Up to index of Isabelle/HOL/HOL-Algebra/example_Bicomplex
theory ComputeNumeraltheory ComputeNumeral imports ComputeHOL "~~/src/HOL/Real/Float" begin (* normalization of bit strings *) lemmas bitnorm = normalize_bin_simps (* neg for bit strings *) lemma neg1: "neg Int.Pls = False" by (simp add: Int.Pls_def) lemma neg2: "neg Int.Min = True" apply (subst Int.Min_def) by auto lemma neg3: "neg (Int.Bit0 x) = neg x" apply (simp add: neg_def) apply (subst Bit0_def) by auto lemma neg4: "neg (Int.Bit1 x) = neg x" apply (simp add: neg_def) apply (subst Bit1_def) by auto lemmas bitneg = neg1 neg2 neg3 neg4 (* iszero for bit strings *) lemma iszero1: "iszero Int.Pls = True" by (simp add: Int.Pls_def iszero_def) lemma iszero2: "iszero Int.Min = False" apply (subst Int.Min_def) apply (subst iszero_def) by simp lemma iszero3: "iszero (Int.Bit0 x) = iszero x" apply (subst Int.Bit0_def) apply (subst iszero_def)+ by auto lemma iszero4: "iszero (Int.Bit1 x) = False" apply (subst Int.Bit1_def) apply (subst iszero_def)+ apply simp by arith lemmas bitiszero = iszero1 iszero2 iszero3 iszero4 (* lezero for bit strings *) constdefs "lezero x == (x ≤ 0)" lemma lezero1: "lezero Int.Pls = True" unfolding Int.Pls_def lezero_def by auto lemma lezero2: "lezero Int.Min = True" unfolding Int.Min_def lezero_def by auto lemma lezero3: "lezero (Int.Bit0 x) = lezero x" unfolding Int.Bit0_def lezero_def by auto lemma lezero4: "lezero (Int.Bit1 x) = neg x" unfolding Int.Bit1_def lezero_def neg_def by auto lemmas bitlezero = lezero1 lezero2 lezero3 lezero4 (* equality for bit strings *) lemma biteq1: "(Int.Pls = Int.Pls) = True" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq2: "(Int.Min = Int.Min) = True" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq3: "(Int.Pls = Int.Min) = False" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq4: "(Int.Min = Int.Pls) = False" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq5: "(Int.Bit0 x = Int.Bit0 y) = (x = y)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq6: "(Int.Bit1 x = Int.Bit1 y) = (x = y)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq7: "(Int.Bit0 x = Int.Bit1 y) = False" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq8: "(Int.Bit1 x = Int.Bit0 y) = False" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq9: "(Int.Pls = Int.Bit0 x) = (Int.Pls = x)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq10: "(Int.Pls = Int.Bit1 x) = False" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq11: "(Int.Min = Int.Bit0 x) = False" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq12: "(Int.Min = Int.Bit1 x) = (Int.Min = x)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq13: "(Int.Bit0 x = Int.Pls) = (x = Int.Pls)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq14: "(Int.Bit1 x = Int.Pls) = False" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq15: "(Int.Bit0 x = Int.Min) = False" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma biteq16: "(Int.Bit1 x = Int.Min) = (x = Int.Min)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemmas biteq = biteq1 biteq2 biteq3 biteq4 biteq5 biteq6 biteq7 biteq8 biteq9 biteq10 biteq11 biteq12 biteq13 biteq14 biteq15 biteq16 (* x < y for bit strings *) lemma bitless1: "(Int.Pls < Int.Min) = False" by (simp add: less_int_code) lemma bitless2: "(Int.Pls < Int.Pls) = False" by (simp add: less_int_code) lemma bitless3: "(Int.Min < Int.Pls) = True" by (simp add: less_int_code) lemma bitless4: "(Int.Min < Int.Min) = False" by (simp add: less_int_code) lemma bitless5: "(Int.Bit0 x < Int.Bit0 y) = (x < y)" by (simp add: less_int_code) lemma bitless6: "(Int.Bit1 x < Int.Bit1 y) = (x < y)" by (simp add: less_int_code) lemma bitless7: "(Int.Bit0 x < Int.Bit1 y) = (x ≤ y)" by (simp add: less_int_code) lemma bitless8: "(Int.Bit1 x < Int.Bit0 y) = (x < y)" by (simp add: less_int_code) lemma bitless9: "(Int.Pls < Int.Bit0 x) = (Int.Pls < x)" by (simp add: less_int_code) lemma bitless10: "(Int.Pls < Int.Bit1 x) = (Int.Pls ≤ x)" by (simp add: less_int_code) lemma bitless11: "(Int.Min < Int.Bit0 x) = (Int.Pls ≤ x)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma bitless12: "(Int.Min < Int.Bit1 x) = (Int.Min < x)" by (simp add: less_int_code) lemma bitless13: "(Int.Bit0 x < Int.Pls) = (x < Int.Pls)" by (simp add: less_int_code) lemma bitless14: "(Int.Bit1 x < Int.Pls) = (x < Int.Pls)" by (simp add: less_int_code) lemma bitless15: "(Int.Bit0 x < Int.Min) = (x < Int.Pls)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma bitless16: "(Int.Bit1 x < Int.Min) = (x < Int.Min)" by (simp add: less_int_code) lemmas bitless = bitless1 bitless2 bitless3 bitless4 bitless5 bitless6 bitless7 bitless8 bitless9 bitless10 bitless11 bitless12 bitless13 bitless14 bitless15 bitless16 (* x ≤ y for bit strings *) lemma bitle1: "(Int.Pls ≤ Int.Min) = False" by (simp add: less_eq_int_code) lemma bitle2: "(Int.Pls ≤ Int.Pls) = True" by (simp add: less_eq_int_code) lemma bitle3: "(Int.Min ≤ Int.Pls) = True" by (simp add: less_eq_int_code) lemma bitle4: "(Int.Min ≤ Int.Min) = True" by (simp add: less_eq_int_code) lemma bitle5: "(Int.Bit0 x ≤ Int.Bit0 y) = (x ≤ y)" by (simp add: less_eq_int_code) lemma bitle6: "(Int.Bit1 x ≤ Int.Bit1 y) = (x ≤ y)" by (simp add: less_eq_int_code) lemma bitle7: "(Int.Bit0 x ≤ Int.Bit1 y) = (x ≤ y)" by (simp add: less_eq_int_code) lemma bitle8: "(Int.Bit1 x ≤ Int.Bit0 y) = (x < y)" by (simp add: less_eq_int_code) lemma bitle9: "(Int.Pls ≤ Int.Bit0 x) = (Int.Pls ≤ x)" by (simp add: less_eq_int_code) lemma bitle10: "(Int.Pls ≤ Int.Bit1 x) = (Int.Pls ≤ x)" by (simp add: less_eq_int_code) lemma bitle11: "(Int.Min ≤ Int.Bit0 x) = (Int.Pls ≤ x)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma bitle12: "(Int.Min ≤ Int.Bit1 x) = (Int.Min ≤ x)" by (simp add: less_eq_int_code) lemma bitle13: "(Int.Bit0 x ≤ Int.Pls) = (x ≤ Int.Pls)" by (simp add: less_eq_int_code) lemma bitle14: "(Int.Bit1 x ≤ Int.Pls) = (x < Int.Pls)" by (simp add: less_eq_int_code) lemma bitle15: "(Int.Bit0 x ≤ Int.Min) = (x < Int.Pls)" unfolding Pls_def Min_def Bit0_def Bit1_def by presburger lemma bitle16: "(Int.Bit1 x ≤ Int.Min) = (x ≤ Int.Min)" by (simp add: less_eq_int_code) lemmas bitle = bitle1 bitle2 bitle3 bitle4 bitle5 bitle6 bitle7 bitle8 bitle9 bitle10 bitle11 bitle12 bitle13 bitle14 bitle15 bitle16 (* succ for bit strings *) lemmas bitsucc = succ_bin_simps (* pred for bit strings *) lemmas bitpred = pred_bin_simps (* unary minus for bit strings *) lemmas bituminus = minus_bin_simps (* addition for bit strings *) lemmas bitadd = add_bin_simps (* multiplication for bit strings *) lemma mult_Pls_right: "x * Int.Pls = Int.Pls" by (simp add: Pls_def) lemma mult_Min_right: "x * Int.Min = - x" by (subst mult_commute, simp add: mult_Min) lemma multb0x: "(Int.Bit0 x) * y = Int.Bit0 (x * y)" by (rule mult_Bit0) lemma multxb0: "x * (Int.Bit0 y) = Int.Bit0 (x * y)" unfolding Bit0_def by simp lemma multb1: "(Int.Bit1 x) * (Int.Bit1 y) = Int.Bit1 (Int.Bit0 (x * y) + x + y)" unfolding Bit0_def Bit1_def by (simp add: ring_simps) lemmas bitmul = mult_Pls mult_Min mult_Pls_right mult_Min_right multb0x multxb0 multb1 lemmas bitarith = bitnorm bitiszero bitneg bitlezero biteq bitless bitle bitsucc bitpred bituminus bitadd bitmul constdefs "nat_norm_number_of (x::nat) == x" lemma nat_norm_number_of: "nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)" apply (simp add: nat_norm_number_of_def) unfolding lezero_def iszero_def neg_def apply (simp add: number_of_is_id) done (* Normalization of nat literals *) lemma natnorm0: "(0::nat) = number_of (Int.Pls)" by auto lemma natnorm1: "(1 :: nat) = number_of (Int.Bit1 Int.Pls)" by auto lemmas natnorm = natnorm0 natnorm1 nat_norm_number_of (* Suc *) lemma natsuc: "Suc (number_of x) = (if neg x then 1 else number_of (Int.succ x))" by (auto simp add: number_of_is_id) (* Addition for nat *) lemma natadd: "number_of x + ((number_of y)::nat) = (if neg x then (number_of y) else (if neg y then number_of x else (number_of (x + y))))" by (auto simp add: number_of_is_id) (* Subtraction for nat *) lemma natsub: "(number_of x) - ((number_of y)::nat) = (if neg x then 0 else (if neg y then number_of x else (nat_norm_number_of (number_of (x + (- y))))))" unfolding nat_norm_number_of by (auto simp add: number_of_is_id neg_def lezero_def iszero_def Let_def nat_number_of_def) (* Multiplication for nat *) lemma natmul: "(number_of x) * ((number_of y)::nat) = (if neg x then 0 else (if neg y then 0 else number_of (x * y)))" apply (auto simp add: number_of_is_id neg_def iszero_def) apply (case_tac "x > 0") apply auto apply (simp add: mult_strict_left_mono[where a=y and b=0 and c=x, simplified]) done lemma nateq: "(((number_of x)::nat) = (number_of y)) = ((lezero x ∧ lezero y) ∨ (x = y))" by (auto simp add: iszero_def lezero_def neg_def number_of_is_id) lemma natless: "(((number_of x)::nat) < (number_of y)) = ((x < y) ∧ (¬ (lezero y)))" by (auto simp add: number_of_is_id neg_def lezero_def) lemma natle: "(((number_of x)::nat) ≤ (number_of y)) = (y < x --> lezero x)" by (auto simp add: number_of_is_id lezero_def nat_number_of_def) fun natfac :: "nat => nat" where "natfac n = (if n = 0 then 1 else n * (natfac (n - 1)))" lemmas compute_natarith = bitarith natnorm natsuc natadd natsub natmul nateq natless natle natfac.simps lemma number_eq: "(((number_of x)::'a::{number_ring, ordered_idom}) = (number_of y)) = (x = y)" unfolding number_of_eq apply simp done lemma number_le: "(((number_of x)::'a::{number_ring, ordered_idom}) ≤ (number_of y)) = (x ≤ y)" unfolding number_of_eq apply simp done lemma number_less: "(((number_of x)::'a::{number_ring, ordered_idom}) < (number_of y)) = (x < y)" unfolding number_of_eq apply simp done lemma number_diff: "((number_of x)::'a::{number_ring, ordered_idom}) - number_of y = number_of (x + (- y))" apply (subst diff_number_of_eq) apply simp done lemmas number_norm = number_of_Pls[symmetric] numeral_1_eq_1[symmetric] lemmas compute_numberarith = number_of_minus[symmetric] number_of_add[symmetric] number_diff number_of_mult[symmetric] number_norm number_eq number_le number_less lemma compute_real_of_nat_number_of: "real ((number_of v)::nat) = (if neg v then 0 else number_of v)" by (simp only: real_of_nat_number_of number_of_is_id) lemma compute_nat_of_int_number_of: "nat ((number_of v)::int) = (number_of v)" by simp lemmas compute_num_conversions = compute_real_of_nat_number_of compute_nat_of_int_number_of real_number_of lemmas zpowerarith = zpower_number_of_even zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring] zpower_Pls zpower_Min (* div, mod *) lemma adjust: "adjust b (q, r) = (if 0 ≤ r - b then (2 * q + 1, r - b) else (2 * q, r))" by (auto simp only: adjust_def) lemma negateSnd: "negateSnd (q, r) = (q, -r)" by (auto simp only: negateSnd_def) lemma divAlg: "divAlg (a, b) = (if 0≤a then if 0≤b then posDivAlg a b else if a=0 then (0, 0) else negateSnd (negDivAlg (-a) (-b)) else if 0<b then negDivAlg a b else negateSnd (posDivAlg (-a) (-b)))" by (auto simp only: divAlg_def) lemmas compute_div_mod = div_def mod_def divAlg adjust negateSnd posDivAlg.simps negDivAlg.simps (* collecting all the theorems *) lemma even_Pls: "even (Int.Pls) = True" apply (unfold Pls_def even_def) by simp lemma even_Min: "even (Int.Min) = False" apply (unfold Min_def even_def) by simp lemma even_B0: "even (Int.Bit0 x) = True" apply (unfold Bit0_def) by simp lemma even_B1: "even (Int.Bit1 x) = False" apply (unfold Bit1_def) by simp lemma even_number_of: "even ((number_of w)::int) = even w" by (simp only: number_of_is_id) lemmas compute_even = even_Pls even_Min even_B0 even_B1 even_number_of lemmas compute_numeral = compute_if compute_let compute_pair compute_bool compute_natarith compute_numberarith max_def min_def compute_num_conversions zpowerarith compute_div_mod compute_even end
lemma bitnorm:
Int.Bit0 Int.Pls = Int.Pls
Int.Bit1 Int.Min = Int.Min
lemma neg1:
neg Int.Pls = False
lemma neg2:
neg Int.Min = True
lemma neg3:
neg (Int.Bit0 x) = neg x
lemma neg4:
neg (Int.Bit1 x) = neg x
lemma bitneg:
neg Int.Pls = False
neg Int.Min = True
neg (Int.Bit0 x) = neg x
neg (Int.Bit1 x) = neg x
lemma iszero1:
iszero Int.Pls = True
lemma iszero2:
iszero Int.Min = False
lemma iszero3:
iszero (Int.Bit0 x) = iszero x
lemma iszero4:
iszero (Int.Bit1 x) = False
lemma bitiszero:
iszero Int.Pls = True
iszero Int.Min = False
iszero (Int.Bit0 x) = iszero x
iszero (Int.Bit1 x) = False
lemma lezero1:
lezero Int.Pls = True
lemma lezero2:
lezero Int.Min = True
lemma lezero3:
lezero (Int.Bit0 x) = lezero x
lemma lezero4:
lezero (Int.Bit1 x) = neg x
lemma bitlezero:
lezero Int.Pls = True
lezero Int.Min = True
lezero (Int.Bit0 x) = lezero x
lezero (Int.Bit1 x) = neg x
lemma biteq1:
(Int.Pls = Int.Pls) = True
lemma biteq2:
(Int.Min = Int.Min) = True
lemma biteq3:
(Int.Pls = Int.Min) = False
lemma biteq4:
(Int.Min = Int.Pls) = False
lemma biteq5:
(Int.Bit0 x = Int.Bit0 y) = (x = y)
lemma biteq6:
(Int.Bit1 x = Int.Bit1 y) = (x = y)
lemma biteq7:
(Int.Bit0 x = Int.Bit1 y) = False
lemma biteq8:
(Int.Bit1 x = Int.Bit0 y) = False
lemma biteq9:
(Int.Pls = Int.Bit0 x) = (Int.Pls = x)
lemma biteq10:
(Int.Pls = Int.Bit1 x) = False
lemma biteq11:
(Int.Min = Int.Bit0 x) = False
lemma biteq12:
(Int.Min = Int.Bit1 x) = (Int.Min = x)
lemma biteq13:
(Int.Bit0 x = Int.Pls) = (x = Int.Pls)
lemma biteq14:
(Int.Bit1 x = Int.Pls) = False
lemma biteq15:
(Int.Bit0 x = Int.Min) = False
lemma biteq16:
(Int.Bit1 x = Int.Min) = (x = Int.Min)
lemma biteq:
(Int.Pls = Int.Pls) = True
(Int.Min = Int.Min) = True
(Int.Pls = Int.Min) = False
(Int.Min = Int.Pls) = False
(Int.Bit0 x = Int.Bit0 y) = (x = y)
(Int.Bit1 x = Int.Bit1 y) = (x = y)
(Int.Bit0 x = Int.Bit1 y) = False
(Int.Bit1 x = Int.Bit0 y) = False
(Int.Pls = Int.Bit0 x) = (Int.Pls = x)
(Int.Pls = Int.Bit1 x) = False
(Int.Min = Int.Bit0 x) = False
(Int.Min = Int.Bit1 x) = (Int.Min = x)
(Int.Bit0 x = Int.Pls) = (x = Int.Pls)
(Int.Bit1 x = Int.Pls) = False
(Int.Bit0 x = Int.Min) = False
(Int.Bit1 x = Int.Min) = (x = Int.Min)
lemma bitless1:
(Int.Pls < Int.Min) = False
lemma bitless2:
(Int.Pls < Int.Pls) = False
lemma bitless3:
(Int.Min < Int.Pls) = True
lemma bitless4:
(Int.Min < Int.Min) = False
lemma bitless5:
(Int.Bit0 x < Int.Bit0 y) = (x < y)
lemma bitless6:
(Int.Bit1 x < Int.Bit1 y) = (x < y)
lemma bitless7:
(Int.Bit0 x < Int.Bit1 y) = (x ≤ y)
lemma bitless8:
(Int.Bit1 x < Int.Bit0 y) = (x < y)
lemma bitless9:
(Int.Pls < Int.Bit0 x) = (Int.Pls < x)
lemma bitless10:
(Int.Pls < Int.Bit1 x) = (Int.Pls ≤ x)
lemma bitless11:
(Int.Min < Int.Bit0 x) = (Int.Pls ≤ x)
lemma bitless12:
(Int.Min < Int.Bit1 x) = (Int.Min < x)
lemma bitless13:
(Int.Bit0 x < Int.Pls) = (x < Int.Pls)
lemma bitless14:
(Int.Bit1 x < Int.Pls) = (x < Int.Pls)
lemma bitless15:
(Int.Bit0 x < Int.Min) = (x < Int.Pls)
lemma bitless16:
(Int.Bit1 x < Int.Min) = (x < Int.Min)
lemma bitless:
(Int.Pls < Int.Min) = False
(Int.Pls < Int.Pls) = False
(Int.Min < Int.Pls) = True
(Int.Min < Int.Min) = False
(Int.Bit0 x < Int.Bit0 y) = (x < y)
(Int.Bit1 x < Int.Bit1 y) = (x < y)
(Int.Bit0 x < Int.Bit1 y) = (x ≤ y)
(Int.Bit1 x < Int.Bit0 y) = (x < y)
(Int.Pls < Int.Bit0 x) = (Int.Pls < x)
(Int.Pls < Int.Bit1 x) = (Int.Pls ≤ x)
(Int.Min < Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Min < Int.Bit1 x) = (Int.Min < x)
(Int.Bit0 x < Int.Pls) = (x < Int.Pls)
(Int.Bit1 x < Int.Pls) = (x < Int.Pls)
(Int.Bit0 x < Int.Min) = (x < Int.Pls)
(Int.Bit1 x < Int.Min) = (x < Int.Min)
lemma bitle1:
(Int.Pls ≤ Int.Min) = False
lemma bitle2:
(Int.Pls ≤ Int.Pls) = True
lemma bitle3:
(Int.Min ≤ Int.Pls) = True
lemma bitle4:
(Int.Min ≤ Int.Min) = True
lemma bitle5:
(Int.Bit0 x ≤ Int.Bit0 y) = (x ≤ y)
lemma bitle6:
(Int.Bit1 x ≤ Int.Bit1 y) = (x ≤ y)
lemma bitle7:
(Int.Bit0 x ≤ Int.Bit1 y) = (x ≤ y)
lemma bitle8:
(Int.Bit1 x ≤ Int.Bit0 y) = (x < y)
lemma bitle9:
(Int.Pls ≤ Int.Bit0 x) = (Int.Pls ≤ x)
lemma bitle10:
(Int.Pls ≤ Int.Bit1 x) = (Int.Pls ≤ x)
lemma bitle11:
(Int.Min ≤ Int.Bit0 x) = (Int.Pls ≤ x)
lemma bitle12:
(Int.Min ≤ Int.Bit1 x) = (Int.Min ≤ x)
lemma bitle13:
(Int.Bit0 x ≤ Int.Pls) = (x ≤ Int.Pls)
lemma bitle14:
(Int.Bit1 x ≤ Int.Pls) = (x < Int.Pls)
lemma bitle15:
(Int.Bit0 x ≤ Int.Min) = (x < Int.Pls)
lemma bitle16:
(Int.Bit1 x ≤ Int.Min) = (x ≤ Int.Min)
lemma bitle:
(Int.Pls ≤ Int.Min) = False
(Int.Pls ≤ Int.Pls) = True
(Int.Min ≤ Int.Pls) = True
(Int.Min ≤ Int.Min) = True
(Int.Bit0 x ≤ Int.Bit0 y) = (x ≤ y)
(Int.Bit1 x ≤ Int.Bit1 y) = (x ≤ y)
(Int.Bit0 x ≤ Int.Bit1 y) = (x ≤ y)
(Int.Bit1 x ≤ Int.Bit0 y) = (x < y)
(Int.Pls ≤ Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Pls ≤ Int.Bit1 x) = (Int.Pls ≤ x)
(Int.Min ≤ Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Min ≤ Int.Bit1 x) = (Int.Min ≤ x)
(Int.Bit0 x ≤ Int.Pls) = (x ≤ Int.Pls)
(Int.Bit1 x ≤ Int.Pls) = (x < Int.Pls)
(Int.Bit0 x ≤ Int.Min) = (x < Int.Pls)
(Int.Bit1 x ≤ Int.Min) = (x ≤ Int.Min)
lemma bitsucc:
Int.succ Int.Pls = Int.Bit1 Int.Pls
Int.succ Int.Min = Int.Pls
Int.succ (Int.Bit0 k) = Int.Bit1 k
Int.succ (Int.Bit1 k) = Int.Bit0 (Int.succ k)
lemma bitpred:
Int.pred Int.Pls = Int.Min
Int.pred Int.Min = Int.Bit0 Int.Min
Int.pred (Int.Bit0 k) = Int.Bit1 (Int.pred k)
Int.pred (Int.Bit1 k) = Int.Bit0 k
lemma bituminus:
- Int.Pls = Int.Pls
- Int.Min = Int.Bit1 Int.Pls
- Int.Bit0 k = Int.Bit0 (- k)
- Int.Bit1 k = Int.Bit1 (Int.pred (- k))
lemma bitadd:
Int.Pls + k = k
Int.Min + k = Int.pred k
k + Int.Pls = k
k + Int.Min = Int.pred k
Int.Bit0 k + Int.Bit0 l = Int.Bit0 (k + l)
Int.Bit0 k + Int.Bit1 l = Int.Bit1 (k + l)
Int.Bit1 k + Int.Bit0 l = Int.Bit1 (k + l)
Int.Bit1 k + Int.Bit1 l = Int.Bit0 (k + Int.succ l)
lemma mult_Pls_right:
x * Int.Pls = Int.Pls
lemma mult_Min_right:
x * Int.Min = - x
lemma multb0x:
Int.Bit0 x * y = Int.Bit0 (x * y)
lemma multxb0:
x * Int.Bit0 y = Int.Bit0 (x * y)
lemma multb1:
Int.Bit1 x * Int.Bit1 y = Int.Bit1 (Int.Bit0 (x * y) + x + y)
lemma bitmul:
Int.Pls * w = Int.Pls
Int.Min * k = - k
x * Int.Pls = Int.Pls
x * Int.Min = - x
Int.Bit0 x * y = Int.Bit0 (x * y)
x * Int.Bit0 y = Int.Bit0 (x * y)
Int.Bit1 x * Int.Bit1 y = Int.Bit1 (Int.Bit0 (x * y) + x + y)
lemma bitarith:
Int.Bit0 Int.Pls = Int.Pls
Int.Bit1 Int.Min = Int.Min
iszero Int.Pls = True
iszero Int.Min = False
iszero (Int.Bit0 x) = iszero x
iszero (Int.Bit1 x) = False
neg Int.Pls = False
neg Int.Min = True
neg (Int.Bit0 x) = neg x
neg (Int.Bit1 x) = neg x
lezero Int.Pls = True
lezero Int.Min = True
lezero (Int.Bit0 x) = lezero x
lezero (Int.Bit1 x) = neg x
(Int.Pls = Int.Pls) = True
(Int.Min = Int.Min) = True
(Int.Pls = Int.Min) = False
(Int.Min = Int.Pls) = False
(Int.Bit0 x = Int.Bit0 y) = (x = y)
(Int.Bit1 x = Int.Bit1 y) = (x = y)
(Int.Bit0 x = Int.Bit1 y) = False
(Int.Bit1 x = Int.Bit0 y) = False
(Int.Pls = Int.Bit0 x) = (Int.Pls = x)
(Int.Pls = Int.Bit1 x) = False
(Int.Min = Int.Bit0 x) = False
(Int.Min = Int.Bit1 x) = (Int.Min = x)
(Int.Bit0 x = Int.Pls) = (x = Int.Pls)
(Int.Bit1 x = Int.Pls) = False
(Int.Bit0 x = Int.Min) = False
(Int.Bit1 x = Int.Min) = (x = Int.Min)
(Int.Pls < Int.Min) = False
(Int.Pls < Int.Pls) = False
(Int.Min < Int.Pls) = True
(Int.Min < Int.Min) = False
(Int.Bit0 x < Int.Bit0 y) = (x < y)
(Int.Bit1 x < Int.Bit1 y) = (x < y)
(Int.Bit0 x < Int.Bit1 y) = (x ≤ y)
(Int.Bit1 x < Int.Bit0 y) = (x < y)
(Int.Pls < Int.Bit0 x) = (Int.Pls < x)
(Int.Pls < Int.Bit1 x) = (Int.Pls ≤ x)
(Int.Min < Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Min < Int.Bit1 x) = (Int.Min < x)
(Int.Bit0 x < Int.Pls) = (x < Int.Pls)
(Int.Bit1 x < Int.Pls) = (x < Int.Pls)
(Int.Bit0 x < Int.Min) = (x < Int.Pls)
(Int.Bit1 x < Int.Min) = (x < Int.Min)
(Int.Pls ≤ Int.Min) = False
(Int.Pls ≤ Int.Pls) = True
(Int.Min ≤ Int.Pls) = True
(Int.Min ≤ Int.Min) = True
(Int.Bit0 x ≤ Int.Bit0 y) = (x ≤ y)
(Int.Bit1 x ≤ Int.Bit1 y) = (x ≤ y)
(Int.Bit0 x ≤ Int.Bit1 y) = (x ≤ y)
(Int.Bit1 x ≤ Int.Bit0 y) = (x < y)
(Int.Pls ≤ Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Pls ≤ Int.Bit1 x) = (Int.Pls ≤ x)
(Int.Min ≤ Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Min ≤ Int.Bit1 x) = (Int.Min ≤ x)
(Int.Bit0 x ≤ Int.Pls) = (x ≤ Int.Pls)
(Int.Bit1 x ≤ Int.Pls) = (x < Int.Pls)
(Int.Bit0 x ≤ Int.Min) = (x < Int.Pls)
(Int.Bit1 x ≤ Int.Min) = (x ≤ Int.Min)
Int.succ Int.Pls = Int.Bit1 Int.Pls
Int.succ Int.Min = Int.Pls
Int.succ (Int.Bit0 k) = Int.Bit1 k
Int.succ (Int.Bit1 k) = Int.Bit0 (Int.succ k)
Int.pred Int.Pls = Int.Min
Int.pred Int.Min = Int.Bit0 Int.Min
Int.pred (Int.Bit0 k) = Int.Bit1 (Int.pred k)
Int.pred (Int.Bit1 k) = Int.Bit0 k
- Int.Pls = Int.Pls
- Int.Min = Int.Bit1 Int.Pls
- Int.Bit0 k = Int.Bit0 (- k)
- Int.Bit1 k = Int.Bit1 (Int.pred (- k))
Int.Pls + k = k
Int.Min + k = Int.pred k
k + Int.Pls = k
k + Int.Min = Int.pred k
Int.Bit0 k + Int.Bit0 l = Int.Bit0 (k + l)
Int.Bit0 k + Int.Bit1 l = Int.Bit1 (k + l)
Int.Bit1 k + Int.Bit0 l = Int.Bit1 (k + l)
Int.Bit1 k + Int.Bit1 l = Int.Bit0 (k + Int.succ l)
Int.Pls * w = Int.Pls
Int.Min * k = - k
x * Int.Pls = Int.Pls
x * Int.Min = - x
Int.Bit0 x * y = Int.Bit0 (x * y)
x * Int.Bit0 y = Int.Bit0 (x * y)
Int.Bit1 x * Int.Bit1 y = Int.Bit1 (Int.Bit0 (x * y) + x + y)
lemma nat_norm_number_of:
nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)
lemma natnorm0:
0 = Numeral0
lemma natnorm1:
1 = Numeral1
lemma natnorm:
0 = Numeral0
1 = Numeral1
nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)
lemma natsuc:
Suc (number_of x) = (if neg x then 1 else number_of (Int.succ x))
lemma natadd:
number_of x + number_of y =
(if neg x then number_of y
else if neg y then number_of x else number_of (x + y))
lemma natsub:
number_of x - number_of y =
(if neg x then 0
else if neg y then number_of x else nat_norm_number_of (number_of (x + - y)))
lemma natmul:
number_of x * number_of y =
(if neg x then 0 else if neg y then 0 else number_of (x * y))
lemma nateq:
(number_of x = number_of y) = (lezero x ∧ lezero y ∨ x = y)
lemma natless:
(number_of x < number_of y) = (x < y ∧ ¬ lezero y)
lemma natle:
(number_of x ≤ number_of y) = (y < x --> lezero x)
lemma compute_natarith:
Int.Bit0 Int.Pls = Int.Pls
Int.Bit1 Int.Min = Int.Min
iszero Int.Pls = True
iszero Int.Min = False
iszero (Int.Bit0 x) = iszero x
iszero (Int.Bit1 x) = False
neg Int.Pls = False
neg Int.Min = True
neg (Int.Bit0 x) = neg x
neg (Int.Bit1 x) = neg x
lezero Int.Pls = True
lezero Int.Min = True
lezero (Int.Bit0 x) = lezero x
lezero (Int.Bit1 x) = neg x
(Int.Pls = Int.Pls) = True
(Int.Min = Int.Min) = True
(Int.Pls = Int.Min) = False
(Int.Min = Int.Pls) = False
(Int.Bit0 x = Int.Bit0 y) = (x = y)
(Int.Bit1 x = Int.Bit1 y) = (x = y)
(Int.Bit0 x = Int.Bit1 y) = False
(Int.Bit1 x = Int.Bit0 y) = False
(Int.Pls = Int.Bit0 x) = (Int.Pls = x)
(Int.Pls = Int.Bit1 x) = False
(Int.Min = Int.Bit0 x) = False
(Int.Min = Int.Bit1 x) = (Int.Min = x)
(Int.Bit0 x = Int.Pls) = (x = Int.Pls)
(Int.Bit1 x = Int.Pls) = False
(Int.Bit0 x = Int.Min) = False
(Int.Bit1 x = Int.Min) = (x = Int.Min)
(Int.Pls < Int.Min) = False
(Int.Pls < Int.Pls) = False
(Int.Min < Int.Pls) = True
(Int.Min < Int.Min) = False
(Int.Bit0 x < Int.Bit0 y) = (x < y)
(Int.Bit1 x < Int.Bit1 y) = (x < y)
(Int.Bit0 x < Int.Bit1 y) = (x ≤ y)
(Int.Bit1 x < Int.Bit0 y) = (x < y)
(Int.Pls < Int.Bit0 x) = (Int.Pls < x)
(Int.Pls < Int.Bit1 x) = (Int.Pls ≤ x)
(Int.Min < Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Min < Int.Bit1 x) = (Int.Min < x)
(Int.Bit0 x < Int.Pls) = (x < Int.Pls)
(Int.Bit1 x < Int.Pls) = (x < Int.Pls)
(Int.Bit0 x < Int.Min) = (x < Int.Pls)
(Int.Bit1 x < Int.Min) = (x < Int.Min)
(Int.Pls ≤ Int.Min) = False
(Int.Pls ≤ Int.Pls) = True
(Int.Min ≤ Int.Pls) = True
(Int.Min ≤ Int.Min) = True
(Int.Bit0 x ≤ Int.Bit0 y) = (x ≤ y)
(Int.Bit1 x ≤ Int.Bit1 y) = (x ≤ y)
(Int.Bit0 x ≤ Int.Bit1 y) = (x ≤ y)
(Int.Bit1 x ≤ Int.Bit0 y) = (x < y)
(Int.Pls ≤ Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Pls ≤ Int.Bit1 x) = (Int.Pls ≤ x)
(Int.Min ≤ Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Min ≤ Int.Bit1 x) = (Int.Min ≤ x)
(Int.Bit0 x ≤ Int.Pls) = (x ≤ Int.Pls)
(Int.Bit1 x ≤ Int.Pls) = (x < Int.Pls)
(Int.Bit0 x ≤ Int.Min) = (x < Int.Pls)
(Int.Bit1 x ≤ Int.Min) = (x ≤ Int.Min)
Int.succ Int.Pls = Int.Bit1 Int.Pls
Int.succ Int.Min = Int.Pls
Int.succ (Int.Bit0 k) = Int.Bit1 k
Int.succ (Int.Bit1 k) = Int.Bit0 (Int.succ k)
Int.pred Int.Pls = Int.Min
Int.pred Int.Min = Int.Bit0 Int.Min
Int.pred (Int.Bit0 k) = Int.Bit1 (Int.pred k)
Int.pred (Int.Bit1 k) = Int.Bit0 k
- Int.Pls = Int.Pls
- Int.Min = Int.Bit1 Int.Pls
- Int.Bit0 k = Int.Bit0 (- k)
- Int.Bit1 k = Int.Bit1 (Int.pred (- k))
Int.Pls + k = k
Int.Min + k = Int.pred k
k + Int.Pls = k
k + Int.Min = Int.pred k
Int.Bit0 k + Int.Bit0 l = Int.Bit0 (k + l)
Int.Bit0 k + Int.Bit1 l = Int.Bit1 (k + l)
Int.Bit1 k + Int.Bit0 l = Int.Bit1 (k + l)
Int.Bit1 k + Int.Bit1 l = Int.Bit0 (k + Int.succ l)
Int.Pls * w = Int.Pls
Int.Min * k = - k
x * Int.Pls = Int.Pls
x * Int.Min = - x
Int.Bit0 x * y = Int.Bit0 (x * y)
x * Int.Bit0 y = Int.Bit0 (x * y)
Int.Bit1 x * Int.Bit1 y = Int.Bit1 (Int.Bit0 (x * y) + x + y)
0 = Numeral0
1 = Numeral1
nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)
Suc (number_of x) = (if neg x then 1 else number_of (Int.succ x))
number_of x + number_of y =
(if neg x then number_of y
else if neg y then number_of x else number_of (x + y))
number_of x - number_of y =
(if neg x then 0
else if neg y then number_of x else nat_norm_number_of (number_of (x + - y)))
number_of x * number_of y =
(if neg x then 0 else if neg y then 0 else number_of (x * y))
(number_of x = number_of y) = (lezero x ∧ lezero y ∨ x = y)
(number_of x < number_of y) = (x < y ∧ ¬ lezero y)
(number_of x ≤ number_of y) = (y < x --> lezero x)
natfac n = (if n = 0 then 1 else n * natfac (n - 1))
lemma number_eq:
(number_of x = number_of y) = (x = y)
lemma number_le:
(number_of x ≤ number_of y) = (x ≤ y)
lemma number_less:
(number_of x < number_of y) = (x < y)
lemma number_diff:
number_of x - number_of y = number_of (x + - y)
lemma number_norm:
(0::'a) = Numeral0
(1::'a) = Numeral1
lemma compute_numberarith:
- number_of w = number_of (- w)
number_of v + number_of w = number_of (v + w)
number_of x - number_of y = number_of (x + - y)
number_of v * number_of w = number_of (v * w)
(0::'a) = Numeral0
(1::'a) = Numeral1
(number_of x = number_of y) = (x = y)
(number_of x ≤ number_of y) = (x ≤ y)
(number_of x < number_of y) = (x < y)
lemma compute_real_of_nat_number_of:
real (number_of v) = (if neg v then 0 else number_of v)
lemma compute_nat_of_int_number_of:
nat (number_of v) = number_of v
lemma compute_num_conversions:
real (number_of v) = (if neg v then 0 else number_of v)
nat (number_of v) = number_of v
real (number_of v) = number_of v
lemma zpowerarith:
z ^ number_of (Int.Bit0 w) = (let w = z ^ number_of w in w * w)
z ^ number_of (Int.Bit1 w) =
(if Numeral0 ≤ number_of w then let w = z ^ number_of w in z * w * w
else Numeral1)
z ^ Numeral0 = Numeral1
z ^ -1 = Numeral1
lemma adjust:
adjust b (q, r) = (if 0 ≤ r - b then (2 * q + 1, r - b) else (2 * q, r))
lemma negateSnd:
negateSnd (q, r) = (q, - r)
lemma divAlg:
divAlg (a, b) =
(if 0 ≤ a
then if 0 ≤ b then posDivAlg a b
else if a = 0 then 0N else negateSnd (negDivAlg (- a) (- b))
else if 0 < b then negDivAlg a b else negateSnd (posDivAlg (- a) (- b)))
lemma compute_div_mod:
a div b = fst (divAlg (a, b))
a mod b = snd (divAlg (a, b))
divAlg (a, b) =
(if 0 ≤ a
then if 0 ≤ b then posDivAlg a b
else if a = 0 then 0N else negateSnd (negDivAlg (- a) (- b))
else if 0 < b then negDivAlg a b else negateSnd (posDivAlg (- a) (- b)))
adjust b (q, r) = (if 0 ≤ r - b then (2 * q + 1, r - b) else (2 * q, r))
negateSnd (q, r) = (q, - r)
posDivAlg a b =
(if a < b ∨ b ≤ 0 then (0, a) else adjust b (posDivAlg a (2 * b)))
negDivAlg a b =
(if 0 ≤ a + b ∨ b ≤ 0 then (-1, a + b) else adjust b (negDivAlg a (2 * b)))
lemma even_Pls:
even Int.Pls = True
lemma even_Min:
even Int.Min = False
lemma even_B0:
even (Int.Bit0 x) = True
lemma even_B1:
even (Int.Bit1 x) = False
lemma even_number_of:
even (number_of w) = even w
lemma compute_even:
even Int.Pls = True
even Int.Min = False
even (Int.Bit0 x) = True
even (Int.Bit1 x) = False
even (number_of w) = even w
lemma compute_numeral:
If True = (λx y. x)
If False = (λx y. y)
Let s f == f s
fst (x, y) = x
snd (x, y) = y
((a, b) = (c, d)) = (a = c ∧ b = d)
prod_case f (x, y) = f x y
(¬ True) = False
(¬ False) = True
(P ∧ True) = P
(True ∧ P) = P
(P ∧ False) = False
(False ∧ P) = False
(P ∨ True) = True
(True ∨ P) = True
(P ∨ False) = P
(False ∨ P) = P
(True --> P) = P
(P --> True) = True
(True --> P) = P
(P --> False) = (¬ P)
(False --> P) = True
(False = False) = True
(True = True) = True
(False = True) = False
(True = False) = False
Int.Bit0 Int.Pls = Int.Pls
Int.Bit1 Int.Min = Int.Min
iszero Int.Pls = True
iszero Int.Min = False
iszero (Int.Bit0 x) = iszero x
iszero (Int.Bit1 x) = False
neg Int.Pls = False
neg Int.Min = True
neg (Int.Bit0 x) = neg x
neg (Int.Bit1 x) = neg x
lezero Int.Pls = True
lezero Int.Min = True
lezero (Int.Bit0 x) = lezero x
lezero (Int.Bit1 x) = neg x
(Int.Pls = Int.Pls) = True
(Int.Min = Int.Min) = True
(Int.Pls = Int.Min) = False
(Int.Min = Int.Pls) = False
(Int.Bit0 x = Int.Bit0 y) = (x = y)
(Int.Bit1 x = Int.Bit1 y) = (x = y)
(Int.Bit0 x = Int.Bit1 y) = False
(Int.Bit1 x = Int.Bit0 y) = False
(Int.Pls = Int.Bit0 x) = (Int.Pls = x)
(Int.Pls = Int.Bit1 x) = False
(Int.Min = Int.Bit0 x) = False
(Int.Min = Int.Bit1 x) = (Int.Min = x)
(Int.Bit0 x = Int.Pls) = (x = Int.Pls)
(Int.Bit1 x = Int.Pls) = False
(Int.Bit0 x = Int.Min) = False
(Int.Bit1 x = Int.Min) = (x = Int.Min)
(Int.Pls < Int.Min) = False
(Int.Pls < Int.Pls) = False
(Int.Min < Int.Pls) = True
(Int.Min < Int.Min) = False
(Int.Bit0 x < Int.Bit0 y) = (x < y)
(Int.Bit1 x < Int.Bit1 y) = (x < y)
(Int.Bit0 x < Int.Bit1 y) = (x ≤ y)
(Int.Bit1 x < Int.Bit0 y) = (x < y)
(Int.Pls < Int.Bit0 x) = (Int.Pls < x)
(Int.Pls < Int.Bit1 x) = (Int.Pls ≤ x)
(Int.Min < Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Min < Int.Bit1 x) = (Int.Min < x)
(Int.Bit0 x < Int.Pls) = (x < Int.Pls)
(Int.Bit1 x < Int.Pls) = (x < Int.Pls)
(Int.Bit0 x < Int.Min) = (x < Int.Pls)
(Int.Bit1 x < Int.Min) = (x < Int.Min)
(Int.Pls ≤ Int.Min) = False
(Int.Pls ≤ Int.Pls) = True
(Int.Min ≤ Int.Pls) = True
(Int.Min ≤ Int.Min) = True
(Int.Bit0 x ≤ Int.Bit0 y) = (x ≤ y)
(Int.Bit1 x ≤ Int.Bit1 y) = (x ≤ y)
(Int.Bit0 x ≤ Int.Bit1 y) = (x ≤ y)
(Int.Bit1 x ≤ Int.Bit0 y) = (x < y)
(Int.Pls ≤ Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Pls ≤ Int.Bit1 x) = (Int.Pls ≤ x)
(Int.Min ≤ Int.Bit0 x) = (Int.Pls ≤ x)
(Int.Min ≤ Int.Bit1 x) = (Int.Min ≤ x)
(Int.Bit0 x ≤ Int.Pls) = (x ≤ Int.Pls)
(Int.Bit1 x ≤ Int.Pls) = (x < Int.Pls)
(Int.Bit0 x ≤ Int.Min) = (x < Int.Pls)
(Int.Bit1 x ≤ Int.Min) = (x ≤ Int.Min)
Int.succ Int.Pls = Int.Bit1 Int.Pls
Int.succ Int.Min = Int.Pls
Int.succ (Int.Bit0 k) = Int.Bit1 k
Int.succ (Int.Bit1 k) = Int.Bit0 (Int.succ k)
Int.pred Int.Pls = Int.Min
Int.pred Int.Min = Int.Bit0 Int.Min
Int.pred (Int.Bit0 k) = Int.Bit1 (Int.pred k)
Int.pred (Int.Bit1 k) = Int.Bit0 k
- Int.Pls = Int.Pls
- Int.Min = Int.Bit1 Int.Pls
- Int.Bit0 k = Int.Bit0 (- k)
- Int.Bit1 k = Int.Bit1 (Int.pred (- k))
Int.Pls + k = k
Int.Min + k = Int.pred k
k + Int.Pls = k
k + Int.Min = Int.pred k
Int.Bit0 k + Int.Bit0 l = Int.Bit0 (k + l)
Int.Bit0 k + Int.Bit1 l = Int.Bit1 (k + l)
Int.Bit1 k + Int.Bit0 l = Int.Bit1 (k + l)
Int.Bit1 k + Int.Bit1 l = Int.Bit0 (k + Int.succ l)
Int.Pls * w = Int.Pls
Int.Min * k = - k
x * Int.Pls = Int.Pls
x * Int.Min = - x
Int.Bit0 x * y = Int.Bit0 (x * y)
x * Int.Bit0 y = Int.Bit0 (x * y)
Int.Bit1 x * Int.Bit1 y = Int.Bit1 (Int.Bit0 (x * y) + x + y)
0 = Numeral0
1 = Numeral1
nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)
Suc (number_of x) = (if neg x then 1 else number_of (Int.succ x))
number_of x + number_of y =
(if neg x then number_of y
else if neg y then number_of x else number_of (x + y))
number_of x - number_of y =
(if neg x then 0
else if neg y then number_of x else nat_norm_number_of (number_of (x + - y)))
number_of x * number_of y =
(if neg x then 0 else if neg y then 0 else number_of (x * y))
(number_of x = number_of y) = (lezero x ∧ lezero y ∨ x = y)
(number_of x < number_of y) = (x < y ∧ ¬ lezero y)
(number_of x ≤ number_of y) = (y < x --> lezero x)
natfac n = (if n = 0 then 1 else n * natfac (n - 1))
- number_of w = number_of (- w)
number_of v + number_of w = number_of (v + w)
number_of x - number_of y = number_of (x + - y)
number_of v * number_of w = number_of (v * w)
(0::'a) = Numeral0
(1::'a) = Numeral1
(number_of x = number_of y) = (x = y)
(number_of x ≤ number_of y) = (x ≤ y)
(number_of x < number_of y) = (x < y)
max a b = (if a ≤ b then b else a)
min a b = (if a ≤ b then a else b)
real (number_of v) = (if neg v then 0 else number_of v)
nat (number_of v) = number_of v
real (number_of v) = number_of v
z ^ number_of (Int.Bit0 w) = (let w = z ^ number_of w in w * w)
z ^ number_of (Int.Bit1 w) =
(if Numeral0 ≤ number_of w then let w = z ^ number_of w in z * w * w
else Numeral1)
z ^ Numeral0 = Numeral1
z ^ -1 = Numeral1
a div b = fst (divAlg (a, b))
a mod b = snd (divAlg (a, b))
divAlg (a, b) =
(if 0 ≤ a
then if 0 ≤ b then posDivAlg a b
else if a = 0 then 0N else negateSnd (negDivAlg (- a) (- b))
else if 0 < b then negDivAlg a b else negateSnd (posDivAlg (- a) (- b)))
adjust b (q, r) = (if 0 ≤ r - b then (2 * q + 1, r - b) else (2 * q, r))
negateSnd (q, r) = (q, - r)
posDivAlg a b =
(if a < b ∨ b ≤ 0 then (0, a) else adjust b (posDivAlg a (2 * b)))
negDivAlg a b =
(if 0 ≤ a + b ∨ b ≤ 0 then (-1, a + b) else adjust b (negDivAlg a (2 * b)))
even Int.Pls = True
even Int.Min = False
even (Int.Bit0 x) = True
even (Int.Bit1 x) = False
even (number_of w) = even w