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Abstract

Anisotropic Lipschitz spaces are considered. For these spaces we
obtain sharp embeddings in Besov and Lorentz spaces. The methods
used are based on estimates of iterative rearrangements. We find a
unified approach that arises from the estimation of functions defined
as minimum of a given system of functions. The case of L1−norm also
is covered.

1 Introduction

In this paper we prove embedding theorems for anisotropic Lipschitz
spaces. More precisely, we study integrability and smoothness properties
of functions under certain conditions on its moduli of continuity.

In the study of anisotropic spaces, we have different estimates with respect
to different variables. The final result will be sharp if we find an equilibrium
between these estimates, that is, an optimal average estimate. Therefore it
is an important problem to determine a right contribution for each variable
in this average. To discuss this problem we first recall some basic definitions.

Denote by W r
p;j(Rn) (r ∈ N, 1 ≤ p < ∞, 1 ≤ j ≤ n) the Sobolev space

with respect to the jth variable; i.e. the class of functions f in Lp(Rn) with
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partial generalized derivative Dr
jf ∈ Lp(Rn). Now, if r1, . . . , rn ∈ N, then we

set
W r1,...,rn

p (Rn) ≡ ∩n
j=1W

rj

p;j(Rn)

and

‖f‖W
r1,...,rn
p

= ‖f‖p +
n∑

j=1

‖Drj

j f‖p.

If f is a function on Rn, 1 ≤ j ≤ n, and k ∈ N, then we denote

∆k
j (h)f(x) =

k∑
i=0

(−1)k−i

(
k

i

)
f(x+ ihej)

(where x ∈ Rn, h ∈ R, and ej is a basis vector). Let f ∈ Lp(Rn) (1 ≤ p <∞).
Then the function

ωk
j (f ; δ)p = sup

0≤h≤δ
‖∆k

j (h)f‖p (δ ≥ 0)

is called the partial modulus of continuity of f of order k in Lp with respect
to xj.

Let r > 0, and let k be the least integer such that k > r. We denote by
Hr

p;j(Rn) the Nikol’skĭı space of functions f in Lp(Rn) for which

ωk
j (f ; δ)p = O(δr).

Assume that rj > 0, (j = 1, . . . , n) and that kj are the least integers such
that kj > rj. Then the space Hr1,...,rn

p (Rn) is defined as ∩n
j=1H

rj

p;j(Rn), with
the norm

‖f‖H
r1,...,rn
p

= ‖f‖p +
n∑

j=1

sup
u>0

u−rjω
kj

j (f ;u)p.

It is well known that an important characteristic of the spaces W is the
harmonic mean

r = n

(
n∑

j=1

1

rj

)−1

(1.1) deferre

(see [9, 10]). In particular, if 1 ≤ p < n
r

and q∗ = np
n−rp

, then

W r1,...,rn
p ↪→ Lq
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if and only if p ≤ q ≤ q∗. That is, the integrability properties of functions in
W r1,...,rn

p are completely determined by r, and the contribution of the variable
xk is proportional to 1/rk in a sense.

A similar situation holds for Nikol’skĭı spaces, although in this case the
embedding with the limit exponent fails (see [15, 2]).

However, the behaviour of anisotropic Lipschitz spaces is completely dif-
ferent.

Let 1 ≤ p <∞, r > 0 and let r̄ be the least integer such that r̄ ≥ r. We
say that f ∈ Lp(Rn) belongs to the Lipschitz space with respect to the jth
variable Λr

p;j(Rn) if

ωr̄
j (f ; δ)p = O(δr).

Let rj > 0 (j = 1, . . . , n) and denote by r̄j the least integers that rj ≤ r̄j.
The anisotropic Lipschitz space Λr1,...,rn

p (Rn) is defined as ∩n
j=1Λ

rj

p;j(Rn). So,

‖f‖Λ
r1,...,rn
p

≡ ‖f‖p + ‖f‖λ
r1,...,rn
p

,

where the seminorm is

‖f‖λ
r1,...,rn
p

=
n∑

j=1

sup
δ>0

δ−rjω
r̄j

j (f ; δ)p .

It is clear that

Λ
rj

p;j = H
rj

p;j if rj /∈ N.

Also, by Hardy-Littlewood theorem [15], if rj ∈ N, then

Λ
rj

p;j = W
rj

p;j (p > 1).

For rj ∈ N we have the strict embedding Λ
rj

p;j ⊂ H
rj

p;j.
Thus, Lipschitz spaces have partly character of Sobolev spaces and partly

- the character of Nikol’skĭı spaces. This mixed behaviour creates a main
difficulty in their study.

The integrability properties of functions in Lipschitz space and Nikol’skĭı
space with the same indices can be completely different. It was proved in
[5] (for rk ≤ 1) that, in contrast with W and H spaces, the embedding
Λr1,...,rn

p ↪→ Lq is not uniquely determined by the value of the harmonic mean
r (see (1.1)). Roughly speaking, this means that the contribution of the
variable xk is not proportional to 1/rk.
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The proof in [5] (as well as alternative proofs given in [7, 8]) was based
on estimates of rearrangements and special reasonings that led to a kind of
equilibrium between these estimates.

One of the main objectives of this paper is to give a quantitative sharp
expression for this type of equilibrium. We obtain the following results. First,
basing on known estimates of rearrangements, we modify them to special
type involving functions from the spaces Lθ(R+, dx/x), R+ ≡ (0,∞). The
invariance of these spaces under changes of variables of power type plays
an important role. Then, using the modified estimates, we consider the
”minimum-function”

ρ(t) = min
1≤i≤n

{tri
i φi(tli)}, t ∈ Rn

+, φi ∈ Lθi(R+, dx/x), li ∈ {1, . . . , n}.
(1.2) minimo

We prove a special weight estimate for this function. This result provides a
unified approach to estimations of various norms. Using this approach, we
prove sharp estimates of Lorentz norms as well as Besov norms for functions
in Lipschitz spaces.

Let us give a more detailed description of the latter results.

As it was mentioned above, the first sharp results on embedding of Lip-
schitz spaces into Lq were obtained in [5] (for rk ≤ 1) with the use of non-
increasing rearrangements. Afterwards, Netrusov [13, 14] studied embed-
dings of the spaces Λr1,...,rn

p for p > 1 and arbitrary rj > 0. His approach
was based on special integral representations. First, he proved sharp results
on embedding into Lorentz spaces (an alternative proof of these results in-
cluding the case p = 1 was given in [10] and was based on non-increasing
rearrangements). Then, he considered the embedding into Besov spaces.

Assume that 1 ≤ p, θj < ∞ and 0 < rj < ∞ (j = 1, . . . , n). The
anisotropic Besov space Br1,...,rn

p,θ1,...,θn
(Rn) is the class of functions f ∈ Lp(Rn)

such that

‖f‖B
r1,...,rn
p,θ1,...,θn

≡ ‖f‖p +
n∑

j=1

(∫ ∞

0

(t−rj‖∆kj

j (t)f‖p)
θj
dt

t

)1/θj

<∞

where kj ∈ N and kj > rj. For each choice of the integers kj one obtains
equivalent norms; in addition, one can replace in the definition the norm of
finite differences by the corresponding moduli of continuity ([15], Chapter 4
and [2], Chapter 4). For simplicity we denote Br1,...,rn

p,θ ≡ Br1,...,rn

p,θ,...,θ .
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Il’in [2, §18.12] obtained the following refinement of the classical Sobolev
inequality: if 1 < p < q <∞, rj ∈ N, and κ ≡ 1− n/r(1/p− 1/q) > 0, then

W r1,...,rn
p (Rn) ↪→ Bκr1,...,κrn

q,p (Rn). (1.3) lipentero

In the case p = n = 1 this embedding fails. It was proved by Kolyada [6, 9]
that the embedding (1.3) is true in the case p = 1, n ≥ 2, too.

For the Lipschitz spaces, the following result was obtained by Netrusov
[14]: if 1 < p < q <∞, rj > 0 (j = 1, . . . , n), and κ ≡ 1−n/r(1/p−1/q) > 0,
then

Λr1,...,rn
p (Rn) ↪→ Bα1,...,αn

q,γ1,...,γn
(Rn) (1.4) Lipabe

Although we do not specify here the values of parameters, it is important
to point out that here γj take two values - one for all j such that rj /∈ N and
other in the case rj ∈ N.

Let us emphasize that the methods of integral representations used in
[14] fail in the case p = 1. In particular, the question on validity of the
embedding for p = 1 was remained open.

In this paper (section §5) we prove the embedding (1.4) for p ≥ 1. It is the
most important application of our main estimates concerning integrability of
functions of the type (1.2). Moreover, we prove estimates for stronger norms
defined in terms of iterative rearrangements.

For a given function on Rn, we obtain its iterative rearrangement, rear-
ranging this function first with respect to one variable, then respect to an-
other, and so on. It turns out that the iterative rearrangement is defined on
Rn

+ ≡ (0,∞)n, it is non-increasing in each variable and equimeasurable with
|f |. It is defined a Lorentz kind norm ‖.‖q,p;R in term of iterative rearrange-
ments (see §2). It is important to stress that in the case q > p this norm is
stronger than the usual Lorentz norm ‖.‖q,p. Observe also that iterative rear-
rangements were used in embedding theorems in the works [5, 6, 8, 11, 16]. In
particular, it was proved in [11] that for anisotropic Sobolev spaces a stronger
version of Sobolev type inequality with the generalized Lorentz norm ‖.‖q,p;R

is true.
Applying estimates of functions (1.2) we immediately obtain a similar

result for Lipschitz spaces. That is, in Section §5 we prove a Sobolev type
inequality

‖f‖q∗,s;R ≤ c‖f‖λ
r1,...,rn
p

, 1 ≤ p < n/r,

which gives an extension of the results of Kolyada and Netrusov mentioned
above.
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Further, in Section §5 we prove one of our main results – Il’in’s type
inequality

n∑
i=1

(∫ ∞

0

[
h−αi‖∆r̄i

i (h)f‖q,1;R

]γi dh

h

)1/γi

≤ c‖f‖λ
r1,...,rn
p

. (1.5) LipB

This immediately implies the embedding (1.4) for all p ≥ 1. Let us emphasize
that p = 1 is included. Moreover, comparing with (1.4), the left hand side of
(1.5) contains the stronger Lorentz norm ‖.‖q,1;R instead of ‖.‖q . Note also
that it is even possible to replace ‖.‖q,1;R by a stronger norm ‖.‖q,ξ;R for any
ξ > 0.

As it was observed above, our approach is based on two tools. First, we
use some modifications of estimates of rearrangements obtained in [11, 10].
Second, we apply estimates of functions of the type (1.2).

The paper is organized as follows. In Section 2 we consider the definition
and basic properties of the iterative rearrangements. Section 3 is devoted
to modify known estimates of rearrangements into a special type. Next,
in Section 4 we get main lemmas that give us special weight estimates for
functions of type (1.2). Finally, sharp embeddings for anisotropic Lipschitz
spaces are proved in Section 5.

2 Non-Increasing rearrangements
reorit

This section contains basic facts concerning rearrangements. We refer to
([11], §2).

Let S0(Rn) be the class of measurable and almost everywhere finite func-
tions f on Rn such that for each y > 0,

λf (y) ≡ |{x ∈ Rn : |f(x)| > y}| <∞.

A non-increasing rearrangement of a function f ∈ S0(Rn) is a non-increasing
function f ∗ on R+ ≡ (0,+∞) that is equimeasurable with |f |. The rear-
rangement f ∗ can be defined by the equality

f ∗(t) = sup
|E|=t

inf
x∈E

|f(x)|, 0 < t <∞.

Next, we consider the so called iterative rearrangements.
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Let x = (x1, . . . , xn) ∈ Rn. Removing the variable xk from the n-tuple x
we obtain a (n− 1)-dimensional vector denoted by x̂k.

We denote by (τ, x̂k) (τ ∈ R) the vector in Rn with first component τ
and the remaining components equal to the (n− 1)-dimensional vector x̂k.

Let k ∈ {1, . . . , n} and f ∈ S0(Rn). We obtain Rkf(t1, x̂k) a.e. on
R+ × Rn−1 by fixing x̂k and ”rearranging” f in non-increasing order as a
function of the variable xk only.

Let Pn be the collection of all permutations σ = {k1, . . . , kn} of the set
{1, . . . , n}. For each σ ∈ Pn we set Rσf ≡ Rkn · · ·Rk1f . It is easy to
see that Rσf decreases monotonically with respect to each variable and is
equimeasurable with |f | (for more details, see ([11], §2)).

It is easy to verify that

Rσf(t) ≤ f ∗(t1 · · · tn), (2.1) nir1

Rσ(f + g)(t+ s) ≤ Rσf(t) + Rσg(s) (t, s ∈ Rn
+).

Let k ∈ {1, . . . , n}, t1 ∈ R+, x̂k ∈ Rn−1. We consider the following
averages:

R∗
kf(t1, x̂k) ≡

1

t1

∫ t1

0

Rkf(u, x̂k)du,

Rkf(t1, x̂k) ≡
1

t1

∫ ∞

t1

Rkf(u, x̂k)du.

Now, for each σ ∈ Pn we set

R∗
σf(t) = R∗

kn
· · ·R∗

k1
f(t), t ∈ Rn

+.

It holds (see [11, §2])

‖R∗
σf‖p ≤ cp‖f‖p, 1 < p <∞. (2.2) desestr

We denote also
Rσf(t) = Rkn · · ·Rk1f(t), t ∈ Rn

+,

and for each 1 < ν <∞ we set

R
(ν)

σ f(t) ≡ (Rσf
ν(t))1/ν .

This operator was defined in [11] and it was used to prove embedding theo-
rems. Its important property is that

‖R(ν)

σ f‖1 ≤ c‖f‖1. (2.3) desover
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Assume that 0 < p, q <∞. A function f ∈ S0(Rn) belongs to the Lorentz
space Lq,p(Rn) if

‖f‖q,p ≡
(∫ ∞

0

(t1/qf ∗(t))pdt

t

)1/p

<∞.

We have the inequality (see [1, p.217])

‖f‖q,s ≤ c‖f‖q,p (0 < p ≤ s <∞),

so that Lq,p ⊂ Lq,s for p < s. In particular, for 0 < p ≤ q,

Lq,p ⊂ Lq,q ≡ Lq.

In what follows we set

π(t) =
n∏

k=1

tk, t ∈ Rn
+.

Assume that 0 < q, p < ∞ and let σ ∈ Pn (n ≥ 2). We denote by Lq,p
Rσ

(Rn)
the class of functions f ∈ S0(Rn) such that

‖f‖q,p;Rσ ≡

(∫
Rn

+

[π(t)1/qRσf(t)]p
dt

π(t)

)1/p

<∞

(see [3]). We also set

Lq,p
R (Rn) =

⋂
σ∈Pn

Lq,p
Rσ

(Rn), ‖f‖q,p;R =
∑
σ∈Pn

‖f‖q,p;Rσ .

It is easy to see that

‖f‖q,s;R ≤ c‖f‖q,p;R (0 < p ≤ s <∞). (2.4) ann1

If q > p, then for each σ ∈ Pn and each f ∈ S0(Rn),

‖f‖q,p ≤ c‖f‖q,p;Rσ

(see [17]). Thus,
Lq,p

Rσ
⊂ Lq,p (q > p).

Moreover, this is a proper embedding [17].
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3 Estimates
estimates

From now on n ∈ N. Let 0 < rj < +∞ (j = 1, . . . , n). We denote by r̄j the
least integer such that rj ≤ r̄j.

Let f ∈ Lp(Rn) (1 ≤ p < +∞). For each j = 1, . . . , n set

fj,h(x) ≡ ∆
r̄j

j (h)f(x).

In this section we consider some modifications of the estimates of the iterative
rearrangements Rσf and Rσfj,h obtained in [11] and [10].

For 1 ≤ p <∞ we denote Lp ≡ Lp(R+, du/u); set also L∞ ≡ L∞(R+)(see
[4]).

reductor Lemma 1. Let n ∈ N, 1 ≤ p < ∞. Assume that F ∈ Lp(Rn
+) is a non-

negative function, non-increasing at each one of its variables. Then, for any
δ > 0 and any j ∈ {1, . . . , n} there exists a non-negative function φ ≡ φδ,j

on R+ such that
i) F (t) ≤ π(t)−1/pφ(tj),
ii) ‖φ‖Lp ≤ c(δ)‖F‖Lp(Rn

+),

iii) φ(u)uδ ↑ and φ(u)u−δ ↓.

Proof. As F is non-increasing at each one of its variables, we use a weak type
inequality

F (t) ≤ π(t̂j)
−1/p

(∫
Rn−1

+

F (t)pdt̂j

)1/p

≡ π(t̂j)
−1/pg(tj). (3.1) reductor1

Then g is non-negative and non-increasing in R+ and

‖g‖Lp(R+) = ‖F‖Lp(Rn
+). (3.2) reductor2

Applying Lemma 2.1 of [12] we obtain a function ḡ on R+ such that

g ≤ ḡ, ‖ḡ‖p ≤ c(δ)‖g‖p and ḡ(u)u1/p−δ ↓, ḡ(u)u1/p+δ ↑, u > 0. (3.3) reductor3

Denoting φ(u) ≡ ḡ(u)u1/p, by (3.1) and (3.3) we get i). Next, ii) follows from
(3.2) and (3.3), and iii) follows from (3.3).

get Lemma 2. Let n ≥ 2, j ∈ {1, . . . , n}, rj ∈ N and 1 ≤ p < ∞. Let f ∈
W

rj

p;j(Rn). We choose σ ∈ Pn, 1 ≤ l ≤ n (l 6= σ−1(j)), and 0 < δ < 1. Then
there exists a non-negative function φ ≡ φj,l,σ,δ on R+ such that:

‖φ‖Lp ≤ c‖Drj

j f‖p; (3.4) e23
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φ(u)uδ ↑ and φ(u)u−δ ↓ u > 0; (3.5) e24

for any K > 1

Rσf(t) ≤ 2rjRσ′j
f

(
Ktmj

,
t̂mj

2

)
+ c(K)π(t)−1/ptrj

mj
φ(tl); (3.6) e21

Rσfj,h(t) ≤ cπ(t)−1/phrj−δtδmj
φ(tl) for all 0 < h < tmj

, (3.7) e22

where σ′j is obtained from σ by moving the jth index to the first position,
mj = σ−1(j) and c, c(K) do not depend on f .

Proof. Case 1. First we suppose that p > 1. Denote gj ≡ D
rj

j f . From [11,
(3.3) and (3.7)] we get

Rσf(t) ≤ 2rjRσ′j
f

(
Ktmj

,
t̂mj

2

)
+ c(K)trj

mj
R∗

σgj(
t

2
) ∀K > 1 (3.8) e1

where σ′j is obtained from σ by moving the jth index to the first position.
Besides, by [11, (4.5)],

Rσfj,h(t) ≤ chrjR∗
σgj(t). (3.9) e2

Now (see (2.2)) note that R∗
σgj(t) satisfies the conditions of Lemma 1.

So, for δ and l we obtain a non-negative function φ such that (3.5) holds,

R∗
σgj(t) ≤ π(t)−1/pφ(tl), (3.10) Rred

and
‖φ‖Lp ≤ c‖R∗

σgj‖p.

Then (3.4) follows from the last estimate and (2.2). Inequalities (3.6) and
(3.7) are immediate consequences of (3.10), (3.8) and (3.9).

Case 2. Now we suppose that p = 1. Set ν = 1/(1− δ). We have (see [11,
(3.3) and (3.10)])

Rσf(t) ≤ 2rjRσ′j
f

(
Ktmj

,
t̂mj

2

)
+ c(K)trj−1

mj
Fj(

t̂mj

2
), (3.11) e7

where

Fj(t̂mj
) = R

(ν)

σ̂j
ψj(t̂mj

), ψj(x̂j) =

∫
R
gj(x)dxj.
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Besides, by [11, (4.11)]

Rσfj,h(t) ≤ chrj−δtδ−1
mj

Fj(t̂mj
). (3.12) e8

By (2.3) we have

‖Fj‖1,Rn−1
+

≤ c‖ψj‖1,Rn−1 = ‖gj‖1. (3.13) opernorma

So, for any l 6= mj, l ∈ {1, . . . , n} and 0 < δ < 1 we apply Lemma 1 to Fj

and obtain a function φ(tl) satisfying (3.5). Besides,

Fj(t̂mj
) ≤ cπ(t̂mj

)−1φ(tl).

Thus, by (3.11) and (3.12) we get (3.6) and (3.7). Finally,

‖φ‖L ≤ c‖Fj‖1,

and (3.13) imply (3.4).

getprime Lemma 3. Let n ∈ N, j ∈ {1, . . . , n}, 0 < rj < ∞ and 1 ≤ p < ∞. Let
f ∈ Lp(Rn). Then, for any σ ∈ Pn and any K > 1

Rσf(t) ≤ 2r̄jRσ′j
f

(
Ktmj

,
t̂mj

2

)
+ c(K)π(t)−1/pω

r̄j

j (f ; tmj
)p (3.14) e21prime

and
Rσfj,h(t) ≤ π(t)−1/pω

r̄j

j (f ;h)p, (3.15) e22prime

where σ′j is obtained from σ by moving the jth index to the first position and
mj = σ−1(j).

Proof. By [11, (3.3)], we have for any K > 1

Rσf(t) ≤ 2r̄jRσ′j
f

(
Ktmj

,
t̂mj

2

)
+ RσΦj

(
t

2

)
, (3.16) e13

where

Φj(x) =
1

tmj

∫ (r̄j+1)Ktmj

0

|∆r̄j

j (h)f(x)|dh.

Besides, by (2.1),

RσΦj

(
t

2

)
≤ Φ∗

j

(
π(t)

2n

)
. (3.17) e14
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We choose a measurable set E ⊂ Rn such that |E| ≥ π(t)
2n and |Φj(x)| ≥

Φ∗
j

(
π(t)
2n

)
for all x ∈ E. Integrating over E, applying Fubini theorem and

using Hölder’s inequality, we get

Φ∗
j

(
π(t)

2n

)
≤ 1

|E|

∫
E

Φj(x)dx =
1

|E|tmj

∫ (r̄j+1)Ktmj

0

(∫
E

|∆r̄j

j (h)f(x)|dx
)
dh ≤

≤ 1

|E|1/ptmj

∫ (r̄j+1)Ktmj

0

‖∆r̄j

j (h)f‖pdh ≤ c(K)π(t)−1/pω
r̄j

j (f ; tmj
)p. (3.18) e15

Now (3.16), (3.17) and (3.18) imply (3.14). Inequality (3.15) is immediate;
indeed, we have

Rσfj,h(t) ≤ f ∗j,h(π(t)) ≤ π(t)−1/p‖fj,h‖p ≤ π(t)−1/pω
r̄j

j (f ;h)p.

estim1 Remark 1. If f ∈
[⋂

j:rj∈NW
rj

p;j(Rn)
]
∩
[⋂

j:rj /∈NH
rj

p;j(Rn)
]
, then we can si-

multaneously apply the estimates obtained in Lemmas 2 and 3. Let σ ∈ Pn,
K > 1, and 0 < δ < 1. If rj ∈ N, choose lj 6= σ−1(j) and denote
by φj the function φ ≡ φj,lj ,σ,δ defined in Lemma 2. If rj /∈ N denote

Ωj ≡ supu>0 u
−rjω

r̄j

j (f ;u)p. Now, combining (3.6) and (3.14)

Rσf(t) ≤ 2r̄′
n∑

j=1

Rσ′j
f

(
Ktmj

,
t̂mj

2

)
+ c(K)π(t)−1/pρσ(t), (3.19) e21cor

where mj = σ−1(j), r̄′ ≡ max r̄j and

ρσ(t) = min{min
rj∈N

{trj
mj
φj(tlj)},min

rj /∈N
{trj

mj
Ωj}}, (3.20) ro

4 The main lemma
mainlema

In this section we prove main lemmas that form the base of our approach
(see Lemmas 5, 7, and 8 below). It will be convenient to use the following
auxiliary proposition.

lp Lemma 4. Let m ∈ N; 0 < αi <∞ (i = 1, . . . ,m). Define α = (
∑m

i=1 α
−1
i )−1.

Let a, b > 0 be such that a/b < α. Set

ρ(z) = min{λ, zα1
1 λ1, . . . , z

αm
m λm} (z ∈ Rm

+ ),

12



where λ, λ1, . . . , λm are positive constants. Then∫
Rm

+

ρ(z)bπ(z)−a dz

π(z)
≤ cλb−a/α

m∏
i=1

λ
a
αi
i (4.1) lp1

where c is a constant that only depends on αi, a, b.

Proof. Set ρi(zi) = min{λ, zαi
i λi} i = 1, . . . ,m. Denote by I the left hand

side of (4.1). It is clear that

I ≤
∫

Rm
+

m∏
i=1

ρi(zi)
bα
αi z−a

i

dz

π(z)
=

m∏
i=1

Ii, (4.2) lp2

where

Ii =

∫ ∞

0

ρi(zi)
bα
αi z−a

i

dzi

zi

.

Now,

Ii = λ
bα
αi
i

∫ ( λ
λi

)1/αi

0

zbα−a
i

dzi

zi

+ λ
bα
αi

∫ ∞

( λ
λi

)1/αi

z−a
i

dzi

zi

= c
[
λbα−aλa

i

]1/αi
. (4.3) lp3

By (4.2) and (4.3), we obtain immediately (4.1).

From now on, let n ∈ N, 0 < ri <∞, 1 ≤ θi ≤ ∞. Assume that φi ∈ Lθi

are positive functions (i = 1, . . . , n). Define

ρ(t) = min{tr1
1 φ1(tl1), t

r2
2 φ2(tl2), . . . , t

rn
n φn(tln)}, (4.4) defro

where l1, . . . , ln ∈ {1, . . . , n}.
Remark 2. Note that the function ρσ(t) defined in (3.20) is a particular case
of (4.4) (θi = p if ri ∈ N, θi = ∞, φi ≡ Ωi if ri /∈ N).

The lemma below gives us the integrability for functions of the type (4.4).

mainl Lemma 5 (The main Lemma). Let n ∈ N, 0 < ri < ∞, 1 ≤ θi ≤ ∞
(i = 1, . . . , n). Let ρ(t) = min1≤i≤n{tri

i φi(tli)}, φi ∈ Lθi, li ∈ {1, . . . , n}. Set

r = n

(
n∑

i=1

1

ri

)−1

, s =
n

r

(
n∑

i=1

1

riθi

)−1

. (4.5) rys

13



Then (∫
Rn

+

ρ(t)sπ(t)−rs/n dt

π(t)

) 1
s

≤ c

n∑
i=1

‖φi‖Lθi , (4.6) ml2

where c is a finite constant that only depends on n, ri, θi.

Proof. We can assume that

n∑
i=1

‖φi‖Lθi = 1. (4.7) ml3

Besides, we can suppose that not all θi’s are equal to infinity1.
Denote φ(u) =

∑
i=1,...,n;θi 6=∞ φi(u)

θi (u > 0). By (4.7), ‖φ‖L1 ≤ 1. Set

Bk = {t ∈ Rn
+ : max

i=1,...,n;θi 6=∞
φ(tli) ≤ φ(tk)}.

It is clear that
⋃n

k=1Bk = Rn
+.

Without loss of generality we consider the integral of the left part of (4.6)
only over B1. We get for almost all t ∈ B1

ρ(t) ≤ ρB1(t) ≡ min{tr1
1 φ(t1)

1/θ1 , tr2
2 φ(t1)

1/θ2 , . . . , trn
n φ(t1)

1/θn}. (4.8) ml4

From here ∫
B1

ρ(t)sπ(t)−rs/n dt

π(t)
≤
∫

Rn
+

ρB1(t)
sπ(t)−rs/n dt

π(t)
=

=

∫ ∞

0

t
−rs/n
1

dt1
t1

∫
Rn−1

+

ρB1(t1, t̂1)
sπ(t̂1)

−rs/n dt̂1

π(t̂1)
. (4.9) paso1

For each fixed t1 ∈ R+, applying Lemma 4 and (4.5), we get∫
Rn−1

+

ρB1(t1, t̂1)
sπ(t̂1)

−rs/ndt̂1 ≤

≤ c[tr1
1 φ(t1)

1/θ1 ]
s−

∑n
i=2

rs
nri φ(t1)

∑n
i=2

rs
nθiri = cφ(t1)t

rs/n
1 . (4.10) paso2

Since ‖φ‖L1 ≤ 1, (4.9) and (4.10) yield that∫
B1

ρ(t)sπ(t)−rs/n dt

π(t)
≤ c.

1otherwise s = ∞ and the result is trivial.

14



We will obtain a generalization of Lemma 5. For this purpose, we need
the following Hardy type inequality.

auxl Lemma 6. Let ϕ a measurable non-negative function on R+. Let δ, α > 0
and let 1 ≤ γ <∞. Assume that β is a measurable and positive function on
R+ such that β(u)u−δ increases. Then∫ ∞

0

h−α−1dh

(∫
{h≥β(u)}

ϕ(u)
du

u

)γ

≤ c

∫ ∞

0

β(u)−αϕ(u)γ du

u
(4.11) al1

and ∫ ∞

0

hα−1dh

(∫
{h≤β(u)}

ϕ(u)
du

u

)γ

≤ c

∫ ∞

0

β(u)αϕ(u)γ du

u
. (4.12) al2

where c is a constant that only depends on α, δ and γ.

Proof. As β(u)u−δ ↑, this implies that the inverse function β−1 exists on R+

and satisfies the condition

β−1(2u) ≤ 21/δβ−1(u) (4.13) al3

Denote by I the left hand side of (4.11). We have

I ≡
∫ ∞

0

h−α−1dh

(∫ β−1(h)

0

ϕ(u)
du

u

)γ

=

=

∫ ∞

0

h−α−1dh

(
∞∑

k=0

∫ β−1(2−kh)

β−1(2−k−1h)

ϕ(u)
du

u

)γ

.

Next, by Minkowski’s inequality

I1/γ ≤
∞∑

k=0

(∫ ∞

0

h−α−1dh

(∫ β−1(2−kh)

β−1(2−k−1h)

ϕ(u)
du

u

)γ)1/γ

=

=
∞∑

k=0

2−kα/γ

(∫ ∞

0

z−α−1dz

(∫ β−1(z)

β−1(z/2)

ϕ(u)
du

u

)γ)1/γ

.

Further, using the Hölder’s inequality and (4.13)∫ β−1(z)

β−1(z/2)

ϕ(u)
du

u
≤ c

(∫ β−1(z)

0

ϕ(u)γ du

u

)1/γ

.
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Thus, by Fubini’s theorem

I ≤ c

∫ ∞

0

z−α−1dz

∫ β−1(z)

0

ϕ(u)γ du

u
= c

∫ ∞

0

β(u)−αϕ(u)γ du

u
.

The same reasonings prove (4.12).

secl Lemma 7. Assume that the conditions of Lemma 5 hold and suppose that
there exists 0 < δ ≤ 1

2
min1≤i,k≤n,θk 6=∞{ ri

θk
} such that

φi(u)u
δ ↑ and φi(u)u

−δ ↓ (4.14) crecdecrec

for every i such that θi <∞. Then, for any 0 < d ≤ ∞ and j ∈ {1, . . . , n}(∫ ∞

0

∥∥ρ(t)sπ(t)−rs/n
∥∥

Ld(Rn−1
+ ,

dt̂j

π(t̂j)
)

dtj
tj

) 1
s

≤ c

n∑
i=1

‖φi‖Lθi (4.15) sl1

where c is a constant that depends on n, ri, θi, d, δ.

Note that the greater is d, the weaker is (4.15). Indeed, by (4.14),
ρ(t)π(t)δ is increasing at each one of its variables. So, it is easy to see that

sup
t̂j∈Rn−1

+

ρ(t)sπ(t)−rs/n ≤ c‖ρ(t)sπ(t)−rs/n‖
Ld(Rn−1

+ ,
dt̂j

π(t̂j)
)

for any 0 < d <∞.

From here, it follows that if q > d > 0, then

‖ρ(t)sπ(t)−rs/n‖
Lq(Rn−1

+ ,
dt̂j

π(t̂j)
)
≤

≤ [‖ρ(t)sπ(t)−rs/n‖
Ld(Rn−1

+ ,
dt̂j

π(t̂j)
)
]

q−d
q

(∫
Rn−1

+

[ρ(t)sπ(t)−rs/n]d
dt̂j

π(t̂j)

)1/q

≤

≤ c‖ρ(t)sπ(t)−rs/n‖
Ld(Rn−1

+ ,
dt̂j

π(t̂j)
)
.

Note also that for d = 1 we get the same conclusion as in Lemma 5. So,
for the proof, we can suppose that 0 < d < 1.

Proof. As above, we can suppose that the condition (4.7) holds. Let φ and
Bk (k = 1, . . . , n) be defined as in Lemma 5. Then the left hand side of
(4.15) does not exceed the sum

∑n
k=1 Ik, where

Ik =

(∫ ∞

0

∥∥ρ(t)sπ(t)−rs/nχBk
(t)
∥∥

Ld(Rn−1
+ ,

dt̂j

π(t̂j)
)

dtj
tj

) 1
s

.
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We consider I1. For almost all t ∈ B1 we have the inequality (4.8). Thus,

Is
1 ≤

∫ ∞

0

‖ρB1(t)
sπ(t)−rs/n‖

Ld(Rn−1
+ ,

dt̂j

π(t̂j)
)

dtj
tj
.

Case 1. If j = 1, then

Is
1 ≤ c

∫ ∞

0

t
−rs/n
1 G(t1)

dt1
t1
,

where

G(t1)
d ≡

∫
Rn−1

+

[ρB1(t)
sπ(t̂1)

−rs/n]d
dt̂1

π(t̂1)
.

Applying Lemma 4 to the variables t2, . . . , tn, we easily get

G(t1)
d ≤ c[tr1

1 φ(t1)
1/θ1 ]

rsd
nr1 φ(t1)

d
∑n

i=2
rs

nriθi = [t
rs/n
1 φ(t1)]

d.

This implies (4.15).
Case 2. Let j 6= 1. For t ∈ Rn

+, denote by t̂1,j the (n − 2)-dimensional
vector obtained from t by removal of t1, tj. Then

Is
1 ≤ c

∫ ∞

0

t
−rs/n
j ‖R(t1, tj)‖Ld,(t1)

dtj
tj
, (4.16) sl3

where

R(t1, tj)
d = t

−rsd/n
1

∫
Rn−2

+

[π(t̂1,j)
−rs/nρB1(t)

s]d
dt̂1,j

π(t̂1,j)
.

Fix t1, tj and apply Lemma 4 to coordinates of the vector t̂1,j. We obtain

R(t1, tj) ≤ ct
−rs/n
1 min{tr1

1 φ(t1)
1/θ1 , t

rj

j φ(t1)
1/θj}

rs
n

( 1
r1

+ 1
rj

)
φ(t1)

∑
i6=1,j

rs
nriθi .

Now, we define β(t1) = [tr1
1 φ(t1)

1/θ1−1/θj ]1/rj . Note that by (4.14)

β(t1)t
−δ/rj

1 ↑ . (4.17) betacrec

Besides (b ≡ rs
nrjθ1

+
∑

i6=j
rs

nriθi
, b′ ≡ rs

nr1θj
+
∑

i6=1
rs

nriθi
),

R(t1, tj) ≤ c

t
rs
n

r1
rj

1 φ(t1)
b ≡ R1(t1), if β(t1) ≤ tj,

t
rs
n

(1+
rj
r1

)

j t
− rs

n
1 φ(t1)

b′ ≡ t
rs
n

(1+
rj
r1

)

j R2(t1), if β(t1) ≥ tj.
(4.18) sl4
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Joining (4.16) and (4.18), we get

Is
1 ≤ c

∫ ∞

0

t
− rs

n
j

dtj
tj

(∫
{tj≥β(t1)}

R1(t1)
ddt1
t1

)1/d

+

+ c

∫ ∞

0

t
rs
n

rj
r1

j

dtj
tj

(∫
{tj≤β(t1)}

R2(t1)
ddt1
t1

)1/d

.

Taking into account (4.17), we apply Lemma 6 with γ = 1/d (γ > 1). Using
the definitions of β, R1, and R2, and (4.5), we obtain

Is
1 ≤ c

∫ ∞

0

β(t1)
− rs

n R1(t1)
dt1
t1

+ c

∫ ∞

0

β(t1)
rs
n

rj
r1R2(t1)

dt1
t1

= c′
∫ ∞

0

φ(t1)
dt1
t1
.

We will use also the following generalization of Lemma 7.

desequilibrio Lemma 8. Let m ∈ N, 0 < ri < ∞, 1 ≤ θi ≤ ∞ (i = 1, . . . ,m). Define
the function ρ(z) = min1≤i≤m{zri

i φi(zli)}, φi ∈ Lθi, li ∈ {1, . . . ,m}. Suppose
also that there exists 0 < δ ≤ 1

2
min1≤i,k≤m,θk 6=∞{ ri

θk
} such that

φi(u)u
δ ↑ and φi(u)u

−δ ↓

for every i such that θi <∞. Let 0 < ai <∞ be numbers verifying

m∑
i=1

ai

riθi

= 1. (4.19) conda

Set a ≡
∑m

i=1
ai

ri
. Then, for any 0 < d ≤ ∞ and j ∈ {1, . . . ,m}

(∫ ∞

0

‖ρ(z)a

m∏
i=1

z−ai
i ‖

Ld(Rm−1
+ ,

dẑj
π(ẑj)

)

dzj

zj

) 1
a

≤ c

m∑
i=1

‖φi‖Lθi , (4.20) cor1

where c is a constant that depends on m, ri, ai, θi, d, δ.

Note that Lemma 7 is the particular case a1 = . . . = am.
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Proof. Let J be the left hand side of (4.20). The change of variable z
ai/b
i = ui

(b = min1≤k≤m ak) gives us

J = c

(∫ ∞

0

‖ρ(u)aπ(u)−b‖
Ld(Rm−1

+ ,
dûj

π(ûj)
)

duj

uj

) 1
a

where ρ(u) = min1≤i≤m{u
r′i
i Fi(uli)}, r′i = rib/ai, and Fi(v) = φi(v

b/ali ) be-
longs to Lθi . Note now that Fi(v)v

δ ↑ and Fi(v)v
−δ ↓. So, it remains

to apply Lemma 7 to the last integral (r′ = m(
∑

1/r′i)
−1 = a−1bm and

r′s′/m = (
∑

1/r′iθi)
−1 = b by (4.19)) and we get (4.20).

5 Embeddings of Lipschitz spaces
imbed

tl Theorem 1. Let 2 ≤ n ∈ N, 1 ≤ p <∞, 0 < ri <∞ (i = 1, . . . , n). Set

r = n

(
n∑

i=1

1

ri

)−1

, r′ = n

(∑
i:ri∈N

1

ri

)−1

, s =
r′p

r
, q∗ =

np

n− rp
. (5.1) tl0

Then, if p < n/r

‖f‖q∗,s;R ≤ c‖f‖λ
r1,...,rn
p

for all f ∈ Λr1,...,rn
p (Rn) (5.2) tl0bis

where c is a constant that doesn’t depend on f .

Proof. First suppose that f ∈ C∞
0 (Rn). Let S = ‖f‖q∗,s;R. So, S <∞.

It is well known that if 1 < p ≤ ∞,

‖f‖λ
r1,...,rn
p

∼
∑

j:rj∈N

‖Drj

j f‖p +
∑

j:rj /∈N

sup
u>0

u−rjω
r̄j

j (f ;u)p, (5.3) LWH

and it is still true for p = 1 restricted to functions in C∞(Rn) [10].
Now, taking into account (5.3) and Remark 1, we integrate inequality

(3.19) and get for any σ ∈ Pn(∫
Rn

+

π(t)s/q∗−1Rσf(t)sdt

)1/s

≤ 2r̄′+nK−1/q∗S+c(K)

(∫
Rn

+

π(t)−
rs
n
−1ρσ(t)sdt

)1/s
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with ρσ(t) defined in (3.20). Consequently

S =
∑
σ∈Pn

‖f‖q∗,s;Rσ ≤ n!2r̄′+nK−1/q∗S+

+c′(K)
∑
σ∈Pn

(∫
Rn

+

π(t)−
rs
n
−1ρσ(t)sdt

)1/s

. (5.4) tl4

Now, we apply Lemma 5 with θi = p if ri ∈ N; θi = ∞ and φi = Ωi if ri /∈ N
(observe that the values of s in (5.1) and (4.5) coincide) and get(∫

Rn
+

π(t)−
rs
n
−1ρσ(t)sdt

)1/s

≤ c

∑
ri∈N

‖φi‖Lp +
∑
ri /∈N

Ωi

 . (5.5) tl5

Therefore, setting K = (2r̄′+n+1n!)q∗ , and using (5.4), (5.5), the definition
of Ωi, and (3.4) we obtain the inequality (5.2).

For f ∈ Λr1,...,rn
p (Rn), there exists a sequence of functions fk ∈ C∞

0 (Rn)
such that limk→∞ ‖fk‖λ

r1,...,rn
p

≤ ‖f‖λ
r1,...,rn
p

and fk → f in Lp (use ε-regularizations
and cut-off). So, applying Lemma 2 of [11] and Fatou’s Lemma we obtain
(5.2) in the general case.

Remark 3. If all the ri’s are integers, then s = p and we get the embedding
of anisotropic Sobolev spaces into Lorentz spaces proved earlier in [9, 11]. In
the general case, assume that s ≤ q∗. Then Theorem 1 yields an alternative
proof of the results concerning embeddings into Lq∗ [5] and Lq∗,s [14, 10].

tb Theorem 2. Let 2 ≤ n ∈ N, 1 ≤ p < q <∞. Let 0 < ri <∞ (i = 1, . . . , n).
Define r, s as in (5.1). Suppose that

κ = 1− n

r

(
1

p
− 1

q

)
> 0

and define

αi = κri,
1

γi

=

{
1−κ

s
+ κ

p
, if ri ∈ N,

1−κ
s
, if ri /∈ N.

Then, for any f ∈ Λr1,...,rn
p (Rn),

n∑
i=1

(∫ ∞

0

[
h−αi‖∆r̄i

i (h)f‖q,1;R

]γi dh

h

)1/γi

≤ c‖f‖λ
r1,...,rn
p (Rn) , (5.6) tb1

where c is a constant that does not depend on f .
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Proof. Consider the first term in the left hand side of (5.6). Denote f1,h(x) =
∆r̄1

1 (h)f(x). Estimate J(h) = ‖f1,h‖q,1;R < ∞. As in Theorem 1, we can
suppose that f ∈ C∞

0 (Rn).
Define now

δ ≡ 1

2
min{ r

n
(1− κ),

1

p
min

j
rj}.

Then, by (5.3), we proceed similarly to Remark 1. Applying Lemmas 2 and
3 to f1,h, we easily obtain that for any K > 1

Rσf1,h(t) ≤ 2r̄′
n∑

j=1

Rσ′j
f1,h

(
Ktmj

,
t̂mj

2

)
+ c(K)π(t)−1/pρσ(t),

where ρσ(t) is defined in (3.20). Moreover, from (3.7) and (3.15) it follows
that if h < tm1 ,

Rσf1,h(t) ≤ cπ(t)−1/pµ(t, h),

where

µ(t, h) =

{
hr1−δtδm1

φ1(tl1), if r1 ∈ N,
hr1Ω1, if r1 /∈ N,

(5.7) mu

and φ1(tl1) is defined in Lemma 2. Furthermore, setting

ρ̄σ(t, h) = min{ρσ(t), µ(t, h)}, (5.8) robarra

we get for any K > 1

Rσf1,h(t) ≤ 2r̄′
n∑

j=1

Rσ′j
f1,h

(
Ktmj

,
t̂mj

2

)
+ c(K)π(t)−1/pρ̄σ(t, h).

Multiplying by π(t)1/q−1 and integrating over Rn
+, we obtain

‖f1,h‖q,1;Rσ ≤ 2r̄′+nK−1/qJ(h) + c(K)J1(h, σ), (5.9) aster

where

J1(h, σ) =

∫
Rn

+

π(t)−
r
n

(1−κ)ρ̄σ(t, h)
dt

π(t)
. (5.10) jota1

Summing up inequalities (5.9) over all σ ∈ Pn and choosingK = (2r̄′+n+1n!)q,
we get

J(h) ≤ c′
∑
σ∈Pn

J1(h, σ). (5.11) jotajota1
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Furthermore, denoting by I the first term of the left hand side of (5.6), we
have (let’s suppose that γ1 <∞2)

I ≡
(∫ ∞

0

h−α1γ1−1J(h)γ1dh

)1/γ1

≤ c′
∑
σ∈Pn

Ī(σ),

where (by (5.11))

Ī(σ) =

(∫ ∞

0

h−α1γ1J1(h, σ)γ1
dh

h

)1/γ1

. (5.12) i1sigma

But now, it is clear that (see (5.8), (3.20) and (5.7))

ρ̄σ(t, h) ≤ [1 + (
tm1

h
)δ]ρ̃σ(t, h) (5.13) suma

where

ρ̃σ(t, h) ≡

{
min{hr1φ1(tl1), ρσ(t)}, if r1 ∈ N
min{hr1Ω1, ρσ(t)}, if r1 /∈ N.

(5.14) rotilde

So, due to (5.12), (5.10) and (5.13) we have

Ī(σ) ≤ cĨ1(σ) + cĨ2(σ),

where

Ĩ1(σ) ≡
(∫ ∞

0

‖h−α1γ1π(t)−
r
n

(1−κ)γ1 ρ̃σ(t, h)γ1‖L1/γ1 (Rn
+, dt

π(t)
)

dh

h

)1/γ1

and

Ĩ2(σ) ≡
(∫ ∞

0

‖h−α1γ1π(t)−
r
n

(1−κ)γ1(
tm1

h
)δγ1 ρ̃σ(t, h)γ1‖L1/γ1 (Rn

+, dt
π(t)

)

dh

h

)1/γ1

.

It remains to estimate the last two integrals.
Joining (5.14) and (3.20) we get

ρ̃σ(t, h) =

{
min{hr1φ1(tl1),minrj∈N{t

rj
mjφj(tlj)},minrj /∈N{t

rj
mjΩj}}, if r1 ∈ N

min{hr1Ω1,minrj∈N{t
rj
mjφj(tlj)},minrj /∈N{t

rj
mjΩj}}, if r1 /∈ N.

2Otherwise, none of the ri’s belongs to N, and the analogous of (5.6) follows from
(5.11), (5.10) and Lemma 4.
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So, ρ̃σ(t, h) has the form of ρ(z) in Lemma 8 (ρ(z) = min1≤i≤m{zri
i φi(zli)},

φi ∈ Lθi). Indeed, m = n+ 1, rn+1 = r1,

z1 = tm1 , · · · , zn = tmn , zn+1 = h.

(1 ≤ i ≤ n+ 1)

{
If ri ∈ N, θi = p and φi(v)v

δ ↑, φi(v)v
−δ ↓ (see (3.5)).

If ri /∈ N, θi = ∞ and φi = Ωi.

To estimate Ĩ1(σ), note that it has the form of the left hand side of (4.20)
with

a1 = · · · = an =
r

n
(1− κ)γ1 > 0, an+1 = α1γ1 > 0, d = 1/γ1, j = n+ 1.

Then a = γ1 and (4.19) holds. Applying Lemma 8 we get

Ĩ1(σ) ≤ c

∑
ri∈N

‖φi‖Lp +
∑
ri /∈N

Ωi

 .
And by Ωi definition and (3.4)

Ĩ1(σ) ≤ c‖f‖λ
r1,...,rn
p (Rn).

Next, Ĩ2(σ) also is similar to the left hand side of (4.20). Indeed,

an+1 = (α1 + δ)γ1 > 0, a1 = [
r

n
(1− κ)− δ]γ1 > 0,

ai =
r

n
(1− κ)γ1 > 0 (i = 2, . . . , n), d = 1/γ1, j = n+ 1.

We have that a = γ1 and (4.19) holds. Applying Lemma 8 we obtain the
same estimate for Ĩ2(σ) as for Ĩ1(σ).

In addition to the Theorem 1 (embedding with limit exponent) we have
also the following theorem.

tlnolimite Theorem 3. Let 2 ≤ n ∈ N, 1 ≤ p < q <∞, and 0 < ri <∞ (i = 1, . . . , n).
Let r be as in (5.1). Suppose that 1 − n/r(1/p − 1/q) > 0. Then, for any
0 < ξ <∞

‖f‖q,ξ;R ≤ c‖f‖Λ
r1,...,rn
p (Rn) (5.15) tln1

where c is a constant that doesn’t depend on f .
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Proof. First of all we can suppose that f ∈ C∞
0 (Rn), so S ≡ ‖f‖q,ξ;R < ∞.

By (2.4) we can suppose that 0 < ξ < 1.
By Remark 1 we get (3.19) and (3.20). We define for σ = m−1 ∈ Pn and

j = 1, . . . , n.

A = {t ∈ Rn
+ : ti ≥ 1, i = 1, . . . , n}, Aσ,j = {t ∈ Rn

+ : min
1≤i≤n

tri
mi

= trj
mj
< 1}.

It’s clear that

A ∪

(
n⋃

j=1

Aσ,j

)
= Rn

+.

Then, using (3.19),∫
Rn

+

π(t)ξ/q−1Rσf(t)ξdt ≤ (2r̄′+nK−1/qS)ξ + I0 + c(K)
n∑

j=1

Ij,

where

I0 =

∫
A

π(t)ξ/q−1Rσf(t)ξdt and Ij =

∫
Aσ,j

π(t)−
r
n

(1−κ)ξ−1ρσ(t)ξdt.

Using the same methods as in Theorem 1, we choose K = (n!2r̄′+n+1+1/ξ)q

and it only remains to estimate I0 and Ij. Applying Holder’s inequality with
exponents p/ξ and (p/ξ)′, we have (due to (ξ/q − 1)(p/ξ)′ < −1)

I0 ≤ c‖f‖ξ
p.

On the other hand, let ζ be such that

1 >
1

ζ
=

{
1−κ

s
if rj /∈ N,

1−κ
s

+ 1+κ
p

if rj ∈ N.

Then, by Holder’s inequality

Ij ≤

(∫
Aσ,j

π(t)−αζ′tβζ′

mj

dt

π(t)

)1/ζ′

.

(∫
Rn

+

π(t)−αζt−βζ
mj

ρσ(t)ζξ dt

π(t)

)1/ζ

≡ J1.J2.

where α = r
2n

(1−κ)ξ and β =
rj

2
(1 + κ)ξ. The first factor, J1, is a constant

by Aσ,j definition. Indeed,

Jζ′

1 =

∫ 1

0

dtmj

tmj

∫
{t̂mj :tmi≥t

rj/ri
mj

(i6=j)}
π(t)−αζ′tβζ′

mj

dt̂mj

π(t̂mj
)

= c.
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For the second factor, J2, we apply Lemma 8 with

m = n, d = 1, zi = tmi
,

ai = αζ if i 6= j and aj = αζ + βζ

(as above θi = p if ri ∈ N; and θi = ∞, φi = Ωi if ri /∈ N). Lastly we use the
definition of Ωi and (3.4). So,

J2 ≤ c(‖f‖λ
r1,...,rn
p (Rn))

ξ

and (5.15) is proved.

Remark 4. As q is not a limit exponent, the embedding

Λr1,...,rn
p (Rn) ↪→ Lq,ξ(Rn)

follows easily from the embeddings without limit exponent for spaces of Besov
[10] or anothers. The goal of Theorem 3 is to present a proof based on the
‖.‖q,ξ,R norm (which is stronger than the usual Lorentz norm if ξ < q).
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