Up to index of Isabelle/HOL/HOL-Algebra/example_Bicomplex
theory PReal(* Title : PReal.thy ID : $Id: PReal.thy,v 1.40 2008/05/07 08:58:29 berghofe Exp $ Author : Jacques D. Fleuriot Copyright : 1998 University of Cambridge Description : The positive reals as Dedekind sections of positive rationals. Fundamentals of Abstract Analysis [Gleason- p. 121] provides some of the definitions. *) header {* Positive real numbers *} theory PReal imports Rational begin text{*Could be generalized and moved to @{text Ring_and_Field}*} lemma add_eq_exists: "∃x. a+x = (b::rat)" by (rule_tac x="b-a" in exI, simp) definition cut :: "rat set => bool" where "cut A = ({} ⊂ A & A < {r. 0 < r} & (∀y ∈ A. ((∀z. 0<z & z < y --> z ∈ A) & (∃u ∈ A. y < u))))" lemma cut_of_rat: assumes q: "0 < q" shows "cut {r::rat. 0 < r & r < q}" (is "cut ?A") proof - from q have pos: "?A < {r. 0 < r}" by force have nonempty: "{} ⊂ ?A" proof show "{} ⊆ ?A" by simp show "{} ≠ ?A" by (force simp only: q eq_commute [of "{}"] interval_empty_iff) qed show ?thesis by (simp add: cut_def pos nonempty, blast dest: dense intro: order_less_trans) qed typedef preal = "{A. cut A}" by (blast intro: cut_of_rat [OF zero_less_one]) definition preal_of_rat :: "rat => preal" where "preal_of_rat q = Abs_preal {x::rat. 0 < x & x < q}" definition psup :: "preal set => preal" where "psup P = Abs_preal (\<Union>X ∈ P. Rep_preal X)" definition add_set :: "[rat set,rat set] => rat set" where "add_set A B = {w. ∃x ∈ A. ∃y ∈ B. w = x + y}" definition diff_set :: "[rat set,rat set] => rat set" where "diff_set A B = {w. ∃x. 0 < w & 0 < x & x ∉ B & x + w ∈ A}" definition mult_set :: "[rat set,rat set] => rat set" where "mult_set A B = {w. ∃x ∈ A. ∃y ∈ B. w = x * y}" definition inverse_set :: "rat set => rat set" where "inverse_set A = {x. ∃y. 0 < x & x < y & inverse y ∉ A}" instantiation preal :: "{ord, plus, minus, times, inverse, one}" begin definition preal_less_def: "R < S == Rep_preal R < Rep_preal S" definition preal_le_def: "R ≤ S == Rep_preal R ⊆ Rep_preal S" definition preal_add_def: "R + S == Abs_preal (add_set (Rep_preal R) (Rep_preal S))" definition preal_diff_def: "R - S == Abs_preal (diff_set (Rep_preal R) (Rep_preal S))" definition preal_mult_def: "R * S == Abs_preal (mult_set (Rep_preal R) (Rep_preal S))" definition preal_inverse_def: "inverse R == Abs_preal (inverse_set (Rep_preal R))" definition "R / S = R * inverse (S::preal)" definition preal_one_def: "1 == preal_of_rat 1" instance .. end text{*Reduces equality on abstractions to equality on representatives*} declare Abs_preal_inject [simp] declare Abs_preal_inverse [simp] lemma rat_mem_preal: "0 < q ==> {r::rat. 0 < r & r < q} ∈ preal" by (simp add: preal_def cut_of_rat) lemma preal_nonempty: "A ∈ preal ==> ∃x∈A. 0 < x" by (unfold preal_def cut_def, blast) lemma preal_Ex_mem: "A ∈ preal ==> ∃x. x ∈ A" by (drule preal_nonempty, fast) lemma preal_imp_psubset_positives: "A ∈ preal ==> A < {r. 0 < r}" by (force simp add: preal_def cut_def) lemma preal_exists_bound: "A ∈ preal ==> ∃x. 0 < x & x ∉ A" by (drule preal_imp_psubset_positives, auto) lemma preal_exists_greater: "[| A ∈ preal; y ∈ A |] ==> ∃u ∈ A. y < u" by (unfold preal_def cut_def, blast) lemma preal_downwards_closed: "[| A ∈ preal; y ∈ A; 0 < z; z < y |] ==> z ∈ A" by (unfold preal_def cut_def, blast) text{*Relaxing the final premise*} lemma preal_downwards_closed': "[| A ∈ preal; y ∈ A; 0 < z; z ≤ y |] ==> z ∈ A" apply (simp add: order_le_less) apply (blast intro: preal_downwards_closed) done text{*A positive fraction not in a positive real is an upper bound. Gleason p. 122 - Remark (1)*} lemma not_in_preal_ub: assumes A: "A ∈ preal" and notx: "x ∉ A" and y: "y ∈ A" and pos: "0 < x" shows "y < x" proof (cases rule: linorder_cases) assume "x<y" with notx show ?thesis by (simp add: preal_downwards_closed [OF A y] pos) next assume "x=y" with notx and y show ?thesis by simp next assume "y<x" thus ?thesis . qed text {* preal lemmas instantiated to @{term "Rep_preal X"} *} lemma mem_Rep_preal_Ex: "∃x. x ∈ Rep_preal X" by (rule preal_Ex_mem [OF Rep_preal]) lemma Rep_preal_exists_bound: "∃x>0. x ∉ Rep_preal X" by (rule preal_exists_bound [OF Rep_preal]) lemmas not_in_Rep_preal_ub = not_in_preal_ub [OF Rep_preal] subsection{*@{term preal_of_prat}: the Injection from prat to preal*} lemma rat_less_set_mem_preal: "0 < y ==> {u::rat. 0 < u & u < y} ∈ preal" by (simp add: preal_def cut_of_rat) lemma rat_subset_imp_le: "[|{u::rat. 0 < u & u < x} ⊆ {u. 0 < u & u < y}; 0<x|] ==> x ≤ y" apply (simp add: linorder_not_less [symmetric]) apply (blast dest: dense intro: order_less_trans) done lemma rat_set_eq_imp_eq: "[|{u::rat. 0 < u & u < x} = {u. 0 < u & u < y}; 0 < x; 0 < y|] ==> x = y" by (blast intro: rat_subset_imp_le order_antisym) subsection{*Properties of Ordering*} lemma preal_le_refl: "w ≤ (w::preal)" by (simp add: preal_le_def) lemma preal_le_trans: "[| i ≤ j; j ≤ k |] ==> i ≤ (k::preal)" by (force simp add: preal_le_def) lemma preal_le_anti_sym: "[| z ≤ w; w ≤ z |] ==> z = (w::preal)" apply (simp add: preal_le_def) apply (rule Rep_preal_inject [THEN iffD1], blast) done (* Axiom 'order_less_le' of class 'order': *) lemma preal_less_le: "((w::preal) < z) = (w ≤ z & w ≠ z)" by (simp add: preal_le_def preal_less_def Rep_preal_inject less_le) instance preal :: order by intro_classes (assumption | rule preal_le_refl preal_le_trans preal_le_anti_sym preal_less_le)+ lemma preal_imp_pos: "[|A ∈ preal; r ∈ A|] ==> 0 < r" by (insert preal_imp_psubset_positives, blast) lemma preal_le_linear: "x <= y | y <= (x::preal)" apply (auto simp add: preal_le_def) apply (rule ccontr) apply (blast dest: not_in_Rep_preal_ub intro: preal_imp_pos [OF Rep_preal] elim: order_less_asym) done instance preal :: linorder by intro_classes (rule preal_le_linear) instantiation preal :: distrib_lattice begin definition "(inf :: preal => preal => preal) = min" definition "(sup :: preal => preal => preal) = max" instance by intro_classes (auto simp add: inf_preal_def sup_preal_def min_max.sup_inf_distrib1) end subsection{*Properties of Addition*} lemma preal_add_commute: "(x::preal) + y = y + x" apply (unfold preal_add_def add_set_def) apply (rule_tac f = Abs_preal in arg_cong) apply (force simp add: add_commute) done text{*Lemmas for proving that addition of two positive reals gives a positive real*} lemma empty_psubset_nonempty: "a ∈ A ==> {} ⊂ A" by blast text{*Part 1 of Dedekind sections definition*} lemma add_set_not_empty: "[|A ∈ preal; B ∈ preal|] ==> {} ⊂ add_set A B" apply (drule preal_nonempty)+ apply (auto simp add: add_set_def) done text{*Part 2 of Dedekind sections definition. A structured version of this proof is @{text preal_not_mem_mult_set_Ex} below.*} lemma preal_not_mem_add_set_Ex: "[|A ∈ preal; B ∈ preal|] ==> ∃q>0. q ∉ add_set A B" apply (insert preal_exists_bound [of A] preal_exists_bound [of B], auto) apply (rule_tac x = "x+xa" in exI) apply (simp add: add_set_def, clarify) apply (drule (3) not_in_preal_ub)+ apply (force dest: add_strict_mono) done lemma add_set_not_rat_set: assumes A: "A ∈ preal" and B: "B ∈ preal" shows "add_set A B < {r. 0 < r}" proof from preal_imp_pos [OF A] preal_imp_pos [OF B] show "add_set A B ⊆ {r. 0 < r}" by (force simp add: add_set_def) next show "add_set A B ≠ {r. 0 < r}" by (insert preal_not_mem_add_set_Ex [OF A B], blast) qed text{*Part 3 of Dedekind sections definition*} lemma add_set_lemma3: "[|A ∈ preal; B ∈ preal; u ∈ add_set A B; 0 < z; z < u|] ==> z ∈ add_set A B" proof (unfold add_set_def, clarify) fix x::rat and y::rat assume A: "A ∈ preal" and B: "B ∈ preal" and [simp]: "0 < z" and zless: "z < x + y" and x: "x ∈ A" and y: "y ∈ B" have xpos [simp]: "0<x" by (rule preal_imp_pos [OF A x]) have ypos [simp]: "0<y" by (rule preal_imp_pos [OF B y]) have xypos [simp]: "0 < x+y" by (simp add: pos_add_strict) let ?f = "z/(x+y)" have fless: "?f < 1" by (simp add: zless pos_divide_less_eq) show "∃x' ∈ A. ∃y'∈B. z = x' + y'" proof (intro bexI) show "z = x*?f + y*?f" by (simp add: left_distrib [symmetric] divide_inverse mult_ac order_less_imp_not_eq2) next show "y * ?f ∈ B" proof (rule preal_downwards_closed [OF B y]) show "0 < y * ?f" by (simp add: divide_inverse zero_less_mult_iff) next show "y * ?f < y" by (insert mult_strict_left_mono [OF fless ypos], simp) qed next show "x * ?f ∈ A" proof (rule preal_downwards_closed [OF A x]) show "0 < x * ?f" by (simp add: divide_inverse zero_less_mult_iff) next show "x * ?f < x" by (insert mult_strict_left_mono [OF fless xpos], simp) qed qed qed text{*Part 4 of Dedekind sections definition*} lemma add_set_lemma4: "[|A ∈ preal; B ∈ preal; y ∈ add_set A B|] ==> ∃u ∈ add_set A B. y < u" apply (auto simp add: add_set_def) apply (frule preal_exists_greater [of A], auto) apply (rule_tac x="u + y" in exI) apply (auto intro: add_strict_left_mono) done lemma mem_add_set: "[|A ∈ preal; B ∈ preal|] ==> add_set A B ∈ preal" apply (simp (no_asm_simp) add: preal_def cut_def) apply (blast intro!: add_set_not_empty add_set_not_rat_set add_set_lemma3 add_set_lemma4) done lemma preal_add_assoc: "((x::preal) + y) + z = x + (y + z)" apply (simp add: preal_add_def mem_add_set Rep_preal) apply (force simp add: add_set_def add_ac) done instance preal :: ab_semigroup_add proof fix a b c :: preal show "(a + b) + c = a + (b + c)" by (rule preal_add_assoc) show "a + b = b + a" by (rule preal_add_commute) qed lemma preal_add_left_commute: "x + (y + z) = y + ((x + z)::preal)" by (rule add_left_commute) text{* Positive Real addition is an AC operator *} lemmas preal_add_ac = preal_add_assoc preal_add_commute preal_add_left_commute subsection{*Properties of Multiplication*} text{*Proofs essentially same as for addition*} lemma preal_mult_commute: "(x::preal) * y = y * x" apply (unfold preal_mult_def mult_set_def) apply (rule_tac f = Abs_preal in arg_cong) apply (force simp add: mult_commute) done text{*Multiplication of two positive reals gives a positive real.*} text{*Lemmas for proving positive reals multiplication set in @{typ preal}*} text{*Part 1 of Dedekind sections definition*} lemma mult_set_not_empty: "[|A ∈ preal; B ∈ preal|] ==> {} ⊂ mult_set A B" apply (insert preal_nonempty [of A] preal_nonempty [of B]) apply (auto simp add: mult_set_def) done text{*Part 2 of Dedekind sections definition*} lemma preal_not_mem_mult_set_Ex: assumes A: "A ∈ preal" and B: "B ∈ preal" shows "∃q. 0 < q & q ∉ mult_set A B" proof - from preal_exists_bound [OF A] obtain x where [simp]: "0 < x" "x ∉ A" by blast from preal_exists_bound [OF B] obtain y where [simp]: "0 < y" "y ∉ B" by blast show ?thesis proof (intro exI conjI) show "0 < x*y" by (simp add: mult_pos_pos) show "x * y ∉ mult_set A B" proof - { fix u::rat and v::rat assume "u ∈ A" and "v ∈ B" and "x*y = u*v" moreover with prems have "u<x" and "v<y" by (blast dest: not_in_preal_ub)+ moreover with prems have "0≤v" by (blast intro: preal_imp_pos [OF B] order_less_imp_le prems) moreover from calculation have "u*v < x*y" by (blast intro: mult_strict_mono prems) ultimately have False by force } thus ?thesis by (auto simp add: mult_set_def) qed qed qed lemma mult_set_not_rat_set: assumes A: "A ∈ preal" and B: "B ∈ preal" shows "mult_set A B < {r. 0 < r}" proof show "mult_set A B ⊆ {r. 0 < r}" by (force simp add: mult_set_def intro: preal_imp_pos [OF A] preal_imp_pos [OF B] mult_pos_pos) show "mult_set A B ≠ {r. 0 < r}" using preal_not_mem_mult_set_Ex [OF A B] by blast qed text{*Part 3 of Dedekind sections definition*} lemma mult_set_lemma3: "[|A ∈ preal; B ∈ preal; u ∈ mult_set A B; 0 < z; z < u|] ==> z ∈ mult_set A B" proof (unfold mult_set_def, clarify) fix x::rat and y::rat assume A: "A ∈ preal" and B: "B ∈ preal" and [simp]: "0 < z" and zless: "z < x * y" and x: "x ∈ A" and y: "y ∈ B" have [simp]: "0<y" by (rule preal_imp_pos [OF B y]) show "∃x' ∈ A. ∃y' ∈ B. z = x' * y'" proof show "∃y'∈B. z = (z/y) * y'" proof show "z = (z/y)*y" by (simp add: divide_inverse mult_commute [of y] mult_assoc order_less_imp_not_eq2) show "y ∈ B" by fact qed next show "z/y ∈ A" proof (rule preal_downwards_closed [OF A x]) show "0 < z/y" by (simp add: zero_less_divide_iff) show "z/y < x" by (simp add: pos_divide_less_eq zless) qed qed qed text{*Part 4 of Dedekind sections definition*} lemma mult_set_lemma4: "[|A ∈ preal; B ∈ preal; y ∈ mult_set A B|] ==> ∃u ∈ mult_set A B. y < u" apply (auto simp add: mult_set_def) apply (frule preal_exists_greater [of A], auto) apply (rule_tac x="u * y" in exI) apply (auto intro: preal_imp_pos [of A] preal_imp_pos [of B] mult_strict_right_mono) done lemma mem_mult_set: "[|A ∈ preal; B ∈ preal|] ==> mult_set A B ∈ preal" apply (simp (no_asm_simp) add: preal_def cut_def) apply (blast intro!: mult_set_not_empty mult_set_not_rat_set mult_set_lemma3 mult_set_lemma4) done lemma preal_mult_assoc: "((x::preal) * y) * z = x * (y * z)" apply (simp add: preal_mult_def mem_mult_set Rep_preal) apply (force simp add: mult_set_def mult_ac) done instance preal :: ab_semigroup_mult proof fix a b c :: preal show "(a * b) * c = a * (b * c)" by (rule preal_mult_assoc) show "a * b = b * a" by (rule preal_mult_commute) qed lemma preal_mult_left_commute: "x * (y * z) = y * ((x * z)::preal)" by (rule mult_left_commute) text{* Positive Real multiplication is an AC operator *} lemmas preal_mult_ac = preal_mult_assoc preal_mult_commute preal_mult_left_commute text{* Positive real 1 is the multiplicative identity element *} lemma preal_mult_1: "(1::preal) * z = z" unfolding preal_one_def proof (induct z) fix A :: "rat set" assume A: "A ∈ preal" have "{w. ∃u. 0 < u ∧ u < 1 & (∃v ∈ A. w = u * v)} = A" (is "?lhs = A") proof show "?lhs ⊆ A" proof clarify fix x::rat and u::rat and v::rat assume upos: "0<u" and "u<1" and v: "v ∈ A" have vpos: "0<v" by (rule preal_imp_pos [OF A v]) hence "u*v < 1*v" by (simp only: mult_strict_right_mono prems) thus "u * v ∈ A" by (force intro: preal_downwards_closed [OF A v] mult_pos_pos upos vpos) qed next show "A ⊆ ?lhs" proof clarify fix x::rat assume x: "x ∈ A" have xpos: "0<x" by (rule preal_imp_pos [OF A x]) from preal_exists_greater [OF A x] obtain v where v: "v ∈ A" and xlessv: "x < v" .. have vpos: "0<v" by (rule preal_imp_pos [OF A v]) show "∃u. 0 < u ∧ u < 1 ∧ (∃v∈A. x = u * v)" proof (intro exI conjI) show "0 < x/v" by (simp add: zero_less_divide_iff xpos vpos) show "x / v < 1" by (simp add: pos_divide_less_eq vpos xlessv) show "∃v'∈A. x = (x / v) * v'" proof show "x = (x/v)*v" by (simp add: divide_inverse mult_assoc vpos order_less_imp_not_eq2) show "v ∈ A" by fact qed qed qed qed thus "preal_of_rat 1 * Abs_preal A = Abs_preal A" by (simp add: preal_of_rat_def preal_mult_def mult_set_def rat_mem_preal A) qed instance preal :: comm_monoid_mult by intro_classes (rule preal_mult_1) lemma preal_mult_1_right: "z * (1::preal) = z" by (rule mult_1_right) subsection{*Distribution of Multiplication across Addition*} lemma mem_Rep_preal_add_iff: "(z ∈ Rep_preal(R+S)) = (∃x ∈ Rep_preal R. ∃y ∈ Rep_preal S. z = x + y)" apply (simp add: preal_add_def mem_add_set Rep_preal) apply (simp add: add_set_def) done lemma mem_Rep_preal_mult_iff: "(z ∈ Rep_preal(R*S)) = (∃x ∈ Rep_preal R. ∃y ∈ Rep_preal S. z = x * y)" apply (simp add: preal_mult_def mem_mult_set Rep_preal) apply (simp add: mult_set_def) done lemma distrib_subset1: "Rep_preal (w * (x + y)) ⊆ Rep_preal (w * x + w * y)" apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff) apply (force simp add: right_distrib) done lemma preal_add_mult_distrib_mean: assumes a: "a ∈ Rep_preal w" and b: "b ∈ Rep_preal w" and d: "d ∈ Rep_preal x" and e: "e ∈ Rep_preal y" shows "∃c ∈ Rep_preal w. a * d + b * e = c * (d + e)" proof let ?c = "(a*d + b*e)/(d+e)" have [simp]: "0<a" "0<b" "0<d" "0<e" "0<d+e" by (blast intro: preal_imp_pos [OF Rep_preal] a b d e pos_add_strict)+ have cpos: "0 < ?c" by (simp add: zero_less_divide_iff zero_less_mult_iff pos_add_strict) show "a * d + b * e = ?c * (d + e)" by (simp add: divide_inverse mult_assoc order_less_imp_not_eq2) show "?c ∈ Rep_preal w" proof (cases rule: linorder_le_cases) assume "a ≤ b" hence "?c ≤ b" by (simp add: pos_divide_le_eq right_distrib mult_right_mono order_less_imp_le) thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal b cpos]) next assume "b ≤ a" hence "?c ≤ a" by (simp add: pos_divide_le_eq right_distrib mult_right_mono order_less_imp_le) thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal a cpos]) qed qed lemma distrib_subset2: "Rep_preal (w * x + w * y) ⊆ Rep_preal (w * (x + y))" apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff) apply (drule_tac w=w and x=x and y=y in preal_add_mult_distrib_mean, auto) done lemma preal_add_mult_distrib2: "(w * ((x::preal) + y)) = (w * x) + (w * y)" apply (rule Rep_preal_inject [THEN iffD1]) apply (rule equalityI [OF distrib_subset1 distrib_subset2]) done lemma preal_add_mult_distrib: "(((x::preal) + y) * w) = (x * w) + (y * w)" by (simp add: preal_mult_commute preal_add_mult_distrib2) instance preal :: comm_semiring by intro_classes (rule preal_add_mult_distrib) subsection{*Existence of Inverse, a Positive Real*} lemma mem_inv_set_ex: assumes A: "A ∈ preal" shows "∃x y. 0 < x & x < y & inverse y ∉ A" proof - from preal_exists_bound [OF A] obtain x where [simp]: "0<x" "x ∉ A" by blast show ?thesis proof (intro exI conjI) show "0 < inverse (x+1)" by (simp add: order_less_trans [OF _ less_add_one]) show "inverse(x+1) < inverse x" by (simp add: less_imp_inverse_less less_add_one) show "inverse (inverse x) ∉ A" by (simp add: order_less_imp_not_eq2) qed qed text{*Part 1 of Dedekind sections definition*} lemma inverse_set_not_empty: "A ∈ preal ==> {} ⊂ inverse_set A" apply (insert mem_inv_set_ex [of A]) apply (auto simp add: inverse_set_def) done text{*Part 2 of Dedekind sections definition*} lemma preal_not_mem_inverse_set_Ex: assumes A: "A ∈ preal" shows "∃q. 0 < q & q ∉ inverse_set A" proof - from preal_nonempty [OF A] obtain x where x: "x ∈ A" and xpos [simp]: "0<x" .. show ?thesis proof (intro exI conjI) show "0 < inverse x" by simp show "inverse x ∉ inverse_set A" proof - { fix y::rat assume ygt: "inverse x < y" have [simp]: "0 < y" by (simp add: order_less_trans [OF _ ygt]) have iyless: "inverse y < x" by (simp add: inverse_less_imp_less [of x] ygt) have "inverse y ∈ A" by (simp add: preal_downwards_closed [OF A x] iyless)} thus ?thesis by (auto simp add: inverse_set_def) qed qed qed lemma inverse_set_not_rat_set: assumes A: "A ∈ preal" shows "inverse_set A < {r. 0 < r}" proof show "inverse_set A ⊆ {r. 0 < r}" by (force simp add: inverse_set_def) next show "inverse_set A ≠ {r. 0 < r}" by (insert preal_not_mem_inverse_set_Ex [OF A], blast) qed text{*Part 3 of Dedekind sections definition*} lemma inverse_set_lemma3: "[|A ∈ preal; u ∈ inverse_set A; 0 < z; z < u|] ==> z ∈ inverse_set A" apply (auto simp add: inverse_set_def) apply (auto intro: order_less_trans) done text{*Part 4 of Dedekind sections definition*} lemma inverse_set_lemma4: "[|A ∈ preal; y ∈ inverse_set A|] ==> ∃u ∈ inverse_set A. y < u" apply (auto simp add: inverse_set_def) apply (drule dense [of y]) apply (blast intro: order_less_trans) done lemma mem_inverse_set: "A ∈ preal ==> inverse_set A ∈ preal" apply (simp (no_asm_simp) add: preal_def cut_def) apply (blast intro!: inverse_set_not_empty inverse_set_not_rat_set inverse_set_lemma3 inverse_set_lemma4) done subsection{*Gleason's Lemma 9-3.4, page 122*} lemma Gleason9_34_exists: assumes A: "A ∈ preal" and "∀x∈A. x + u ∈ A" and "0 ≤ z" shows "∃b∈A. b + (of_int z) * u ∈ A" proof (cases z rule: int_cases) case (nonneg n) show ?thesis proof (simp add: prems, induct n) case 0 from preal_nonempty [OF A] show ?case by force case (Suc k) from this obtain b where "b ∈ A" "b + of_nat k * u ∈ A" .. hence "b + of_int (int k)*u + u ∈ A" by (simp add: prems) thus ?case by (force simp add: left_distrib add_ac prems) qed next case (neg n) with prems show ?thesis by simp qed lemma Gleason9_34_contra: assumes A: "A ∈ preal" shows "[|∀x∈A. x + u ∈ A; 0 < u; 0 < y; y ∉ A|] ==> False" proof (induct u, induct y) fix a::int and b::int fix c::int and d::int assume bpos [simp]: "0 < b" and dpos [simp]: "0 < d" and closed: "∀x∈A. x + (Fract c d) ∈ A" and upos: "0 < Fract c d" and ypos: "0 < Fract a b" and notin: "Fract a b ∉ A" have cpos [simp]: "0 < c" by (simp add: zero_less_Fract_iff [OF dpos, symmetric] upos) have apos [simp]: "0 < a" by (simp add: zero_less_Fract_iff [OF bpos, symmetric] ypos) let ?k = "a*d" have frle: "Fract a b ≤ Fract ?k 1 * (Fract c d)" proof - have "?thesis = ((a * d * b * d) ≤ c * b * (a * d * b * d))" by (simp add: mult_rat le_rat order_less_imp_not_eq2 mult_ac) moreover have "(1 * (a * d * b * d)) ≤ c * b * (a * d * b * d)" by (rule mult_mono, simp_all add: int_one_le_iff_zero_less zero_less_mult_iff order_less_imp_le) ultimately show ?thesis by simp qed have k: "0 ≤ ?k" by (simp add: order_less_imp_le zero_less_mult_iff) from Gleason9_34_exists [OF A closed k] obtain z where z: "z ∈ A" and mem: "z + of_int ?k * Fract c d ∈ A" .. have less: "z + of_int ?k * Fract c d < Fract a b" by (rule not_in_preal_ub [OF A notin mem ypos]) have "0<z" by (rule preal_imp_pos [OF A z]) with frle and less show False by (simp add: Fract_of_int_eq) qed lemma Gleason9_34: assumes A: "A ∈ preal" and upos: "0 < u" shows "∃r ∈ A. r + u ∉ A" proof (rule ccontr, simp) assume closed: "∀r∈A. r + u ∈ A" from preal_exists_bound [OF A] obtain y where y: "y ∉ A" and ypos: "0 < y" by blast show False by (rule Gleason9_34_contra [OF A closed upos ypos y]) qed subsection{*Gleason's Lemma 9-3.6*} lemma lemma_gleason9_36: assumes A: "A ∈ preal" and x: "1 < x" shows "∃r ∈ A. r*x ∉ A" proof - from preal_nonempty [OF A] obtain y where y: "y ∈ A" and ypos: "0<y" .. show ?thesis proof (rule classical) assume "~(∃r∈A. r * x ∉ A)" with y have ymem: "y * x ∈ A" by blast from ypos mult_strict_left_mono [OF x] have yless: "y < y*x" by simp let ?d = "y*x - y" from yless have dpos: "0 < ?d" and eq: "y + ?d = y*x" by auto from Gleason9_34 [OF A dpos] obtain r where r: "r∈A" and notin: "r + ?d ∉ A" .. have rpos: "0<r" by (rule preal_imp_pos [OF A r]) with dpos have rdpos: "0 < r + ?d" by arith have "~ (r + ?d ≤ y + ?d)" proof assume le: "r + ?d ≤ y + ?d" from ymem have yd: "y + ?d ∈ A" by (simp add: eq) have "r + ?d ∈ A" by (rule preal_downwards_closed' [OF A yd rdpos le]) with notin show False by simp qed hence "y < r" by simp with ypos have dless: "?d < (r * ?d)/y" by (simp add: pos_less_divide_eq mult_commute [of ?d] mult_strict_right_mono dpos) have "r + ?d < r*x" proof - have "r + ?d < r + (r * ?d)/y" by (simp add: dless) also with ypos have "... = (r/y) * (y + ?d)" by (simp only: right_distrib divide_inverse mult_ac, simp) also have "... = r*x" using ypos by (simp add: times_divide_eq_left) finally show "r + ?d < r*x" . qed with r notin rdpos show "∃r∈A. r * x ∉ A" by (blast dest: preal_downwards_closed [OF A]) qed qed subsection{*Existence of Inverse: Part 2*} lemma mem_Rep_preal_inverse_iff: "(z ∈ Rep_preal(inverse R)) = (0 < z ∧ (∃y. z < y ∧ inverse y ∉ Rep_preal R))" apply (simp add: preal_inverse_def mem_inverse_set Rep_preal) apply (simp add: inverse_set_def) done lemma Rep_preal_of_rat: "0 < q ==> Rep_preal (preal_of_rat q) = {x. 0 < x ∧ x < q}" by (simp add: preal_of_rat_def rat_mem_preal) lemma subset_inverse_mult_lemma: assumes xpos: "0 < x" and xless: "x < 1" shows "∃r u y. 0 < r & r < y & inverse y ∉ Rep_preal R & u ∈ Rep_preal R & x = r * u" proof - from xpos and xless have "1 < inverse x" by (simp add: one_less_inverse_iff) from lemma_gleason9_36 [OF Rep_preal this] obtain r where r: "r ∈ Rep_preal R" and notin: "r * (inverse x) ∉ Rep_preal R" .. have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r]) from preal_exists_greater [OF Rep_preal r] obtain u where u: "u ∈ Rep_preal R" and rless: "r < u" .. have upos: "0<u" by (rule preal_imp_pos [OF Rep_preal u]) show ?thesis proof (intro exI conjI) show "0 < x/u" using xpos upos by (simp add: zero_less_divide_iff) show "x/u < x/r" using xpos upos rpos by (simp add: divide_inverse mult_less_cancel_left rless) show "inverse (x / r) ∉ Rep_preal R" using notin by (simp add: divide_inverse mult_commute) show "u ∈ Rep_preal R" by (rule u) show "x = x / u * u" using upos by (simp add: divide_inverse mult_commute) qed qed lemma subset_inverse_mult: "Rep_preal(preal_of_rat 1) ⊆ Rep_preal(inverse R * R)" apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff mem_Rep_preal_mult_iff) apply (blast dest: subset_inverse_mult_lemma) done lemma inverse_mult_subset_lemma: assumes rpos: "0 < r" and rless: "r < y" and notin: "inverse y ∉ Rep_preal R" and q: "q ∈ Rep_preal R" shows "r*q < 1" proof - have "q < inverse y" using rpos rless by (simp add: not_in_preal_ub [OF Rep_preal notin] q) hence "r * q < r/y" using rpos by (simp add: divide_inverse mult_less_cancel_left) also have "... ≤ 1" using rpos rless by (simp add: pos_divide_le_eq) finally show ?thesis . qed lemma inverse_mult_subset: "Rep_preal(inverse R * R) ⊆ Rep_preal(preal_of_rat 1)" apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff mem_Rep_preal_mult_iff) apply (simp add: zero_less_mult_iff preal_imp_pos [OF Rep_preal]) apply (blast intro: inverse_mult_subset_lemma) done lemma preal_mult_inverse: "inverse R * R = (1::preal)" unfolding preal_one_def apply (rule Rep_preal_inject [THEN iffD1]) apply (rule equalityI [OF inverse_mult_subset subset_inverse_mult]) done lemma preal_mult_inverse_right: "R * inverse R = (1::preal)" apply (rule preal_mult_commute [THEN subst]) apply (rule preal_mult_inverse) done text{*Theorems needing @{text Gleason9_34}*} lemma Rep_preal_self_subset: "Rep_preal (R) ⊆ Rep_preal(R + S)" proof fix r assume r: "r ∈ Rep_preal R" have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r]) from mem_Rep_preal_Ex obtain y where y: "y ∈ Rep_preal S" .. have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y]) have ry: "r+y ∈ Rep_preal(R + S)" using r y by (auto simp add: mem_Rep_preal_add_iff) show "r ∈ Rep_preal(R + S)" using r ypos rpos by (simp add: preal_downwards_closed [OF Rep_preal ry]) qed lemma Rep_preal_sum_not_subset: "~ Rep_preal (R + S) ⊆ Rep_preal(R)" proof - from mem_Rep_preal_Ex obtain y where y: "y ∈ Rep_preal S" .. have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y]) from Gleason9_34 [OF Rep_preal ypos] obtain r where r: "r ∈ Rep_preal R" and notin: "r + y ∉ Rep_preal R" .. have "r + y ∈ Rep_preal (R + S)" using r y by (auto simp add: mem_Rep_preal_add_iff) thus ?thesis using notin by blast qed lemma Rep_preal_sum_not_eq: "Rep_preal (R + S) ≠ Rep_preal(R)" by (insert Rep_preal_sum_not_subset, blast) text{*at last, Gleason prop. 9-3.5(iii) page 123*} lemma preal_self_less_add_left: "(R::preal) < R + S" apply (unfold preal_less_def less_le) apply (simp add: Rep_preal_self_subset Rep_preal_sum_not_eq [THEN not_sym]) done lemma preal_self_less_add_right: "(R::preal) < S + R" by (simp add: preal_add_commute preal_self_less_add_left) lemma preal_not_eq_self: "x ≠ x + (y::preal)" by (insert preal_self_less_add_left [of x y], auto) subsection{*Subtraction for Positive Reals*} text{*Gleason prop. 9-3.5(iv), page 123: proving @{prop "A < B ==> ∃D. A + D = B"}. We define the claimed @{term D} and show that it is a positive real*} text{*Part 1 of Dedekind sections definition*} lemma diff_set_not_empty: "R < S ==> {} ⊂ diff_set (Rep_preal S) (Rep_preal R)" apply (auto simp add: preal_less_def diff_set_def elim!: equalityE) apply (frule_tac x1 = S in Rep_preal [THEN preal_exists_greater]) apply (drule preal_imp_pos [OF Rep_preal], clarify) apply (cut_tac a=x and b=u in add_eq_exists, force) done text{*Part 2 of Dedekind sections definition*} lemma diff_set_nonempty: "∃q. 0 < q & q ∉ diff_set (Rep_preal S) (Rep_preal R)" apply (cut_tac X = S in Rep_preal_exists_bound) apply (erule exE) apply (rule_tac x = x in exI, auto) apply (simp add: diff_set_def) apply (auto dest: Rep_preal [THEN preal_downwards_closed]) done lemma diff_set_not_rat_set: "diff_set (Rep_preal S) (Rep_preal R) < {r. 0 < r}" (is "?lhs < ?rhs") proof show "?lhs ⊆ ?rhs" by (auto simp add: diff_set_def) show "?lhs ≠ ?rhs" using diff_set_nonempty by blast qed text{*Part 3 of Dedekind sections definition*} lemma diff_set_lemma3: "[|R < S; u ∈ diff_set (Rep_preal S) (Rep_preal R); 0 < z; z < u|] ==> z ∈ diff_set (Rep_preal S) (Rep_preal R)" apply (auto simp add: diff_set_def) apply (rule_tac x=x in exI) apply (drule Rep_preal [THEN preal_downwards_closed], auto) done text{*Part 4 of Dedekind sections definition*} lemma diff_set_lemma4: "[|R < S; y ∈ diff_set (Rep_preal S) (Rep_preal R)|] ==> ∃u ∈ diff_set (Rep_preal S) (Rep_preal R). y < u" apply (auto simp add: diff_set_def) apply (drule Rep_preal [THEN preal_exists_greater], clarify) apply (cut_tac a="x+y" and b=u in add_eq_exists, clarify) apply (rule_tac x="y+xa" in exI) apply (auto simp add: add_ac) done lemma mem_diff_set: "R < S ==> diff_set (Rep_preal S) (Rep_preal R) ∈ preal" apply (unfold preal_def cut_def) apply (blast intro!: diff_set_not_empty diff_set_not_rat_set diff_set_lemma3 diff_set_lemma4) done lemma mem_Rep_preal_diff_iff: "R < S ==> (z ∈ Rep_preal(S-R)) = (∃x. 0 < x & 0 < z & x ∉ Rep_preal R & x + z ∈ Rep_preal S)" apply (simp add: preal_diff_def mem_diff_set Rep_preal) apply (force simp add: diff_set_def) done text{*proving that @{term "R + D ≤ S"}*} lemma less_add_left_lemma: assumes Rless: "R < S" and a: "a ∈ Rep_preal R" and cb: "c + b ∈ Rep_preal S" and "c ∉ Rep_preal R" and "0 < b" and "0 < c" shows "a + b ∈ Rep_preal S" proof - have "0<a" by (rule preal_imp_pos [OF Rep_preal a]) moreover have "a < c" using prems by (blast intro: not_in_Rep_preal_ub ) ultimately show ?thesis using prems by (simp add: preal_downwards_closed [OF Rep_preal cb]) qed lemma less_add_left_le1: "R < (S::preal) ==> R + (S-R) ≤ S" apply (auto simp add: Bex_def preal_le_def mem_Rep_preal_add_iff mem_Rep_preal_diff_iff) apply (blast intro: less_add_left_lemma) done subsection{*proving that @{term "S ≤ R + D"} --- trickier*} lemma lemma_sum_mem_Rep_preal_ex: "x ∈ Rep_preal S ==> ∃e. 0 < e & x + e ∈ Rep_preal S" apply (drule Rep_preal [THEN preal_exists_greater], clarify) apply (cut_tac a=x and b=u in add_eq_exists, auto) done lemma less_add_left_lemma2: assumes Rless: "R < S" and x: "x ∈ Rep_preal S" and xnot: "x ∉ Rep_preal R" shows "∃u v z. 0 < v & 0 < z & u ∈ Rep_preal R & z ∉ Rep_preal R & z + v ∈ Rep_preal S & x = u + v" proof - have xpos: "0<x" by (rule preal_imp_pos [OF Rep_preal x]) from lemma_sum_mem_Rep_preal_ex [OF x] obtain e where epos: "0 < e" and xe: "x + e ∈ Rep_preal S" by blast from Gleason9_34 [OF Rep_preal epos] obtain r where r: "r ∈ Rep_preal R" and notin: "r + e ∉ Rep_preal R" .. with x xnot xpos have rless: "r < x" by (blast intro: not_in_Rep_preal_ub) from add_eq_exists [of r x] obtain y where eq: "x = r+y" by auto show ?thesis proof (intro exI conjI) show "r ∈ Rep_preal R" by (rule r) show "r + e ∉ Rep_preal R" by (rule notin) show "r + e + y ∈ Rep_preal S" using xe eq by (simp add: add_ac) show "x = r + y" by (simp add: eq) show "0 < r + e" using epos preal_imp_pos [OF Rep_preal r] by simp show "0 < y" using rless eq by arith qed qed lemma less_add_left_le2: "R < (S::preal) ==> S ≤ R + (S-R)" apply (auto simp add: preal_le_def) apply (case_tac "x ∈ Rep_preal R") apply (cut_tac Rep_preal_self_subset [of R], force) apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_diff_iff) apply (blast dest: less_add_left_lemma2) done lemma less_add_left: "R < (S::preal) ==> R + (S-R) = S" by (blast intro: preal_le_anti_sym [OF less_add_left_le1 less_add_left_le2]) lemma less_add_left_Ex: "R < (S::preal) ==> ∃D. R + D = S" by (fast dest: less_add_left) lemma preal_add_less2_mono1: "R < (S::preal) ==> R + T < S + T" apply (auto dest!: less_add_left_Ex simp add: preal_add_assoc) apply (rule_tac y1 = D in preal_add_commute [THEN subst]) apply (auto intro: preal_self_less_add_left simp add: preal_add_assoc [symmetric]) done lemma preal_add_less2_mono2: "R < (S::preal) ==> T + R < T + S" by (auto intro: preal_add_less2_mono1 simp add: preal_add_commute [of T]) lemma preal_add_right_less_cancel: "R + T < S + T ==> R < (S::preal)" apply (insert linorder_less_linear [of R S], auto) apply (drule_tac R = S and T = T in preal_add_less2_mono1) apply (blast dest: order_less_trans) done lemma preal_add_left_less_cancel: "T + R < T + S ==> R < (S::preal)" by (auto elim: preal_add_right_less_cancel simp add: preal_add_commute [of T]) lemma preal_add_less_cancel_right: "((R::preal) + T < S + T) = (R < S)" by (blast intro: preal_add_less2_mono1 preal_add_right_less_cancel) lemma preal_add_less_cancel_left: "(T + (R::preal) < T + S) = (R < S)" by (blast intro: preal_add_less2_mono2 preal_add_left_less_cancel) lemma preal_add_le_cancel_right: "((R::preal) + T ≤ S + T) = (R ≤ S)" by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_right) lemma preal_add_le_cancel_left: "(T + (R::preal) ≤ T + S) = (R ≤ S)" by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_left) lemma preal_add_less_mono: "[| x1 < y1; x2 < y2 |] ==> x1 + x2 < y1 + (y2::preal)" apply (auto dest!: less_add_left_Ex simp add: preal_add_ac) apply (rule preal_add_assoc [THEN subst]) apply (rule preal_self_less_add_right) done lemma preal_add_right_cancel: "(R::preal) + T = S + T ==> R = S" apply (insert linorder_less_linear [of R S], safe) apply (drule_tac [!] T = T in preal_add_less2_mono1, auto) done lemma preal_add_left_cancel: "C + A = C + B ==> A = (B::preal)" by (auto intro: preal_add_right_cancel simp add: preal_add_commute) lemma preal_add_left_cancel_iff: "(C + A = C + B) = ((A::preal) = B)" by (fast intro: preal_add_left_cancel) lemma preal_add_right_cancel_iff: "(A + C = B + C) = ((A::preal) = B)" by (fast intro: preal_add_right_cancel) lemmas preal_cancels = preal_add_less_cancel_right preal_add_less_cancel_left preal_add_le_cancel_right preal_add_le_cancel_left preal_add_left_cancel_iff preal_add_right_cancel_iff instance preal :: ordered_cancel_ab_semigroup_add proof fix a b c :: preal show "a + b = a + c ==> b = c" by (rule preal_add_left_cancel) show "a ≤ b ==> c + a ≤ c + b" by (simp only: preal_add_le_cancel_left) qed subsection{*Completeness of type @{typ preal}*} text{*Prove that supremum is a cut*} text{*Part 1 of Dedekind sections definition*} lemma preal_sup_set_not_empty: "P ≠ {} ==> {} ⊂ (\<Union>X ∈ P. Rep_preal(X))" apply auto apply (cut_tac X = x in mem_Rep_preal_Ex, auto) done text{*Part 2 of Dedekind sections definition*} lemma preal_sup_not_exists: "∀X ∈ P. X ≤ Y ==> ∃q. 0 < q & q ∉ (\<Union>X ∈ P. Rep_preal(X))" apply (cut_tac X = Y in Rep_preal_exists_bound) apply (auto simp add: preal_le_def) done lemma preal_sup_set_not_rat_set: "∀X ∈ P. X ≤ Y ==> (\<Union>X ∈ P. Rep_preal(X)) < {r. 0 < r}" apply (drule preal_sup_not_exists) apply (blast intro: preal_imp_pos [OF Rep_preal]) done text{*Part 3 of Dedekind sections definition*} lemma preal_sup_set_lemma3: "[|P ≠ {}; ∀X ∈ P. X ≤ Y; u ∈ (\<Union>X ∈ P. Rep_preal(X)); 0 < z; z < u|] ==> z ∈ (\<Union>X ∈ P. Rep_preal(X))" by (auto elim: Rep_preal [THEN preal_downwards_closed]) text{*Part 4 of Dedekind sections definition*} lemma preal_sup_set_lemma4: "[|P ≠ {}; ∀X ∈ P. X ≤ Y; y ∈ (\<Union>X ∈ P. Rep_preal(X)) |] ==> ∃u ∈ (\<Union>X ∈ P. Rep_preal(X)). y < u" by (blast dest: Rep_preal [THEN preal_exists_greater]) lemma preal_sup: "[|P ≠ {}; ∀X ∈ P. X ≤ Y|] ==> (\<Union>X ∈ P. Rep_preal(X)) ∈ preal" apply (unfold preal_def cut_def) apply (blast intro!: preal_sup_set_not_empty preal_sup_set_not_rat_set preal_sup_set_lemma3 preal_sup_set_lemma4) done lemma preal_psup_le: "[| ∀X ∈ P. X ≤ Y; x ∈ P |] ==> x ≤ psup P" apply (simp (no_asm_simp) add: preal_le_def) apply (subgoal_tac "P ≠ {}") apply (auto simp add: psup_def preal_sup) done lemma psup_le_ub: "[| P ≠ {}; ∀X ∈ P. X ≤ Y |] ==> psup P ≤ Y" apply (simp (no_asm_simp) add: preal_le_def) apply (simp add: psup_def preal_sup) apply (auto simp add: preal_le_def) done text{*Supremum property*} lemma preal_complete: "[| P ≠ {}; ∀X ∈ P. X ≤ Y |] ==> (∃X ∈ P. Z < X) = (Z < psup P)" apply (simp add: preal_less_def psup_def preal_sup) apply (auto simp add: preal_le_def) apply (rename_tac U) apply (cut_tac x = U and y = Z in linorder_less_linear) apply (auto simp add: preal_less_def) done subsection{*The Embedding from @{typ rat} into @{typ preal}*} lemma preal_of_rat_add_lemma1: "[|x < y + z; 0 < x; 0 < y|] ==> x * y * inverse (y + z) < (y::rat)" apply (frule_tac c = "y * inverse (y + z) " in mult_strict_right_mono) apply (simp add: zero_less_mult_iff) apply (simp add: mult_ac) done lemma preal_of_rat_add_lemma2: assumes "u < x + y" and "0 < x" and "0 < y" and "0 < u" shows "∃v w::rat. w < y & 0 < v & v < x & 0 < w & u = v + w" proof (intro exI conjI) show "u * x * inverse(x+y) < x" using prems by (simp add: preal_of_rat_add_lemma1) show "u * y * inverse(x+y) < y" using prems by (simp add: preal_of_rat_add_lemma1 add_commute [of x]) show "0 < u * x * inverse (x + y)" using prems by (simp add: zero_less_mult_iff) show "0 < u * y * inverse (x + y)" using prems by (simp add: zero_less_mult_iff) show "u = u * x * inverse (x + y) + u * y * inverse (x + y)" using prems by (simp add: left_distrib [symmetric] right_distrib [symmetric] mult_ac) qed lemma preal_of_rat_add: "[| 0 < x; 0 < y|] ==> preal_of_rat ((x::rat) + y) = preal_of_rat x + preal_of_rat y" apply (unfold preal_of_rat_def preal_add_def) apply (simp add: rat_mem_preal) apply (rule_tac f = Abs_preal in arg_cong) apply (auto simp add: add_set_def) apply (blast dest: preal_of_rat_add_lemma2) done lemma preal_of_rat_mult_lemma1: "[|x < y; 0 < x; 0 < z|] ==> x * z * inverse y < (z::rat)" apply (frule_tac c = "z * inverse y" in mult_strict_right_mono) apply (simp add: zero_less_mult_iff) apply (subgoal_tac "y * (z * inverse y) = z * (y * inverse y)") apply (simp_all add: mult_ac) done lemma preal_of_rat_mult_lemma2: assumes xless: "x < y * z" and xpos: "0 < x" and ypos: "0 < y" shows "x * z * inverse y * inverse z < (z::rat)" proof - have "0 < y * z" using prems by simp hence zpos: "0 < z" using prems by (simp add: zero_less_mult_iff) have "x * z * inverse y * inverse z = x * inverse y * (z * inverse z)" by (simp add: mult_ac) also have "... = x/y" using zpos by (simp add: divide_inverse) also from xless have "... < z" by (simp add: pos_divide_less_eq [OF ypos] mult_commute) finally show ?thesis . qed lemma preal_of_rat_mult_lemma3: assumes uless: "u < x * y" and "0 < x" and "0 < y" and "0 < u" shows "∃v w::rat. v < x & w < y & 0 < v & 0 < w & u = v * w" proof - from dense [OF uless] obtain r where "u < r" "r < x * y" by blast thus ?thesis proof (intro exI conjI) show "u * x * inverse r < x" using prems by (simp add: preal_of_rat_mult_lemma1) show "r * y * inverse x * inverse y < y" using prems by (simp add: preal_of_rat_mult_lemma2) show "0 < u * x * inverse r" using prems by (simp add: zero_less_mult_iff) show "0 < r * y * inverse x * inverse y" using prems by (simp add: zero_less_mult_iff) have "u * x * inverse r * (r * y * inverse x * inverse y) = u * (r * inverse r) * (x * inverse x) * (y * inverse y)" by (simp only: mult_ac) thus "u = u * x * inverse r * (r * y * inverse x * inverse y)" using prems by simp qed qed lemma preal_of_rat_mult: "[| 0 < x; 0 < y|] ==> preal_of_rat ((x::rat) * y) = preal_of_rat x * preal_of_rat y" apply (unfold preal_of_rat_def preal_mult_def) apply (simp add: rat_mem_preal) apply (rule_tac f = Abs_preal in arg_cong) apply (auto simp add: zero_less_mult_iff mult_strict_mono mult_set_def) apply (blast dest: preal_of_rat_mult_lemma3) done lemma preal_of_rat_less_iff: "[| 0 < x; 0 < y|] ==> (preal_of_rat x < preal_of_rat y) = (x < y)" by (force simp add: preal_of_rat_def preal_less_def rat_mem_preal) lemma preal_of_rat_le_iff: "[| 0 < x; 0 < y|] ==> (preal_of_rat x ≤ preal_of_rat y) = (x ≤ y)" by (simp add: preal_of_rat_less_iff linorder_not_less [symmetric]) lemma preal_of_rat_eq_iff: "[| 0 < x; 0 < y|] ==> (preal_of_rat x = preal_of_rat y) = (x = y)" by (simp add: preal_of_rat_le_iff order_eq_iff) end
lemma add_eq_exists:
∃x. a + x = b
lemma cut_of_rat:
0 < q ==> PReal.cut {r. 0 < r ∧ r < q}
lemma rat_mem_preal:
0 < q ==> {r. 0 < r ∧ r < q} ∈ preal
lemma preal_nonempty:
A ∈ preal ==> ∃x∈A. 0 < x
lemma preal_Ex_mem:
A ∈ preal ==> ∃x. x ∈ A
lemma preal_imp_psubset_positives:
A ∈ preal ==> A ⊂ {r. 0 < r}
lemma preal_exists_bound:
A ∈ preal ==> ∃x>0. x ∉ A
lemma preal_exists_greater:
[| A ∈ preal; y ∈ A |] ==> ∃u∈A. y < u
lemma preal_downwards_closed:
[| A ∈ preal; y ∈ A; 0 < z; z < y |] ==> z ∈ A
lemma preal_downwards_closed':
[| A ∈ preal; y ∈ A; 0 < z; z ≤ y |] ==> z ∈ A
lemma not_in_preal_ub:
[| A ∈ preal; x ∉ A; y ∈ A; 0 < x |] ==> y < x
lemma mem_Rep_preal_Ex:
∃x. x ∈ Rep_preal X
lemma Rep_preal_exists_bound:
∃x>0. x ∉ Rep_preal X
lemma not_in_Rep_preal_ub:
[| x ∉ Rep_preal x1; y ∈ Rep_preal x1; 0 < x |] ==> y < x
lemma rat_less_set_mem_preal:
0 < y ==> {u. 0 < u ∧ u < y} ∈ preal
lemma rat_subset_imp_le:
[| {u. 0 < u ∧ u < x} ⊆ {u. 0 < u ∧ u < y}; 0 < x |] ==> x ≤ y
lemma rat_set_eq_imp_eq:
[| {u. 0 < u ∧ u < x} = {u. 0 < u ∧ u < y}; 0 < x; 0 < y |] ==> x = y
lemma preal_le_refl:
w ≤ w
lemma preal_le_trans:
[| i ≤ j; j ≤ k |] ==> i ≤ k
lemma preal_le_anti_sym:
[| z ≤ w; w ≤ z |] ==> z = w
lemma preal_less_le:
(w < z) = (w ≤ z ∧ w ≠ z)
lemma preal_imp_pos:
[| A ∈ preal; r ∈ A |] ==> 0 < r
lemma preal_le_linear:
x ≤ y ∨ y ≤ x
lemma preal_add_commute:
x + y = y + x
lemma empty_psubset_nonempty:
a ∈ A ==> {} ⊂ A
lemma add_set_not_empty:
[| A ∈ preal; B ∈ preal |] ==> {} ⊂ add_set A B
lemma preal_not_mem_add_set_Ex:
[| A ∈ preal; B ∈ preal |] ==> ∃q>0. q ∉ add_set A B
lemma add_set_not_rat_set:
[| A ∈ preal; B ∈ preal |] ==> add_set A B ⊂ {r. 0 < r}
lemma add_set_lemma3:
[| A ∈ preal; B ∈ preal; u ∈ add_set A B; 0 < z; z < u |] ==> z ∈ add_set A B
lemma add_set_lemma4:
[| A ∈ preal; B ∈ preal; y ∈ add_set A B |] ==> ∃u∈add_set A B. y < u
lemma mem_add_set:
[| A ∈ preal; B ∈ preal |] ==> add_set A B ∈ preal
lemma preal_add_assoc:
x + y + z = x + (y + z)
lemma preal_add_left_commute:
x + (y + z) = y + (x + z)
lemma preal_add_ac:
x + y + z = x + (y + z)
x + y = y + x
x + (y + z) = y + (x + z)
lemma preal_mult_commute:
x * y = y * x
lemma mult_set_not_empty:
[| A ∈ preal; B ∈ preal |] ==> {} ⊂ mult_set A B
lemma preal_not_mem_mult_set_Ex:
[| A ∈ preal; B ∈ preal |] ==> ∃q>0. q ∉ mult_set A B
lemma mult_set_not_rat_set:
[| A ∈ preal; B ∈ preal |] ==> mult_set A B ⊂ {r. 0 < r}
lemma mult_set_lemma3:
[| A ∈ preal; B ∈ preal; u ∈ mult_set A B; 0 < z; z < u |] ==> z ∈ mult_set A B
lemma mult_set_lemma4:
[| A ∈ preal; B ∈ preal; y ∈ mult_set A B |] ==> ∃u∈mult_set A B. y < u
lemma mem_mult_set:
[| A ∈ preal; B ∈ preal |] ==> mult_set A B ∈ preal
lemma preal_mult_assoc:
x * y * z = x * (y * z)
lemma preal_mult_left_commute:
x * (y * z) = y * (x * z)
lemma preal_mult_ac:
x * y * z = x * (y * z)
x * y = y * x
x * (y * z) = y * (x * z)
lemma preal_mult_1:
1 * z = z
lemma preal_mult_1_right:
z * 1 = z
lemma mem_Rep_preal_add_iff:
(z ∈ Rep_preal (R + S)) = (∃x∈Rep_preal R. ∃y∈Rep_preal S. z = x + y)
lemma mem_Rep_preal_mult_iff:
(z ∈ Rep_preal (R * S)) = (∃x∈Rep_preal R. ∃y∈Rep_preal S. z = x * y)
lemma distrib_subset1:
Rep_preal (w * (x + y)) ⊆ Rep_preal (w * x + w * y)
lemma preal_add_mult_distrib_mean:
[| a ∈ Rep_preal w; b ∈ Rep_preal w; d ∈ Rep_preal x; e ∈ Rep_preal y |]
==> ∃c∈Rep_preal w. a * d + b * e = c * (d + e)
lemma distrib_subset2:
Rep_preal (w * x + w * y) ⊆ Rep_preal (w * (x + y))
lemma preal_add_mult_distrib2:
w * (x + y) = w * x + w * y
lemma preal_add_mult_distrib:
(x + y) * w = x * w + y * w
lemma mem_inv_set_ex:
A ∈ preal ==> ∃x y. 0 < x ∧ x < y ∧ inverse y ∉ A
lemma inverse_set_not_empty:
A ∈ preal ==> {} ⊂ inverse_set A
lemma preal_not_mem_inverse_set_Ex:
A ∈ preal ==> ∃q>0. q ∉ inverse_set A
lemma inverse_set_not_rat_set:
A ∈ preal ==> inverse_set A ⊂ {r. 0 < r}
lemma inverse_set_lemma3:
[| A ∈ preal; u ∈ inverse_set A; 0 < z; z < u |] ==> z ∈ inverse_set A
lemma inverse_set_lemma4:
[| A ∈ preal; y ∈ inverse_set A |] ==> ∃u∈inverse_set A. y < u
lemma mem_inverse_set:
A ∈ preal ==> inverse_set A ∈ preal
lemma Gleason9_34_exists:
[| A ∈ preal; ∀x∈A. x + u ∈ A; 0 ≤ z |] ==> ∃b∈A. b + rat_of_int z * u ∈ A
lemma Gleason9_34_contra:
[| A ∈ preal; ∀x∈A. x + u ∈ A; 0 < u; 0 < y; y ∉ A |] ==> False
lemma Gleason9_34:
[| A ∈ preal; 0 < u |] ==> ∃r∈A. r + u ∉ A
lemma lemma_gleason9_36:
[| A ∈ preal; 1 < x |] ==> ∃r∈A. r * x ∉ A
lemma mem_Rep_preal_inverse_iff:
(z ∈ Rep_preal (inverse R)) = (0 < z ∧ (∃y>z. inverse y ∉ Rep_preal R))
lemma Rep_preal_of_rat:
0 < q ==> Rep_preal (preal_of_rat q) = {x. 0 < x ∧ x < q}
lemma subset_inverse_mult_lemma:
[| 0 < x; x < 1 |]
==> ∃r u y.
0 < r ∧ r < y ∧ inverse y ∉ Rep_preal R ∧ u ∈ Rep_preal R ∧ x = r * u
lemma subset_inverse_mult:
Rep_preal (preal_of_rat 1) ⊆ Rep_preal (inverse R * R)
lemma inverse_mult_subset_lemma:
[| 0 < r; r < y; inverse y ∉ Rep_preal R; q ∈ Rep_preal R |] ==> r * q < 1
lemma inverse_mult_subset:
Rep_preal (inverse R * R) ⊆ Rep_preal (preal_of_rat 1)
lemma preal_mult_inverse:
inverse R * R = 1
lemma preal_mult_inverse_right:
R * inverse R = 1
lemma Rep_preal_self_subset:
Rep_preal R ⊆ Rep_preal (R + S)
lemma Rep_preal_sum_not_subset:
¬ Rep_preal (R + S) ⊆ Rep_preal R
lemma Rep_preal_sum_not_eq:
Rep_preal (R + S) ≠ Rep_preal R
lemma preal_self_less_add_left:
R < R + S
lemma preal_self_less_add_right:
R < S + R
lemma preal_not_eq_self:
x ≠ x + y
lemma diff_set_not_empty:
R < S ==> {} ⊂ diff_set (Rep_preal S) (Rep_preal R)
lemma diff_set_nonempty:
∃q>0. q ∉ diff_set (Rep_preal S) (Rep_preal R)
lemma diff_set_not_rat_set:
diff_set (Rep_preal S) (Rep_preal R) ⊂ {r. 0 < r}
lemma diff_set_lemma3:
[| R < S; u ∈ diff_set (Rep_preal S) (Rep_preal R); 0 < z; z < u |]
==> z ∈ diff_set (Rep_preal S) (Rep_preal R)
lemma diff_set_lemma4:
[| R < S; y ∈ diff_set (Rep_preal S) (Rep_preal R) |]
==> ∃u∈diff_set (Rep_preal S) (Rep_preal R). y < u
lemma mem_diff_set:
R < S ==> diff_set (Rep_preal S) (Rep_preal R) ∈ preal
lemma mem_Rep_preal_diff_iff:
R < S
==> (z ∈ Rep_preal (S - R)) =
(∃x>0. 0 < z ∧ x ∉ Rep_preal R ∧ x + z ∈ Rep_preal S)
lemma less_add_left_lemma:
[| R < S; a ∈ Rep_preal R; c + b ∈ Rep_preal S; c ∉ Rep_preal R; 0 < b; 0 < c |]
==> a + b ∈ Rep_preal S
lemma less_add_left_le1:
R < S ==> R + (S - R) ≤ S
lemma lemma_sum_mem_Rep_preal_ex:
x ∈ Rep_preal S ==> ∃e>0. x + e ∈ Rep_preal S
lemma less_add_left_lemma2:
[| R < S; x ∈ Rep_preal S; x ∉ Rep_preal R |]
==> ∃u v z.
0 < v ∧
0 < z ∧
u ∈ Rep_preal R ∧ z ∉ Rep_preal R ∧ z + v ∈ Rep_preal S ∧ x = u + v
lemma less_add_left_le2:
R < S ==> S ≤ R + (S - R)
lemma less_add_left:
R < S ==> R + (S - R) = S
lemma less_add_left_Ex:
R < S ==> ∃D. R + D = S
lemma preal_add_less2_mono1:
R < S ==> R + T < S + T
lemma preal_add_less2_mono2:
R < S ==> T + R < T + S
lemma preal_add_right_less_cancel:
R + T < S + T ==> R < S
lemma preal_add_left_less_cancel:
T + R < T + S ==> R < S
lemma preal_add_less_cancel_right:
(R + T < S + T) = (R < S)
lemma preal_add_less_cancel_left:
(T + R < T + S) = (R < S)
lemma preal_add_le_cancel_right:
(R + T ≤ S + T) = (R ≤ S)
lemma preal_add_le_cancel_left:
(T + R ≤ T + S) = (R ≤ S)
lemma preal_add_less_mono:
[| x1.0 < y1.0; x2.0 < y2.0 |] ==> x1.0 + x2.0 < y1.0 + y2.0
lemma preal_add_right_cancel:
R + T = S + T ==> R = S
lemma preal_add_left_cancel:
C + A = C + B ==> A = B
lemma preal_add_left_cancel_iff:
(C + A = C + B) = (A = B)
lemma preal_add_right_cancel_iff:
(A + C = B + C) = (A = B)
lemma preal_cancels:
(R + T < S + T) = (R < S)
(T + R < T + S) = (R < S)
(R + T ≤ S + T) = (R ≤ S)
(T + R ≤ T + S) = (R ≤ S)
(C + A = C + B) = (A = B)
(A + C = B + C) = (A = B)
lemma preal_sup_set_not_empty:
P ≠ {} ==> {} ⊂ (UN X:P. Rep_preal X)
lemma preal_sup_not_exists:
∀X∈P. X ≤ Y ==> ∃q>0. q ∉ (UN X:P. Rep_preal X)
lemma preal_sup_set_not_rat_set:
∀X∈P. X ≤ Y ==> (UN X:P. Rep_preal X) ⊂ {r. 0 < r}
lemma preal_sup_set_lemma3:
[| P ≠ {}; ∀X∈P. X ≤ Y; u ∈ (UN X:P. Rep_preal X); 0 < z; z < u |]
==> z ∈ (UN X:P. Rep_preal X)
lemma preal_sup_set_lemma4:
[| P ≠ {}; ∀X∈P. X ≤ Y; y ∈ (UN X:P. Rep_preal X) |]
==> ∃u∈UN X:P. Rep_preal X. y < u
lemma preal_sup:
[| P ≠ {}; ∀X∈P. X ≤ Y |] ==> (UN X:P. Rep_preal X) ∈ preal
lemma preal_psup_le:
[| ∀X∈P. X ≤ Y; x ∈ P |] ==> x ≤ psup P
lemma psup_le_ub:
[| P ≠ {}; ∀X∈P. X ≤ Y |] ==> psup P ≤ Y
lemma preal_complete:
[| P ≠ {}; ∀X∈P. X ≤ Y |] ==> (∃X∈P. Z < X) = (Z < psup P)
lemma preal_of_rat_add_lemma1:
[| x < y + z; 0 < x; 0 < y |] ==> x * y * inverse (y + z) < y
lemma preal_of_rat_add_lemma2:
[| u < x + y; 0 < x; 0 < y; 0 < u |]
==> ∃v w. w < y ∧ 0 < v ∧ v < x ∧ 0 < w ∧ u = v + w
lemma preal_of_rat_add:
[| 0 < x; 0 < y |] ==> preal_of_rat (x + y) = preal_of_rat x + preal_of_rat y
lemma preal_of_rat_mult_lemma1:
[| x < y; 0 < x; 0 < z |] ==> x * z * inverse y < z
lemma preal_of_rat_mult_lemma2:
[| x < y * z; 0 < x; 0 < y |] ==> x * z * inverse y * inverse z < z
lemma preal_of_rat_mult_lemma3:
[| u < x * y; 0 < x; 0 < y; 0 < u |]
==> ∃v w. v < x ∧ w < y ∧ 0 < v ∧ 0 < w ∧ u = v * w
lemma preal_of_rat_mult:
[| 0 < x; 0 < y |] ==> preal_of_rat (x * y) = preal_of_rat x * preal_of_rat y
lemma preal_of_rat_less_iff:
[| 0 < x; 0 < y |] ==> (preal_of_rat x < preal_of_rat y) = (x < y)
lemma preal_of_rat_le_iff:
[| 0 < x; 0 < y |] ==> (preal_of_rat x ≤ preal_of_rat y) = (x ≤ y)
lemma preal_of_rat_eq_iff:
[| 0 < x; 0 < y |] ==> (preal_of_rat x = preal_of_rat y) = (x = y)