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Abstract

Anisotropic Lipschitz spaces are considered. For these spaces we
obtain sharp embeddings in Besov and Lorentz spaces. The methods
used are based on estimates of iterative rearrangements. We find a
unified approach that arises from the estimation of functions defined
as minimum of a given system of functions. The case of L' —norm also
is covered.

1 Introduction

In this paper we prove embedding theorems for anisotropic Lipschitz
spaces. More precisely, we study integrability and smoothness properties
of functions under certain conditions on its moduli of continuity.

In the study of anisotropic spaces, we have different estimates with respect
to different variables. The final result will be sharp if we find an equilibrium
between these estimates, that is, an optimal average estimate. Therefore it
is an important problem to determine a right contribution for each variable
in this average. To discuss this problem we first recall some basic definitions.

Denote by Wy (R") (r € N, 1 < p < oo, 1 < j < n) the Sobolev space
with respect to the jth variable; i.e. the class of functions f in LP(R"™) with
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partial generalized derivative D} f € LP(R"). Now, if r1,...,r, € N, then we

set
W'r'l ..... Tn (Rn) = m;l:IW;]] (Rn>

and

If f is a function on R™, 1 < j < n, and k € N, then we denote

1

AR (h) f(x) = i(—l)’” <kf)f<x + ihe;)

(where z € R™, h € R, and e; is a basis vector). Let f € LP(R") (1 < p < 00).
Then the function

Wi(fi0)p = sup [AF(R)f]l, (6> 0)
0<h<§

is called the partial modulus of continuity of f of order k in LP with respect
to Zj.

Let » > 0, and let k be the least integer such that £ > r. We denote by
H} .(R™) the Nikol’skii space of functions f in LP(R") for which

Wi (f10)p = O(d").

Assume that r; > 0, (j = 1,...,n) and that k; are the least integers such

It is well known that an important characteristic of the spaces W is the
harmonic mean

-1

"1

(32 i
j=1

(see [9, 10]). In particular, if 1 <p < % and ¢* = ni”;p, then




if and only if p < ¢ < ¢*. That is, the integrability properties of functions in
Wyt are completely determined by 7, and the contribution of the variable
xy, is proportional to 1/7, in a sense.

A similar situation holds for Nikol’skii spaces, although in this case the
embedding with the limit exponent fails (see [15, 2]).

However, the behaviour of anisotropic Lipschitz spaces is completely dif-
ferent.

Let 1 < p < oo, r >0 and let 7 be the least integer such that ¥ > r. We
say that f € LP(R™) belongs to the Lipschitz space with respect to the jth
variable A7 ;(R") if

W (f58), = O().

Let r; > 0 (j = 1,...,n) and denote by 7; the least integers that r; < 7.

It is clear that
Arj = HTj4 if’l“j ¢ N

25 I

Also, by Hardy-Littlewood theorem [15], if r; € N, then
Ay =W (p>1).

For r; € N we have the strict embedding A/, C H”..

Thus, Lipschitz spaces have partly character of Sobolev spaces and partly
- the character of Nikol’skii spaces. This mixed behaviour creates a main
difficulty in their study.

The integrability properties of functions in Lipschitz space and Nikol’skii
space with the same indices can be completely different. It was proved in
[5] (for rp < 1) that, in contrast with W and H spaces, the embedding
Ajreo — L7 is not uniquely determined by the value of the harmonic mean
r (see (1.1)). Roughly speaking, this means that the contribution of the
variable ;. is not proportional to 1/7y.
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The proof in [5] (as well as alternative proofs given in [7, 8]) was based
on estimates of rearrangements and special reasonings that led to a kind of
equilibrium between these estimates.

One of the main objectives of this paper is to give a quantitative sharp
expression for this type of equilibrium. We obtain the following results. First,
basing on known estimates of rearrangements, we modify them to special
type involving functions from the spaces L°(R,,dz/z), Ry = (0,00). The
invariance of these spaces under changes of variables of power type plays
an important role. Then, using the modified estimates, we consider the
"minimum-function”

p(t) = min {£76,(t)}, ¢ ERY, 6 € LRy, du/a), i € {1,...,n}.

1<i<n

(1.2)
We prove a special weight estimate for this function. This result provides a
unified approach to estimations of various norms. Using this approach, we
prove sharp estimates of Lorentz norms as well as Besov norms for functions
in Lipschitz spaces.

Let us give a more detailed description of the latter results.

As it was mentioned above, the first sharp results on embedding of Lip-
schitz spaces into L? were obtained in [5] (for rp < 1) with the use of non-
increasing rearrangements. Afterwards, Netrusov [13, 14] studied embed-
dings of the spaces Aj'~™ for p > 1 and arbitrary r; > 0. His approach
was based on special integral representations. First, he proved sharp results
on embedding into Lorentz spaces (an alternative proof of these results in-
cluding the case p = 1 was given in [10] and was based on non-increasing
rearrangements). Then, he considered the embedding into Besov spaces.

Assume that 1 < p,0; < coand 0 < r; < oo (j = 1,...,n). The
anisotropic Besov space By " (R") is the class of functions f € LP(R")
such that

n 0o ' N edt 1/6;
g, = 10+ 3 ([ 18k, ) <oo
j=1

101,..,0m

where k; € N and k; > r;. For each choice of the integers k; one obtains
equivalent norms; in addition, one can replace in the definition the norm of
finite differences by the corresponding moduli of continuity ([15], Chapter 4
and [2], Chapter 4). For simplicity we denote B ;""" = B\,

4
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[I'in [2, §18.12] obtained the following refinement of the classical Sobolev
inequality: if 1 <p < g<oo,r; € N and »=1—-n/r(1/p—1/q) > 0, then

W;l""’rn (R”) — Bg";l’“"m" (Rn) (1'3)

In the case p = n = 1 this embedding fails. It was proved by Kolyada [6, 9]
that the embedding (1.3) is true in the case p =1, n > 2, too.

For the Lipschitz spaces, the following result was obtained by Netrusov
14 ifl<p<qg<oo,r;>0(j=1,...,n),and x = 1—n/r(1/p—1/q) > 0,
then

ATt T”(Rn) .y B1ran (Rn) (14)

q;715--5Un

Although we do not specify here the values of parameters, it is important
to point out that here v; take two values - one for all j such that r; ¢ N and
other in the case r; € N.

Let us emphasize that the methods of integral representations used in
[14] fail in the case p = 1. In particular, the question on validity of the
embedding for p = 1 was remained open.

In this paper (section §5) we prove the embedding (1.4) for p > 1. It is the
most important application of our main estimates concerning integrability of
functions of the type (1.2). Moreover, we prove estimates for stronger norms
defined in terms of iterative rearrangements.

For a given function on R", we obtain its iterative rearrangement, rear-
ranging this function first with respect to one variable, then respect to an-
other, and so on. It turns out that the iterative rearrangement is defined on
R” = (0,00)", it is non-increasing in each variable and equimeasurable with
| f|- It is defined a Lorentz kind norm ||.||; % in term of iterative rearrange-
ments (see §2). It is important to stress that in the case ¢ > p this norm is
stronger than the usual Lorentz norm ||.||,,. Observe also that iterative rear-
rangements were used in embedding theorems in the works [5, 6, 8, 11, 16]. In
particular, it was proved in [11] that for anisotropic Sobolev spaces a stronger
version of Sobolev type inequality with the generalized Lorentz norm ||. ||, %
is true.

Applying estimates of functions (1.2) we immediately obtain a similar
result for Lipschitz spaces. That is, in Section §5 we prove a Sobolev type
inequality

[Fllgr s < ell fllsgromms L <p<mnfr,

which gives an extension of the results of Kolyada and Netrusov mentioned
above.
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Further, in Section §5 we prove one of our main results — Il'in’s type
inequality

n

O i AT AN
Z(/ [n ’IIAJ(h)fIIq,l;szP;) < dllf g (1)

=1

This immediately implies the embedding (1.4) for all p > 1. Let us emphasize
that p = 1 is included. Moreover, comparing with (1.4), the left hand side of
(1.5) contains the stronger Lorentz norm ||.||,1.% instead of ||.||, . Note also
that it is even possible to replace ||.||41.% by a stronger norm ||.||,¢x for any
E>0.

As it was observed above, our approach is based on two tools. First, we
use some modifications of estimates of rearrangements obtained in [11, 10].
Second, we apply estimates of functions of the type (1.2).

The paper is organized as follows. In Section 2 we consider the definition
and basic properties of the iterative rearrangements. Section 3 is devoted
to modify known estimates of rearrangements into a special type. Next,
in Section 4 we get main lemmas that give us special weight estimates for
functions of type (1.2). Finally, sharp embeddings for anisotropic Lipschitz
spaces are proved in Section 5.

2 Non-Increasing rearrangements

This section contains basic facts concerning rearrangements. We refer to

([11], §2).
Let Sp(R™) be the class of measurable and almost everywhere finite func-
tions f on R"™ such that for each y > 0,

Ar(y) = {z e R" - [f(2)] >y} < oo

A non-increasing rearrangement of a function f € Syp(R™) is a non-increasing
function f* on Ry = (0,400) that is equimeasurable with |f|. The rear-
rangement f* can be defined by the equality

f*(t) = sup inf |f(x)|, 0<t<oo.
|E\:tz€E

Next, we consider the so called iterative rearrangements.



Let x = (x1,...,x,) € R". Removing the variable z;, from the n-tuple x
we obtain a (n — 1)-dimensional vector denoted by .

We denote by (7,2x) (7 € R) the vector in R™ with first component 7
and the remaining components equal to the (n — 1)-dimensional vector Z.

Let £ € {1,...,n} and f € Sy(R"). We obtain Ryf(t1,%) a.e. on
R, x R"! by fixing %), and "rearranging” f in non-increasing order as a
function of the variable x; only.

Let P,, be the collection of all permutations o = {ky,...,k,} of the set
{1,...,n}. For each 0 € P, we set R,f = Ry, - Ry, f. It is easy to
see that R, f decreases monotonically with respect to each variable and is
equimeasurable with | f| (for more details, see ([11], §2)).

It is easy to verify that

Rof(t) < f*(tr---tn), (2.1)
Ro(f+9)(t+5) <R f() +Rogls) (t,s €RY).

Let k € {1,...,n}, t; € R, &, € R"'. We consider the following
averages:

. 1 M .
Rif(t, 2x) = t_/ R f(u, Ty)du,

1J0

_ 1 o0

Rl (0, 34) = / Ry f (1, 34) .
1 Jt

1

Now, for each o € P,, we set
REf(H) =Ry, - RL f(), teRL
It holds (see [11, §2])

1R fllp < cpll fllp, 1 <p < oo (2.2)

We denote also

iaf(t) :iknilﬁf(t)? teRi)
and for each 1 < v < 0o we set
R f(t) = (Ro f"(0)7.

This operator was defined in [11] and it was used to prove embedding theo-
rems. Its important property is that

IR £l < el 1. (2.3)
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Assume that 0 < p, g < co. A function f € Sy(R") belongs to the Lorentz

space LTP(R™) if
e ey dEY P
1o = ([ @ ard) <o

We have the inequality (see [1, p.217])
[fllgs < cllfllgp (0 <p<s<oo),
so that L C L%% for p < s. In particular, for 0 < p < g,
L9 ¢ L% = L4,

In what follows we set

Assume that 0 < ¢,p < 0o and let o € P, (n > 2). We denote by L%’ (R")
the class of functions f € Sp(R™) such that

1/p
_ ()14 p dt 00
|ummg—(/g<ﬂ ®J®]ﬂw> )
(see [3]). We also set

LY®R) = () LER), flamz= Y I lome-

O'E?n O'Efpn

It is easy to see that

Hf”q,S;U% < CHf”q,p;fR (0<p<s<oo). (2.4)

If ¢ > p, then for each ¢ € P,, and each f € Sy(R"),

||f||q7p < C”f”qm;ﬂ%

(see [17]). Thus,
L C LT (q>p).

Moreover, this is a proper embedding [17].
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3 Estimates

estimates

From now on n € N. Let 0 < r; < +o00 (j = 1,...,n). We denote by 7; the
least integer such that r; < 7.
Let f € LP(R™) (1 < p < +00). For each j =1,...,n set

fin(z) = A7 (h) f(2).

In this section we consider some modifications of the estimates of the iterative
rearrangements R, f and R, f;, obtained in [11] and [10].
For 1 < p < oo we denote LP = LP(R,, du/u); set also L>® = L>®(R, )(see
[4])-
Lemma 1. Let n € N, 1 < p < oco. Assume that F' € LP(R") is a non-
negative function, non-increasing at each one of its variables. Then, for any

>0 and any j € {1,...,n} there exists a non-negative function ¢ = ¢s;
on Ry such that

i) F(t) < m(t)"Pe(t),

i) |9llce < (O Fllremn),

i) ¢(u)u’ T and ¢p(u)u=? |.

Proof. As F is non-increasing at each one of its variables, we use a weak type
inequality

1/p
F) < x(i) ( / F(t)pdfj) ) ). B
R}
Then g is non-negative and non-increasing in R, and

9l oy = I1F | Loge)- (3.2)

Applying Lemma 2.1 of [12] we obtain a function g on R, such that

9<g gl < c@lgl, and gyl |, gyt 1, uw>0. (3.3
Denoting ¢(u) = g(u)u'/?, by (3.1) and (3.3) we get i). Next, ii) follows from
(3.2) and (3.3), and iii) follows from (3.3). O

get| Lemma 2. Letn > 2, j € {1,...,n}, r; e Nand 1 < p < co. Let f €
W (RY). We choose 0 € P,,, 1 <1 <n (I#0c71(j)), and 0 <5 < 1. Then

pij
there exists a non-negative function ¢ = ¢;; .5 on Ry such that:

16llce < ¢l D fllp; (3.4) [e23

9



p(uw)u’ 1 and ¢p(u)u= |  u > 0; (3.5)
for any K > 1

~

&ﬂﬂsw&g(mmﬁ$)+dMﬂwmﬂmmx (3.6)

Ry fin(t) < em(t) PR, G(t)  for all 0 < h <ty (3.7)

where o’; is obtained from o by moving the jth index to the first position,
m; = o 1(j) and ¢, ¢(K) do not depend on f.

Proof. Case 1. First we suppose that p > 1. Denote g; = D;jf. From [11,
(3.3) and (3.7)] we get

~

b, |
Ro f(t) < 2Ry f (Ktmj, 7]) + C(K)tfgjf]{;;gj(%) VK >1  (3.8)

where ¢ is obtained from o by moving the jth index to the first position.
Besides, by [11, (4.5)],

Ry fnlt) < IR, (1) (3.9)

Now (see (2.2)) note that R’g;(t) satisfies the conditions of Lemma 1.
So, for § and [ we obtain a non-negative function ¢ such that (3.5) holds,

Rg;(t) < m(t)"Po(t), (3.10)

and
[9[lr < cl|R595ll,-

Then (3.4) follows from the last estimate and (2.2). Inequalities (3.6) and
(3.7) are immediate consequences of (3.10), (3.8) and (3.9).

Case 2. Now we suppose that p = 1. Set v = 1/(1— 7). We have (see [11,
(3.3) and (3.10)])

~

tim. b,
RJ@SW%jGQW—ﬂ+dM%ﬁM2% (3.11)

~

2

where

Fy(fm,) = R 050, %@QZA%@MW

10
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Besides, by [11, (4.11)]
Rofin(t) < b5~ Fy(t,). (3.12)
By (2.3) we have
1E5 11 gt < ellbyllipn—r = llgslh- (3.13)

So, for any I # m;, l € {1,...,n} and 0 < § < 1 we apply Lemma 1 to Fj
and obtain a function ¢(t;) satisfying (3.5). Besides,

Fj(gmj) < Cﬂ-(fmj)_lgb(tl)'
Thus, by (3.11) and (3.12) we get (3.6) and (3.7). Finally,
1ol < cllE5lls,
and (3.13) imply (3.4). O

Lemma 3. Letn € N, j € {1,...,n}, 0 <r; < oo and 1 < p < co. Let
f € LP(R™). Then, for any o € P,, and any K > 1

~

Ry f(t) < 279Ros f (Ktmj, t’;”) + c(K)m ()P (it )y (3.14)

and )

Ro [in(t) < w(t)™P07 (f; 1)y (3.15)
where o’ is obtained from o by moving the jth index to the first position and
m; = o '(j).

Proof. By [11, (3.3)], we have for any K > 1

~

t

= tin.
fRaf(t) < 2""]‘9{03‘]( (Ktmj7 TJ> +IRU®j (5) ) (316)

where

1 (Fj+1)Ktmj .
o5(0) = | A7 (h) ()] dn

Besides, by (2.1),
t (7
RoP; (5) < @] ( on ) . (3.17)

11
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mainlema

We choose a measurable set £ C R™ such that |E| > ”2—5 and |®;(z)| >

7 ( )for all x € E. Integrating over E, applying Fubini theorem and
using Holder’s inequality, we get

e

(7;4+1) Ktm _
< W/o 1A (B) fllpdh < c(K)m ()P (ftm,)p (3.18)

Now (3.16), (3.17) and (3.18) imply (3.14). Inequality (3.15) is immediate;
indeed, we have

Rofin(t) < Fia(m(®) < m@) 7| finlly < w(t) P07 (5 R),
m
Remark 1. If f € ﬂ]r W, (]R”)] [ﬂjr éENH (R”)], then we can si-
multaneously apply the estimates obtained in Lemmas 2 and 3. Let o € P,,,
K > 1 and 0 < § < 1. If r; € N, choose I; # o~ !(j) and denote

by ¢, the functior} ¢ = ¢j1,06 defined in Lemma 2. If r; ¢ N denote
Q; = sup,ou"w;’ (f;u),. Now, combining (3.6) and (3.14)

~

% f(1) <2 Y Ry f (Ktmj, t’;j) FeBm(t) pp(t), (3.19)

R o _
where m; = 07'(j), 7’ = max7; and

pa(t) = mm{glég{tnij ;) }, géer{tn%j Q5}}, (3.20)

4 The main lemma

In this section we prove main lemmas that form the base of our approach
(see Lemmas 5, 7, and 8 below). It will be convenient to use the following
auxiliary proposition.

Lemma 4. Letm € N;0 < oy < oo (i=1,...,m). Definea= (37" a; )"

Let a,b > 0 be such that a/b < «. Set

p(z) = min{\, 20" Ay, ..., 20 A} (2 € RY),

12

1 (T]+1)Ktm -
> |E|/ x)dr = ———— T / (/ |AY (b (x)|dx) dh <
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where A\, A\, ..., A\ are positive constants. Then

/R p(z)bw(z)_“d—z) < eAbrale H)\; (4.1)

m m(z

where ¢ is a constant that only depends on «;, a, b.

Proof. Set p;(z;) = min{\, 2" \;} ¢ = 1,...,m. Denote by I the left hand
side of (4.1). Tt is clear that

Jg/ ﬁpi(zi)?gzia dz :ﬁ[i, (4.2)

T =1 m(z) i=1
where - y
ba 2
I; = i(zi) izt —.
/0 pi(zi)°i z; .
Now,
ba  p(X)e dz o [ dz: a
L= A% / ppamalZ 4\ / 50 = AoV (43)
0 Zi (%)1/0@- Zi
By (4.2) and (4.3), we obtain immediately (4.1). O
From now on, let n € N,0 < r; < 00,1 < 6; < oo. Assume that ¢; € £%
are positive functions (i = 1,...,n). Define
,O(t) = min{t? qbl (th)? t£2¢2(tl2)7 s 7tzn¢n(tln>}7 (44)

where ly,...,1, € {1,...,n}.

Remark 2. Note that the function p,(t) defined in (3.20) is a particular case

The lemma below gives us the integrability for functions of the type (4.4).

Lemma 5 (The main Lemma). Let n € N,0 < r; < 00,1 < 0; < o0
(i=1,...,n). Let p(t) = miny<;c, {t7°Pi(t1,)}, & € L%, I; € {1,...,n}. Set

"1 - n e~ 1 -
TZn(ZE) ’ S_?<Zri9i) ' (45)

i=1 i=1

1p3
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Then

( / p(t)%r(t)—”/”%) <o o,

where ¢ is a finite constant that only depends on n,r;, 0;.

n
+

Proof. We can assume that

> léilleo = 1.
i=1

Besides, we can suppose that not all 6;’s are equal to infinity!.

(4.6) [ml2

(4.7) |ml3

Denote ¢(u) =37 10200 ¢i(w)¥ (u > 0). By (4.7), |||l < 1. Set

By={teRi: max o(t,) < o(tw)}-

et A W

It is clear that |J,_, Br = R’}.

Without loss of generality we consider the integral of the left part of (4.6)

only over B;. We get for almost all t € By

p(t) S PBy (t) = min{t;lgb(tl)l/(ﬁ’t;2¢(tl)l/027 L ’tgn (tl)l/ﬁn}'

From here
dt dt
p et —rs/n < / p H(t —rs/n _
[, poro < [ omorao G
OO —Trs 'fldt T N\S,._ (£ \—Ts/n df
:/ ten— pa, (b, 1) () 7
0 ti Jrnt (t1)

For each fixed ¢t; € R, applying Lemma 4 and (4.5), we get

/ P (t1, fl)sﬂ(fl)_rs/ndﬂ <
R

< C[tqlqj(tl)l/el]sfzi:z T;i¢(tl)zz':2 Tl — C¢(t1)tgs/n,

Since [|¢]|,1 <1, (4.9) and (4.10) yield that

/ ,0(15)57T(t)_”/”i <ec.
B1

m(t) ~

lotherwise s = co and the result is trivial.

14
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We will obtain a generalization of Lemma 5. For this purpose, we need
the following Hardy type inequality.

Lemma 6. Let ¢ a measurable non-negative function on Ry. Let §, a > 0
and let 1 < v < oo. Assume that 3 is a measurable and positive function on
R, such that B(u)u=° increases. Then

o] O d_u Y o] Y d_u n
/0 h dh </{h>ﬁ(u)} o(u) ” ) < C/o B(u)"*p(u)? - (4.11) |al1
" et L L ;
/0 h*dh </{h§5(u)} o(u) ” ) < C/o Bu)*p(u)? " (4.12) [al2

where ¢ is a constant that only depends on o, 6 and 7.

and

Proof. As B(u)u=° T, this implies that the inverse function 37! exists on R
and satisfies the condition

B (2u) < 2Y°37 (u) (4.13) [a13
Denote by I the left hand side of (4.11). We have

00 1(h
IE/ h=°ldh
0
(2= Fh)
= [ o ldh / u) 2
/0 <Z 1(2—k—1p) u

Next, by Minkowski’s inequality

)
"< g% (/OOO h="tdh (/: (::fh ) >
S (a7 o))

Further, using the Holder’s inequality and (4.13)

CIY IR
[ ew<e( [ ew )
i) 0 U

15
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Thus, by Fubini’s theorem

00 B71(2) oo
I<e / — / oy = / Blu) )y ™.
0 0 U 0 u

The same reasonings prove (4.12). O

Lemma 7. Assume that the conditions of Lemma & hold and suppose that
there exists 0 < 6 < %miﬂlgi’kgmgk;,goo{g—;} such that

¢1(U)U6T and ¢1(U)U_5l (4.14) |crecdecrec

for every i such that 0; < co. Then, for any 0 < d < oo and j € {1,...,n}

1
> dt; \° .
s —rs/n ) .
(/0 Hp(t) m(t) HLd(Rffl,Ltf ) tj) <c ;1: |9l zo: (4.15) |sl1

w(fj)
where ¢ is a constant that depends on n,r;,0;,d, 9.

Note that the greater is d, the weaker is (4.15). Indeed, by (4.14),
p(t)m(t)° is increasing at each one of its variables. So, it is easy to see that

sup p(t)°m(t) "™ < el p(t)*m(t) 7|

at;  for any 0 < d < oco.
ijR:L__l =)

LARY, =)
From here, it follows that if ¢ > d > 0, then

() ()= aiy | S
W(fj)

—1
La(R7 Y,

N 1/q
Anl[p<t>8w<t>-rs/"]di?> <

n m(t;)
< c|lp(t)m(t) |

< ot m) ™ g f:ﬁ(

n—1
Ld(R+ 77l'(tj))

dt;
J

d —1
LARY,

Note also that for d = 1 we get the same conclusion as in Lemma 5. So,
for the proof, we can suppose that 0 < d < 1.

Proof. As above, we can suppose that the condition (4.7) holds. Let ¢ and
By (k= 1,...,n) be defined as in Lemma 5. Then the left hand side of
(4.15) does not exceed the sum »;_, I, where

1
& dt: \°
I, = O3 (t) " v g (¢ A A
k (/0 HP( )om(t) XB,( )HLd(Rily:zzﬂ t, )
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We consider ;. For almost all t € By we have the inequality (4.8). Thus,

o dt ;
I < ()™ T
1= /0 o, (57 (?) HLd(RTlviéﬂ t
Case 1. If j =1, then
o —rs/n dt
Iféc/ G ()
0 b
where ¢
d_ s (3 \—rs/n]d dty
G(h) = [pBl (t) W(tl) ] F
Riq 7T(tl)

Applying Lemma 4 to the variables to, ..., t,, we easily get
G(t)" < elty? o(t) "] () = = (6 (11)"

This implies (4.15).
Case 2. Let j # 1. For t € R?, denote by #;; the (n — 2)-dimensional
vector obtained from ¢ by removal of ¢;, ;. Then

s o —rs/n dt;
B [ A T (116) [s13
where .
—rsa/n n —rs/n s dty ;
Rt =17 [ ) (1)1
R~ m(t1;)

Fix ¢;, t; and apply Lemma 4 to coordinates of the vector fl,j. We obtain
R(ty, t;) < ety " min{t} (1) /% 17 (1) 0} W) () S
Now, we define 3(t;) = [t} ¢(t,)Y/?~1/%]1/75. Note that by (4.14)

5<t1>t;5/” . (4.17)

Besides ( = nrj 91 + ZZ#] nn@ ’ = m"l@ + ZZ#I nr;6. Z)
rs 1
t; 7 ot)’ = Ri(th), if B(t1) <t
R(ti,t;) S e ey S;) . 1(8) s W) <h 418) [o1a

t; T ()Y = t U Re(ty), i B(t) >t

17



Joining (4.16) and (4.18), we get

dt, at
I < c/ t s / Rl(tl)d—l +
0 ti \Ji;2p001)) ty

o Eﬁdt.
+c/ 2 / Ry(t1)
0 ti \Ji;<pm)y

) 1/d

Taking into account (4.17), we apply Lemma 6 with v = 1/d (v > 1). Using

the definitions of 3, Ry, and Ry, and (4.5), we obtain

o rs dt > j dt dt
e [T o R T e [ R EE = [ o T
0 1 0

We will use also the following generalization of Lemma 7.

desequilibrio‘ Lemma 8. Letm e N, 0 <7, < 00,1 <6, <oo (i =1

the function p(z) = mini<icm{z di(2,)}, ¢ € L%, 1; € {1,..
also that there exists 0 < 6 < %min1§i7k§m79k#m{ﬁ} such that

pi(w)u’ 1 and  ¢i(u)u° |

for every i such that 0; < co. Let 0 < a; < oo be numbers verifying

m
>
i=1 rif;

Setazzzil‘;—z. Then, for any 0 <d < oo and j € {1,...,m}

i dz;
</ Hp H Ld(Rm 1 L _> < CZ ||¢’L”Eem

(25 ) Zj

where ¢ is a constant that depends on m,r;,a;,0;,d,d

Note that Lemma 7 is the particular case a; =

.-
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imbed
tl

Proof. Let J be the left hand side of (4.20). The change of variable z;“/ b=
(b = miny<p<m ax) gives us

de

1
_ a —b . ¢
7= ([ 1000 g e )

where p(u) = minlgigm{u?ﬂ(uli)}, rl = rib/a;, and Fy(v) = ¢;(v*%) be-
longs to £%. Note now that Fy(v)v® T and Fj(v)v™° |. So, it remains
to apply Lemma 7 to the last integral (r' = m(>_1/rl)™" = a~'bm and
r's'/m = (3. 1/r0;)~" = b by (4.19)) and we get (4.20). O

5 Embeddings of Lipschitz spaces

Theorem 1. Let2<neN, 1<p<oo,0<r,<oo (i=1,...,n). Set

—1 -1
"1 1 r'p ¥ np
rzn(Z;) , r’zn(Z;) 5= q:n—rp' (5.1)

=1 i €N

Then, if p<n/r

I1f

o < cllflgm  for all f € AT (RY) (5.2)
where ¢ 1s a constant that doesn’t depend on f.

Proof. First suppose that f € C3°(R"). Let S = || f||4* 5% So, S < o0.
It is well known that if 1 < p < o0,

1flsgreorn ~ > DT fllp + D supu™wi? (f5u)y, (5-3)

jr;eN jirj¢N u>0

and it is still true for p = 1 restricted to functions in C*°(R") [10].
Now, taking into account (5.3) and Remark 1, we integrate inequality
(3.19) and get for any o € P,

(/.

+
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1/s 1/s
w(t)s/q*—lﬂzgf(t)Sdt> < KTV S e(K) </ w(t)—’r'f—lpa(t)sclt>



with p,(t) defined in (3.20). Consequently

S=>1If

O'GTn

+d(K) ) ( /R

c€Pn

ke S 127K Sy

1/s
w(t)—?f—lpg(t)sczt> : (5.4) [t14
n
Now, we apply Lemma 5 with 6; = pif r; € N; §; = oo and ¢; = ; if r; ¢ N
(observe that the values of s in (5.1) and (4.5) coincide) and get

1/s
(/R ﬂ(t)_rns_lpa(t)sdt> <c D leiller + > %) (5.5) [t15

n
+ r; EN TigN

Therefore, setting K = (27 " *'n!)?", and using (5.4), (5.5), the definition
of ©;, and (3.4) we obtain the inequality (5.2).

(5.2) in the general case. O

Remark 3. If all the r;’s are integers, then s = p and we get the embedding
of anisotropic Sobolev spaces into Lorentz spaces proved earlier in [9, 11]. In
the general case, assume that s < ¢*. Then Theorem 1 yields an alternative
proof of the results concerning embeddings into L9 [5] and L7* [14, 10].

Theorem 2. Let2<neN, 1<p<qg<oo. Let0<r;<oco(i=1,...,n).
Define r,s as in (5.1). Suppose that

and define

1 x4 = ifr €N,
Qp = ATy,  — = P
% if r; ¢ N.

%
s

n

([0

=1

_ . dh 1/
A?’(h)fllq,l;sz]l—> < el flrn . (56) [E01

h

where ¢ is a constant that does not depend on f.
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Proof. Consider the first term in the left hand side of (5.6). Denote f; ,(x) =
AT (h)f(z). Estimate J(h) = ||finllq1.x < oco. As in Theorem 1, we can
suppose that f € C5°(R").

Define now

r 1
0 = —min{—(1 — »), —minr;}.
in{ (1 = 2), minr;}

N —

Then, by (5.3), we proceed similarly to Remark 1. Applying Lemmas 2 and
3 to fi, we easily obtain that for any K > 1

I tm,
Ro frn(t) <27 Rt fra <Ktmj, 7]) + c(K)m(t) ™7 py (),

j=1

where p,(t) is defined in (3.20). Moreover, from (3.7) and (3.15) it follows
that if b < t,,,
Ry fra(t) < em(t)™Pu(t,h),

where

hri—0¢0 t if N
ult,h) = m@1(fn), AL € N, (5.7)
hﬂQl’ if (&1 ¢ N,

and ¢1(t;,) is defined in Lemma 2. Furthermore, setting

Po(t, h) = min{p,(t), u(t, h)}, (5.8)

we get for any K > 1

~

) — b, 1/p—
RUth(t) S 2" Z:Rg;.fl,h <Ktmj7 71> + C(K)ﬂ'(t) 1/ppo<t7 h)
7j=1

Multiplying by 7(¢)*/¢~! and integrating over R?”, we obtain

I finllgm, <27 MKV (h) + e(K)Jy(h, o), (5.9)
where
T(ho)= [ =) ", (¢, h)—. (5.10)
R? 7(t)

Summing up inequalities (5.9) over all ¢ € P,, and choosing K = (27 " +1nl)e,
we get

J(h) < ¢ Ji(h,0). (5.11)

cePy
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Furthermore, denoting by [ the first term of the left hand side of (5.6), we
have (let’s suppose that v; < 0o?)

5% 1/m
I= </ h_o‘ﬂl_lj(h)“dh) <d Z I(o),
0

cePy

where (by (5.11))

- oo dh\ /M
]<‘7) = (/ h_alﬂﬂjl(haa)%w) . (5.12) ilsigma
0
But now, it is clear that (see (5.8), (3.20) and (5.7))

tm, 5
ol 1) < [1+ (2215, (1, ) (5.13)
where

5 min{h" ¢1(ty,), po(t)}, if 1 €N
oAb h) = 5.14 tild
po(t, h) {min{hﬂtho(t)}7 ity ¢ N. (5.14)

So, due to (5.12), (5.10) and (5.13) we have

I(0) < cl1(0) + cly(0),

00 " ~ dh /m
Li(o) = (/0 A= ()~ = (¢, h)”HLl/n(Ri,;g))T)

- < 1yt g dh\ '™
I(o) = (/0 ||h—am7r(t)_;( —%)71(71) " byt h)’hHLl/’Yl(Ri’wd(i))T) :

It remains to estimate the last two integrals.
Joining (5.14) and (3.20) we get

Bt 1) = min{h" ¢y (t;, ), ming, en{tm,; ¢;(t,) }, min, gn{ta;Q;}}, ifrp €N
o (L min{h"'Qy, min,, en{tm, ¢;(t,)}, min, gn{t, Q;}}, if r; ¢ N.

2Otherwise, none of the 7;’s belongs to N, and the analogous of (5.6) follows from
(5.11), (5.10) and Lemma 4.
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So, ps(t,h) has the form of p(z) in Lemma 8 (p(2) = minj<;<m{z ¢:(2;,)},
¢; € L%). Indeed, m =n + 1, 1 = 11,

21 = tm1a e y "n = tmna Zn+1 = h/

Ifr; €N, 0, =pand ¢;(v)v° T, ¢;(v)v~° | (see (3.5)).

1<i<n+1
Isi<n ){IfrigéN,@izooand@:Qi‘

To estimate I;(0), note that it has the form of the left hand side of (4.20)
with

T
a1:~--:an:;(1—%)fyl>0, an+1:()él’}/1>0, dzl/’}/l, j:n—i—l

Then a = v, and (4.19) holds. Applying Lemma 8 we get

1:1(0) <c Z | pill cr + ZQz

r, €N TiéN
And by €, definition and (3.4)
Li(0) < CHfH,\;1 """ (R

Next, I,(c0) also is similar to the left hand side of (4.20). Indeed,

.
a1 = (a1 +0)y >0, a; = [5(1—%)—5]71 > 0,
4= (1)1 >00G=2,....,n), d=1/y1, j=n+1.

n

We have that a = 7, and (4.19) holds. Applying Lemma 8 we obtain the
same estimate for I(o) as for I (o). O

In addition to the Theorem 1 (embedding with limit exponent) we have
also the following theorem.

Theorem 3. Let2<neN,1<p<g<oo,and0<r;<oco(i=1,...,n).
Let r be as in (5.1). Suppose that 1 —n/r(1/p —1/q) > 0. Then, for any

0<é< o0
1f llgem < cll 1ozt gny (5.15)

where ¢ is a constant that doesn’t depend on f.

23



Proof. First of all we can suppose that f € C°(R"), so S = || f]lger < 00.
By (2.4) we can suppose that 0 < £ < 1.
By Remark 1 we get (3.19) and (3.20). We define for 0 = m~ € P, and

jg=1,...,n.

A={teR} :t;>1,1=1,...,n}, Aavj:{tGR’l:lrgi@nt%:t%j<1}.

It’s clear that
AU (U Am-> =R".
j=1

Then, using (3.19),
/ R(HE/TIR, F(dE < (27K VIS)E + I+ e(K) S

+ Jj=1
where

Ioz/w(t)g/q_lﬂzgf(t)ﬁdt and Ij:/ m(t) T (1)t
A A

0,

Using the same methods as in Theorem 1, we choose K = (nl27 tn+1+1/¢)a
and it only remains to estimate Iy and ;. Applying Holder’s inequality with

exponents p/& and (p/€)’, we have (due to (/g —1)(p/&)’ < —1)
Io < || f-
On the other hand, let ¢ be such that
1 = if r; ¢ N
1> = 1;9 " 1 T.] ¢ )
=4+ == ifr; e N

¢ . -
Then, by Holder’s inequality

i \ it \"°
I < / m(t) 7 — : / () K p, () —— | = Ty
J ( Ao, ( ) i 7T(t) - ( ) j ( ) 7T(t) 1-J2

where o = =(1 — »)€ and § = % (1 + ). The first factor, J, is a constant
by A, ; definition. Indeed,

/ Ldt, s e b,

Jf = / - m(t) e

0

by (it >8] (i4)) T(tm,)

= C.
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For the second factor, J5, we apply Lemma 8 with
m=mn, d=1, z; =t,,,

ai=aC ifi#j and aj =al+ 5

(as above 0; = p if r; € N; and 0; = 0o, ¢; = Q; if r; ¢ N). Lastly we use the
definition of €; and (3.4). So,

To < el g e )
and (5.15) is proved. O

Remark 4. As ¢ is not a limit exponent, the embedding
AL T"(Rn) NN Lq,f(Rn>

follows easily from the embeddings without limit exponent for spaces of Besov
[10] or anothers. The goal of Theorem 3 is to present a proof based on the
||.l¢.¢,% norm (which is stronger than the usual Lorentz norm if £ < gq).
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