Up to index of Isabelle/HOL/HOL-Algebra/example_Bicomplex
theory Code_Index(* ID: $Id: Code_Index.thy,v 1.15 2008/03/17 17:37:05 wenzelm Exp $ Author: Florian Haftmann, TU Muenchen *) header {* Type of indices *} theory Code_Index imports ATP_Linkup begin text {* Indices are isomorphic to HOL @{typ nat} but mapped to target-language builtin integers *} subsection {* Datatype of indices *} typedef index = "UNIV :: nat set" morphisms nat_of_index index_of_nat by rule lemma index_of_nat_nat_of_index [simp]: "index_of_nat (nat_of_index k) = k" by (rule nat_of_index_inverse) lemma nat_of_index_index_of_nat [simp]: "nat_of_index (index_of_nat n) = n" by (rule index_of_nat_inverse) (unfold index_def, rule UNIV_I) lemma index: "(!!n::index. PROP P n) ≡ (!!n::nat. PROP P (index_of_nat n))" proof fix n :: nat assume "!!n::index. PROP P n" then show "PROP P (index_of_nat n)" . next fix n :: index assume "!!n::nat. PROP P (index_of_nat n)" then have "PROP P (index_of_nat (nat_of_index n))" . then show "PROP P n" by simp qed lemma index_case: assumes "!!n. k = index_of_nat n ==> P" shows P by (rule assms [of "nat_of_index k"]) simp lemma index_induct_raw: assumes "!!n. P (index_of_nat n)" shows "P k" proof - from assms have "P (index_of_nat (nat_of_index k))" . then show ?thesis by simp qed lemma nat_of_index_inject [simp]: "nat_of_index k = nat_of_index l <-> k = l" by (rule nat_of_index_inject) lemma index_of_nat_inject [simp]: "index_of_nat n = index_of_nat m <-> n = m" by (auto intro!: index_of_nat_inject simp add: index_def) instantiation index :: zero begin definition [simp, code func del]: "0 = index_of_nat 0" instance .. end definition [simp]: "Suc_index k = index_of_nat (Suc (nat_of_index k))" lemma index_induct: "P 0 ==> (!!k. P k ==> P (Suc_index k)) ==> P k" proof - assume "P 0" then have init: "P (index_of_nat 0)" by simp assume "!!k. P k ==> P (Suc_index k)" then have "!!n. P (index_of_nat n) ==> P (Suc_index (index_of_nat (n)))" . then have step: "!!n. P (index_of_nat n) ==> P (index_of_nat (Suc n))" by simp from init step have "P (index_of_nat (nat_of_index k))" by (induct "nat_of_index k") simp_all then show "P k" by simp qed lemma Suc_not_Zero_index: "Suc_index k ≠ 0" by simp lemma Zero_not_Suc_index: "0 ≠ Suc_index k" by simp lemma Suc_Suc_index_eq: "Suc_index k = Suc_index l <-> k = l" by simp rep_datatype index distinct Suc_not_Zero_index Zero_not_Suc_index inject Suc_Suc_index_eq induction index_induct lemmas [code func del] = index.recs index.cases declare index_case [case_names nat, cases type: index] declare index_induct [case_names nat, induct type: index] lemma [code func]: "index_size = nat_of_index" proof (rule ext) fix k have "index_size k = nat_size (nat_of_index k)" by (induct k rule: index.induct) (simp_all del: zero_index_def Suc_index_def, simp_all) also have "nat_size (nat_of_index k) = nat_of_index k" by (induct "nat_of_index k") simp_all finally show "index_size k = nat_of_index k" . qed lemma [code func]: "size = nat_of_index" proof (rule ext) fix k show "size k = nat_of_index k" by (induct k) (simp_all del: zero_index_def Suc_index_def, simp_all) qed lemma [code func]: "k = l <-> nat_of_index k = nat_of_index l" by (cases k, cases l) simp subsection {* Indices as datatype of ints *} instantiation index :: number begin definition "number_of = index_of_nat o nat" instance .. end lemma nat_of_index_number [simp]: "nat_of_index (number_of k) = number_of k" by (simp add: number_of_index_def nat_number_of_def number_of_is_id) code_datatype "number_of :: int => index" subsection {* Basic arithmetic *} instantiation index :: "{minus, ordered_semidom, Divides.div, linorder}" begin lemma zero_index_code [code inline, code func]: "(0::index) = Numeral0" by (simp add: number_of_index_def Pls_def) lemma [code post]: "Numeral0 = (0::index)" using zero_index_code .. definition [simp, code func del]: "(1::index) = index_of_nat 1" lemma one_index_code [code inline, code func]: "(1::index) = Numeral1" by (simp add: number_of_index_def Pls_def Bit1_def) lemma [code post]: "Numeral1 = (1::index)" using one_index_code .. definition [simp, code func del]: "n + m = index_of_nat (nat_of_index n + nat_of_index m)" lemma plus_index_code [code func]: "index_of_nat n + index_of_nat m = index_of_nat (n + m)" by simp definition [simp, code func del]: "n - m = index_of_nat (nat_of_index n - nat_of_index m)" definition [simp, code func del]: "n * m = index_of_nat (nat_of_index n * nat_of_index m)" lemma times_index_code [code func]: "index_of_nat n * index_of_nat m = index_of_nat (n * m)" by simp definition [simp, code func del]: "n div m = index_of_nat (nat_of_index n div nat_of_index m)" definition [simp, code func del]: "n mod m = index_of_nat (nat_of_index n mod nat_of_index m)" lemma div_index_code [code func]: "index_of_nat n div index_of_nat m = index_of_nat (n div m)" by simp lemma mod_index_code [code func]: "index_of_nat n mod index_of_nat m = index_of_nat (n mod m)" by simp definition [simp, code func del]: "n ≤ m <-> nat_of_index n ≤ nat_of_index m" definition [simp, code func del]: "n < m <-> nat_of_index n < nat_of_index m" lemma less_eq_index_code [code func]: "index_of_nat n ≤ index_of_nat m <-> n ≤ m" by simp lemma less_index_code [code func]: "index_of_nat n < index_of_nat m <-> n < m" by simp instance by default (auto simp add: left_distrib index) end lemma Suc_index_minus_one: "Suc_index n - 1 = n" by simp lemma index_of_nat_code [code]: "index_of_nat = of_nat" proof fix n :: nat have "of_nat n = index_of_nat n" by (induct n) simp_all then show "index_of_nat n = of_nat n" by (rule sym) qed lemma index_not_eq_zero: "i ≠ index_of_nat 0 <-> i ≥ 1" by (cases i) auto definition nat_of_index_aux :: "index => nat => nat" where "nat_of_index_aux i n = nat_of_index i + n" lemma nat_of_index_aux_code [code]: "nat_of_index_aux i n = (if i = 0 then n else nat_of_index_aux (i - 1) (Suc n))" by (auto simp add: nat_of_index_aux_def index_not_eq_zero) lemma nat_of_index_code [code]: "nat_of_index i = nat_of_index_aux i 0" by (simp add: nat_of_index_aux_def) subsection {* ML interface *} ML {* structure Index = struct fun mk k = HOLogic.mk_number @{typ index} k; end; *} subsection {* Specialized @{term "op - :: index => index => index"}, @{term "op div :: index => index => index"} and @{term "op mod :: index => index => index"} operations *} definition minus_index_aux :: "index => index => index" where [code func del]: "minus_index_aux = op -" lemma [code func]: "op - = minus_index_aux" using minus_index_aux_def .. definition div_mod_index :: "index => index => index × index" where [code func del]: "div_mod_index n m = (n div m, n mod m)" lemma [code func]: "div_mod_index n m = (if m = 0 then (0, n) else (n div m, n mod m))" unfolding div_mod_index_def by auto lemma [code func]: "n div m = fst (div_mod_index n m)" unfolding div_mod_index_def by simp lemma [code func]: "n mod m = snd (div_mod_index n m)" unfolding div_mod_index_def by simp subsection {* Code serialization *} text {* Implementation of indices by bounded integers *} code_type index (SML "int") (OCaml "int") (Haskell "Int") code_instance index :: eq (Haskell -) setup {* fold (Numeral.add_code @{const_name number_index_inst.number_of_index} false false) ["SML", "OCaml", "Haskell"] *} code_reserved SML Int int code_reserved OCaml Pervasives int code_const "op + :: index => index => index" (SML "Int.+/ ((_),/ (_))") (OCaml "Pervasives.( + )") (Haskell infixl 6 "+") code_const "minus_index_aux :: index => index => index" (SML "Int.max/ (_/ -/ _,/ 0 : int)") (OCaml "Pervasives.max/ (_/ -/ _)/ (0 : int) ") (Haskell "max/ (_/ -/ _)/ (0 :: Int)") code_const "op * :: index => index => index" (SML "Int.*/ ((_),/ (_))") (OCaml "Pervasives.( * )") (Haskell infixl 7 "*") code_const div_mod_index (SML "(fn n => fn m =>/ (n div m, n mod m))") (OCaml "(fun n -> fun m ->/ (n '/ m, n mod m))") (Haskell "divMod") code_const "op = :: index => index => bool" (SML "!((_ : Int.int) = _)") (OCaml "!((_ : int) = _)") (Haskell infixl 4 "==") code_const "op ≤ :: index => index => bool" (SML "Int.<=/ ((_),/ (_))") (OCaml "!((_ : int) <= _)") (Haskell infix 4 "<=") code_const "op < :: index => index => bool" (SML "Int.</ ((_),/ (_))") (OCaml "!((_ : int) < _)") (Haskell infix 4 "<") end
lemma index_of_nat_nat_of_index:
index_of_nat (nat_of_index k) = k
lemma nat_of_index_index_of_nat:
nat_of_index (index_of_nat n) = n
lemma index:
(!!n. PROP P n) == (!!n. PROP P (index_of_nat n))
lemma index_case:
(!!n. k = index_of_nat n ==> P) ==> P
lemma index_induct_raw:
(!!n. P (index_of_nat n)) ==> P k
lemma nat_of_index_inject:
(nat_of_index k = nat_of_index l) = (k = l)
lemma index_of_nat_inject:
(index_of_nat n = index_of_nat m) = (n = m)
lemma index_induct:
[| P 0; !!k. P k ==> P (Suc_index k) |] ==> P k
lemma Suc_not_Zero_index:
Suc_index k ≠ 0
lemma Zero_not_Suc_index:
0 ≠ Suc_index k
lemma Suc_Suc_index_eq:
(Suc_index k = Suc_index l) = (k = l)
lemma
index_rec f1.0 f2.0 0 = f1.0
index_rec f1.0 f2.0 (Suc_index index) = f2.0 index (index_rec f1.0 f2.0 index)
index_case f1.0 f2.0 0 = f1.0
index_case f1.0 f2.0 (Suc_index index) = f2.0 index
lemma
index_size = nat_of_index
lemma
size = nat_of_index
lemma
(k = l) = (nat_of_index k = nat_of_index l)
lemma nat_of_index_number:
nat_of_index (number_of k) = number_of k
lemma zero_index_code:
0 = Numeral0
lemma
Numeral0 = 0
lemma one_index_code:
1 = Numeral1
lemma
Numeral1 = 1
lemma plus_index_code:
index_of_nat n + index_of_nat m = index_of_nat (n + m)
lemma times_index_code:
index_of_nat n * index_of_nat m = index_of_nat (n * m)
lemma div_index_code:
index_of_nat n div index_of_nat m = index_of_nat (n div m)
lemma mod_index_code:
index_of_nat n mod index_of_nat m = index_of_nat (n mod m)
lemma less_eq_index_code:
(index_of_nat n ≤ index_of_nat m) = (n ≤ m)
lemma less_index_code:
(index_of_nat n < index_of_nat m) = (n < m)
lemma Suc_index_minus_one:
Suc_index n - 1 = n
lemma index_of_nat_code:
index_of_nat = of_nat
lemma index_not_eq_zero:
(i ≠ index_of_nat 0) = (1 ≤ i)
lemma nat_of_index_aux_code:
nat_of_index_aux i n = (if i = 0 then n else nat_of_index_aux (i - 1) (Suc n))
lemma nat_of_index_code:
nat_of_index i = nat_of_index_aux i 0
lemma
op - = minus_index_aux
lemma
div_mod_index n m = (if m = 0 then (0, n) else (n div m, n mod m))
lemma
n div m = fst (div_mod_index n m)
lemma
n mod m = snd (div_mod_index n m)