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Abstract. We study the spaces of functions on Rn for which the
generalized partial derivatives Drk

k f exist and belong to different
Lorentz spaces Lpk,sk . For this kind of functions we prove a sharp
version of the extreme case of the Sobolev embedding theorem
using L(∞, s) spaces.

Anisotropic spaces, Embeddings, Sobolev spaces

1. Introduction

In this paper we consider functions f on Rn with generalized partial
derivatives

Drk
k f ≡

∂rkf

∂xrkk
(rk ∈ N).

Our main objective is to obtain an extreme case of a Sobolev type
inequality for these functions. More precisely, we want to generalize
the embedding

W r
n/r(Rn) ↪→ L(∞, n/r)(Rn) (r, n ∈ N; r ≤ n)

(Milman-Pustylnik [16], Bastero-Milman-Ruiz [2] for r = 1) to the case
where the partial derivatives Drk

k f of different orders belong to different
Lorentz spaces Lpk,sk .

In order to introduce the problem we recall some basic facts and
review the literature. Let n, r ∈ N, 1 ≤ p < ∞. The Sobolev space
W r
p (Rn) is the class of functions f ∈ Lp(Rn) with all the generalized

derivatives of order r belonging to Lp(Rn).
The classical Sobolev embedding theorem says that if 1 ≤ p < n/r

then
W r
p (Rn) ↪→ Lq

∗
(Rn) q∗ =

np

n− rp
.

This theorem is well known and has been extensively considered in the
literature. In this paper we deal with the extreme case p = n/r (or
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equivalently, q∗ = ∞). If 1 = p = n/r it is known that (see [4, §10],
[19])

W n
1 (Rn) ↪→ L∞(Rn).

However, it is easy to see that for 1 < p = n/r, the functions in
W r
n/r(Rn) need not to be bounded. Many authors have studied which

kind of embedding holds in this case. Hansson [6], and independently
and by different methods Brézis and Wainger [5], proved that if Ω is
an open domain in Rn (n > 1) with |Ω| <∞,

W̃ 1
n(Ω) ↪→ Hn(Ω), (1)

where W̃ 1
n(Ω) is the closure of C∞0 (Ω) in W 1

n and

Hn(Ω) = {f : ‖f‖Hn(Ω) =

[∫ |Ω|
0

(
f ∗∗(s)

1 + log |Ω|
s

)n
ds

s

]1/n

<∞}.

Moreover, Hansson [6] showed that Hn(Ω) is the optimal target space
in the class of rearrangement invariant spaces.

However, this result can be improved in the following sense. Kolyada
[10, Lemma 5.1](see also [9, p.7]) proved the inequality

f ∗(t)− f ∗(2t) ≤ ct1/n(|∇f |)∗∗(t) t > 0. (2)

Bastero,Milman and Ruiz (see [2, Remark (2.3)] showed that

f ∗∗(t)− f ∗(t) ≤ ct1/n(|∇f |)∗∗(t) t > 0. (3)

Inequalities (2) and (3) are equivalent (see Remark 1).
In [15, 1, 2] spaces related to inequality (3) were introduced and

studied. It follows immediately from (3) that the Sobolev space

w1
n,∞(Rn) = {f : ∇f ∈ weak-Ln(Rn)}

is contained in the Bennett-De Vore-Sharpley space1

weak-L∞(Rn) = {f : ‖f‖weak-L∞(Rn) = sup
t>0
{f ∗∗(t)− f ∗(t)} <∞}.

That is (cf. [1]),

w1
n,∞(Rn) ⊂ weak-L∞(Rn).

In [2], for q > 0, the (non linear) spaces L(∞, q)(Rn) are defined as
the set of functions f on Rn such that

‖f‖L(∞,q) =

(∫ ∞
0

[f ∗∗(t)− f ∗(t)]q dt
t

)1/q

<∞.

1weak-L∞ is not a linear space and ‖.‖weak-L∞ is not a norm.
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The following strict inclusions hold for 1 < p < q <∞,

L∞ = L(∞, 1) ⊂ L(∞, p) ⊂ L(∞, q) ⊂ weak-L∞.

It follows from (3) that (see [2])

W 1
n(Rn) ↪→ L(∞, n)(Rn). (4)

Equivalent statements had been proved with different methods in [21,
equation (3.22)] and in [15]. In [2] it is shown how (4) improves (1).

From the recent results in [16], the embedding for derivatives of
higher order

W r
n/r(Rn) ↪→ L(∞, n/r)(Rn) (5)

is derived2.
Now we can specify our objective: find an embedding of type (5)

for functions with partial derivatives of different orders. Existence of
mixed derivatives is not assumed.

Let’s explain more specifically which is the form of the embedding
we are looking for. We consider the space of functions f such that
the generalized partial derivatives Drk

k f (k = 1, . . . , n) belong to dif-
ferent spaces Lpk . The corresponding classes of functions naturally
appear in the embedding theory as well as in applications. The most
extended theory of these classes is contained in the monograph [4].
Furthermore, in this paper we allow the derivatives to belong to dif-
ferent Lorentz spaces Lpk,sk(Rn) (where 1 ≤ pk, sk < ∞ and sk = 1, if
pk = 1). The use of Lorentz type limitations on the derivatives can be
crucial in the estimates of Fourier transforms [11, 13, 18], conditions
for differentiability [20], and embedding theorems [21].

Then our main problem is to find an embedding of type (5) for
functions with the derivatives Drk

k f ∈ Lpk,sk(Rn) (k = 1, . . . , n).
The answer is given at the following inequality, proved in Theorem

1 below

‖f‖L(∞,s)(Rn) ≤ c

n∑
k=1

‖Drk
k f‖pk,sk 1 ≤ p = n/r,

where r, p and s are suitable averages of the rk’s, pk’s and sk’s to be
defined later, that are frequently used in this context.

Note that the methods from [2, 15, 21] cannot be used in our case
since they work for r1 = · · · = rn = 1 only. Moreover, the reasoning
in [16] is not applicable because our rk’s can be different, and so, the
existence of mixed derivatives is not assumed. Thus, no induction over

2Note that if f ∈ W r
n/r(Rn), then ∇f ∈ W r−1

n/r (Rn), and, by the well known

embedding of Sobolev spaces into Lorentz spaces, ∇f ∈ Ln,n/r(Rn). From this and
(3), the embedding (5) follows also.
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the order of the derivatives is possible. Instead, our approach is based
on embeddings of Besov spaces and the transitivity of embeddings,
together with results from [14].

2. Some definitions

Let S0(Rn) be the class of all measurable, almost everywhere finite
functions f on Rn, such that for each y > 0,

λf (y) ≡ |{x ∈ Rn : |f(x)| > y}| <∞.
The non-increasing rearrangement of f ∈ S0(Rn) is a non-increasing

function f ∗ on R+ ≡ (0,+∞) that is equimeasurable with |f |. The
rearrangement f ∗ can be defined by the equality

f ∗(t) = sup
|E|=t

inf
x∈E
|f(x)| , 0 < t <∞ .

The following relation holds [3, Ch.2]

sup
|E|=t

∫
E

|f(x)|dx =

∫ t

0

f ∗(u)du .

In what follows we set

f ∗∗(t) =
1

t

∫ t

0

f ∗(u)du .

Assume that 0 < q, p < ∞ . A function f ∈ S0(Rn) belongs to the
Lorentz space Lq,p(Rn) if

‖f‖q,p ≡
(∫ ∞

0

(
t1/qf ∗(t)

)p dt
t

)1/p

<∞ .

We have the inequality [3, p.217]

‖f‖q,s ≤ c‖f‖q,p (0 < p < s <∞),

so that Lq,p ⊂ Lq,s for p < s. In particular, for 0 < p ≤ q

Lq,p ⊂ Lq,q ≡ Lq .

Let f be a measurable function on Rn. Let j ∈ {1, . . . , n}. We define
the difference

∆j(h)f(x) ≡ f(x+ hej)− f(x), h ∈ R,
where ej is the unit coordinate vector. If r > 1, inductively,

∆r
j(h)f(x) ≡ ∆j(h)[∆r−1

j (h)f ](x).

Let 1 ≤ q <∞. The function

ωj(f ; δ)q = sup
0<h<δ

‖∆j(h)f‖q δ > 0,
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is called the modulus of continuity of f with respect to the variable xj
in the metric Lq.

For 1 ≤ p < ∞ we denote Lp ≡ Lp(R+, du/u); set also L∞ ≡
L∞(R+)(see [7]).

3. Auxiliary lemmas

Lemma 1. Let α > 0, θ ≥ 1. Let ψ(t) be a function on R+, non-
negative, non-decreasing such that t−αψ(t) ∈ Lθ. Then, for any δ > 0
there exists a function ϕ on R+ continuously differentiable such that:
i) ψ(t) ≤ ϕ(t),
ii) ϕ(t)t−α−δ decreases and ϕ(t)t−α+δ increases,
iii) ‖t−αϕ(t)‖Lθ ≤ c‖t−αψ(t)‖Lθ where c is a constant that only depends
on δ and α.

The proof follows the scheme of Lemma 2.1 of [14], so we don’t
include it here.

Let 0 < αj <∞, 1 ≤ θj ≤ ∞ for j = 1, . . . , n. Denote

α = n

(
n∑
j=1

1

αj

)−1

; θ =
n

α

(
n∑
j=1

1

αjθj

)−1

. (6)

Lemma 2. Let n ∈ N, 0 < αj <∞ and 1 ≤ θj ≤ ∞ for j = 1, . . . , n.
Set α and θ as in (6). Set also

0 < δ ≤ 1

2
min

1≤j≤n
{αj}.

For j = 1, . . . , n, let ϕj be positive and continuously differentiable
functions on R+, satisfying ϕj(t)t

−αj ∈ Lθj . Suppose in addition that
ϕj(t)t

−αj+δ increases and ϕj(t)t
−αj−δ decreases.

Then there exist positive functions δ1, . . . , δn on R+ such that
n∏
j=1

δj(t) = t (t > 0);

and for σ(t) ≡
∑n

j=1 ϕj(δj(t)) it holds that(∫ ∞
0

t−
αθ
n
−1σ(t)θdt

)1/θ

≤ c

n∏
j=1

[
‖t−αjϕj(t)‖Lθj

] α
nαj ,

where c is a constant that only depends on δ, rj and n.

Proof. Let 0 < a < b be two positive constants. A positive function g
on R+ is said to be of power type (a, b) if g(t)t−a ↑ and g(t)t−b ↓.

It is easy to see that if g is of power type (a, b), then its inverse g−1

exists on R+, and it is of power type (1/b, 1/a).
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Also, if g1 is of power type (a1, b1) and g2 is of power type (a2, b2),
then g1g2 is of power type (a1 + a2, b1 + b2) and g1 ◦ g2 is of power type
(a1a2, b1b2).

Note that the functions ϕj are of power type (αj − δ, αj + δ).
Set now

Φ(s) = s
n−1∏
j=1

ϕ−1
j (ϕn(s)), s > 0. (7)

Define for t > 0

δn(t) = Φ−1(t), δj(t) = ϕ−1
j (ϕn(δn(t))) j = 1, . . . , n− 1. (8)

Of course, for j = 1, . . . , n, the functions δj are of power type for some
(aj, bj). From this it follows that

aj
t
≤
δ′j(t)

δj(t)
≤ bj

t
. (9)

Moreover, by (7)
n∏
j=1

δj(t) = Φ(δn(t)) = t.

And by (8) (1 ≤ i, j ≤ n)

ϕi(δi(t)) = ϕj(δj(t)), (10)

which implies that σ(t) = nϕj(δj(t)) (j = 1, . . . , n).

Finally, using (10), Hölder’s inequality with exponents
nαjθj
θα

, (9), and
the change of variable δj(t) = z we get(∫ ∞

0

t−
αθ
n
−1σ(t)θdt

)1/θ

= n

(∫ ∞
0

n∏
j=1

[
ϕj(δj(t))

δj(t)αj

] θα
nαj dt

t

)1/θ

≤

≤ n

n∏
j=1

(∫ ∞
0

[
ϕj(δj(t))

δj(t)αj

]θj dt
t

) 1
θj

α
nαj

≤ c
n∏
j=1

(‖t−αjϕj(t)‖Lθj )
α/nαj .

� �

Lemma 3. Let n ∈ N, α1, . . . , αn > 0, 1 ≤ θ1, . . . , θn ≤ ∞. Set α and
θ as in (6). Then, for any 1 ≤ q <∞ and any f ∈ S0(Rn), there exists
a non negative function σ(t) on R+ such that

f ∗(t) ≤ f ∗(2t) + t−1/qσ(t) (t > 0) (11)

and (∫ ∞
0

t−αθ/nσ(t)θ
dt

t

)1/θ

≤ c
n∑
j=1

‖t−αjωj(f ; t)q‖Lθj , (12)
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where c is a constant that doesn’t depend on f .

Proof. Without loss of generality we can suppose that the right hand
side of (12) is finite. As f ∈ S0(Rn), then the ωj(f ; ·)q are positive
functions3. Applying Lemma 1 to the above mentioned modulus with
δ = 1

2
min{αj} we conclude that there exist continuously differentiable

functions ϕj(t) on R+ such that

0 < ωj(f ; t)q ≤ ϕj(t) (t > 0), (13)

ϕj(t)t
−αj−δ ↓, ϕj(t)t

−αj+δ ↑,
and

‖t−αjϕj(t)‖Lθj ≤ c‖t−αjωj(f ; t)q‖Lθj . (14)

Now, note that the functions ϕj satisfy the conditions of Lemma 2.
Hence, there exist positive functions δ1, . . . , δn on R+ such that

∏n
j=1 δj(t) =

t and for σ(t) ≡
∑n

j=1 ϕj(δj(t)) the following inequality holds(∫ ∞
0

t−αθ/nσ(t)θ
dt

t

)1/θ

≤ c
n∏
j=1

(‖t−αjϕj(t)‖Lθj )
α
nαj . (15)

Last, using Lemma 10.3 of [12] we have

f ∗(t) ≤ f ∗(2t) + ct−1/q

n∑
j=1

ωj(f ; δj(t))q.

From this and (13) we get (11). The estimate (12) is the consequence
of (15), (14) and the inequality between arithmetic and geometric av-
erages. � �

4. Embedding theorem

Theorem 1. Let n ≥ 2, rj ∈ N, 1 ≤ pj, sj < ∞ for j = 1, . . . , n and
sj = 1 if pj = 1. Set

r = n

(
n∑
j=1

1

rj

)−1

, p =
n

r

(
n∑
j=1

1

pjrj

)−1

, s =
n

r

(
n∑
j=1

1

sjrj

)−1

.

Assume that p = n/r. Then, for all f ∈ S0(Rn) that possess weak
derivatives D

rj
j f ∈ Lpj ,sj(Rn) (j = 1, . . . , n), it holds that(∫ ∞
0

[f ∗∗(t)− f ∗(t)]sdt
t

)1/s

≤ c

n∑
j=1

‖Drj
j f‖pj ,sj .

3otherwise, since f ∈ S0(Rn), we have that f ≡ 0 and the result is obvious.
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Proof. We fix q > max1≤j≤n{pjrj}. Now we apply Theorem 3.1 of [14]
with the parameters qj that are choosen in the said theorem taking the
value of the q that we have just fixed. By this fact (i.e. qj = q, j =
1, . . . , n) and the assumption p = n/r, it follows that the parameters
ρj, κj, αj and θj appearing in that theorem are

ρj =
1

pj
, κj =

pj
q
, αj =

pjrj
q
,

1

θj
=

1− κj
s

+
κj
sj
. (16)

Thus we get
n∑
j=1

(∫ ∞
0

[h−αj‖∆rj
j (h)f‖q]θj

dh

h

)1/θj

≤ c

n∑
k=1

‖Drk
k f‖pk,sk . (17)

Note that the left hand side of (17) is a sum of Besov type seminorms.
Then, [17, Chap.4] as 0 < αj < 1,

‖t−αjωj(f ; t)q‖Lθj ≤ c

(∫ ∞
0

[h−αj‖∆rj
j (h)f‖q]θj

dh

h

)1/θj

. (18)

By Lemma 3 we have(∫ ∞
0

[f ∗(t)− f ∗(2t)]θ dt
t

)1/θ

≤
(∫ ∞

0

t−θ/qσ(t)θ
dt

t

)1/θ

(19)

and (∫ ∞
0

t−αθ/nσ(t)θ
dt

t

)1/θ

≤ c
n∑
j=1

‖t−αjωj(f ; t)q‖Lθj , (20)

where (by (6), (16) and p = n/r 4). The value of α is

α = n

(
n∑
i=1

1

αi

)−1

= n

(
n∑
i=1

q

piri

)−1

=
n

q
.

So, the right hand side of (19) and the left hand side of (20) coincide.
Moreover, from (6) and (16), we have

θ =
n

α

(
n∑
j=1

1

θjαj

)−1

= q

(
n∑
j=1

[
1− κj
sαj

+
κj
sjαj

])−1

= s.

Finally,

f ∗∗(t)− f ∗(t) ≤ 1

t

∫ t

0

f ∗(u)du− 2

t

∫ t

t/2

f ∗(2u)du =

=
2

t

∫ t

0

(f ∗(u)− f ∗(2u))du. (21)

4which is the same as
∑n

j=1
1

pjrj
= 1.
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And from this and Hardy’s inequality [3, pg.124],(∫ ∞
0

[f ∗∗(t)− f ∗(t)]sdt
t

)1/s

≤ c

(∫ ∞
0

[f ∗(t)− f ∗(2t)]sdt
t

)1/s

. (22)

Putting together (22), (19), (20), (18), (17) we obtain the result. �
�

Remark 1. In this paragraph we show that estimates (3) and (2) are
equivalent. It is easy to see that

f ∗(t/2)− f ∗(t) ≤ 2(f ∗∗(t)− f ∗(t)). (23)

So, (3) implies (2). Note that (21) is easily proved too. From (2),
using (21) and the fact that for any g ∈ S0(Rn) tg∗∗(t) increases in t,
the estimate (3) follows.

Inequality (23) appears in [2, Theorem 4.1]. Note also that inequal-
ities equivalent to (21) are used in [8, Lemma 5] and [2, Theorem 4.1].

Remark 2. In the case rj = r1, sj = pj = p1 (1 ≤ j ≤ n), Theorem 1
implies the embedding (5).
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