ESTIMATES OF DIFFERENCE NORMS FOR FUNCTIONS IN ANISOTROPIC SOBOLEV SPACES

V.I. KOLYADA AND F.J. PÉREZ

ABSTRACT. We investigate the spaces of functions on \mathbb{R}^n for which the generalized partial derivatives $D_k^{r_k}f$ exist and belong to different Lorentz spaces L^{p_k,s_k} . For the functions in these spaces, the sharp estimates of the Besov type norms are found. The methods used in the paper are based on estimates of non-increasing rearrangements. These methods enable us to cover also the case when some of p_k 's are equal to 1.

1. Introduction

In this paper we study the spaces of functions f on \mathbb{R}^n which possess the generalized partial derivatives

(1)
$$D_k^{r_k} f \equiv \frac{\partial^{r_k} f}{\partial x_k^{r_k}} \qquad (r_k \in \mathbb{N}).$$

Our main goal is to obtain sharp estimates for the norms of the differences

(2)
$$\Delta_k^{r_k}(h)f(x) \equiv \sum_{j=0}^{r_k} (-1)^{r_k-j} \binom{r_k}{j} f(x+jhe_k) \qquad (h \in \mathbb{R})$$

 $(e_k$ is the unit coordinate vector). We will specify this problem below; here we only note that it was completely solved in the case when all derivatives (1) belong to the same space $L^p(\mathbb{R}^n)$. Nevertheless, it is natural to suppose that the derivatives $D_k^{r_k}$ $(k=1,\ldots,n)$ belong to different spaces L^{p_k} . The corresponding classes of functions naturally appear in the embedding theory as well as in applications. The most extended theory of these classes is contained in the monography [2]. Furthermore, many authors have studied Sobolev and Nikol'skii-Besov spaces whose construction involves, instead of L^p -norms, norms in more general spaces (see [12]). In this paper we suppose that derivatives belong to different Lorentz spaces $L^{p_k,s_k}(\mathbb{R}^n)$ (where $1 \leq p_k, s_k < \infty$ and $s_k = 1$, if $p_k = 1$). Note that very interesting comments and results concerning this type of Sobolev spaces can be found in [19]. There are many important problems in Analysis which lead to these spaces. It was proved by E.M.Stein [17] that the sharp condition for the differentiability a.e. for a function $f \in W_1^1$ is that ∇f belongs to the Lorentz space $L^{n,1}$. The use of Lorentz type limitations on the derivatives can be crucial in the estimates of Fourier transforms (as it can be deduced from [9, 11, 15]). That is, if we look for a sharp conditions on the derivatives to guarantee a given integrability property of the Fourier transform, then these conditions generally will be expressed in terms of Lorentz norms.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 46E35, 42B35.

Key words and phrases. Sobolev spaces; Besov norms; embeddings; rearrangements.

Let us return to the our main problem - estimates for the norms of the differences (2). As it was mentioned above, estimates of this type are already known. In particular, they give a refinement of the classical Sobolev embedding theorem with the limiting exponent. The simplest version of this theorem asserts that for any function f in the Sobolev space $W_n^1(\mathbb{R}^n)$ $(1 \le p < n)$

(3)
$$||f||_{q^*} \le c \sum_{k=1}^n \left\| \frac{\partial f}{\partial x_k} \right\|_p, \quad q^* = \frac{np}{n-p}.$$

Sobolev proved this inequality in 1938 for p > 1; his method, based on integral representations, did not work in the case p = 1. Only at the end of fifties Gagliardo and Nirenberg gave simple proofs of the inequality (3) for all 1 .

The inequality (3) has been generalized and developed in various directions (see [2, 10, 12, 13, 20, 21] for details and references). It was proved that the left hand side in (3) can be replaced by the stronger Lorentz norm; that is, there holds the inequality

(4)
$$||f||_{q^*,p} \le c \sum_{k=1}^n \left\| \frac{\partial f}{\partial x_k} \right\|_p, \quad 1 \le p < n.$$

For p > 1 this result follows by interpolation (see [14, 18]). In the case p = 1 some geometric inequalities were used to prove (4) (see [3, 4, 7, 8, 16]).

An elementary approach to the study of Sobolev type inequalities, based on estimates of non-increasing rearrangements, has been worked out in [8]. In [8] there was proved an extension of the inequality (4) to the anisotropic Sobolev spaces $W_p^{r_1,\dots,r_n}(\mathbb{R}^n)$ $(p \geq 1,r_k \in \mathbb{N})$ defined by conditions $f,D_k^{r_k}f \in L^p(\mathbb{R}^n)$. Afterwards, it was shown in [10] that the same methods give an analogous result in the case when the derivatives $D_k^{r_k}f$ belong to different spaces L^{p_k} . Observe that this approach has been still further simplified in the work [11], where the iterative rearrangements were used.

The sharp estimates of the norms of differences for the functions in Sobolev spaces firstly have been proved by V.P.Il'in [2, vol.2, p.72]. For the space $W_p^1(\mathbb{R}^n)$ Il'in's result reads as follows: if $n \in \mathbb{N}$, $1 and <math>\alpha \equiv 1 - n(1/p - 1/q) > 0$, then

(5)
$$\sum_{k=1}^{n} \left(\int_{0}^{\infty} \left[h^{-\alpha} \|\Delta_{k}^{1}(h)f\|_{q} \right]^{p} \frac{dh}{h} \right)^{1/p} \leq c \sum_{k=1}^{n} \left\| \frac{\partial f}{\partial x_{k}} \right\|_{p}.$$

Actually, this means that there holds the continuous embedding to the Besov space

$$W_p^1(\mathbb{R}^n) \hookrightarrow B_{q,p}^{\alpha}(\mathbb{R}^n)$$
.

It is easy to see that the inequality (5) fails to hold for p = n = 1. Nevertheless, it was proved in [6] that (5) is true in the case p = 1, $n \ge 2$.

The inequality (5) for p=1, $n\geq 2$ was used to prove some estimates of Fourier transforms of functions in Sobolev spaces (see [15], [9]). In particular, using these results, we can compare the inequalities (3) and (5). Let us consider the case p=1, n=2. The inequality (3) means that for any function $f\in W_1^1(\mathbb{R}^2)$ its Fourier transform \hat{f} belongs to $L^2(\mathbb{R}^2)$. At the same time, as it was shown in [9], the stronger result can be easily derived from (5); that is, if $f\in W_1^1(\mathbb{R}^2)$, then $\hat{f}\in L^{2,1}(\mathbb{R}^2)$. Note that this assertion does not follow from (4).

The extension of the inequality (5) to the spaces $W_p^{r_1,\dots,r_n}$ was given in [8]. This is the following inequality

(6)
$$\sum_{k=1}^{n} \left(\int_{0}^{\infty} \left[h^{-\alpha_{k}} \| \Delta_{k}^{r_{k}}(h) f \|_{q,p} \right]^{p} \frac{dh}{h} \right)^{1/p} \leq c \sum_{k=1}^{n} \| D_{k}^{r_{k}} f \|_{p},$$

where 0 < 1/p - 1/q < r/n, $r \equiv n \left(\sum_{i=1}^n r_i^{-1}\right)^{-1}$ and $\alpha_k = r_k \left[1 - \frac{n}{r} \left(\frac{1}{p} - \frac{1}{q}\right)\right]$; the inequality is valid if p > 1, $n \ge 1$ or p = 1, $n \ge 2$. Using (6), we get the following continuous embedding

$$W_p^{r_1,\dots,r_n}(\mathbb{R}^n) \hookrightarrow B_{q,p}^{\alpha_1,\dots,\alpha_n}(\mathbb{R}^n)$$
.

For p>1 this embedding was proved by Il'in [2, Vol.2, p.72]. The main result in [8] is the proof of (6) for p=1, $n\geq 2$. This result was applied in [9] to obtain Fourier transforms estimates for functions in $W_1^{r_1,\dots,r_n}$.

Now we can specify our main problem: find the sharp estimates of the type (6) for the case when the derivatives $D_k^{r_k} f$ belong to different Lorentz spaces L^{p_k, s_k} . The main result of the paper is the following inequality (see Theorem 1 below)

(7)
$$\left(\int_0^\infty \left[h^{-\alpha_j} \| \Delta_j^{r_j}(h) f \|_{q_j, 1} \right]^{\theta_j} \frac{dh}{h} \right)^{1/\theta_j} \le c \sum_{k=1}^n \| D_k^{r_k} f \|_{p_k, s_k} .$$

We shall not specify here the conditions on the parameters. Technically, the most complicated case is one when some of p_k 's are equal to 1 and some of them are greater than 1. The basic difficulty is to find the *sharp* values of the parameters θ_j ; let us emphasize that it is exactly the main result of the work. In this connection observe that an inequality similar to (7) was proved by Il'in [2, Vol.2, p.72] in the case $p_k = s_k > 1$ (k = 1, ..., n), but with the value of the parameter $\theta = \max_{1 \le k \le n} p_k$, which is not sharp when p_k are different.

The general base of our approach is contained in the Lemmas 2, 3 and 4 given below. These lemmas were proved earlier by the first named author. Lemmas 3 and 4 give estimates of non-increasing rearrangement of a function in terms of its derivatives. We use also the scheme of the proof of the inequality (6) developed in [8]. Observe that in our case some essential modifications of this scheme are requiered.

Note also that as in the articles [9], [11], [15], the results of this paper can be applied to the study of estimates of Fourier transforms in Sobolev spaces.

2. Auxiliary propositions

Let $S_0(\mathbb{R}^n)$ be the class of all measurable and almost everywhere finite functions f on \mathbb{R}^n such that for each y > 0,

$$\lambda_f(y) \equiv |\{x \in \mathbb{R}^n : |f(x)| > y\}| < \infty.$$

A non-increasing rearrangement of a function $f \in S_0(\mathbb{R}^n)$ is a non-increasing function f^* on $\mathbb{R}_+ \equiv (0, +\infty)$ that is equimeasurable with |f|. The rearrangement f^* can be defined by the equality

$$f^*(t) = \sup_{|E|=t} \inf_{x \in E} |f(x)|$$
 , $0 < t < \infty$.

The following relation holds [1, Ch.2]

$$\sup_{|E|=t} \int_{E} |f(x)| dx = \int_{0}^{t} f^{*}(u) du.$$

In what follows we set

$$f^{**}(t) = \frac{1}{t} \int_0^t f^*(u) du$$
.

Assume that $0 < q, p < \infty$. A function $f \in S_0(\mathbb{R}^n)$ belongs to the Lorentz space $L^{q,p}(\mathbb{R}^n)$ if

$$\|f\|_{q,p} \equiv \left(\int_0^\infty \left(t^{1/q}f^*(t)\right)^p \frac{dt}{t}\right)^{1/p} < \infty \,.$$

We have the inequality [1, p.217]

$$||f||_{q,s} \le c||f||_{q,p} \quad (0$$

so that $L^{q,p} \subset L^{q,s}$ for p < s. In particular, for 0

$$L^{q,p} \subset L^{q,q} \equiv L^q$$
.

Lemma 1. Let $\psi \in L^{p,s}(\mathbb{R}_+)$ $(1 \leq p, s < \infty)$ be a non-negative non-increasing function on \mathbb{R}_+ . Then for any $\delta > 0$ there exists a continuously differentiable function φ on \mathbb{R}_+ such that:

- (i) $\psi(t) \le \varphi(t)$, $t \in \mathbb{R}_+$;
- (ii) $\varphi(t) t^{1/p-\delta}$ decreases and $\varphi(t) t^{1/p+\delta}$ increases on \mathbb{R}_+ ;
- (iii) $\|\varphi\|_{p,s} \le c\|\psi\|_{p,s}$,

where c is a constant that only depends on p and δ .

Proof. We can suppose that $\delta < 1/p$. Set

$$\varphi_1(t) = 2 t^{\delta - 1/p} \int_{t/2}^{\infty} u^{1/p - \delta} \psi(u) \frac{du}{u}.$$

Then $\varphi_1(t) t^{1/p-\delta}$ decreases and

$$\varphi_1(t) \ge 2 t^{\delta - 1/p} \psi(t) \int_{t/2}^t u^{1/p - \delta - 1} du \ge \psi(t).$$

Furthermore, applying Hardy's inequality [1, p.124], we easily get that

(8)
$$\|\varphi_1(t)\|_{p,s} \le c \|\psi\|_{p,s} .$$

Set now

(9)
$$\varphi(t) = (\delta + 1/p) t^{-1/p - \delta} \int_0^t \varphi_1(u) u^{\delta + 1/p} \frac{du}{u}.$$

Then $\varphi(t)t^{1/p+\delta}$ increases on \mathbb{R}_+ and

$$\varphi(t) \ge \varphi_1(t) \ge \psi(t) \quad t \in \mathbb{R}_+$$
.

Furthermore, the change of variable $v = u^{2\delta}$ in the right hand side of (9) gives that

$$t^{1/p - \delta} \varphi(t) = c \, t^{-2\delta} \int_0^{t^{2\delta}} \eta(v^{1/(2\delta)}) \, dv \,,$$

where $\eta(u) = \varphi_1(u) u^{1/p - \delta}$ is a decreasing function on \mathbb{R}_+ . Thus, $t^{1/p - \delta} \varphi(t)$ decreases. Finally, using Hardy's inequality and (8), we get (iii). The lemma is proved.

Let $r_k \in \mathbb{N}$ and $1 \leq p_k < \infty$ for $k = 1, \ldots, n \quad (n \geq 2)$. Denote

(10)
$$r = n \left(\sum_{j=1}^{n} \frac{1}{r_j} \right)^{-1}, \qquad p = \frac{n}{r} \left(\sum_{j=1}^{n} \frac{1}{p_j r_j} \right)^{-1}$$

and

(11)
$$\gamma_k = 1 - \frac{1}{r_k} \left(\frac{r}{n} + \frac{1}{p_k} - \frac{1}{p} \right).$$

Then $\gamma_k > 0$ and

$$\sum_{k=1}^{n} \gamma_k = n - 1.$$

Indeed.

$$\left(\frac{r}{n} + \frac{1}{p_k} - \frac{1}{p}\right) \sum_{j=1}^n \frac{1}{r_j} = 1 + \sum_{j \neq k} \left(\frac{1}{p_k} - \frac{1}{p_j}\right) \frac{1}{r_j} < 1 + \sum_{j \neq k} \frac{1}{r_j} \le r_k \sum_{j=1}^n \frac{1}{r_j}.$$

Thus, $\gamma_k > 0$. The equality (12) follows immediately from (10).

To prove our main results we use estimates of the rearrangement of a given function in terms of its derivatives $D_k^{r_k}f$ (k=1,...,n). Thus, we apply simultaneously n estimates in which upper bounds involve functions belonging to different Lorentz spaces. The following lemma enables us to find a sharp "intermediate" estimate.

We will use the notations (10) and (11).

Lemma 2. Let $r_k \in \mathbb{N}$, $1 \leq p_k, s_k < \infty$ for $k = 1, ..., n \quad (n \geq 2)$ and $s_k = 1$ if $p_k = 1$. Set

$$s = \frac{n}{r} \left(\sum_{j=1}^{n} \frac{1}{s_j r_j} \right)^{-1}.$$

Let

(13)
$$0 < \delta \le \frac{1}{4} \min_{\gamma_j < 1} \min(\gamma_j, 1 - \gamma_j).$$

Suppose that $\varphi_k \in L^{p_k,s_k}(\mathbb{R}_+)$ $(k=1,\ldots,n)$ are positive continuously differentiable functions with $\varphi_k'(t) < 0$ on \mathbb{R}_+ such that $\varphi_k(t)t^{1/p_k-\delta}$ decreases and $\varphi_k(t)t^{1/p_k+\delta}$ increases on \mathbb{R}_+ . Set for u,t>0

$$\eta_k(u,t) = \begin{cases} (t/u)^{r_k - 1} \varphi_k(u), & \text{if } p_k = 1, \\ (t/u)^{r_k} \varphi_k(t), & \text{if } p_k > 1, \end{cases}$$

and

(14)
$$\sigma(t) = \sup \left\{ \min_{1 \le k \le n} \eta_k(u_k, t) : \prod_{k=1}^n u_k = t^{n-1}, u_k > 0 \right\}.$$

Then:

(i) there holds the inequality

(15)
$$\left(\int_0^\infty t^{s(1/p-r/n)-1} \sigma(t)^s dt \right)^{1/s} \le c' \prod_{k=1}^n \|\varphi_k\|_{p_k, s_k}^{r/(nr_k)};$$

(ii) there exist positive continuously differentiable functions $u_k(t)$ on \mathbb{R}_+ such that

(16)
$$\prod_{k=1}^{n} u_k(t) = t^{n-1}$$

and

(17)
$$\sigma(t) = \eta_k(u_k(t), t) \quad (t \in \mathbb{R}_+, k = 1, \dots, n);$$

(iii) for any k such that

$$\frac{1}{p_k} > \frac{1}{p} - \frac{r}{n}$$

the function $u_k(t)t^{\delta-1}$ decreases on \mathbb{R}_+ ;

(iv) if $p_k = 1$, then

(19)
$$\int_0^\infty \frac{u_k(t)}{t} \varphi_k(u_k(t)) dt \le c \|\varphi_k\|_1.$$

Proof. Fix t > 0 and denote

$$\mu_t(u) = \min_{1 \le k \le n} \eta_k(u_k, t), \quad u = (u_1, \dots, u_n) \in \mathbb{R}_+^n.$$

This is a continuous function in \mathbb{R}^n_+ . Observe that every function $\eta_k(s,t)$ is strictly decreasing and continuous with respect to s in \mathbb{R}_+ . Furthermore, $\eta_k(s,t) \to 0$ as $s \to +\infty$. Thus,

$$\mu_t(u) \to 0$$
 as $\max u_k \to +\infty$.

This implies the existence of a point $u^* \in \mathbb{R}^n_+$ such that

$$\mu_t(u^*) = \sigma(t)$$
 and $\prod_{k=1}^n u_k^* = t^{n-1}$.

For any $k=1,\ldots,n$ there exists a unique point $u_k(t)>0$ such that $\eta_k(u_k(t),t)=\sigma(t)$. It is clear that $u_k^*\leq u_k(t)$ for all k (otherwise we would have that $\mu_t(u^*)<\sigma(t)$). Suppose that $u_j^*< u_j(t)$ for some j. Take $u_j'\in (u_j^*,u_j(t))$ and choose $u_k'\in (0,u_k^*)$ $(k\neq j)$ such that $\prod_{k=1}^n u_k'=t^{n-1}$. Then we obtain that $\mu_t(u')>\sigma(t)$, in contradiction with the definition of $\sigma(t)$. Thus, $u_k^*=u_k(t)$ $(k=1,\ldots,n)$, and we get that the functions $u_k(t)$ satisfy both equalities (16) and (17).

Further, for any $j = 1, \ldots, n$

(20)
$$\eta_i(u_i(t), t) = \eta_n(u_n(t), t).$$

It follows that there exist functions $\psi_j(s,t) \in C^1(\mathbb{R}^2_+)$ $(j=1,\ldots,n-1)$ such that

(21)
$$\frac{\partial \psi_j}{\partial s}(s,t) > 0, \quad (s,t) \in \mathbb{R}^2_+,$$

and

(22)
$$u_j(t) = \psi_j(u_n(t), t) \quad (j = 1, ..., n - 1).$$

Indeed, if $p_j = 1$, then (20) implies that

$$\lambda_j(u_j(t)) = t^{1-r_j} \eta_n(u_n(t), t),$$

where $\lambda_j(s) \equiv s^{1-r_j} \varphi_j(s)$ is a continuously differentiable function with $\lambda'_j(s) < 0$ (s > 0). Thus, (22) holds with

$$\psi_j(s,t) = \lambda_j^{-1}(t^{1-r_j}\eta_n(s,t));$$

clearly, $\psi_j \in C^1(\mathbb{R}^2_+)$ and satisfies (21). If $p_j > 1$, then (22) holds with the function

$$\psi_j(s,t) = t[\varphi_j(t)/\eta_n(s,t)]^{1/r_j},$$

which also belongs to $C^1(\mathbb{R}^2_+)$ and satisfies (21).

It follows from (16) and (22) that for any t > 0

$$\Phi(u_n(t), t) = t^{n-1},$$

where

$$\Phi(s,t) = s \prod_{j=1}^{n-1} \psi_j(s,t).$$

Since $\Phi'_s(s,t) > 0$, we get that $u_n \in C^1(\mathbb{R}_+)$ and therefore, by (22), $u_j \in C^1(\mathbb{R}_+)$ for any j = 1, ..., n. The statement (ii) is proved. Note also that by (17) the function σ is continuously differentiable in \mathbb{R}_+ .

Now we will prove that for all t > 0

(23)
$$\frac{r/n - 1/p - \delta}{t} \le \frac{\sigma'(t)}{\sigma(t)} \le \frac{r/n - 1/p + \delta}{t}.$$

Our conditions on φ_k imply that for any $k = 1, \ldots, n$

(24)
$$\left(\frac{1}{p_k} - \delta\right) \frac{1}{t} \le -\frac{\varphi_k'(t)}{\varphi_k(t)} \le \left(\frac{1}{p_k} + \delta\right) \frac{1}{t}.$$

Further, if $p_k > 1$, then by (17)

(25)
$$\frac{\sigma'(t)}{\sigma(t)} = \frac{r_k}{t} - r_k \frac{u_k'(t)}{u_k(t)} + \frac{\varphi_k'(t)}{\varphi_k(t)}$$

and by (24)

(26)
$$\frac{r_k - 1/p_k - \delta}{t} - r_k \frac{u_k'(t)}{u_k(t)} \le \frac{\sigma'(t)}{\sigma(t)} \le \frac{r_k - 1/p_k + \delta}{t} - r_k \frac{u_k'(t)}{u_k(t)}.$$

If $p_k = 1$, then we have by (17)

(27)
$$\frac{\sigma'(t)}{\sigma(t)} = \frac{r_k - 1}{t} - (r_k + \alpha_k(t)) \frac{u_k'(t)}{u_k(t)}$$

where

$$\alpha_k(t) = -\left[1 + u_k(t) \frac{\varphi_k'(u_k(t))}{\varphi_k(u_k(t))}\right].$$

By (24) $(p_k = 1)$,

$$(28) -\delta \le \alpha_k(t) \le \delta.$$

Now, differentiating (16) and taking into account (12), we get that for any t > 0 there exists $m \equiv m(t)$ such that

$$\frac{u_m'(t)}{u_m(t)} \le \frac{\gamma_m}{t}.$$

If $p_m > 1$, then by the first of the inequalities (26),

$$\frac{\sigma'(t)}{\sigma(t)} \ge \frac{r_m - 1/p_m - r_m \gamma_m - \delta}{t} = \frac{r/n - 1/p - \delta}{t}.$$

If $p_m = 1$ (in this case $\gamma_m < 1$), then by (27) and (28)

$$\frac{\sigma'(t)}{\sigma(t)} \ge \frac{r_m - 1 - \gamma_m(r_m + \delta)}{t} \ge \frac{r/n - 1/p - \delta}{t}.$$

Thus, we have the first inequality in (23). To prove the second inequality observe that by (12) and (16) for any t > 0 there exists $l \equiv l(t)$ such that

$$\frac{u_l'(t)}{u_l(t)} \ge \frac{\gamma_l}{t}.$$

It remains to apply the right hand side inequality of (26) in the case $p_l > 1$ or (27) and (28) in the case $p_l = 1$.

To prove (iii) assume that k satisfies the condition (18) (that is, $\gamma_k < 1$). Let $p_k > 1$. By (25), (24) and (23),

$$\begin{split} r_k \frac{u_k'(t)}{u_k(t)} &= \frac{r_k}{t} - \frac{\sigma'(t)}{\sigma(t)} + \frac{\varphi_k'(t)}{\varphi_k(t)} \leq \\ &\leq \frac{r_k + 1/p - r/n - 1/p_k + 2\delta}{t} = \frac{r_k \gamma_k + 2\delta}{t}. \end{split}$$

Thus, by (13),

$$\frac{u_k'(t)}{u_k(t)} \le \frac{1-\delta}{t},$$

which implies (iii) (in the case $p_k > 1$). If $p_k = 1$, then by (27) and (23)

$$(r_k + \alpha_k(t)) \frac{u'_k(t)}{u_k(t)} \le \frac{r_k - 1 + 1/p - r/n + \delta}{t} =$$
$$= \frac{r_k \gamma_k + \delta}{t}.$$

From here (see (13)),

$$\frac{u_k'(t)}{u_k(t)} \le \frac{r_k \gamma_k + \delta}{(r_k + \alpha_k(t))t} \le \frac{r_k \gamma_k + \delta}{(r_k - \delta)t} \le \frac{1 - \delta}{t}.$$

This implies (iii).

To prove (iv) assume that $p_k = 1$. By (27) and (23)

$$(r_k + \alpha_k(t)) \frac{u'_k(t)}{u_k(t)} \ge \frac{r_k - 1 + 1/p - r/n - \delta}{t} =$$
$$= \frac{r_k \gamma_k - \delta}{t}.$$

From here (see (13)),

$$\frac{u_k'(t)}{u_k(t)} \ge \frac{r_k \gamma_k - \delta}{(r_k + \alpha_k(t))t} \ge \frac{r_k \gamma_k - \delta}{(r_k + \delta)t} > \frac{\delta}{t}.$$

It follows that

$$\int_0^\infty \frac{u_k(t)}{t} \varphi_k(u_k(t)) dt \le$$

$$\le \frac{1}{\delta} \int_0^\infty u_k'(t) \varphi_k(u_k(t)) dt = \frac{1}{\delta} \|\varphi_k\|_1.$$

Thus, we obtain (19).

It remains to prove the inequality (15). By (17), we have

$$\sigma(t)^{r/(nr_k)} = \left(\frac{t}{u_k(t)}\right)^{r/n} \left[\varphi_k(u_k(t)) \frac{u_k(t)}{t}\right]^{r/(nr_k)}, \text{ if } p_k = 1,$$

and

$$\sigma(t)^{r/(nr_k)} = \left(\frac{t}{u_k(t)}\right)^{r/n} \varphi_k(t)^{r/(nr_k)}, \text{ if } p_k > 1.$$

Multiplying these equalities and using (16), we get

(29)
$$\sigma(t) = t^{r/n} \prod_{p_k=1} \left[\frac{u_k(t)}{t} \varphi_k(u_k(t)) \right]^{r/(nr_k)} \prod_{p_k>1} (\varphi_k(t))^{r/(nr_k)}.$$

Denote

$$q_k = \frac{nr_k s_k}{rs}.$$

Then

$$\sum_{k=1}^{n} \frac{1}{q_k} = 1 \quad \text{and} \quad \sum_{k=1}^{n} \frac{s_k}{p_k q_k} = \frac{s}{p}.$$

Therefore, applying Hölder's inequality with the exponents q_k and using (19), we get from (29)

$$\int_0^\infty t^{s(1/p-r/n)-1} \sigma(t)^s dt \le c \prod_{p_k=1} \|\varphi_k\|_1^{rs/(nr_k)} \prod_{p_k>1} \|\varphi_k\|_{p_k,s_k}^{rs/(nr_k)}.$$

The proof is now complete.

The Lebesgue measure of a measurable set $A \subset \mathbb{R}^k$ will be denoted by $\operatorname{mes}_k A$. For any F_{σ} -set $E \subset \mathbb{R}^n$ denote by E^j the orthogonal projection of E onto the coordinate hyperplane $x_j = 0$. By the Loomis-Whitney inequality [5, 4.4.2],

(30)
$$(\operatorname{mes}_n E)^{n-1} \le \prod_{j=1}^n \operatorname{mes}_{n-1} E^j$$
.

As usual, for any $x = (x_1, ..., x_n) \in \mathbb{R}^n$ we denote by \hat{x}_k the (n-1)-dimensional vector obtained from x by removal of its kth coordinate.

Let $f \in S_0(\mathbb{R}^n)$, t > 0 and let E_t be a set of type F_{σ} and measure t such that

$$|f(x)| \ge f^*(t)$$
 for all $x \in E_t$.

Denote by $\lambda_j(t)$ the (n-1)-dimensional measure of the projection E_t^j $(j=1,\ldots,n)$. By (30), we have that

(31)
$$\prod_{i=1}^{n} \lambda_j(t) \ge t^{n-1}.$$

The following lemma was proved in [8] (see also [10]).

Lemma 3. Let $n \geq 2$, $r_k \in \mathbb{N}$ (k = 1, ..., n). Assume that a locally integrable function $f \in S_0(\mathbb{R}^n)$ has weak derivatives $D_k^{r_k} f \in L_{loc}(\mathbb{R}^n)$ (k = 1, ..., n). Then for all $0 < t < \tau < \infty$ and k = 1, ..., n we have

(32)
$$f^*(t) \le K \left[f^*(\tau) + \left(\frac{\tau}{\lambda_k(t)} \right)^{r_k} (D_k^{r_k} f)^{**}(\tau) \right]$$

and

(33)
$$f^*(t) \le K \left[f^*(\tau) + \left(\frac{\tau}{\lambda_k(t)} \right)^{r_k - 1} \psi_k^* \left(\frac{\lambda_k(t)}{2} \right) \right],$$

where K is a constant depending only on r_1, \ldots, r_n and

(34)
$$\psi_k(\hat{x}_k) = \int_{\mathbb{R}} |D_k^{r_k} f(x)| \, dx_k \,, \quad \hat{x}_k \in \mathbb{R}^{n-1}.$$

Lemma 4. Let $n \geq 2$, $r_k \in \mathbb{N}$, $1 \leq p_k, s_k < \infty$ for $k = 1, \ldots, n$ and $s_k = 1$ if $p_k = 1$. Set

(35)
$$r = n \left(\sum_{k=1}^{n} \frac{1}{r_k} \right)^{-1}, \qquad p = \frac{n}{r} \left(\sum_{k=1}^{n} \frac{1}{p_k r_k} \right)^{-1}.$$

and

$$(36) s = \frac{n}{r} \left(\sum_{k=1}^{n} \frac{1}{s_k r_k} \right)^{-1}.$$

Assume that a locally integrable function $f \in S_0(\mathbb{R}^n)$ has weak derivatives $D_k^{r_k} f \in L^{p_k,s_k}(\mathbb{R}^n)$ $(k=1,\ldots,n)$. Then for any $\xi > 1$

(37)
$$f^*(t) \le K \left[f^*(\xi t) + \xi^{\bar{r}} \sigma(t) \right],$$

where $\bar{r} = \max r_k$, the constant K depends only on r_1, \ldots, r_n and

(38)
$$\left(\int_0^\infty t^{s(1/p-r/n)-1} \sigma(t)^s dt \right)^{1/s} \le c \prod_{k=1}^n \|D_k^{r_k} f\|_{p_k, s_k}^{r/(nr_k)}.$$

Proof. For every fixed k = 1, ..., n we take (see (34))

$$\psi(t) \equiv \psi_k(t) = \begin{cases} \psi_k^*(t/2), & \text{if } p_k = 1, \\ (D_k^{r_k} f)^{**}(t), & \text{if } p_k > 1. \end{cases}$$

Then $\|\psi_k\|_1 = 2\|D_k^{r_k}\|_1$, if $p_1 = 1$, and by Hardy's inequality [1, p.124]

$$||\psi_k||_{p_k,s_k} \le c||D_k^{r_k}f||_{p_k,s_k},$$

if $p_k > 1$. Next we apply Lemma 1 with δ defined as in Lemma 2. This way we obtain the functions which we denote by $\varphi_k(t)$ (k = 1, ..., n). Further, with these functions φ_k we define the function $\sigma(t)$ by (14). By Lemma 2, we have the inequality (38). Using Lemma 3 with $\tau = \xi t$, we obtain

$$f^*(t) \le K \left[f^*(\xi t) + \xi^{\bar{r}} \left(\frac{t}{\lambda_k(t)} \right)^{r_k} \varphi_k(t) \right],$$

if $p_k > 1$, and

$$f^*(t) \le K \left[f^*(\xi t) + \xi^{\bar{r}} \left(\frac{t}{\lambda_k(t)} \right)^{r_k - 1} \varphi_k(\lambda_k(t)) \right],$$

if $p_k = 1$. Taking into account (14) and (31), we immediately get (37).

Note that in the case $p_1 = \ldots = p_n$, $s_1 = \ldots = s_n$ Lemma 4 actually is contained in [10] (see Lemmas 7 and 8 in [8]).

Corollary 1. Assume that a function f satisfies the conditions of Lemma 4 and $f \in L^1(\mathbb{R}^n) + L^{p_0}(\mathbb{R}^n)$ for some $p_0 > 0$ such that

$$\frac{1}{p_0} > \frac{1}{p} - \frac{r}{n} \,.$$

Let $\max(1, p_0) < q < \infty$ and

$$(39) \qquad \qquad \frac{1}{q} > \frac{1}{p} - \frac{r}{n} \,.$$

Then for any $\theta > 0$ $f \in L^{q,\theta}(\mathbb{R}^n)$ and

(40)
$$||f||_{q,\theta} \le c \left[||f||_{L^1 + L^{p_0}} + \prod_{k=1}^n ||D_k^{r_k} f||_{p_k, s_k}^{r/(nr_k)} \right].$$

Proof. We can assume that $\theta < \min(1, p_0, s)$. Let f = g + h, with $g \in L^1(\mathbb{R}^n)$ and $h \in L^{p_0}(\mathbb{R}^n)$. Applying Hölder inequality, we obtain

$$J_{1} \equiv \int_{1}^{\infty} \left[t^{1/q} f^{*}(t) \right]^{\theta} \frac{dt}{t} \leq$$

$$\leq 2^{\theta} \left[\int_{1}^{\infty} \left[t^{1/q} g^{*}(t/2) \right]^{\theta} \frac{dt}{t} + \int_{1}^{\infty} \left[t^{1/q} h^{*}(t/2) \right]^{\theta} \frac{dt}{t} \right] \leq$$

$$\leq c \left[\left(\int_{0}^{\infty} g^{*}(t) dt \right)^{\theta} + \left(\int_{0}^{\infty} h^{*}(t)^{p_{0}} dt \right)^{\theta/p_{0}} \right].$$

It follows that

$$(41) J_1 \le c' \|f\|_{L^1 + L^{p_0}}^{\theta}.$$

Let $0 < \delta < 1$. Using (37) with $\xi = (2^{1/\theta}K)^q$, we get by Hölder inequality and (39):

$$J_{\delta} \equiv \int_{\delta}^{\infty} \left[t^{1/q} f^{*}(t) \right]^{\theta} \frac{dt}{t} \leq J_{1} + K^{\theta} \int_{\delta}^{1} \left[t^{1/q} f^{*}(\xi t) \right]^{\theta} \frac{dt}{t} + c \int_{0}^{1} t^{\theta/q - 1} \sigma(t)^{\theta} dt \leq J_{1} + \frac{1}{2} J_{\delta} + c' \left(\int_{0}^{1} t^{s(1/p - r/n) - 1} \sigma(t)^{s} dt \right)^{\theta/s}.$$

By (41), $J_{\delta} < \infty$. The inequality (40) follows now from (38) and (41).

Remark 1. Let $r_k \in \mathbb{N}$, $1 \leq p_k, s_k < \infty$ for $k = 1, \ldots, n$ $(n \geq 2)$ and $s_k = 1$, if $p_k = 1$. Let r, p and s be the numbers defined by (35) and (36). Assume that p < n/r and set $q^* = np/(n-rp)$. Then for any function $f \in C^{\infty}(\mathbb{R}^n)$ with the compact support we have

(42)
$$||f||_{q^*,s} \le c \prod_{k=1}^n ||D_k^{r_k} f||_{p_k,s_k}^{r/(nr_k)}.$$

This statement follows immediately from the Lemma 4. The inequality (42) gives a generalization of the classical Sobolev's inequality with limiting exponent. A slightly different scheme of the proof of (42) was given in [10, Theorem 13.1]. In the case $p_k = s_k > 1$ (k = 1, ..., n) the inequality (42) contains in [2, Ch.4]. For $r_1 = \cdots = r_n = 1$ the proof of (42) was given in [19]. One can find a detailed description of the preceding results in [10] (see also [19]).

3. The main theorem

Theorem 1. Let $n \geq 2$, $r_k \in \mathbb{N}$, $1 \leq p_k, s_k < \infty$ for $k = 1, \ldots, n$ and $s_k = 1$ if $p_k = 1$. Let r, p and s be the numbers defined by (35) and (36). For every p_j $(1 \leq j \leq n)$ satisfying the condition

$$\rho_j \equiv \frac{r}{n} + \frac{1}{p_j} - \frac{1}{p} > 0,$$

take arbitrary $q_j > p_j$ such that

$$\frac{1}{q_j} > \frac{1}{p} - \frac{r}{n}$$

and denote

$$\begin{split} \varkappa_j &= 1 - \frac{1}{\rho_j} \left(\frac{1}{p_j} - \frac{1}{q_j} \right), \\ \alpha_j &= \varkappa_j r_j \quad , \qquad \frac{1}{\theta_j} = \frac{1 - \varkappa_j}{s} + \frac{\varkappa_j}{s_j} \, . \end{split}$$

Then for any function $f \in S_0(\mathbb{R}^n)$ which has the weak derivatives $D_k^{r_k} f \in L^{p_k, s_k}(\mathbb{R}^n)$ (k = 1, ..., n) there holds the inequality

(43)
$$\left(\int_0^\infty \left[h^{-\alpha_j} \| \Delta_j^{r_j}(h) f \|_{q_j, 1} \right]^{\theta_j} \frac{dh}{h} \right)^{1/\theta_j} \le c \sum_{k=1}^n \| D_k^{r_k} f \|_{p_k, s_k} ,$$

where c is a constant that does not depend on f.

Proof. First observe that by our conditions $0 < \varkappa_i < 1$. Denote

$$g_k(x) = |D_k^{r_k} f(x)|.$$

Further, assume that j = 1 and set for h > 0

$$f_h(x) = |\Delta_1^{r_1}(h)f(x)|.$$

For almost all $x \in \mathbb{R}^n$ we have (see [2, Vol.1, p.101])

(44)
$$f_h(x) \le \int_0^h \cdots \int_0^h g_1(x + (u_1 + \cdots + u_{r_1})e_1) du_1 \cdots du_{r_1} .$$

From here,

$$(45) f_h^*(t) \le h^{r_1} g_1^{**}(t).$$

Indeed, for any subset $A \subset \mathbb{R}^n$ with |A| = t

$$\int_A f_h(x) \, dx \le h^{r_1} \sup_{B \subset \mathbb{R}^n, |B| = t} \int_B g_1(y) \, dy = h^{r_1} t g_1^{**}(t).$$

From this, it follows (45).

If $p_1 = 1$ (in this case $s_1 = 1$), then it follows from (44) that $f_h \in L^1(\mathbb{R}^n)$. If $p_1 > 1$, then (45) implies that $f_h \in L^{p_1,s_1}(\mathbb{R}^n)$. Thus, by Corollary 1 we have that $f_h \in L^{q_1,1}(\mathbb{R}^n)$.

Denote for h > 0

$$J(h) \equiv ||f_h||_{q_1,1} = \int_0^\infty t^{1/q_1 - 1} f_h^*(t) dt.$$

Set $\xi_0 = (4K)^{q_1}$ and

(46)
$$Q(h) = \{t > 0 : f_h^*(t) \ge 2K f_h^*(\xi_0 t)\},\,$$

where K is the constant in Lemma 3. Then

$$\int_{\mathbb{R}_{+}\backslash Q(h)} t^{1/q_{1}-1} f_{h}^{*}(t) dt \leq 2K \int_{0}^{\infty} t^{1/q_{1}-1} f_{h}^{*}(\xi_{0}t) dt =$$

$$= 2K \xi_{0}^{-1/q_{1}} \int_{0}^{\infty} t^{1/q_{1}-1} f_{h}^{*}(t) dt = \frac{1}{2} J(h).$$

Therefore,

(47)
$$J(h) \le 2 \int_{Q(h)} t^{1/q_1 - 1} f_h^*(t) dt \equiv 2J'(h).$$

Denote

$$\psi_k(\hat{x}_k) = \int_{\mathbb{R}} g_k(x) dx_k$$
, if $p_k = 1$.

Let $\varepsilon = (1 - \varkappa_1)/2$ and

$$(48) \qquad \qquad 0 < \delta < \varepsilon \min\left(\left(\frac{r_1n}{r} - 1\right)^{-1}, \frac{1}{2} \min_{\gamma_j < 1} \min(\gamma_j, 1 - \gamma_j)\right).$$

Now for every $k=1,\ldots,n$ we apply Lemma 1 with $\psi(t)=\psi_k^*(t/2)$ in the case $p_k=1$ and $\psi(t)=g_k^{**}(t)$ in the case $p_k>1$. We obtain that there exist functions $\varphi_k(t)$ $(k=1,\ldots,n)$ on \mathbb{R}_+ such that

(49)
$$\varphi_k(t) t^{1/p_k - \delta} \downarrow, \quad \varphi_k(t) t^{1/p_k + \delta} \uparrow,$$

(50)
$$\psi_k^*(t/2) \le \varphi_k(t)$$
, if $p_k = 1$,

(51)
$$q_k^{**}(t) \le \varphi_k(t)$$
, if $p_k > 1$,

and

(52)
$$\|\varphi_k\|_{p_k, s_k} \le c \|D_k^{r_k} f\|_{p_k, s_k}.$$

We shall estimate $f_h^*(t)$ for fixed h>0 and $t\in Q(h)$. Let E(t,h) be a set of type F_σ and measure t such that

(53)
$$f_h(x) \ge f_h^*(t) \quad \text{for all } x \in E(t, h).$$

Denote by $\lambda_k(t,h)$ the (n-1)-dimensional measure of the orthogonal projection of E(t,h) onto the coordinate hyperplane $x_k=0$. By Lemma 3, (50) and (51), we have that for each $t \in Q(h)$

(54)
$$f_h^*(t) \le c \left(\frac{t}{\lambda_k(t,h)}\right)^{r_k-1} \varphi_k(\lambda_k(t,h)), \quad \text{if } p_k = 1,$$

and

(55)
$$f_h^*(t) \le c \left(\frac{t}{\lambda_k(t,h)}\right)^{r_k} \varphi_k(t), \quad \text{if } p_k > 1.$$

Applying inequality (30) and Lemma 2, we obtain that there exist a non-negative function $\sigma(t)$ and positive continuously differentiable functions $u_k(t)$ (k = 1, ..., n) on \mathbb{R}_+ satisfying the following conditions:

(56)
$$f_h^*(t) \le c \,\sigma(t) \,, \quad t \in Q(h) \,,$$

(57)
$$\left(\int_0^\infty t^{s(1/p-r/n)-1} \sigma(t)^s dt \right)^{1/s} \le c \prod_{k=1}^n \|D_k^{r_k} f\|_{p_k, s_k}^{r/(nr_k)},$$

(58)
$$\sigma(t) = \begin{cases} (t/u_k(t))^{r_k-1} \varphi_k(u_k(t)), & \text{if } p_k = 1, \\ (t/u_k(t))^{r_k} \varphi_k(t), & \text{if } p_k > 1, \end{cases}$$

(59)
$$\prod_{k=1}^{n} u_k(t) = t^{n-1},$$

(60)
$$u_1(t)t^{\delta-1}$$
 decreases,

(61)
$$\int_0^\infty \frac{u_k(t)}{t} \varphi_k(u_k(t)) dt \le c \|D_k^{r_k} f\|_1, \text{ if } p_k = 1.$$

The estimate (56) can be used for t "sufficiently small". For "large" t we need different estimates, involving h.

First, we have the estimate (45). Nevertheless, this estimate does not work in the case $p_1 = 1$ (the operator $g \to g^{**}$ is unbounded in L^1).

We shall prove an estimate which can be applied for all values of $p_1 \geq 1$. Denote

$$\beta(t) = t/u_1(t).$$

We shall prove that for any h > 0 and any $t \in Q(h)$

(63)
$$f_h^*(t) \le c h^{r_1 - \varepsilon} \beta(t)^{\varepsilon} \chi(t),$$

where $\varepsilon = (1 - \varkappa_1)/2$ and

(64)
$$\chi(t) \equiv \sigma(t)\beta(t)^{-r_1} = \begin{cases} u_1(t)\varphi_1(u_1(t))/t, & \text{if } p_1 = 1\\ \varphi_1(t), & \text{if } p_1 > 1 \end{cases}$$

(see (58)). By (52) and (61),

(65)
$$\|\chi\|_{p_1,s_1} \le c \|D_1^{r_1} f\|_{p_1,s_1}.$$

For $h \ge \beta(t)$ $(t \in Q(h))$ the inequality (63) follows directly from (56) and (64). Assume that $0 < h \le \beta(t)$, $t \in Q(h)$. If $p_1 > 1$, then (63) is the immediate consequence of (45), (51) and (64).

Let $p_1 = 1$. First suppose that there exists $1 \leq j \leq n$ such that

$$\lambda_j(t,h) \ge \frac{1}{2} u_j(t) \left(\frac{\beta(t)}{h}\right)^{r_1/r_j}.$$

If $p_j > 1$, then by (55) and (58)

$$f_h^*(t) \leq c \, \left(\frac{t}{u_j(t)}\right)^{r_j} \varphi_j(t) \left(\frac{h}{\beta(t)}\right)^{r_1} = c \, \sigma(t) \left(\frac{h}{\beta(t)}\right)^{r_1} \, .$$

If $p_j = 1$, then we apply (54). Notice that

$$\lambda_j(t,h) \ge \frac{1}{2}u_j(t).$$

Taking into account that for $\delta_j = \varepsilon r_j/r_1$ the function $\varphi_j(u) u^{1-\delta_j}$ decreases and the function $\varphi_j(u) u^{1+\delta_j}$ increases (see (48) and (49)), we get that

$$(\lambda_j(t,h))^{1-\delta_j}\varphi_j(\lambda_j(t,h)) \le \left(\frac{1}{2}u_j(t)\right)^{1-\delta_j}\varphi_j(\frac{u_j(t)}{2}) \le c(u_j(t))^{1-\delta_j}\varphi_j(u_j(t)).$$

Thus, by (54)

$$f_h^*(t) \le c h^{r_1 - \varepsilon} \beta(t)^{\varepsilon - r_1} \left(\frac{t}{u_j(t)} \right)^{r_j - 1} \varphi_j(u_j(t)).$$

From these estimates and (58) it follows the inequality (63), where $\chi(t)$ is defined by (64).

Now assume that for each j = 1, ..., n.

(66)
$$\lambda_j(t,h) < \frac{1}{2} u_j(t) \left(\beta(t)/h \right)^{r_1/r_j}.$$

First of all, it follows that

$$(67) \lambda_1(t,h) < \frac{t}{2h}.$$

Further, for any F_{σ} -set $A \subset E \equiv E(t, h)$ denote by A_j the orthogonal projection of A onto the hyperplane $x_j = 0$. If

(68)
$$\operatorname{mes}_{n-1} A_1 \le \frac{1}{2} u_1(t) \left(\frac{h}{\beta(t)} \right)^{\frac{r_1 n}{r} - 1} \equiv \frac{1}{2} \gamma(t, h) ,$$

then

$$\operatorname{mes}_n A \leq \frac{t}{2}$$
.

Indeed, otherwise we would have by (68) and (30)

$$\prod_{j=2}^{n} \operatorname{mes}_{n-1} A_j \ge \frac{t^{n-1}}{2^{n-2}\gamma(t,h)} =$$

$$= \frac{1}{2^{n-2}} \left(\frac{\beta(t)}{h} \right)^{r_1 \sum_{j=2}^n r_j^{-1}} \prod_{j=2}^n u_j(t) ,$$

contrary to the assumption (66).

Using Lemma 3 of [8], we decompose the projection $E_1(t,h)$ into measurable disjoint subsets P and S such that

$$\operatorname{mes}_{n-1} S = \frac{1}{2} \gamma(t, h)$$

and

(69)
$$\int_{P} \psi_1(\hat{x}_1) d\hat{x}_1 \le \int_{\gamma(t,h)/2}^{t/(2h)} \psi_1^*(u) du.$$

It follows from the observation given above that the measure of the set

$$E' = \{ x \in E(t, h) : \hat{x}_1 \in P \}$$

is at least t/2. For $\hat{x}_1 \in E_1(t,h)$ we denote by $T(\hat{x}_1)$ the section of the set E(t,h) by the line that passes through \hat{x}_1 and is perpendicular to the hyperplane $x_1 = 0$ (note that $T(\hat{x}_1)$ is a set of type F_{σ}). For almost all $\hat{x}_1 \in E_1(t,h)$ we have (see (44))

$$f_h^*(t) \, \operatorname{mes}_1 T(\hat{x}_1) \leq \int_{T(\hat{x}_1)} f_h(x) dx_1 \leq$$

$$\leq h^{r_1} \int_{\mathbb{R}} |D_1^{r_1} f(x)| dx_1 = h^{r_1} \psi_1(\hat{x}_1).$$

Integrating this inequality with respect to \hat{x}_1 over P and taking into account (69) and the inequality

$$\int_{P} \operatorname{mes}_{1} T(\hat{x}_{1}) d\hat{x}_{1} = |E'| \ge \frac{t}{2},$$

we get (see also (50))

(70)
$$f_h^*(t) \le \frac{h^{r_1}}{t} \int_{\gamma(t,h)}^{t/h} \varphi_1(u) du.$$

For $0 < h \le \beta(t)$ we have

$$\gamma(t,h) \le u_1(t) \le t/h$$
.

Furthermore, let $\eta = \varepsilon / (\frac{r_1 n}{r} - 1)$. By (49), $\varphi_1(u) u^{1+\eta}$ increases and $\varphi_1(u) u^{1-\varepsilon}$ decreases on $(0, \infty)$. Thus, we have

$$\int_{\gamma(t,h)}^{t/h} \varphi_1(u)du = \int_{\gamma(t,h)}^{u_1(t)} \varphi_1(u)du + \int_{u_1(t)}^{t/h} \varphi_1(u)du \le$$

$$\le \varphi_1(u_1(t))u_1(t)^{1+\eta}\gamma(t,h)^{-\eta}/\eta + \varphi_1(u_1(t))u_1(t)^{1-\varepsilon}(t/h)^{\varepsilon}/\varepsilon =$$

$$= c h^{-\varepsilon}\beta(t)^{\varepsilon}u_1(t)\varphi_1(u_1(t)).$$

From here and (70) it follows (63).

Finally, taking into account (56) and (63), we obtain that for any h > 0 and any $t \in Q(h)$

(71)
$$f_h^*(t) \le c \Phi(t, h),$$

where

(72)
$$\Phi(t,h) = \min(\sigma(t), h^{r_1 - \varepsilon} \beta(t)^{\varepsilon} \chi(t))$$

and $\chi(t)$ is defined by (64).

Further, we have (see (47))

$$J'(h) \le c \int_0^\infty t^{1/q_1 - 1} \Phi(t, h) dt$$

and

$$\begin{split} J &\equiv \int_0^\infty h^{-\alpha_1\theta_1-1} J(h)^{\theta_1} dh \leq \\ &\leq c \int_0^\infty h^{-\alpha_1\theta_1-1} dh \left(\int_0^\infty t^{1/q_1-1} \Phi(t,h) dt \right)^{\theta_1}. \end{split}$$

By (60), the function $\beta(t)t^{-\delta}$ increases on \mathbb{R}_+ . It easily follows that the inverse function β^{-1} exists on \mathbb{R}_+ and satisfies the condition

(73)
$$\beta^{-1}(2z) < 2^{1/\delta}\beta^{-1}(z).$$

Furthermore, we have

$$J \le c \left[\int_0^\infty h^{-\alpha_1 \theta_1 - 1} dh \left(\int_0^{\beta^{-1}(h)} t^{1/q_1 - 1} \Phi(t, h) dt \right)^{\theta_1} + \right]$$
$$+ \int_0^\infty h^{-\alpha_1 \theta_1 - 1} dh \left(\int_{\beta^{-1}(h)}^\infty t^{1/q_1 - 1} \Phi(t, h) dt \right)^{\theta_1} dt = c \left(J_1 + J_2 \right).$$

Applying Minkowsi's inequality, we obtain

$$J_{1}^{1/\theta_{1}} = \left(\int_{0}^{\infty} h^{-\alpha_{1}\theta_{1}-1} dh \left(\sum_{k=0}^{\infty} \int_{\beta^{-1}(2^{-k}h)}^{\beta^{-1}(2^{-k}h)} t^{1/q_{1}-1} \sigma(t) dt\right)^{\theta_{1}}\right)^{1/\theta_{1}} \le$$

$$\leq \sum_{k=0}^{\infty} \left(\int_{0}^{\infty} h^{-\alpha_{1}\theta_{1}-1} dh \left(\int_{\beta^{-1}(2^{-k}h)}^{\beta^{-1}(2^{-k}h)} t^{1/q_{1}-1} \sigma(t) dt\right)^{\theta_{1}}\right)^{1/\theta_{1}} =$$

$$= \sum_{k=0}^{\infty} 2^{-k\alpha_{1}} \left(\int_{0}^{\infty} z^{-\alpha_{1}\theta_{1}-1} dz \left(\int_{\beta^{-1}(z/2)}^{\beta^{-1}(z)} t^{1/q_{1}-1} \sigma(t) dt\right)^{\theta_{1}}\right)^{1/\theta_{1}}.$$

Further, using the Hölder inequality and (73), we get

$$\int_{\beta^{-1}(z/2)}^{\beta^{-1}(z)} t^{1/q_1 - 1} \sigma(t) dt \le c \left(\int_0^{\beta^{-1}(z)} t^{\theta_1/q_1 - 1} \sigma(t)^{\theta_1} dt \right)^{1/\theta_1}$$

Thus, by Fubini's theorem and (64)

$$J_{1} \leq c \int_{0}^{\infty} z^{-\alpha_{1}\theta_{1}-1} dz \int_{0}^{\beta^{-1}(z)} t^{\theta_{1}/q_{1}-1} \sigma(t)^{\theta_{1}} dt =$$

$$= c \int_{0}^{\infty} t^{\theta_{1}/q_{1}-1} \sigma(t)^{\theta_{1}} dt \int_{\beta(t)}^{\infty} z^{-\alpha_{1}\theta_{1}-1} dz =$$

$$= c' \int_{0}^{\infty} t^{\theta_{1}/q_{1}-1} \sigma(t)^{\theta_{1}} \beta(t)^{-\alpha_{1}\theta_{1}} dt =$$

$$= c' \int_{0}^{\infty} t^{\theta_{1}/q_{1}-1} \chi(t)^{\varkappa_{1}\theta_{1}} \sigma(t)^{(1-\varkappa_{1})\theta_{1}} dt.$$

$$(74)$$

The same reasonings give that

$$J_{2} \leq c \int_{0}^{\infty} z^{[r_{1}(1-\varkappa_{1})-\varepsilon]\theta_{1}} \frac{dz}{z} \int_{\beta^{-1}(z)}^{\infty} t^{\theta_{1}/q_{1}-1} \beta(t)^{\theta_{1}\varepsilon} \chi(t)^{\theta_{1}} dt =$$

$$= c \int_{0}^{\infty} t^{\theta_{1}/q_{1}-1} \beta(t)^{\theta_{1}\varepsilon} \chi(t)^{\theta_{1}} dt \int_{0}^{\beta(t)} z^{[r_{1}(1-\varkappa_{1})-\varepsilon]\theta_{1}-1} dz =$$

$$= c' \int_{0}^{\infty} t^{\theta_{1}/q_{1}-1} \chi(t)^{\theta_{1}} \beta(t)^{r_{1}(1-\varkappa_{1})\theta_{1}} dt.$$

By (64) the last integral is the same as one in the right hand side of (74). Therefore, we have that

$$J \le c \int_0^\infty t^{\theta_1/q_1 - 1} \chi(t)^{\varkappa_1 \theta_1} \sigma(t)^{(1 - \varkappa_1)\theta_1} dt$$

Now we apply Hölder inequality with the exponents $u = s_1/(\varkappa_1\theta_1)$ and $u' = s_1/(s_1 - \varkappa_1\theta_1)$. Observe that

$$(1-\varkappa_1)\theta_1 u' = s$$
, $\left(\frac{\theta_1}{q_1} - \frac{s_1}{p_1 u}\right) u' = s\left(\frac{1}{p} - \frac{r}{n}\right)$.

Thus, we obtain, using (57) and (65):

$$J^{1/\theta_1} \le c \left(\int_0^\infty t^{s(1/p-r/n)-1} \sigma(t)^s dt \right)^{(1-\varkappa_1)/s} \|D_1^{r_1} f\|_{p_1,s_1}^{\varkappa_1}.$$

$$\leq c \left(\prod_{j=1}^{n} \|D_{j}^{r_{j}} f\|_{p_{j}, s_{j}}^{r/(nr_{j})} \right)^{1-\varkappa_{1}} \|D_{1}^{r_{1}} f\|_{p_{1}, s_{1}}^{\varkappa_{1}}.$$

Since

$$\sum_{i=1}^{n} \frac{r}{nr_j} = 1,$$

we obtain the inequality (43). The theorem is proved.

Remark 2. First we recall the definition of the Besov space in the direction of the coordinate axis x_i (see [13, Ch.4]).

Let $\alpha > 0$, $1 \leq p, \theta < \infty$ and $1 \leq j \leq n$. Define the space $B_{p,\theta;j}^{\alpha}(\mathbb{R}^n)$ as the class of all functions $f \in L^p(\mathbb{R}^n)$ for which

(75)
$$||f||_{B^{\alpha}_{p,\theta;j}} \equiv ||f||_p + \left(\int_0^\infty \left[h^{-\alpha} ||\Delta_j^r(h)f||_p \right]^{\theta} \frac{dh}{h} \right)^{1/\theta} < \infty$$

for any integer $r > \alpha$. Of course, the right hand side in (75) depends on r, but every choice of the integer $r > \alpha$ leads to equivalent norms [13, Ch.4].

Now observe that the conditions of Theorem 1 do not imply the belongness of the function f to some $L^{\nu}(\mathbb{R}^n)$. However, if we assume in addition that $f \in L^{p_0}(\mathbb{R}^n)$ for some $p_0 \geq 1$ and that $q_j > p_0$, then by Corollary 1 we get $f \in L^{q_j,1}(\mathbb{R}^n)$. Thus, with these additional conditions Theorem 1 implies that $f \in B_{q_j,\theta_j;j}^{\alpha_j}(\mathbb{R}^n)$ and

$$||f||_{B^{\alpha_j}_{q_j,\theta_j;j}} \le c \left[||f||_{p_0} + \sum_{k=1}^n ||D^{r_k}_k f||_{p_k,s_k} \right].$$

Remark 3. It is important to emphasize that the values of parameters θ_k found in the Theorem 1 are sharp. To verify this statement we shall consider the following simple example.

Assume that n=2, $r_1=r_2=1$, $1\leq p_1,p_2<\infty$ and $s_1=p_1$, $s_2=p_2$. Furthermore, suppose that

$$p \equiv 2\left(\frac{1}{p_1} + \frac{1}{p_2}\right)^{-1} < 2.$$
 Then $\frac{1}{p_i} > \frac{1}{p} - \frac{1}{2}$ $(i = 1, 2).$

Let $q_1 > p_1$ be such that

$$\frac{1}{q_1} > \frac{1}{p} - \frac{1}{2}$$
.

As in Theorem 1, set

$$\begin{split} \varkappa_1 &= 1 - \frac{1/p_1 - 1/q_1}{1/p_1 - 1/p + 1/2} \,, \\ \alpha_1 &= \varkappa_1 \quad, \quad \frac{1}{\theta_1} = \frac{1 - \varkappa_1}{p} + \frac{\varkappa_1}{p_1} \,. \end{split}$$

Let $0 < \varepsilon < \theta_1$; define the following numbers

$$\alpha = \frac{2/p - 1}{1 + 2(1/p_1 - 1/p)} \quad , \quad \beta = \frac{2/p - 1}{1 + 2(1/p_2 - 1/p)} \, ,$$

$$\delta = \frac{1}{p_1[1 + 2(1/p_1 - 1/p)]} \frac{\theta_1}{\theta_1 - \varepsilon} \quad , \quad \gamma = \frac{1}{p_2[1 + 2(1/p_2 - 1/p)]} \frac{\theta_1}{\theta_1 - \varepsilon} \, .$$

Further, denote for $(x, y) \in [-1, 1]^2$

$$\varphi_0(x,y) = |x|^{\alpha} \left(\log \frac{e}{|x|} \right)^{\delta} + |y|^{\beta} \left(\log \frac{e}{|y|} \right)^{\gamma}.$$

Set

$$D = \{(x, y) \in [-1, 1]^2 : \varphi_0(x, y) \le 1\}$$

and

$$f(x,y) \equiv f_{\varepsilon}(x,y) = \begin{cases} [\varphi_0(x,y)]^{-1} - 1 &, & \text{if } (x,y) \in D, \\ 0 &, & \text{if } (x,y) \notin D. \end{cases}$$

Carrying out a routine calculations, one can show that the function f has the following properties:

(i) for any
$$1 \le \nu \le 2p/(2-p)$$
 $f \in L^{\nu}(\mathbb{R}^2)$;

$$(ii)\,\frac{\partial f}{\partial x}\in L^{p_1}(\mathbb{R}^2),\qquad \frac{\partial f}{\partial y}\in L^{p_2}(\mathbb{R}^2)\,;$$

$$(iii) \int_0^\infty \left[h^{-\alpha_1} \|\Delta_1^1(h) f\|_{q_1} \right]^{\theta_1 - \varepsilon} \frac{dh}{h} = +\infty.$$

This implies that the values of θ_k in Theorem 1 can not be reduced.

Research of the first named author supported in part by grant BFM2000-0206-C04-03 of the DGI, Spain.

References

- [1] Bennett, C., and Sharpley, R.: Interpolation of Operators, Academic Press, 1988
- [2] Besov, O.V., Il'in, V.P., and Nikol'skiĭ, S.M.:Integral Representation of Functions and Imbedding Theorems, vol. 1 2, Winston, Washington D.C., Halsted, New York-Toronto-London, 1978
- [3] FARIS, W.J.: Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J. 46, No. 2 (1976), 365 373
- [4] FOURNIER, J.: Mixed norms and rearrangements: Sobolev's inequality and Littlewood's inequality, Ann. Mat. Pura Appl. 148 No. 4 (1987), 51 76
- [5] Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer Verlag, Berlin – Göttingen – Heidelberg, 1957
- [6] KOLYADA, V.I.: On relations between moduli of continuity in different metrics, Trudy Mat. Inst. Steklov. 181 (1988), 117 – 136; English transl. in Proc. Steklov Inst. Math. 4 (1989), 127
- [7] KOLYADA, V.I.: Rearrangements of functions and embedding theorems, Uspehi matem. nauk 44 No. 5 (1989), 61 – 95; English transl. in Russian Math. Surveys 44 No. 5 (1989), 73 – 118
- [8] KOLYADA, V.I.: On embedding of Sobolev spaces, Mat. Zametki 54 No. 3 (1993), 48 71;
 English trnsl. in Math. Notes 54 No. 3 (1993), 908 922
- [9] KOLYADA, V.I.: Estimates of Fourier transforms in Sobolev spaces, Studia Math. 125 No. 1 (1997), 67 – 74
- [10] Kolyada, V.I.: Rearrangements of functions and embedding of anisotropic spaces of the Sobolev type, East J. on Approximations 4 No. 2 (1998), 111-199
- [11] KOLYADA, V.I.: Embeddings of fractional Sobolev spaces and estimates of Fourier transforms, Mat. Sb. 192 No. 7 (2001), 51 – 72; English transl. in Sbornik: Mathematics 192 No. 7 (2001), 979 – 1000
- [12] KUDRYAVTSEV, L.D., and NIKOL'SKIĬ, S.M.: Spaces of Differentiable Functions of Several Variables and Imbedding Theorems, Encyclopaedia of Math. Sciences, Vol. 26, Springer – Verlag, 1991
- [13] NIKOL'SKIĬ, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems, Springer – Verlag, Berlin – Heidelberg – New York, 1975
- [14] PEETRE, J.: Espaces d'interpolation et espaces de Soboleff, 16 (1966), 279 317

- [15] Pelczyński, A., and Wojciechowski, M.: Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm, Studia Math. 107 (1993), 61 100
- [16] POORNIMA, S.: An embedding theorem for the Sobolev space $W^{1,1}$, Bull. Sci. Math. 107 No. 2 (1983), 253 259
- [17] STEIN, E.M.: The differentiability of functions in \mathbb{R}^n , Annals of Mathematics 113 (1981), 383 385.
- [18] STRICHARTZ, R.S.: Multipliers on fractional Sobolev spaces, J. Math. Mech. ${\bf 16}$ (1967), 1031 1060
- [19] Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces, Bollettino U.M.I. 8 No. 1–B (1998), $479-500\,$
- [20] TRIEBEL, H.: Theory of Function Spaces, Birkhäuser, Basel, 1983
- [21] TRIEBEL, H.: Theory of Function Spaces II, Birkhäuser, Basel, 1992

Departamento de Matemáticas Universidad Carlos III de Madrid Avda. de la Universidad, 30 Leganés (Madrid), 28911, Spain vkolyada@math.uc3m.es

Departamento de Matemáticas y Computación Universidad de La Rioja Edif. Vives c. Luis de Ulloa 26004 Logroño, La Rioja, Spain francisco-javier.per@dmc.unirioja.es