --> x ≤ y)", auto) apply (rule_tac x = x in exI) apply (case_tac x, simp) apply (rename_tac x') apply (drule_tac x = x' in spec, simp) apply (rule_tac x="LEAST n. r < real n" in exI, safe) apply (erule LeastI, erule Least_le) done lemma reals_Archimedean6a: "0 ≤ r ==> ∃n. real (n) ≤ r & r < real (Suc n)" by (drule reals_Archimedean6) auto lemma reals_Archimedean_6b_int: "0 ≤ r ==> ∃n::int. real n ≤ r & r < real (n+1)" apply (drule reals_Archimedean6a, auto) apply (rule_tac x = "int n" in exI) apply (simp add: real_of_int_real_of_nat real_of_nat_Suc) done lemma reals_Archimedean_6c_int: "r < 0 ==> ∃n::int. real n ≤ r & r < real (n+1)" apply (rule reals_Archimedean_6b_int [of "-r", THEN exE], simp, auto) apply (rename_tac n) apply (drule order_le_imp_less_or_eq, auto) apply (rule_tac x = "- n - 1" in exI) apply (rule_tac [2] x = "- n" in exI, auto) done subsection{*Floor and Ceiling Functions from the Reals to the Integers*} definition floor :: "real => int" where "floor r = (LEAST n::int. r < real (n+1))" definition ceiling :: "real => int" where "ceiling r = - floor (- r)" notation (xsymbols) floor ("⌊_⌋") and ceiling ("⌈_⌉") notation (HTML output) floor ("⌊_⌋") and ceiling ("⌈_⌉") lemma number_of_less_real_of_int_iff [simp]: "((number_of n) < real (m::int)) = (number_of n < m)" apply auto apply (rule real_of_int_less_iff [THEN iffD1]) apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto) done lemma number_of_less_real_of_int_iff2 [simp]: "(real (m::int) < (number_of n)) = (m < number_of n)" apply auto apply (rule real_of_int_less_iff [THEN iffD1]) apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto) done lemma number_of_le_real_of_int_iff [simp]: "((number_of n) ≤ real (m::int)) = (number_of n ≤ m)" by (simp add: linorder_not_less [symmetric]) lemma number_of_le_real_of_int_iff2 [simp]: "(real (m::int) ≤ (number_of n)) = (m ≤ number_of n)" by (simp add: linorder_not_less [symmetric]) lemma floor_zero [simp]: "floor 0 = 0" apply (simp add: floor_def del: real_of_int_add) apply (rule Least_equality) apply simp_all done lemma floor_real_of_nat_zero [simp]: "floor (real (0::nat)) = 0" by auto lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n" apply (simp only: floor_def) apply (rule Least_equality) apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst]) apply (drule_tac [2] real_of_int_less_iff [THEN iffD1]) apply simp_all done lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n" apply (simp only: floor_def) apply (rule Least_equality) apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst]) apply (drule_tac [2] real_of_int_minus [THEN sym, THEN subst]) apply (drule_tac [2] real_of_int_less_iff [THEN iffD1]) apply simp_all done lemma floor_real_of_int [simp]: "floor (real (n::int)) = n" apply (simp only: floor_def) apply (rule Least_equality) apply auto done lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n" apply (simp only: floor_def) apply (rule Least_equality) apply (drule_tac [2] real_of_int_minus [THEN sym, THEN subst]) apply auto done lemma real_lb_ub_int: " ∃n::int. real n ≤ r & r < real (n+1)" apply (case_tac "r < 0") apply (blast intro: reals_Archimedean_6c_int) apply (simp only: linorder_not_less) apply (blast intro: reals_Archimedean_6b_int reals_Archimedean_6c_int) done lemma lemma_floor: assumes a1: "real m ≤ r" and a2: "r < real n + 1" shows "m ≤ (n::int)" proof - have "real m < real n + 1" using a1 a2 by (rule order_le_less_trans) also have "... = real (n + 1)" by simp finally have "m < n + 1" by (simp only: real_of_int_less_iff) thus ?thesis by arith qed lemma real_of_int_floor_le [simp]: "real (floor r) ≤ r" apply (simp add: floor_def Least_def) apply (insert real_lb_ub_int [of r], safe) apply (rule theI2) apply auto done lemma floor_mono: "x < y ==> floor x ≤ floor y" apply (simp add: floor_def Least_def) apply (insert real_lb_ub_int [of x]) apply (insert real_lb_ub_int [of y], safe) apply (rule theI2) apply (rule_tac [3] theI2) apply simp apply (erule conjI) apply (auto simp add: order_eq_iff int_le_real_less) done lemma floor_mono2: "x ≤ y ==> floor x ≤ floor y" by (auto dest: order_le_imp_less_or_eq simp add: floor_mono) lemma lemma_floor2: "real n < real (x::int) + 1 ==> n ≤ x" by (auto intro: lemma_floor) lemma real_of_int_floor_cancel [simp]: "(real (floor x) = x) = (∃n::int. x = real n)" apply (simp add: floor_def Least_def) apply (insert real_lb_ub_int [of x], erule exE) apply (rule theI2) apply (auto intro: lemma_floor) done lemma floor_eq: "[| real n < x; x < real n + 1 |] ==> floor x = n" apply (simp add: floor_def) apply (rule Least_equality) apply (auto intro: lemma_floor) done lemma floor_eq2: "[| real n ≤ x; x < real n + 1 |] ==> floor x = n" apply (simp add: floor_def) apply (rule Least_equality) apply (auto intro: lemma_floor) done lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat(floor x) = n" apply (rule inj_int [THEN injD]) apply (simp add: real_of_nat_Suc) apply (simp add: real_of_nat_Suc floor_eq floor_eq [where n = "int n"]) done lemma floor_eq4: "[| real n ≤ x; x < real (Suc n) |] ==> nat(floor x) = n" apply (drule order_le_imp_less_or_eq) apply (auto intro: floor_eq3) done lemma floor_number_of_eq [simp]: "floor(number_of n :: real) = (number_of n :: int)" apply (subst real_number_of [symmetric]) apply (rule floor_real_of_int) done lemma floor_one [simp]: "floor 1 = 1" apply (rule trans) prefer 2 apply (rule floor_real_of_int) apply simp done lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 ≤ real(floor r)" apply (simp add: floor_def Least_def) apply (insert real_lb_ub_int [of r], safe) apply (rule theI2) apply (auto intro: lemma_floor) done lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real(floor r)" apply (simp add: floor_def Least_def) apply (insert real_lb_ub_int [of r], safe) apply (rule theI2) apply (auto intro: lemma_floor) done lemma real_of_int_floor_add_one_ge [simp]: "r ≤ real(floor r) + 1" apply (insert real_of_int_floor_ge_diff_one [of r]) apply (auto simp del: real_of_int_floor_ge_diff_one) done lemma real_of_int_floor_add_one_gt [simp]: "r < real(floor r) + 1" apply (insert real_of_int_floor_gt_diff_one [of r]) apply (auto simp del: real_of_int_floor_gt_diff_one) done lemma le_floor: "real a <= x ==> a <= floor x" apply (subgoal_tac "a < floor x + 1") apply arith apply (subst real_of_int_less_iff [THEN sym]) apply simp apply (insert real_of_int_floor_add_one_gt [of x]) apply arith done lemma real_le_floor: "a <= floor x ==> real a <= x" apply (rule order_trans) prefer 2 apply (rule real_of_int_floor_le) apply (subst real_of_int_le_iff) apply assumption done lemma le_floor_eq: "(a <= floor x) = (real a <= x)" apply (rule iffI) apply (erule real_le_floor) apply (erule le_floor) done lemma le_floor_eq_number_of [simp]: "(number_of n <= floor x) = (number_of n <= x)" by (simp add: le_floor_eq) lemma le_floor_eq_zero [simp]: "(0 <= floor x) = (0 <= x)" by (simp add: le_floor_eq) lemma le_floor_eq_one [simp]: "(1 <= floor x) = (1 <= x)" by (simp add: le_floor_eq) lemma floor_less_eq: "(floor x < a) = (x < real a)" apply (subst linorder_not_le [THEN sym])+ apply simp apply (rule le_floor_eq) done lemma floor_less_eq_number_of [simp]: "(floor x < number_of n) = (x < number_of n)" by (simp add: floor_less_eq) lemma floor_less_eq_zero [simp]: "(floor x < 0) = (x < 0)" by (simp add: floor_less_eq) lemma floor_less_eq_one [simp]: "(floor x < 1) = (x < 1)" by (simp add: floor_less_eq) lemma less_floor_eq: "(a < floor x) = (real a + 1 <= x)" apply (insert le_floor_eq [of "a + 1" x]) apply auto done lemma less_floor_eq_number_of [simp]: "(number_of n < floor x) = (number_of n + 1 <= x)" by (simp add: less_floor_eq) lemma less_floor_eq_zero [simp]: "(0 < floor x) = (1 <= x)" by (simp add: less_floor_eq) lemma less_floor_eq_one [simp]: "(1 < floor x) = (2 <= x)" by (simp add: less_floor_eq) lemma floor_le_eq: "(floor x <= a) = (x < real a + 1)" apply (insert floor_less_eq [of x "a + 1"]) apply auto done lemma floor_le_eq_number_of [simp]: "(floor x <= number_of n) = (x < number_of n + 1)" by (simp add: floor_le_eq) lemma floor_le_eq_zero [simp]: "(floor x <= 0) = (x < 1)" by (simp add: floor_le_eq) lemma floor_le_eq_one [simp]: "(floor x <= 1) = (x < 2)" by (simp add: floor_le_eq) lemma floor_add [simp]: "floor (x + real a) = floor x + a" apply (subst order_eq_iff) apply (rule conjI) prefer 2 apply (subgoal_tac "floor x + a < floor (x + real a) + 1") apply arith apply (subst real_of_int_less_iff [THEN sym]) apply simp apply (subgoal_tac "x + real a < real(floor(x + real a)) + 1") apply (subgoal_tac "real (floor x) <= x") apply arith apply (rule real_of_int_floor_le) apply (rule real_of_int_floor_add_one_gt) apply (subgoal_tac "floor (x + real a) < floor x + a + 1") apply arith apply (subst real_of_int_less_iff [THEN sym]) apply simp apply (subgoal_tac "real(floor(x + real a)) <= x + real a") apply (subgoal_tac "x < real(floor x) + 1") apply arith apply (rule real_of_int_floor_add_one_gt) apply (rule real_of_int_floor_le) done lemma floor_add_number_of [simp]: "floor (x + number_of n) = floor x + number_of n" apply (subst floor_add [THEN sym]) apply simp done lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1" apply (subst floor_add [THEN sym]) apply simp done lemma floor_subtract [simp]: "floor (x - real a) = floor x - a" apply (subst diff_minus)+ apply (subst real_of_int_minus [THEN sym]) apply (rule floor_add) done lemma floor_subtract_number_of [simp]: "floor (x - number_of n) = floor x - number_of n" apply (subst floor_subtract [THEN sym]) apply simp done lemma floor_subtract_one [simp]: "floor (x - 1) = floor x - 1" apply (subst floor_subtract [THEN sym]) apply simp done lemma ceiling_zero [simp]: "ceiling 0 = 0" by (simp add: ceiling_def) lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n" by (simp add: ceiling_def) lemma ceiling_real_of_nat_zero [simp]: "ceiling (real (0::nat)) = 0" by auto lemma ceiling_floor [simp]: "ceiling (real (floor r)) = floor r" by (simp add: ceiling_def) lemma floor_ceiling [simp]: "floor (real (ceiling r)) = ceiling r" by (simp add: ceiling_def) lemma real_of_int_ceiling_ge [simp]: "r ≤ real (ceiling r)" apply (simp add: ceiling_def) apply (subst le_minus_iff, simp) done lemma ceiling_mono: "x < y ==> ceiling x ≤ ceiling y" by (simp add: floor_mono ceiling_def) lemma ceiling_mono2: "x ≤ y ==> ceiling x ≤ ceiling y" by (simp add: floor_mono2 ceiling_def) lemma real_of_int_ceiling_cancel [simp]: "(real (ceiling x) = x) = (∃n::int. x = real n)" apply (auto simp add: ceiling_def) apply (drule arg_cong [where f = uminus], auto) apply (rule_tac x = "-n" in exI, auto) done lemma ceiling_eq: "[| real n < x; x < real n + 1 |] ==> ceiling x = n + 1" apply (simp add: ceiling_def) apply (rule minus_equation_iff [THEN iffD1]) apply (simp add: floor_eq [where n = "-(n+1)"]) done lemma ceiling_eq2: "[| real n < x; x ≤ real n + 1 |] ==> ceiling x = n + 1" by (simp add: ceiling_def floor_eq2 [where n = "-(n+1)"]) lemma ceiling_eq3: "[| real n - 1 < x; x ≤ real n |] ==> ceiling x = n" by (simp add: ceiling_def floor_eq2 [where n = "-n"]) lemma ceiling_real_of_int [simp]: "ceiling (real (n::int)) = n" by (simp add: ceiling_def) lemma ceiling_number_of_eq [simp]: "ceiling (number_of n :: real) = (number_of n)" apply (subst real_number_of [symmetric]) apply (rule ceiling_real_of_int) done lemma ceiling_one [simp]: "ceiling 1 = 1" by (unfold ceiling_def, simp) lemma real_of_int_ceiling_diff_one_le [simp]: "real (ceiling r) - 1 ≤ r" apply (rule neg_le_iff_le [THEN iffD1]) apply (simp add: ceiling_def diff_minus) done lemma real_of_int_ceiling_le_add_one [simp]: "real (ceiling r) ≤ r + 1" apply (insert real_of_int_ceiling_diff_one_le [of r]) apply (simp del: real_of_int_ceiling_diff_one_le) done lemma ceiling_le: "x <= real a ==> ceiling x <= a" apply (unfold ceiling_def) apply (subgoal_tac "-a <= floor(- x)") apply simp apply (rule le_floor) apply simp done lemma ceiling_le_real: "ceiling x <= a ==> x <= real a" apply (unfold ceiling_def) apply (subgoal_tac "real(- a) <= - x") apply simp apply (rule real_le_floor) apply simp done lemma ceiling_le_eq: "(ceiling x <= a) = (x <= real a)" apply (rule iffI) apply (erule ceiling_le_real) apply (erule ceiling_le) done lemma ceiling_le_eq_number_of [simp]: "(ceiling x <= number_of n) = (x <= number_of n)" by (simp add: ceiling_le_eq) lemma ceiling_le_zero_eq [simp]: "(ceiling x <= 0) = (x <= 0)" by (simp add: ceiling_le_eq) lemma ceiling_le_eq_one [simp]: "(ceiling x <= 1) = (x <= 1)" by (simp add: ceiling_le_eq) lemma less_ceiling_eq: "(a < ceiling x) = (real a < x)" apply (subst linorder_not_le [THEN sym])+ apply simp apply (rule ceiling_le_eq) done lemma less_ceiling_eq_number_of [simp]: "(number_of n < ceiling x) = (number_of n < x)" by (simp add: less_ceiling_eq) lemma less_ceiling_eq_zero [simp]: "(0 < ceiling x) = (0 < x)" by (simp add: less_ceiling_eq) lemma less_ceiling_eq_one [simp]: "(1 < ceiling x) = (1 < x)" by (simp add: less_ceiling_eq) lemma ceiling_less_eq: "(ceiling x < a) = (x <= real a - 1)" apply (insert ceiling_le_eq [of x "a - 1"]) apply auto done lemma ceiling_less_eq_number_of [simp]: "(ceiling x < number_of n) = (x <= number_of n - 1)" by (simp add: ceiling_less_eq) lemma ceiling_less_eq_zero [simp]: "(ceiling x < 0) = (x <= -1)" by (simp add: ceiling_less_eq) lemma ceiling_less_eq_one [simp]: "(ceiling x < 1) = (x <= 0)" by (simp add: ceiling_less_eq) lemma le_ceiling_eq: "(a <= ceiling x) = (real a - 1 < x)" apply (insert less_ceiling_eq [of "a - 1" x]) apply auto done lemma le_ceiling_eq_number_of [simp]: "(number_of n <= ceiling x) = (number_of n - 1 < x)" by (simp add: le_ceiling_eq) lemma le_ceiling_eq_zero [simp]: "(0 <= ceiling x) = (-1 < x)" by (simp add: le_ceiling_eq) lemma le_ceiling_eq_one [simp]: "(1 <= ceiling x) = (0 < x)" by (simp add: le_ceiling_eq) lemma ceiling_add [simp]: "ceiling (x + real a) = ceiling x + a" apply (unfold ceiling_def, simp) apply (subst real_of_int_minus [THEN sym]) apply (subst floor_add) apply simp done lemma ceiling_add_number_of [simp]: "ceiling (x + number_of n) = ceiling x + number_of n" apply (subst ceiling_add [THEN sym]) apply simp done lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1" apply (subst ceiling_add [THEN sym]) apply simp done lemma ceiling_subtract [simp]: "ceiling (x - real a) = ceiling x - a" apply (subst diff_minus)+ apply (subst real_of_int_minus [THEN sym]) apply (rule ceiling_add) done lemma ceiling_subtract_number_of [simp]: "ceiling (x - number_of n) = ceiling x - number_of n" apply (subst ceiling_subtract [THEN sym]) apply simp done lemma ceiling_subtract_one [simp]: "ceiling (x - 1) = ceiling x - 1" apply (subst ceiling_subtract [THEN sym]) apply simp done subsection {* Versions for the natural numbers *} definition natfloor :: "real => nat" where "natfloor x = nat(floor x)" definition natceiling :: "real => nat" where "natceiling x = nat(ceiling x)" lemma natfloor_zero [simp]: "natfloor 0 = 0" by (unfold natfloor_def, simp) lemma natfloor_one [simp]: "natfloor 1 = 1" by (unfold natfloor_def, simp) lemma zero_le_natfloor [simp]: "0 <= natfloor x" by (unfold natfloor_def, simp) lemma natfloor_number_of_eq [simp]: "natfloor (number_of n) = number_of n" by (unfold natfloor_def, simp) lemma natfloor_real_of_nat [simp]: "natfloor(real n) = n" by (unfold natfloor_def, simp) lemma real_natfloor_le: "0 <= x ==> real(natfloor x) <= x" by (unfold natfloor_def, simp) lemma natfloor_neg: "x <= 0 ==> natfloor x = 0" apply (unfold natfloor_def) apply (subgoal_tac "floor x <= floor 0") apply simp apply (erule floor_mono2) done lemma natfloor_mono: "x <= y ==> natfloor x <= natfloor y" apply (case_tac "0 <= x") apply (subst natfloor_def)+ apply (subst nat_le_eq_zle) apply force apply (erule floor_mono2) apply (subst natfloor_neg) apply simp apply simp done lemma le_natfloor: "real x <= a ==> x <= natfloor a" apply (unfold natfloor_def) apply (subst nat_int [THEN sym]) apply (subst nat_le_eq_zle) apply simp apply (rule le_floor) apply simp done lemma le_natfloor_eq: "0 <= x ==> (a <= natfloor x) = (real a <= x)" apply (rule iffI) apply (rule order_trans) prefer 2 apply (erule real_natfloor_le) apply (subst real_of_nat_le_iff) apply assumption apply (erule le_natfloor) done lemma le_natfloor_eq_number_of [simp]: "~ neg((number_of n)::int) ==> 0 <= x ==> (number_of n <= natfloor x) = (number_of n <= x)" apply (subst le_natfloor_eq, assumption) apply simp done lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)" apply (case_tac "0 <= x") apply (subst le_natfloor_eq, assumption, simp) apply (rule iffI) apply (subgoal_tac "natfloor x <= natfloor 0") apply simp apply (rule natfloor_mono) apply simp apply simp done lemma natfloor_eq: "real n <= x ==> x < real n + 1 ==> natfloor x = n" apply (unfold natfloor_def) apply (subst nat_int [THEN sym]);back; apply (subst eq_nat_nat_iff) apply simp apply simp apply (rule floor_eq2) apply auto done lemma real_natfloor_add_one_gt: "x < real(natfloor x) + 1" apply (case_tac "0 <= x") apply (unfold natfloor_def) apply simp apply simp_all done lemma real_natfloor_gt_diff_one: "x - 1 < real(natfloor x)" apply (simp add: compare_rls) apply (rule real_natfloor_add_one_gt) done lemma ge_natfloor_plus_one_imp_gt: "natfloor z + 1 <= n ==> z < real n" apply (subgoal_tac "z < real(natfloor z) + 1") apply arith apply (rule real_natfloor_add_one_gt) done lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a" apply (unfold natfloor_def) apply (subgoal_tac "real a = real (int a)") apply (erule ssubst) apply (simp add: nat_add_distrib del: real_of_int_of_nat_eq) apply simp done lemma natfloor_add_number_of [simp]: "~neg ((number_of n)::int) ==> 0 <= x ==> natfloor (x + number_of n) = natfloor x + number_of n" apply (subst natfloor_add [THEN sym]) apply simp_all done lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1" apply (subst natfloor_add [THEN sym]) apply assumption apply simp done lemma natfloor_subtract [simp]: "real a <= x ==> natfloor(x - real a) = natfloor x - a" apply (unfold natfloor_def) apply (subgoal_tac "real a = real (int a)") apply (erule ssubst) apply (simp del: real_of_int_of_nat_eq) apply simp done lemma natceiling_zero [simp]: "natceiling 0 = 0" by (unfold natceiling_def, simp) lemma natceiling_one [simp]: "natceiling 1 = 1" by (unfold natceiling_def, simp) lemma zero_le_natceiling [simp]: "0 <= natceiling x" by (unfold natceiling_def, simp) lemma natceiling_number_of_eq [simp]: "natceiling (number_of n) = number_of n" by (unfold natceiling_def, simp) lemma natceiling_real_of_nat [simp]: "natceiling(real n) = n" by (unfold natceiling_def, simp) lemma real_natceiling_ge: "x <= real(natceiling x)" apply (unfold natceiling_def) apply (case_tac "x < 0") apply simp apply (subst real_nat_eq_real) apply (subgoal_tac "ceiling 0 <= ceiling x") apply simp apply (rule ceiling_mono2) apply simp apply simp done lemma natceiling_neg: "x <= 0 ==> natceiling x = 0" apply (unfold natceiling_def) apply simp done lemma natceiling_mono: "x <= y ==> natceiling x <= natceiling y" apply (case_tac "0 <= x") apply (subst natceiling_def)+ apply (subst nat_le_eq_zle) apply (rule disjI2) apply (subgoal_tac "real (0::int) <= real(ceiling y)") apply simp apply (rule order_trans) apply simp apply (erule order_trans) apply simp apply (erule ceiling_mono2) apply (subst natceiling_neg) apply simp_all done lemma natceiling_le: "x <= real a ==> natceiling x <= a" apply (unfold natceiling_def) apply (case_tac "x < 0") apply simp apply (subst nat_int [THEN sym]);back; apply (subst nat_le_eq_zle) apply simp apply (rule ceiling_le) apply simp done lemma natceiling_le_eq: "0 <= x ==> (natceiling x <= a) = (x <= real a)" apply (rule iffI) apply (rule order_trans) apply (rule real_natceiling_ge) apply (subst real_of_nat_le_iff) apply assumption apply (erule natceiling_le) done lemma natceiling_le_eq_number_of [simp]: "~ neg((number_of n)::int) ==> 0 <= x ==> (natceiling x <= number_of n) = (x <= number_of n)" apply (subst natceiling_le_eq, assumption) apply simp done lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)" apply (case_tac "0 <= x") apply (subst natceiling_le_eq) apply assumption apply simp apply (subst natceiling_neg) apply simp apply simp done lemma natceiling_eq: "real n < x ==> x <= real n + 1 ==> natceiling x = n + 1" apply (unfold natceiling_def) apply (simplesubst nat_int [THEN sym]) back back apply (subgoal_tac "nat(int n) + 1 = nat(int n + 1)") apply (erule ssubst) apply (subst eq_nat_nat_iff) apply (subgoal_tac "ceiling 0 <= ceiling x") apply simp apply (rule ceiling_mono2) apply force apply force apply (rule ceiling_eq2) apply (simp, simp) apply (subst nat_add_distrib) apply auto done lemma natceiling_add [simp]: "0 <= x ==> natceiling (x + real a) = natceiling x + a" apply (unfold natceiling_def) apply (subgoal_tac "real a = real (int a)") apply (erule ssubst) apply (simp del: real_of_int_of_nat_eq) apply (subst nat_add_distrib) apply (subgoal_tac "0 = ceiling 0") apply (erule ssubst) apply (erule ceiling_mono2) apply simp_all done lemma natceiling_add_number_of [simp]: "~ neg ((number_of n)::int) ==> 0 <= x ==> natceiling (x + number_of n) = natceiling x + number_of n" apply (subst natceiling_add [THEN sym]) apply simp_all done lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1" apply (subst natceiling_add [THEN sym]) apply assumption apply simp done lemma natceiling_subtract [simp]: "real a <= x ==> natceiling(x - real a) = natceiling x - a" apply (unfold natceiling_def) apply (subgoal_tac "real a = real (int a)") apply (erule ssubst) apply (simp del: real_of_int_of_nat_eq) apply simp done lemma natfloor_div_nat: "1 <= x ==> y > 0 ==> natfloor (x / real y) = natfloor x div y" proof - assume "1 <= (x::real)" and "(y::nat) > 0" have "natfloor x = (natfloor x) div y * y + (natfloor x) mod y" by simp then have a: "real(natfloor x) = real ((natfloor x) div y) * real y + real((natfloor x) mod y)" by (simp only: real_of_nat_add [THEN sym] real_of_nat_mult [THEN sym]) have "x = real(natfloor x) + (x - real(natfloor x))" by simp then have "x = real ((natfloor x) div y) * real y + real((natfloor x) mod y) + (x - real(natfloor x))" by (simp add: a) then have "x / real y = ... / real y" by simp also have "... = real((natfloor x) div y) + real((natfloor x) mod y) / real y + (x - real(natfloor x)) / real y" by (auto simp add: ring_simps add_divide_distrib diff_divide_distrib prems) finally have "natfloor (x / real y) = natfloor(...)" by simp also have "... = natfloor(real((natfloor x) mod y) / real y + (x - real(natfloor x)) / real y + real((natfloor x) div y))" by (simp add: add_ac) also have "... = natfloor(real((natfloor x) mod y) / real y + (x - real(natfloor x)) / real y) + (natfloor x) div y" apply (rule natfloor_add) apply (rule add_nonneg_nonneg) apply (rule divide_nonneg_pos) apply simp apply (simp add: prems) apply (rule divide_nonneg_pos) apply (simp add: compare_rls) apply (rule real_natfloor_le) apply (insert prems, auto) done also have "natfloor(real((natfloor x) mod y) / real y + (x - real(natfloor x)) / real y) = 0" apply (rule natfloor_eq) apply simp apply (rule add_nonneg_nonneg) apply (rule divide_nonneg_pos) apply force apply (force simp add: prems) apply (rule divide_nonneg_pos) apply (simp add: compare_rls) apply (rule real_natfloor_le) apply (auto simp add: prems) apply (insert prems, arith) apply (simp add: add_divide_distrib [THEN sym]) apply (subgoal_tac "real y = real y - 1 + 1") apply (erule ssubst) apply (rule add_le_less_mono) apply (simp add: compare_rls) apply (subgoal_tac "real(natfloor x mod y) + 1 = real(natfloor x mod y + 1)") apply (erule ssubst) apply (subst real_of_nat_le_iff) apply (subgoal_tac "natfloor x mod y < y") apply arith apply (rule mod_less_divisor) apply auto apply (simp add: compare_rls) apply (subst add_commute) apply (rule real_natfloor_add_one_gt) done finally show ?thesis by simp qed end
lemma real_sum_of_halves:
x / 2 + x / 2 = x
lemma posreal_complete:
[| ∀x∈P. 0 < x; ∃x. x ∈ P; ∃y. ∀x∈P. x < y |]
==> ∃S. ∀y. (∃x∈P. y < x) = (y < S)
lemma real_isLub_unique:
[| isLub R S x; isLub R S y |] ==> x = y
lemma posreals_complete:
[| ∀x∈S. 0 < x; ∃x. x ∈ S; ∃u. isUb UNIV S u |] ==> ∃t. isLub UNIV S t
lemma reals_complete:
[| ∃X. X ∈ S; ∃Y. isUb UNIV S Y |] ==> ∃t. isLub UNIV S t
theorem reals_Archimedean:
0 < x ==> ∃n. inverse (real (Suc n)) < x
lemma reals_Archimedean2:
∃n. x < real n
lemma reals_Archimedean3:
0 < x ==> ∀y. ∃n. y < real n * x
lemma reals_Archimedean6:
0 ≤ r ==> ∃n. real (n - 1) ≤ r ∧ r < real n
lemma reals_Archimedean6a:
0 ≤ r ==> ∃n. real n ≤ r ∧ r < real (Suc n)
lemma reals_Archimedean_6b_int:
0 ≤ r ==> ∃n. real n ≤ r ∧ r < real (n + 1)
lemma reals_Archimedean_6c_int:
r < 0 ==> ∃n. real n ≤ r ∧ r < real (n + 1)
lemma number_of_less_real_of_int_iff:
(number_of n < real m) = (number_of n < m)
lemma number_of_less_real_of_int_iff2:
(real m < number_of n) = (m < number_of n)
lemma number_of_le_real_of_int_iff:
(number_of n ≤ real m) = (number_of n ≤ m)
lemma number_of_le_real_of_int_iff2:
(real m ≤ number_of n) = (m ≤ number_of n)
lemma floor_zero:
⌊0⌋ = 0
lemma floor_real_of_nat_zero:
⌊real 0⌋ = 0
lemma floor_real_of_nat:
⌊real n⌋ = int n
lemma floor_minus_real_of_nat:
⌊- real n⌋ = - int n
lemma floor_real_of_int:
⌊real n⌋ = n
lemma floor_minus_real_of_int:
⌊- real n⌋ = - n
lemma real_lb_ub_int:
∃n. real n ≤ r ∧ r < real (n + 1)
lemma lemma_floor:
[| real m ≤ r; r < real n + 1 |] ==> m ≤ n
lemma real_of_int_floor_le:
real ⌊r⌋ ≤ r
lemma floor_mono:
x < y ==> ⌊x⌋ ≤ ⌊y⌋
lemma floor_mono2:
x ≤ y ==> ⌊x⌋ ≤ ⌊y⌋
lemma lemma_floor2:
real n < real x + 1 ==> n ≤ x
lemma real_of_int_floor_cancel:
(real ⌊x⌋ = x) = (∃n. x = real n)
lemma floor_eq:
[| real n < x; x < real n + 1 |] ==> ⌊x⌋ = n
lemma floor_eq2:
[| real n ≤ x; x < real n + 1 |] ==> ⌊x⌋ = n
lemma floor_eq3:
[| real n < x; x < real (Suc n) |] ==> nat ⌊x⌋ = n
lemma floor_eq4:
[| real n ≤ x; x < real (Suc n) |] ==> nat ⌊x⌋ = n
lemma floor_number_of_eq:
⌊number_of n⌋ = number_of n
lemma floor_one:
⌊1⌋ = 1
lemma real_of_int_floor_ge_diff_one:
r - 1 ≤ real ⌊r⌋
lemma real_of_int_floor_gt_diff_one:
r - 1 < real ⌊r⌋
lemma real_of_int_floor_add_one_ge:
r ≤ real ⌊r⌋ + 1
lemma real_of_int_floor_add_one_gt:
r < real ⌊r⌋ + 1
lemma le_floor:
real a ≤ x ==> a ≤ ⌊x⌋
lemma real_le_floor:
a ≤ ⌊x⌋ ==> real a ≤ x
lemma le_floor_eq:
(a ≤ ⌊x⌋) = (real a ≤ x)
lemma le_floor_eq_number_of:
(number_of n ≤ ⌊x⌋) = (number_of n ≤ x)
lemma le_floor_eq_zero:
(0 ≤ ⌊x⌋) = (0 ≤ x)
lemma le_floor_eq_one:
(1 ≤ ⌊x⌋) = (1 ≤ x)
lemma floor_less_eq:
(⌊x⌋ < a) = (x < real a)
lemma floor_less_eq_number_of:
(⌊x⌋ < number_of n) = (x < number_of n)
lemma floor_less_eq_zero:
(⌊x⌋ < 0) = (x < 0)
lemma floor_less_eq_one:
(⌊x⌋ < 1) = (x < 1)
lemma less_floor_eq:
(a < ⌊x⌋) = (real a + 1 ≤ x)
lemma less_floor_eq_number_of:
(number_of n < ⌊x⌋) = (number_of n + 1 ≤ x)
lemma less_floor_eq_zero:
(0 < ⌊x⌋) = (1 ≤ x)
lemma less_floor_eq_one:
(1 < ⌊x⌋) = (2 ≤ x)
lemma floor_le_eq:
(⌊x⌋ ≤ a) = (x < real a + 1)
lemma floor_le_eq_number_of:
(⌊x⌋ ≤ number_of n) = (x < number_of n + 1)
lemma floor_le_eq_zero:
(⌊x⌋ ≤ 0) = (x < 1)
lemma floor_le_eq_one:
(⌊x⌋ ≤ 1) = (x < 2)
lemma floor_add:
⌊x + real a⌋ = ⌊x⌋ + a
lemma floor_add_number_of:
⌊x + number_of n⌋ = ⌊x⌋ + number_of n
lemma floor_add_one:
⌊x + 1⌋ = ⌊x⌋ + 1
lemma floor_subtract:
⌊x - real a⌋ = ⌊x⌋ - a
lemma floor_subtract_number_of:
⌊x - number_of n⌋ = ⌊x⌋ - number_of n
lemma floor_subtract_one:
⌊x - 1⌋ = ⌊x⌋ - 1
lemma ceiling_zero:
⌈0⌉ = 0
lemma ceiling_real_of_nat:
⌈real n⌉ = int n
lemma ceiling_real_of_nat_zero:
⌈real 0⌉ = 0
lemma ceiling_floor:
⌈real ⌊r⌋⌉ = ⌊r⌋
lemma floor_ceiling:
⌊real ⌈r⌉⌋ = ⌈r⌉
lemma real_of_int_ceiling_ge:
r ≤ real ⌈r⌉
lemma ceiling_mono:
x < y ==> ⌈x⌉ ≤ ⌈y⌉
lemma ceiling_mono2:
x ≤ y ==> ⌈x⌉ ≤ ⌈y⌉
lemma real_of_int_ceiling_cancel:
(real ⌈x⌉ = x) = (∃n. x = real n)
lemma ceiling_eq:
[| real n < x; x < real n + 1 |] ==> ⌈x⌉ = n + 1
lemma ceiling_eq2:
[| real n < x; x ≤ real n + 1 |] ==> ⌈x⌉ = n + 1
lemma ceiling_eq3:
[| real n - 1 < x; x ≤ real n |] ==> ⌈x⌉ = n
lemma ceiling_real_of_int:
⌈real n⌉ = n
lemma ceiling_number_of_eq:
⌈number_of n⌉ = number_of n
lemma ceiling_one:
⌈1⌉ = 1
lemma real_of_int_ceiling_diff_one_le:
real ⌈r⌉ - 1 ≤ r
lemma real_of_int_ceiling_le_add_one:
real ⌈r⌉ ≤ r + 1
lemma ceiling_le:
x ≤ real a ==> ⌈x⌉ ≤ a
lemma ceiling_le_real:
⌈x⌉ ≤ a ==> x ≤ real a
lemma ceiling_le_eq:
(⌈x⌉ ≤ a) = (x ≤ real a)
lemma ceiling_le_eq_number_of:
(⌈x⌉ ≤ number_of n) = (x ≤ number_of n)
lemma ceiling_le_zero_eq:
(⌈x⌉ ≤ 0) = (x ≤ 0)
lemma ceiling_le_eq_one:
(⌈x⌉ ≤ 1) = (x ≤ 1)
lemma less_ceiling_eq:
(a < ⌈x⌉) = (real a < x)
lemma less_ceiling_eq_number_of:
(number_of n < ⌈x⌉) = (number_of n < x)
lemma less_ceiling_eq_zero:
(0 < ⌈x⌉) = (0 < x)
lemma less_ceiling_eq_one:
(1 < ⌈x⌉) = (1 < x)
lemma ceiling_less_eq:
(⌈x⌉ < a) = (x ≤ real a - 1)
lemma ceiling_less_eq_number_of:
(⌈x⌉ < number_of n) = (x ≤ number_of n - 1)
lemma ceiling_less_eq_zero:
(⌈x⌉ < 0) = (x ≤ -1)
lemma ceiling_less_eq_one:
(⌈x⌉ < 1) = (x ≤ 0)
lemma le_ceiling_eq:
(a ≤ ⌈x⌉) = (real a - 1 < x)
lemma le_ceiling_eq_number_of:
(number_of n ≤ ⌈x⌉) = (number_of n - 1 < x)
lemma le_ceiling_eq_zero:
(0 ≤ ⌈x⌉) = (-1 < x)
lemma le_ceiling_eq_one:
(1 ≤ ⌈x⌉) = (0 < x)
lemma ceiling_add:
⌈x + real a⌉ = ⌈x⌉ + a
lemma ceiling_add_number_of:
⌈x + number_of n⌉ = ⌈x⌉ + number_of n
lemma ceiling_add_one:
⌈x + 1⌉ = ⌈x⌉ + 1
lemma ceiling_subtract:
⌈x - real a⌉ = ⌈x⌉ - a
lemma ceiling_subtract_number_of:
⌈x - number_of n⌉ = ⌈x⌉ - number_of n
lemma ceiling_subtract_one:
⌈x - 1⌉ = ⌈x⌉ - 1
lemma natfloor_zero:
natfloor 0 = 0
lemma natfloor_one:
natfloor 1 = 1
lemma zero_le_natfloor:
0 ≤ natfloor x
lemma natfloor_number_of_eq:
natfloor (number_of n) = number_of n
lemma natfloor_real_of_nat:
natfloor (real n) = n
lemma real_natfloor_le:
0 ≤ x ==> real (natfloor x) ≤ x
lemma natfloor_neg:
x ≤ 0 ==> natfloor x = 0
lemma natfloor_mono:
x ≤ y ==> natfloor x ≤ natfloor y
lemma le_natfloor:
real x ≤ a ==> x ≤ natfloor a
lemma le_natfloor_eq:
0 ≤ x ==> (a ≤ natfloor x) = (real a ≤ x)
lemma le_natfloor_eq_number_of:
[| ¬ neg (number_of n); 0 ≤ x |]
==> (number_of n ≤ natfloor x) = (number_of n ≤ x)
lemma le_natfloor_eq_one:
(1 ≤ natfloor x) = (1 ≤ x)
lemma natfloor_eq:
[| real n ≤ x; x < real n + 1 |] ==> natfloor x = n
lemma real_natfloor_add_one_gt:
x < real (natfloor x) + 1
lemma real_natfloor_gt_diff_one:
x - 1 < real (natfloor x)
lemma ge_natfloor_plus_one_imp_gt:
natfloor z + 1 ≤ n ==> z < real n
lemma natfloor_add:
0 ≤ x ==> natfloor (x + real a) = natfloor x + a
lemma natfloor_add_number_of:
[| ¬ neg (number_of n); 0 ≤ x |]
==> natfloor (x + number_of n) = natfloor x + number_of n
lemma natfloor_add_one:
0 ≤ x ==> natfloor (x + 1) = natfloor x + 1
lemma natfloor_subtract:
real a ≤ x ==> natfloor (x - real a) = natfloor x - a
lemma natceiling_zero:
natceiling 0 = 0
lemma natceiling_one:
natceiling 1 = 1
lemma zero_le_natceiling:
0 ≤ natceiling x
lemma natceiling_number_of_eq:
natceiling (number_of n) = number_of n
lemma natceiling_real_of_nat:
natceiling (real n) = n
lemma real_natceiling_ge:
x ≤ real (natceiling x)
lemma natceiling_neg:
x ≤ 0 ==> natceiling x = 0
lemma natceiling_mono:
x ≤ y ==> natceiling x ≤ natceiling y
lemma natceiling_le:
x ≤ real a ==> natceiling x ≤ a
lemma natceiling_le_eq:
0 ≤ x ==> (natceiling x ≤ a) = (x ≤ real a)
lemma natceiling_le_eq_number_of:
[| ¬ neg (number_of n); 0 ≤ x |]
==> (natceiling x ≤ number_of n) = (x ≤ number_of n)
lemma natceiling_le_eq_one:
(natceiling x ≤ 1) = (x ≤ 1)
lemma natceiling_eq:
[| real n < x; x ≤ real n + 1 |] ==> natceiling x = n + 1
lemma natceiling_add:
0 ≤ x ==> natceiling (x + real a) = natceiling x + a
lemma natceiling_add_number_of:
[| ¬ neg (number_of n); 0 ≤ x |]
==> natceiling (x + number_of n) = natceiling x + number_of n
lemma natceiling_add_one:
0 ≤ x ==> natceiling (x + 1) = natceiling x + 1
lemma natceiling_subtract:
real a ≤ x ==> natceiling (x - real a) = natceiling x - a
lemma natfloor_div_nat:
[| 1 ≤ x; 0 < y |] ==> natfloor (x / real y) = natfloor x div y