Up to index of Isabelle/HOL/HOL-Algebra/example_Bicomplex
theory Abstract_Rat(* Title: HOL/Library/Abstract_Rat.thy ID: $Id: Abstract_Rat.thy,v 1.3 2008/04/02 13:58:28 haftmann Exp $ Author: Amine Chaieb *) header {* Abstract rational numbers *} theory Abstract_Rat imports GCD begin types Num = "int × int" abbreviation Num0_syn :: Num ("0N") where "0N ≡ (0, 0)" abbreviation Numi_syn :: "int => Num" ("_N") where "iN ≡ (i, 1)" definition isnormNum :: "Num => bool" where "isnormNum = (λ(a,b). (if a = 0 then b = 0 else b > 0 ∧ igcd a b = 1))" definition normNum :: "Num => Num" where "normNum = (λ(a,b). (if a=0 ∨ b = 0 then (0,0) else (let g = igcd a b in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))" lemma normNum_isnormNum [simp]: "isnormNum (normNum x)" proof - have " ∃ a b. x = (a,b)" by auto then obtain a b where x[simp]: "x = (a,b)" by blast {assume "a=0 ∨ b = 0" hence ?thesis by (simp add: normNum_def isnormNum_def)} moreover {assume anz: "a ≠ 0" and bnz: "b ≠ 0" let ?g = "igcd a b" let ?a' = "a div ?g" let ?b' = "b div ?g" let ?g' = "igcd ?a' ?b'" from anz bnz have "?g ≠ 0" by simp with igcd_pos[of a b] have gpos: "?g > 0" by arith have gdvd: "?g dvd a" "?g dvd b" by (simp_all add: igcd_dvd1 igcd_dvd2) from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)] anz bnz have nz':"?a' ≠ 0" "?b' ≠ 0" by - (rule notI,simp add:igcd_def)+ from anz bnz have stupid: "a ≠ 0 ∨ b ≠ 0" by blast from div_igcd_relprime[OF stupid] have gp1: "?g' = 1" . from bnz have "b < 0 ∨ b > 0" by arith moreover {assume b: "b > 0" from pos_imp_zdiv_nonneg_iff[OF gpos] b have "?b' ≥ 0" by simp with nz' have b': "?b' > 0" by simp from b b' anz bnz nz' gp1 have ?thesis by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)} moreover {assume b: "b < 0" {assume b': "?b' ≥ 0" from gpos have th: "?g ≥ 0" by arith from mult_nonneg_nonneg[OF th b'] zdvd_mult_div_cancel[OF gdvd(2)] have False using b by simp } hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) from anz bnz nz' b b' gp1 have ?thesis by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)} ultimately have ?thesis by blast } ultimately show ?thesis by blast qed text {* Arithmetic over Num *} definition Nadd :: "Num => Num => Num" (infixl "+N" 60) where "Nadd = (λ(a,b) (a',b'). if a = 0 ∨ b = 0 then normNum(a',b') else if a'=0 ∨ b' = 0 then normNum(a,b) else normNum(a*b' + b*a', b*b'))" definition Nmul :: "Num => Num => Num" (infixl "*N" 60) where "Nmul = (λ(a,b) (a',b'). let g = igcd (a*a') (b*b') in (a*a' div g, b*b' div g))" definition Nneg :: "Num => Num" ("~N") where "Nneg ≡ (λ(a,b). (-a,b))" definition Nsub :: "Num => Num => Num" (infixl "-N" 60) where "Nsub = (λa b. a +N ~N b)" definition Ninv :: "Num => Num" where "Ninv ≡ λ(a,b). if a < 0 then (-b, ¦a¦) else (b,a)" definition Ndiv :: "Num => Num => Num" (infixl "÷N" 60) where "Ndiv ≡ λa b. a *N Ninv b" lemma Nneg_normN[simp]: "isnormNum x ==> isnormNum (~N x)" by(simp add: isnormNum_def Nneg_def split_def) lemma Nadd_normN[simp]: "isnormNum (x +N y)" by (simp add: Nadd_def split_def) lemma Nsub_normN[simp]: "[| isnormNum y|] ==> isnormNum (x -N y)" by (simp add: Nsub_def split_def) lemma Nmul_normN[simp]: assumes xn:"isnormNum x" and yn: "isnormNum y" shows "isnormNum (x *N y)" proof- have "∃a b. x = (a,b)" and "∃ a' b'. y = (a',b')" by auto then obtain a b a' b' where ab: "x = (a,b)" and ab': "y = (a',b')" by blast {assume "a = 0" hence ?thesis using xn ab ab' by (simp add: igcd_def isnormNum_def Let_def Nmul_def split_def)} moreover {assume "a' = 0" hence ?thesis using yn ab ab' by (simp add: igcd_def isnormNum_def Let_def Nmul_def split_def)} moreover {assume a: "a ≠0" and a': "a'≠0" hence bp: "b > 0" "b' > 0" using xn yn ab ab' by (simp_all add: isnormNum_def) from mult_pos_pos[OF bp] have "x *N y = normNum (a*a', b*b')" using ab ab' a a' bp by (simp add: Nmul_def Let_def split_def normNum_def) hence ?thesis by simp} ultimately show ?thesis by blast qed lemma Ninv_normN[simp]: "isnormNum x ==> isnormNum (Ninv x)" by (simp add: Ninv_def isnormNum_def split_def) (cases "fst x = 0", auto simp add: igcd_commute) lemma isnormNum_int[simp]: "isnormNum 0N" "isnormNum (1::int)N" "i ≠ 0 ==> isnormNum iN" by (simp_all add: isnormNum_def igcd_def) text {* Relations over Num *} definition Nlt0:: "Num => bool" ("0>N") where "Nlt0 = (λ(a,b). a < 0)" definition Nle0:: "Num => bool" ("0≥N") where "Nle0 = (λ(a,b). a ≤ 0)" definition Ngt0:: "Num => bool" ("0<N") where "Ngt0 = (λ(a,b). a > 0)" definition Nge0:: "Num => bool" ("0≤N") where "Nge0 = (λ(a,b). a ≥ 0)" definition Nlt :: "Num => Num => bool" (infix "<N" 55) where "Nlt = (λa b. 0>N (a -N b))" definition Nle :: "Num => Num => bool" (infix "≤N" 55) where "Nle = (λa b. 0≥N (a -N b))" definition "INum = (λ(a,b). of_int a / of_int b)" lemma INum_int [simp]: "INum iN = ((of_int i) ::'a::field)" "INum 0N = (0::'a::field)" by (simp_all add: INum_def) lemma isnormNum_unique[simp]: assumes na: "isnormNum x" and nb: "isnormNum y" shows "((INum x ::'a::{ring_char_0,field, division_by_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs") proof have "∃ a b a' b'. x = (a,b) ∧ y = (a',b')" by auto then obtain a b a' b' where xy[simp]: "x = (a,b)" "y=(a',b')" by blast assume H: ?lhs {assume "a = 0 ∨ b = 0 ∨ a' = 0 ∨ b' = 0" hence ?rhs using na nb H apply (simp add: INum_def split_def isnormNum_def) apply (cases "a = 0", simp_all) apply (cases "b = 0", simp_all) apply (cases "a' = 0", simp_all) apply (cases "a' = 0", simp_all add: of_int_eq_0_iff) done} moreover { assume az: "a ≠ 0" and bz: "b ≠ 0" and a'z: "a'≠0" and b'z: "b'≠0" from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: isnormNum_def) from prems have eq:"a * b' = a'*b" by (simp add: INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult) from prems have gcd1: "igcd a b = 1" "igcd b a = 1" "igcd a' b' = 1" "igcd b' a' = 1" by (simp_all add: isnormNum_def add: igcd_commute) from eq have raw_dvd: "a dvd a'*b" "b dvd b'*a" "a' dvd a*b'" "b' dvd b*a'" apply(unfold dvd_def) apply (rule_tac x="b'" in exI, simp add: mult_ac) apply (rule_tac x="a'" in exI, simp add: mult_ac) apply (rule_tac x="b" in exI, simp add: mult_ac) apply (rule_tac x="a" in exI, simp add: mult_ac) done from zdvd_dvd_eq[OF bz zrelprime_dvd_mult[OF gcd1(2) raw_dvd(2)] zrelprime_dvd_mult[OF gcd1(4) raw_dvd(4)]] have eq1: "b = b'" using pos by simp_all with eq have "a = a'" using pos by simp with eq1 have ?rhs by simp} ultimately show ?rhs by blast next assume ?rhs thus ?lhs by simp qed lemma isnormNum0[simp]: "isnormNum x ==> (INum x = (0::'a::{ring_char_0, field,division_by_zero})) = (x = 0N)" unfolding INum_int(2)[symmetric] by (rule isnormNum_unique, simp_all) lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::{field, ring_char_0}) / (of_int d) = of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)" proof - assume "d ~= 0" hence dz: "of_int d ≠ (0::'a)" by (simp add: of_int_eq_0_iff) let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)" let ?f = "λx. x / of_int d" have "x = (x div d) * d + x mod d" by auto then have eq: "of_int x = ?t" by (simp only: of_int_mult[symmetric] of_int_add [symmetric]) then have "of_int x / of_int d = ?t / of_int d" using cong[OF refl[of ?f] eq] by simp then show ?thesis by (simp add: add_divide_distrib ring_simps prems) qed lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==> (of_int(n div d)::'a::{field, ring_char_0}) = of_int n / of_int d" apply (frule of_int_div_aux [of d n, where ?'a = 'a]) apply simp apply (simp add: zdvd_iff_zmod_eq_0) done lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{ring_char_0,field, division_by_zero})" proof- have "∃ a b. x = (a,b)" by auto then obtain a b where x[simp]: "x = (a,b)" by blast {assume "a=0 ∨ b = 0" hence ?thesis by (simp add: INum_def normNum_def split_def Let_def)} moreover {assume a: "a≠0" and b: "b≠0" let ?g = "igcd a b" from a b have g: "?g ≠ 0"by simp from of_int_div[OF g, where ?'a = 'a] have ?thesis by (auto simp add: INum_def normNum_def split_def Let_def)} ultimately show ?thesis by blast qed lemma INum_normNum_iff: "(INum x ::'a::{field, division_by_zero, ring_char_0}) = INum y <-> normNum x = normNum y" (is "?lhs = ?rhs") proof - have "normNum x = normNum y <-> (INum (normNum x) :: 'a) = INum (normNum y)" by (simp del: normNum) also have "… = ?lhs" by simp finally show ?thesis by simp qed lemma Nadd[simp]: "INum (x +N y) = INum x + (INum y :: 'a :: {ring_char_0,division_by_zero,field})" proof- let ?z = "0:: 'a" have " ∃ a b. x = (a,b)" " ∃ a' b'. y = (a',b')" by auto then obtain a b a' b' where x[simp]: "x = (a,b)" and y[simp]: "y = (a',b')" by blast {assume "a=0 ∨ a'= 0 ∨ b =0 ∨ b' = 0" hence ?thesis apply (cases "a=0",simp_all add: Nadd_def) apply (cases "b= 0",simp_all add: INum_def) apply (cases "a'= 0",simp_all) apply (cases "b'= 0",simp_all) done } moreover {assume aa':"a ≠ 0" "a'≠ 0" and bb': "b ≠ 0" "b' ≠ 0" {assume z: "a * b' + b * a' = 0" hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp hence "of_int b' * of_int a / (of_int b * of_int b') + of_int b * of_int a' / (of_int b * of_int b') = ?z" by (simp add:add_divide_distrib) hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' by simp from z aa' bb' have ?thesis by (simp add: th Nadd_def normNum_def INum_def split_def)} moreover {assume z: "a * b' + b * a' ≠ 0" let ?g = "igcd (a * b' + b * a') (b*b')" have gz: "?g ≠ 0" using z by simp have ?thesis using aa' bb' z gz of_int_div[where ?'a = 'a, OF gz igcd_dvd1[where i="a * b' + b * a'" and j="b*b'"]] of_int_div[where ?'a = 'a, OF gz igcd_dvd2[where i="a * b' + b * a'" and j="b*b'"]] by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib)} ultimately have ?thesis using aa' bb' by (simp add: Nadd_def INum_def normNum_def x y Let_def) } ultimately show ?thesis by blast qed lemma Nmul[simp]: "INum (x *N y) = INum x * (INum y:: 'a :: {ring_char_0,division_by_zero,field}) " proof- let ?z = "0::'a" have " ∃ a b. x = (a,b)" " ∃ a' b'. y = (a',b')" by auto then obtain a b a' b' where x: "x = (a,b)" and y: "y = (a',b')" by blast {assume "a=0 ∨ a'= 0 ∨ b = 0 ∨ b' = 0" hence ?thesis apply (cases "a=0",simp_all add: x y Nmul_def INum_def Let_def) apply (cases "b=0",simp_all) apply (cases "a'=0",simp_all) done } moreover {assume z: "a ≠ 0" "a' ≠ 0" "b ≠ 0" "b' ≠ 0" let ?g="igcd (a*a') (b*b')" have gz: "?g ≠ 0" using z by simp from z of_int_div[where ?'a = 'a, OF gz igcd_dvd1[where i="a*a'" and j="b*b'"]] of_int_div[where ?'a = 'a , OF gz igcd_dvd2[where i="a*a'" and j="b*b'"]] have ?thesis by (simp add: Nmul_def x y Let_def INum_def)} ultimately show ?thesis by blast qed lemma Nneg[simp]: "INum (~N x) = - (INum x ::'a:: field)" by (simp add: Nneg_def split_def INum_def) lemma Nsub[simp]: shows "INum (x -N y) = INum x - (INum y:: 'a :: {ring_char_0,division_by_zero,field})" by (simp add: Nsub_def split_def) lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: {division_by_zero,field}) / (INum x)" by (simp add: Ninv_def INum_def split_def) lemma Ndiv[simp]: "INum (x ÷N y) = INum x / (INum y ::'a :: {ring_char_0, division_by_zero,field})" by (simp add: Ndiv_def) lemma Nlt0_iff[simp]: assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})< 0) = 0>N x " proof- have " ∃ a b. x = (a,b)" by simp then obtain a b where x[simp]:"x = (a,b)" by blast {assume "a = 0" hence ?thesis by (simp add: Nlt0_def INum_def) } moreover {assume a: "a≠0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"] have ?thesis by (simp add: Nlt0_def INum_def)} ultimately show ?thesis by blast qed lemma Nle0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) ≤ 0) = 0≥N x" proof- have " ∃ a b. x = (a,b)" by simp then obtain a b where x[simp]:"x = (a,b)" by blast {assume "a = 0" hence ?thesis by (simp add: Nle0_def INum_def) } moreover {assume a: "a≠0" hence b: "(of_int b :: 'a) > 0" using nx by (simp add: isnormNum_def) from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"] have ?thesis by (simp add: Nle0_def INum_def)} ultimately show ?thesis by blast qed lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})> 0) = 0<N x" proof- have " ∃ a b. x = (a,b)" by simp then obtain a b where x[simp]:"x = (a,b)" by blast {assume "a = 0" hence ?thesis by (simp add: Ngt0_def INum_def) } moreover {assume a: "a≠0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"] have ?thesis by (simp add: Ngt0_def INum_def)} ultimately show ?thesis by blast qed lemma Nge0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) ≥ 0) = 0≤N x" proof- have " ∃ a b. x = (a,b)" by simp then obtain a b where x[simp]:"x = (a,b)" by blast {assume "a = 0" hence ?thesis by (simp add: Nge0_def INum_def) } moreover {assume a: "a≠0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"] have ?thesis by (simp add: Nge0_def INum_def)} ultimately show ?thesis by blast qed lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) < INum y) = (x <N y)" proof- let ?z = "0::'a" have "((INum x ::'a) < INum y) = (INum (x -N y) < ?z)" using nx ny by simp also have "… = (0>N (x -N y))" using Nlt0_iff[OF Nsub_normN[OF ny]] by simp finally show ?thesis by (simp add: Nlt_def) qed lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})≤ INum y) = (x ≤N y)" proof- have "((INum x ::'a) ≤ INum y) = (INum (x -N y) ≤ (0::'a))" using nx ny by simp also have "… = (0≥N (x -N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp finally show ?thesis by (simp add: Nle_def) qed lemma Nadd_commute: "x +N y = y +N x" proof- have n: "isnormNum (x +N y)" "isnormNum (y +N x)" by simp_all have "(INum (x +N y)::'a :: {ring_char_0,division_by_zero,field}) = INum (y +N x)" by simp with isnormNum_unique[OF n] show ?thesis by simp qed lemma[simp]: "(0, b) +N y = normNum y" "(a, 0) +N y = normNum y" "x +N (0, b) = normNum x" "x +N (a, 0) = normNum x" apply (simp add: Nadd_def split_def, simp add: Nadd_def split_def) apply (subst Nadd_commute,simp add: Nadd_def split_def) apply (subst Nadd_commute,simp add: Nadd_def split_def) done lemma normNum_nilpotent_aux[simp]: assumes nx: "isnormNum x" shows "normNum x = x" proof- let ?a = "normNum x" have n: "isnormNum ?a" by simp have th:"INum ?a = (INum x ::'a :: {ring_char_0, division_by_zero,field})" by simp with isnormNum_unique[OF n nx] show ?thesis by simp qed lemma normNum_nilpotent[simp]: "normNum (normNum x) = normNum x" by simp lemma normNum0[simp]: "normNum (0,b) = 0N" "normNum (a,0) = 0N" by (simp_all add: normNum_def) lemma normNum_Nadd: "normNum (x +N y) = x +N y" by simp lemma Nadd_normNum1[simp]: "normNum x +N y = x +N y" proof- have n: "isnormNum (normNum x +N y)" "isnormNum (x +N y)" by simp_all have "INum (normNum x +N y) = INum x + (INum y :: 'a :: {ring_char_0, division_by_zero,field})" by simp also have "… = INum (x +N y)" by simp finally show ?thesis using isnormNum_unique[OF n] by simp qed lemma Nadd_normNum2[simp]: "x +N normNum y = x +N y" proof- have n: "isnormNum (x +N normNum y)" "isnormNum (x +N y)" by simp_all have "INum (x +N normNum y) = INum x + (INum y :: 'a :: {ring_char_0, division_by_zero,field})" by simp also have "… = INum (x +N y)" by simp finally show ?thesis using isnormNum_unique[OF n] by simp qed lemma Nadd_assoc: "x +N y +N z = x +N (y +N z)" proof- have n: "isnormNum (x +N y +N z)" "isnormNum (x +N (y +N z))" by simp_all have "INum (x +N y +N z) = (INum (x +N (y +N z)) :: 'a :: {ring_char_0, division_by_zero,field})" by simp with isnormNum_unique[OF n] show ?thesis by simp qed lemma Nmul_commute: "isnormNum x ==> isnormNum y ==> x *N y = y *N x" by (simp add: Nmul_def split_def Let_def igcd_commute mult_commute) lemma Nmul_assoc: assumes nx: "isnormNum x" and ny:"isnormNum y" and nz:"isnormNum z" shows "x *N y *N z = x *N (y *N z)" proof- from nx ny nz have n: "isnormNum (x *N y *N z)" "isnormNum (x *N (y *N z))" by simp_all have "INum (x +N y +N z) = (INum (x +N (y +N z)) :: 'a :: {ring_char_0, division_by_zero,field})" by simp with isnormNum_unique[OF n] show ?thesis by simp qed lemma Nsub0: assumes x: "isnormNum x" and y:"isnormNum y" shows "(x -N y = 0N) = (x = y)" proof- {fix h :: "'a :: {ring_char_0,division_by_zero,ordered_field}" from isnormNum_unique[where ?'a = 'a, OF Nsub_normN[OF y], where y="0N"] have "(x -N y = 0N) = (INum (x -N y) = (INum 0N :: 'a)) " by simp also have "… = (INum x = (INum y:: 'a))" by simp also have "… = (x = y)" using x y by simp finally show ?thesis .} qed lemma Nmul0[simp]: "c *N 0N = 0N" " 0N *N c = 0N" by (simp_all add: Nmul_def Let_def split_def) lemma Nmul_eq0[simp]: assumes nx:"isnormNum x" and ny: "isnormNum y" shows "(x*N y = 0N) = (x = 0N ∨ y = 0N)" proof- {fix h :: "'a :: {ring_char_0,division_by_zero,ordered_field}" have " ∃ a b a' b'. x = (a,b) ∧ y= (a',b')" by auto then obtain a b a' b' where xy[simp]: "x = (a,b)" "y = (a',b')" by blast have n0: "isnormNum 0N" by simp show ?thesis using nx ny apply (simp only: isnormNum_unique[where ?'a = 'a, OF Nmul_normN[OF nx ny] n0, symmetric] Nmul[where ?'a = 'a]) apply (simp add: INum_def split_def isnormNum_def fst_conv snd_conv) apply (cases "a=0",simp_all) apply (cases "a'=0",simp_all) done } qed lemma Nneg_Nneg[simp]: "~N (~N c) = c" by (simp add: Nneg_def split_def) lemma Nmul1[simp]: "isnormNum c ==> 1N *N c = c" "isnormNum c ==> c *N 1N = c" apply (simp_all add: Nmul_def Let_def split_def isnormNum_def) by (cases "fst c = 0", simp_all,cases c, simp_all)+ end
lemma normNum_isnormNum:
isnormNum (normNum x)
lemma Nneg_normN:
isnormNum x ==> isnormNum (~N x)
lemma Nadd_normN:
isnormNum (x +N y)
lemma Nsub_normN:
isnormNum y ==> isnormNum (x -N y)
lemma Nmul_normN:
[| isnormNum x; isnormNum y |] ==> isnormNum (x *N y)
lemma Ninv_normN:
isnormNum x ==> isnormNum (Ninv x)
lemma isnormNum_int:
isnormNum 0N
isnormNum 1N
i ≠ 0 ==> isnormNum iN
lemma INum_int:
INum iN = of_int i
INum 0N = (0::'a)
lemma isnormNum_unique:
[| isnormNum x; isnormNum y |] ==> (INum x = INum y) = (x = y)
lemma isnormNum0:
isnormNum x ==> (INum x = (0::'a)) = (x = 0N)
lemma of_int_div_aux:
d ≠ 0 ==> of_int x / of_int d = of_int (x div d) + of_int (x mod d) / of_int d
lemma of_int_div:
[| d ≠ 0; d dvd n |] ==> of_int (n div d) = of_int n / of_int d
lemma normNum:
INum (normNum x) = INum x
lemma INum_normNum_iff:
(INum x = INum y) = (normNum x = normNum y)
lemma Nadd:
INum (x +N y) = INum x + INum y
lemma Nmul:
INum (x *N y) = INum x * INum y
lemma Nneg:
INum (~N x) = - INum x
lemma Nsub:
INum (x -N y) = INum x - INum y
lemma Ninv:
INum (Ninv x) = (1::'a) / INum x
lemma Ndiv:
INum (x ÷N y) = INum x / INum y
lemma Nlt0_iff:
isnormNum x ==> (INum x < (0::'a)) = 0>N x
lemma Nle0_iff:
isnormNum x ==> (INum x ≤ (0::'a)) = 0≥N x
lemma Ngt0_iff:
isnormNum x ==> ((0::'a) < INum x) = 0<N x
lemma Nge0_iff:
isnormNum x ==> ((0::'a) ≤ INum x) = 0≤N x
lemma Nlt_iff:
[| isnormNum x; isnormNum y |] ==> (INum x < INum y) = x <N y
lemma Nle_iff:
[| isnormNum x; isnormNum y |] ==> (INum x ≤ INum y) = x ≤N y
lemma Nadd_commute:
x +N y = y +N x [{ring_char_0,division_by_zero,field}]
lemma
(0, b) +N y = normNum y [{ring_char_0,division_by_zero,field}]
(a, 0) +N y = normNum y [{ring_char_0,division_by_zero,field}]
x +N (0, b) = normNum x [{ring_char_0,division_by_zero,field}]
x +N (a, 0) = normNum x [{ring_char_0,division_by_zero,field}]
lemma normNum_nilpotent_aux:
isnormNum x ==> normNum x = x [{ring_char_0,division_by_zero,field}]
lemma normNum_nilpotent:
normNum (normNum x) = normNum x [{ring_char_0,division_by_zero,field}]
lemma normNum0:
normNum (0, b) = 0N
normNum (a, 0) = 0N
lemma normNum_Nadd:
normNum (x +N y) = x +N y [{ring_char_0,division_by_zero,field}]
lemma Nadd_normNum1:
normNum x +N y = x +N y [{ring_char_0,division_by_zero,field}]
lemma Nadd_normNum2:
x +N normNum y = x +N y [{ring_char_0,division_by_zero,field}]
lemma Nadd_assoc:
x +N y +N z = x +N (y +N z) [{ring_char_0,division_by_zero,field}]
lemma Nmul_commute:
[| isnormNum x; isnormNum y |] ==> x *N y = y *N x
lemma Nmul_assoc:
[| isnormNum x; isnormNum y; isnormNum z |] ==> x *N y *N z = x *N (y *N z) [{ring_char_0,division_by_zero,field}]
lemma Nsub0:
[| isnormNum x; isnormNum y |] ==> (x -N y = 0N) = (x = y) [{ring_char_0,division_by_zero,field}, field, {division_by_zero,ordered_field}]
lemma Nmul0:
c *N 0N = 0N
0N *N c = 0N
lemma Nmul_eq0:
[| isnormNum x; isnormNum y |] ==> (x *N y = 0N) = (x = 0N ∨ y = 0N) [{inverse,ring_1}, {ring_char_0,division_by_zero,field}, field, {division_by_zero,field}, {division_by_zero,ordered_field}]
lemma Nneg_Nneg:
~N (~N c) = c
lemma Nmul1:
isnormNum c ==> 1N *N c = c
isnormNum c ==> c *N 1N = c