ESTIMATES OF DIFFERENCE NORMS FOR FUNCTIONS IN
ANISOTROPIC SOBOLEV SPACES

V.I. KOLYADA AND F.J. PEREZ

ABSTRACT. We investigate the spaces of functions on R™ for which the gene-
ralized partial derivatives D;’“f exist and belong to different Lorentz spaces
LPk>%k . For the functions in these spaces, the sharp estimates of the Besov
type norms are found. The methods used in the paper are based on estimates
of non-increasing rearrangements. These methods enable us to cover also the
case when some of p’s are equal to 1.

1. INTRODUCTION

In this paper we study the spaces of functions f on R™ which possess the gener-
alized partial derivatives
e O
Our main goal is to obtain sharp estimates for the norms of the differences

2) A (R () = 3 (~1) (’"j)ﬂx Ljher)  (heR)

Jj=0

(e is the unit coordinate vector). We will specify this problem below; here we only
note that it was completely solved in the case when all derivatives (1) belong to
the same space LP(R"™). Nevertheless, it is natural to suppose that the derivatives
D;* (k=1,...,n) belong to different spaces LP*. The corresponding classes of func-
tions naturally appear in the embedding theory as well as in applications. The most
extended theory of these classes is contained in the monography [2]. Furthermore,
many authors have studied Sobolev and Nikol’skii-Besov spaces whose construction
involves, instead of LP-norms, norms in more general spaces (see [12]). In this paper
we suppose that derivatives belong to different Lorentz spaces LP*:*+(R™) (where
1 < pr,sp < oo and s = 1, if pp = 1). Note that very interesting comments
and results concerning this type of Sobolev spaces can be found in [19]. There are
many important problems in Analysis which lead to these spaces. It was proved by
E.M.Stein [17] that the sharp condition for the differentiability a.e. for a function
f € Wi is that \7f belongs to the Lorentz space L™!. The use of Lorentz type
limitations on the derivatives can be crucial in the estimates of Fourier transforms
(as it can be deduced from [9, 11, 15]). That is, if we look for a sharp conditions on
the derivatives to guarantee a given integrability property of the Fourier transform,
then these conditions generally will be expressed in terms of Lorentz norms.
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4 V.I. KOLYADA AND F.J. PEREZ

Let us return to the our main problem - estimates for the norms of the differences
(2). As it was mentioned above, estimates of this type are already known. In
particular, they give a refinement of the classical Sobolev embedding theorem with
the limiting exponent. The simplest version of this theorem asserts that for any
function f in the Sobolev space W) (R™) (1 < p < n)

¢ =c o
; 81‘k
Sobolev proved this inequality in 1938 for p > 1; his method, based on integral
representations, did not work in the case p = 1. Only at the end of fifties Gagliardo
and Nirenberg gave simple proofs of the inequality (3) for all 1 < p < n.
The inequality (3) has been generalized and developed in various directions (see
[2, 10, 12, 13, 20, 21] for details and references). It was proved that the left hand

side in (3) can be replaced by the stronger Lorentz norm; that is, there holds the
inequality

«_ _1p
p n—p

(3) I

(4) I

, 1<p<n.
P

of
8:Ek

n
e SC E ,
k=1

For p > 1 this result follows by interpolation (see [14, 18]). In the case p = 1 some
geometric inequalities were used to prove (4) (see [3, 4, 7, 8, 16]).

An elementary approach to the study of Sobolev type inequalities, based on
estimates of non-increasing rearrangements, has been worked out in [8]. In [§]
there was proved an extension of the inequality (4) to the anisotropic Sobolev
spaces W™ (R") (p > 1,7, € N) defined by conditions f, D" f € LP(R").
Afterwards, it was shown in [10] that the same methods give an analogous result
in the case when the derivatives D;* f belong to different spaces LP*. Observe that
this approach has been still further simplified in the work [11], where the iterative
rearrangements were used.

The sharp estimates of the norms of differences for the functions in Sobolev
spaces firstly have been proved by V.P.Il'in [2, vol.2, p.72]. For the space Wp1 (R™)
I'in’s result reads as follows: ifn e N1 <p<g<ooanda=1-n(l/p—1/q) > 0,
then

®) > ([ it ) <ex

k=1 k=1

of

al’k

p

Actually, this means that there holds the continuous embedding to the Besov space
1 n a n
W, (R") — B, (R").

It is easy to see that the inequality (5) fails to hold for p = n = 1. Nevertheless, it
was proved in [6] that (5) is true in the case p =1, n > 2.

The inequality (5) for p = 1, n > 2 was used to prove some estimates of Fourier
transforms of functions in Sobolev spaces ( see [15], [9]). In particular, using these
results, we can compare the inequalities (3) and (5). Let us consider the case
p = 1, n = 2. The inequality (3) means that for any function f € W(R?) its
Fourier transform f belongs to L2(R2). At the same time, as it was shown in [9],
the stronger result can be easily derived from (5); that is, if f € W{(R?), then
fe L?1(R?). Note that this assertion does not follow from (4).
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The extension of the inequality (5) to the spaces W1 was given in [8]. This
is the following inequality

oo pdh\'P &
[ A sl ) < eSS0zl
k=1

0

n

(6) > (

k=1
where 0 < 1/p—1/g <r/n,r = n(ZLl 7“1-_1)71 and oy, = 11 [1 -2 (% - %)}%
the inequality is valid if p > 1, n > 1orp =1, n > 2. Using (6), we get the
following continuous embedding

ng,...,f’n (Rn) (N B;)/;;,...,()Ln (Rn) .

For p > 1 this embedding was proved by II'in [2, Vol.2, p.72]. The main result in
[8] is the proof of (6) for p = 1, n > 2. This result was applied in [9] to obtain
Fourier transforms estimates for functions in Wy ™.

Now we can specify our main problem: find the sharp estimates of the type (6)
for the case when the derivatives D;* f belong to different Lorentz spaces LP+-%%.
The main result of the paper is the following inequality (see Theorem 1 below)

> T 0, dh 1/6; n
7 ([T 18y sl 5) <SP s
k=1

We shall not specify here the conditions on the parameters. Technically, the most
complicated case is one when some of pi’s are equal to 1 and some of them are
greater than 1. The basic difficulty is to find the sharp values of the parameters 60;;
let us emphasize that it is exactly the main result of the work. In this connection
observe that an inequality similar to (7) was proved by Il'in [2, Vol.2, p.72] in
the case pp = s > 1 (k = 1,...,n), but with the value of the parameter § =
maxi<k<n Pk, Which is not sharp when py, are different.

The general base of our approach is contained in the Lemmas 2, 3 and 4 given
below. These lemmas were proved earlier by the first named author. Lemmas 3
and 4 give estimates of non-increasing rearrangement of a function in terms of its
derivatives. We use also the scheme of the proof of the inequality (6) developed
in [8]. Observe that in our case some essential modifications of this scheme are
requiered.

Note also that as in the articles [9], [11], [15], the results of this paper can be
applied to the study of estimates of Fourier transforms in Sobolev spaces.

2. AUXILIARY PROPOSITIONS

Let So(R™) be the class of all measurable and almost everywhere finite functions
f on R™ such that for each y > 0,

Ar(y) = {z e R™: [f(2)] > y}| < oo

A non-increasing rearrangement of a function f € Sy(R™) is a non-increasing
function f* on Ry = (0,400) that is equimeasurable with |f|. The rearrangement
f* can be defined by the equality

fr(t) = sup inf |f(z)] , 0<t<o0.
‘E‘:tmeE
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The following relation holds [1, Ch.2]

sup /Lf(xﬂdar==jgtf*(u)du-

|E|=t

In what follows we set .
* 3k 1 *
=1 [ £
0
Assume that 0 < ¢,p < oo . A function f € Sp(R™) belongs to the Lorentz space

LoP(R™) if
eSS 1/p
= 1/q px b ﬁ
= ([ (Pror0)" %) " <.
We have the inequality [1, p.217]

/]

so that L9P C L% for p < s. In particular, for 0 < p <gq
LOP C [99 = [4.

as Scllfllgp (0<p<s<oo),

Lemma 1. Let v € LP*(Ry) (1 < p,s < o0) be a non-negative non-increasing
function on Ry. Then for any § > 0 there exists a continuously differentiable
function ¢ on Ry such that:

(i) () < plt), teRy;

(i) () t/P=9 decreases and ¢(t) t'/P+0 increases on R ;

(i) ellp,s < cll¥llps »
where ¢ is a constant that only depends on p and 6.

Proof. We can suppose that 6 < 1/p. Set
> d
pr(t) =20 [ iy S
t/2 u
Then ¢, (t) t'/P~9 decreases and
t
@1 (t) > 2t5’1/”w(t)/ ut/POmt du > ap(t)
t/2

Furthermore, applying Hardy’s inequality [1, p.124], we easily get that

®) 11 (B)llps < ¢ [[0lps -
Set now
t
(9) p(t) = (0 + 1/p)t71/p -5 / (pl(u)u5+1/p CLU
0 u

Then ¢(t)t'/?+9 increases on Ry and

(t) > pi1(t) > p(t) teRy.
Furthermore, the change of variable v = 1?° in the right hand side of (9) gives that

t25

ti/p _590(t) = ct_%/ n(vl/(25)) dv,
0

where n(u) = ¢1(u)u'/P =% is a decreasing function on Ry . Thus, t/?~9x(t)
decreases. Finally, using Hardy’s inequality and (8), we get (iii). The lemma is
proved. ([l
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Let rp, e Nand 1 <pp <ocofork=1,....,n (n>2).

Denote
-1 -1
"1 n (e 1
10 == — = —
o) 1 Do IR D pps
j=1"7 j=1+%7"7
and
1 r 1 1
(11) 7k=1—<+—>.
Tk \ M Dk p

Then v > 0 and
n
(12) > wm=n-1
k=1

Indeed,

Tl 1\ 1 1
()T (mp ) s+ =nd o
n Pk p j=1 Tj ]7516 Pk p] ;ék .7 j=1 .7
Thus, vy, > 0. The equality (12) follows immediately from (10).

To prove our main results we use estimates of the rearrangement of a given func-
tion in terms of its derivatives D;* f (k = 1,...,n). Thus, we apply simultaneously
n estimates in which upper bounds involve functions belonging to different Lorentz
spaces. The following lemma enables us to find a sharp ”intermediate” estimate.

We will use the notations (10) and (11).

Lemma 2. Letry e N, 1 < pg,sp < oo fork=1,....,n (n>2) and s =1 if

Pk = 1. Set
-1

n 1
s = — e
= 5T
Let
1
< — min min(y;,1 — ;).
(13) 0<d<y min min(y;, 1 — ;)

Suppose that o, € LP**:(Ry) (k= 1,...,n) are positive continuously differentiable
functions with @, (t) < 0 on Ry such that oy (t)t'/Pr =0 decreases and oy (t)t'/Peto
increases on Ry. Set for u,t >0

_ [ W) i =1,
nk(ua t) - { (t/u)7k (pk,(l;), Zf pi > 1’
and

(14) o(t) = sup {1r<r}€1£1 M (Uge, € U T u > 0}

Then:
(i) there holds the inequality

S 1/s n
(15) (/0 s5(1/p —r/n)—lo_(t)sdt) < H ”‘PkH;QS?,:k)y
k=1
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(i) there exist positive continuously differentiable functions ux(t) on Ry such that

(16) [T uctt) =t
k=1

and
(17) U(t):nk(uk(t)vt) (t€R+, k:17an)7
(i) for any k such that

1 1
(18) —>--=

P p N

the function uy(t)t°~" decreases on R ;
() if pp =1, then

 ug(t
(19) | 2wy ar < clienl.
0
Proof. Fix t > 0 and denote
wue(u) = lrgr}cignnk(uk,t), w=(ug,...,u,) € RY.

This is a continuous function in R’ . Observe that every function (s, ) is strictly
decreasing and continuous with respect to s in Ry. Furthermore, 7nx(s,t) — 0 as
s — +oo. Thus,

pe(u) -0 as  maxup — +00.

This implies the existence of a point u* € R”} such that
n
ur(u*) =o(t) and H uf ="t
k=1

For any k = 1,...,n there exists a unique point u(t) > 0 such that ny(ug(t),t) =
o(t). It is clear that u} < ug(t) for all k (otherwise we would have that p,(u*) <
o(t)). Suppose that u} < u;(t) for some j. Take u; € (u},u;(t)) and choose u) €
(0,u}) (k # j) such that [];_, uj, = t"~'. Then we obtain that p,(u’) > o(t), in
contradiction with the definition of o(¢). Thus, u} = ux(t) (k =1,...,n), and we
get that the functions ug(t) satisfy both equalities (16) and (17).

Further, for any j =1,...,n

(20) 1 (uj(£),1) = 1 (un (1), £).
It follows that there exist functions ¢;(s,¢) € C'(R3) (j =1,...,n—1) such that
(21) %(s,t) >0, (s,t)€eR?,
Os
and
(22) u;(t) =i (un(t),t) (G =1,..,n—1).

Indeed, if p; = 1, then (20) implies that
)\J (u] (t)) = tl_TJ nn(un (t)7 t)a

where \;j(s) = s "ip;(s) is a continuously differentiable function with Ni(s) <0
(s > 0). Thus, (22) holds with

bi(s,t) = X1 (s, 1));
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clearly, ¢; € C*(R%) and satisfies (21). If p; > 1, then (22) holds with the function

¢j(37 t) = t[@j )/ (s, t)]l/rjv
which also belongs to C1(R%) and satisfies (21).
It follows from (16) and (22) that for any ¢ > 0

@(un(t), t) = tnila

where )
D(s,t) =s H (s, t).
j=1

Since ®/(s,t) > 0, we get that u,, € C'(Ry) and therefore, by (22), u; € C'(Ry)
for any j = 1, ...,n. The statement (ii) is proved. Note also that by (17) the function
o is continuously differentiable in R, .

Now we will prove that for all t > 0

r/n—1/p—246 < o' (t) < r/n—l/p—i—é'

(23)

t ~oo(t) T t

Our conditions on ¢y, imply that for any k =1,....n
1 1 Lt 1 1
(24) <—5>g—‘pk()§<+5).
Dk t Pr(t) Pk t

Further, if p;, > 1, then by (17)

(25) 0t Mu) e
and by (24)
Tk—l/pk—(S_r u(t) _ o'(t) Tk—l/pk+5_r (1)
) t “u® = o) S )
If pr, = 1, then we have by (17)
(27) e = TR 0]
where
I PN /A T Q)
) == [ o)

By (24) (px = 1),
(28) —§ < Oék(t) < 4.

Now, differentiating (16) and taking into account (12), we get that for any ¢ > 0
there exists m = m(¢) such that

If p,, > 1, then by the first of the inequalities (26),
al(t) > T'm _1/pm_rm7m_6 _ ’I“/’I’L— 1/p_6

o(t) = t N t
If pr = 1 (in this case v, < 1), then by (27) and (28)
!
a'(t) S T — 1 — Y (P + 6) S r/n—l/p—é.
o(t) = t = t
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Thus, we have the first inequality in (23). To prove the second inequality observe
that by (12) and (16) for any ¢ > 0 there exists [ = I(t) such that

w(t) o n
Ul(t) —t
It remains to apply the right hand side inequality of (26) in the case p; > 1 or (27)
and (28) in the case p; = 1.
To prove (iii) assume that k satisfies the condition (18) (that is, v, < 1). Let
pe > 1. By (25), (24) and (23),

" T e )

< e +1/p—r/n—1/pr +20  rey + 20
- t N t

Thus, by (13),

< -
up(t) = t

which implies (iii) (in the case py > 1). If py, = 1, then by (27) and (23)
up(t) re—14+1/p—r/n+d

up (t) t N
Vet O

==

IN

(rk + au(t))

From here (see (13)),

uj, (1) - rEYE + 0 < reYe+0 _ 1—90
T (retar®)t T (re—0)t Tt

This implies (iii).
To prove (iv) assume that pr = 1. By (27) and (23)

up(t) _re—1+1/p—r/n—6
> fr—
(re + ax(t)) wnd) n
_ TR =0
—
From here (see (13)),
up(t) o Rk — 6 Ty —0 0
() = (re + a()t — (rp+0)t ~ ¢

It follows that

1 [ 1
<5 [ uhonune)dt = ol
0

Thus, we obtain (19).
It remains to prove the inequality (15). By (17), we have

ot/ = ()" [ontuston 0

uk( t

r/(nry)
:| ) if Pk = 1a
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and

¢ r/n
/() — Hr/ k) g 1.
U( ) (uk(t)> @k( ) , 1L pp >

Multiplying these equalities and using (16), we get

r/n uk(t) /) r/(nry)
(29) oty =t""]] 2 Pr(ux(?)) IT Ger®) :
pr=1 pr>1
Denote
NnreSk
*="5
Then
n 1 n Sk s
Z — =1 and Z = —.
e Ik i1 Pkdk D

Therefore, applying Holder’s inequality with the exponents g and using (19), we
get from (29)

/ ts(l/pfr/n)flo,(t)sdt <
0

<c IT Nenlt ™ TT lleellys/ i,
pr=1

pr>1
The proof is now complete. O

The Lebesgue measure of a measurable set A C R¥ will be denoted by mesy, A.
For any F,-set E C R™ denote by E’ the orthogonal projection of E onto the
coordinate hyperplane z; = 0. By the Loomis-Whitney inequality [5, 4.4.2],

(30) (mes,, B)" " < H mes,_1 E7 .
j=1

As usual, for any x = (z1,...,2,) € R™ we denote by & the (n — 1)-dimensional
vector obtained from x by removal of its kth coordinate.
Let f € So(R™), ¢ > 0 and let E; be a set of type F, and measure ¢ such that

|f(z)| > f*(t) forallze E;.
Denote by \;(t) the (n—1)-dimensional measure of the projection E/ (j =1,...,n).
By (30), we have that
(31) 1o =
j=1

The following lemma was proved in [8] (see also [10]).

Lemma 3. Letn > 2, rp, € N (k=1,...,n). Assume that a locally integrable
function f € So(R™) has weak derivatives D,* f € Lio.(R™) (k= 1,...,n). Then

forallO<t<7T< o0 and k=1,...,n we have
(52) rO<K [ro+ (5g) o)
and

(53) F) < K [f*m (o) (Ag‘“)] ,
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where K is a constant depending only on r1,...,r, and

(34) wlin) = [ 1Dp f@]do, e r
R

Lemma 4. Letn > 2, r, € N, 1 < pg,s, < o0 fork=1,...,n and s =1 if
pk::l. Set

"o\ nf<~ 1\
(35) r:n<zm> , p:T<Zpkm> .

k=1 k=1

and

n —1
(36) s = ; (Z s:ﬁﬂ) .

k=1

Assume that a locally integrable function f € So(R™) has weak derivatives D} f €
Lrese(R™) (k=1,...,n). Then for any £ > 1

(37) () <K [f () +€a)],
where T = maxry, the constant K depends only on ri,...,r, and
0 1/s n
33) ([T eommmiatyar) < LDz A,
0 k=1 ’
Proof. For every fixed k =1,...,n we take (see (34))
_ _ ) r(t/2), if pp =1,
s=u0={ B st

Then |[¢x]|1 = 2||D;}|1, if p1 =1, and by Hardy’s inequality [1, p.124]

||7//k||pk78k < CHDIZkf”Pk,Sk?

if pr > 1. Next we apply Lemma 1 with § defined as in Lemma 2. This way
we obtain the functions which we denote by ¢k (t) (k = 1,...,n). Further, with
these functions ¢y we define the function o(t) by (14). By Lemma 2, we have the
inequality (38). Using Lemma 3 with 7 = {t, we obtain

Fo <K |rere (At(t)) a0

if p, > 1, and
~ ¢ rE—1
rosk e () s,
Ak ()
if p, = 1. Taking into account (14) and (31), we immediately get (37). O
Note that in the case p; = ... = p,, s1 = ... = s, Lemma 4 actually is

contained in [10] (see Lemmas 7 and 8 in [8]).

Corollary 1. Assume that a function f satisfies the conditions of Lemma 4 and
f € LYR™) + LPo(R™) for some pg > 0 such that

1 1 r

Po P N
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Let max(1,pg) < g < oo and

1 1
(39 - > =
) q P

Then for any 6 >0 f € L¥*%(R™) and

S

(40) 1fllq0 < c

fllzrsrm + ] Dikfll;ﬁf?:”] :

k=1

Proof. We can assume that 6 < min(1,po, s). Let f = g + h, with g € L*(R™) and
h € LPo(R™). Applying Holder inequality, we obtain

Ji = /100 [t“qf*(t)]g% <

o [l [ 4]
4

o0 ] 9/130
<e [(/ g*(t)dt) + (/ h*(t)p"dt> ] .
0 0
It follows that

(41) J < Hf”il-&-LPO'

Let 0 < 6 < 1. Using (37) with £ = (2//9K)9, we get by Holder inequality and (39):

Js = /OO [tl/qf*(t)r% <J —|—K9/: [tl/qf*(gt)r %+

)

1
1
+c/ 99 o (t)?dt < J, + 5 Jot
0

1
+C/ </ ts(l/pT/n)lg(t)sdt>
0

By (41), Js < oo. The inequality (40) follows now from (38) and (41). O

0/s

Remark 1. Let rp, € N, 1 < pg, s, < oo for k =1,....,n(n > 2) and s = 1,
if pr. = 1. Let r,p and s be the numbers defined by (35) and (36). Assume that
p < n/r and set ¢* = np/(n —rp). Then for any function f € C*°(R™) with the
compact support we have

(42) 1Fllg-s < e TTIDRFllp G
k=1

This statement follows immediately from the Lemma 4. The inequality (42)
gives a generalization of the classical Sobolev’s inequality with limiting exponent. A
slightly different scheme of the proof of (42) was given in [10, Theorem 13.1]. In
the case pr, = s, > 1 (k= 1,...,n) the inequality (42) contains in [2, Ch.4]. For
ry = --- =1, = 1 the proof of (42) was given in [19]. One can find a detailed
description of the preceding results in [10] (see also [19]).
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3. THE MAIN THEOREM

Theorem 1. Letn > 2, rp, € N, 1 < pg,sp < o0 fork=1,...,n and sp = 1
if pp = 1. Let r,p and s be the numbers defined by (35) and (36). For every p;
(1 < j < n) satisfying the condition

r 1 1
P == +F——-> Oa
n o pj P
take arbitrary q; > p; such that
1 1 r
R— > — —
q; P n
and denote
1 /1 >
wj=1l—-—|——=—],
bj 4

1 1— 5 n ;
= T, —=—"J 42

I 7 Hj S Sj
Then for any function f € So(R™) which has the weak derivatives D,* f € LP*»** (R™)
(k=1,...,n) there holds the inequality

oo - 0. dh 1/0; n
w ([Tl ) e 0 e
k=1

where ¢ is a constant that does not depend on f.
Proof. First observe that by our conditions 0 < s; < 1. Denote
gr(x) = |Dy* f ()]
Further, assume that j = 1 and set for A > 0
fu(x) =AY (h) f(2)].
For almost all x € R™ we have (see [2, Vol.1, p.101])

(44) / / g+ (ug + -+ up er) dug -+ - duy,
From here,
(45) Fi(t) < P g ().

Indeed, for any subset A C R™ with |[A| =t
/ fu(x)de < h™  sup / 91(y) dy = h"*tgy™ (1)
A BCR",|B|=tJB

From this, it follows (45).

If p1 = 1 (in this case s; = 1), then it follows from (44) that f;, € L'(R"). If
p1 > 1, then (45) implies that f, € LP*51(R™). Thus, by Corollary 1 we have that
fn € L‘“’l(R").

Denote for h > 0

J(0) = | fillars = / £/ (1)
0
Set &y = (4K)? and
(46) QU ={t>0: fi(t) > 2K i (€ot)}
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where K is the constant in Lemma 3. Then

/ 0T ()de < 2K | #V 0T (ot)dt =
R4\Q(R)

0

_ > 1
TR / P/ =1 (= L),
0

2
Therefore,
(47) J(h) < 2/( )tl/‘“ “Lfrt)dt = 2J'(h).
h
Denote

wulin) = [ aopdoe, it po=1.
R
Let e = (1 — 51)/2 and

. rIn -1 1 .
(48) O<(5<€mln((r—1) ’Q,Iy?g}mm(%’l_%)) .
Now for every k = 1,...,n we apply Lemma 1 with ¢(t) = ;(¢/2) in the case
pr = 1 and 1/1( ) Z*( ) in the case pr > 1. We obtain that there exist functions
o

vr(t) (k=1,...,n) on Ry such that

(49) er(t) /PR =0 L () PR g
(50) Ur(t/2) < @i(t), ifpr =1,
(51) 9 () < i(t), ifpr > 1,

and

(52) lokllpn,si < el DR Fllpw,si-

We shall estimate f;(t) for fixed h > 0 and t € Q(h). Let E(t,h) be a set of
type F, and measure ¢ such that
(53) fo(z) > fr(t) forall z € E(t,h).

Denote by A (t, h) the (n — 1)-dimensional measure of the orthogonal projection of
E(t,h) onto the coordinate hyperplane x; = 0. By Lemma 3, (50) and (51), we
have that for each t € Q(h)

¢ re—1
54 () < _ Ai(t, h if p, =1
(54) i0se(sim)  wbwem, itn=1,
and

¢ "

55 ) <e | ——0 £y, ifpy>1.
(55) it ze (i) . it
Applying inequality (30) and Lemma 2, we obtain that there exist a non-negative
function o(¢) and positive continuously differentiable functions ug(t) (k= 1,...,n)
on R satisfying the following conditions:
(56) fa@) <co(t), te(h),

[eS) 1/s n
(57) (/ s(1/p —r/n)—la(t)sdt> <c H ||D£kf||;£g?:k) ,
0 k=1
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=
(59 [Tu=r",

(60) uy (t)t°~! decreases,

(61) | utuntende < cl0g flh it pe =1

The estimate (56) can be used for ¢ ”sufficiently small”. For ”large” ¢ we need
different estimates, involving h.

First, we have the estimate (45). Nevertheless, this estimate does not work in
the case p; = 1 (the operator g — ¢g** is unbounded in L').

We shall prove an estimate which can be applied for all values of p; > 1. Denote

(62) B(t) = t/ui(t).

We shall prove that for any h > 0 and any ¢t € Q(h)

(63) fr@) < ch™ =Bt x(1),

where € = (1 — »1)/2 and

(64) w0 =t = { et

(see (58)). By (52) and (61),
(65) HX||p1751 S C”D;lf”pl.,sl .

For h > 5(t) (t € Q(h)) the inequality (63) follows directly from (56) and (64).
Assume that 0 < h < B(t), t € Q(h). If p > 1, then (63) is the immediate
consequence of (45), (51) and (64).

Let p; = 1. First suppose that there exists 1 < j < n such that

Aj(t h) > %Uj(t) (6}(:))“/” :

If p; > 1, then by (55) and (58)
Tj h 1 h T1
ro<e (o) 90 () =0 (55)
If p; =1, then we apply (54). Notice that
1

Taking into account that for §; = er;/ry the function ¢;(u)u!=% decreases and
the function ¢;(u) ul*% increases (see (48) and (49)), we get that
s 1 0 ()
M) < (3u0) o) <

< e(uy (1) % (uy (1))
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Thus, by (54)

=) e

From these estimates and (58) it follows the inequality (63), where x(¢) is defined

fr(t) < ch™==p)=" (

by (64).
Now assume that for each j =1,...,n.
1 .
(66) Nj(th) < Fus () (B(E)/1)"
First of all, it follows that
t
67 At h) < —.

Further, for any F,-set A C E = E(t, h) denote by A; the orthogonal projection of
A onto the hyperplane z; = 0. If

1 AN
(68) mes,_1 A1 < §u1(t) (ﬂ(@) = 57(t7h),
then .
mes, A < 3
Indeed, otherwise we would have by (68) and (30)
n -1
Hmesn,l A; > m =

Jj=2

1 B\ =
= g2 <h) g“j(t),

contrary to the assumption (66).
Using Lemma 3 of [8], we decompose the projection FEj(t,h) into measurable
disjoint subsets P and S such that

1
mes,_1.5 = iy(t, h)

and
t/(2h)
(69) [ o< [ it
P v(t,h)/2
It follows from the observation given above that the measure of the set
E' ={z € E(t,h) : i € P}

is at least /2. For &; € Ey(t,h) we denote by T'(£1) the section of the set E(t, h)
by the line that passes through #; and is perpendicular to the hyperplane x; = 0
(note that T'(#1) is a set of type F,). For almost all &; € Ey(¢t,h) we have (see

(44))
F(t) mes, T(#y) < / fo(2)dzs <

T(&1)

< p /R D7 (@) |dws = B7 by (21).
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Integrating this inequality with respect to #; over P and taking into account (69)
and the inequality

DO | =+

/ mesy T(iﬁl)di‘l = |El| Z
P

we get (see also (50))

h’rl t/h
(70) < [ e,
~(t,h)

For 0 < h < B(t) we have
v(t, h) <wuy(t) <t/h.
Tn

Furthermore, let 7 = ¢/ (22 — 1). By (49), ¢1(u) u'*" increases and ¢y (u)u
decreases on (0,00). Thus, we have

t/h w1 (t) t/h
[ etan= [ pwdes [ eiudu <
Yy Y

(6,) (6h) i (1)
< o1 (ur ())ur () (8, h) " + or(ua(t))ua (8) 5 (t/h)% e =
= ch™B(t) ur(t)p1(ui(t)).

From here and (70) it follows (63).
Finally, taking into account (56) and (63), we obtain that for any h > 0 and any

teQ(h)

1—¢

(71) fn(t) < c®(t, h),
where
(72) ®(t, h) = min(o(t), K" 7" B(t)"x (1))

and x(t) is defined by (64).
Further, we have (see (47))

J’(h)gc/ 0 1D (¢, h)dt
0

and -
Jz/ h=ei =1 g(h) 1 dh <
0

o oo 01
< c/ h—e0i=1gp, (/ tt/ o —1c1>(t,h)dt> .
0 0

By (60), the function 3(t)t~? increases on R, . Tt easily follows that the inverse
function 37! exists on Ry and satisfies the condition

(73) B1(2z2) < 2987 1(2).

Furthermore, we have

o 671 (h) o
J<e / h—=1qp, / Y1 Lot hydt |+
0 0

01
+ / hfalelfldh (/ tl/q1 *1(1)(t7 h)dt) = C(J1 + J2) .
B

0 ~1(h)
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Applying Minkowsi’s inequality, we obtain
1/91

“1(27%h) gl
g = / h~ i dh Z/ tn g (t)dt <
B—1(2—k—1h)
00 o0 B2 n) o\ V7
o \ 70 B=1(2 h)
1/01

oo o0 B71(2) o
= ok / Zmb=1g, / tY 1o (t)dt
=0 0 B=1(2/2)

Further, using the Holder inequality and (73), we get

B2 87(2) 1/6:
/ tHa"to(t)dt < ¢ / /a1 ()% dt
B=1(2/2) 0

Thus, by Fubini’s theorem and (64)

o0 A=)
J1 < c/ zfalalfldz/ /=g (1)t =
0 0

= c/OC tel/ql_la(t)eldt/oo b1, —
0 B(t)

’

—c / t91/lI1*10-(t)91ﬂ(t)*06191dt —

0
(74) = C/ / tel/ql_1X(t)%1910'(t)(1_%1)91dt.
0

The same reasonings give that

oo d o0
Jy < C/ Z[r1(1—z1)—6]91i/ . )tel/ql_lﬁ(t)elax(t)eldt _
0 z

L) B(t)
= c/ tel/ql‘lﬁ(t)elex(t)eldt/ pr—sa)—elbi—1g, —
0 0

_ C/ / tel/(h_1X(t)01ﬂ(t)rl(1_%1)91dt.
0

By (64) the last integral is the same as one in the right hand side of (74). Therefore,
we have that

J < c/ th/n =ty (1) O g (1) gy
0

Now we apply Holder inequality with the exponents u = s1/(3¢161) and
u’ = s1/(s1 — 5101). Observe that

6 1
(1 —5)01u' = s, (1—81)u’:s<—r>.
q1 piu p n
Thus, we obtain, using (57) and (65):

o0 (1—%1)/8
J1/61 <c (/ 2ts(l/;n r/n)lo,(t)sdt) HDTI.f”pl,ql )
0
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1—3cq
n
<c | ITID5 rip s D1 fII7 s -
j=1
Since
"o
— =1,
=1 77,7“j
we obtain the inequality (43). The theorem is proved. O

Remark 2. First we recall the definition of the Besov space in the direction of the
coordinate axis x; (see [13, Ch.4]).

Let a >0,1<p,0 < oo andl < j <mn. Define the space B;e;j(R") as the
class of all functions f € LP(R™) for which

) 1/6
=i+ ([ Ieiamn)’ ) <o

for any integer r > «. Of course, the right hand side in (75) depends on r, but
every choice of the integer r > a leads to equivalent norms [13, Ch.4].

Now observe that the conditions of Theorem 1 do not imply the belongness of the
function f to some L¥(R™). However, if we assume in addition that f € LPo(R™)
for some po > 1 and that q; > po, then by Corollary 1 we get f € L%-'(R™). Thus,

with these additional conditions Theorem 1 implies that f € B;{Gj;j(R") and

(75) /1155

p,6;j

n
Ifllges <e¢ lf”Po +> IIDZ"‘fllpk,sk] :
95,053

k=1
Remark 3. It is important to emphasize that the values of parameters 6y, found in
the Theorem 1 are sharp. To verify this statement we shall consider the following
simple example.

Assume that n = 2, 11 = ro = 1, 1 < p1,ps < 00 and s1 = p1, So = pa.

Furthermore, suppose that

-1

1 1 1 1 1

pz2(+) <2. Then —>-—- (i=1,2).
pP1 P2 Di

Let q1 > p1 be such that

=
)

111
@ p 2
As in Theorem 1, set

1/p1 —1/q
CUp—1/p+1/2

1 _ 1—12 P2l

60 p  p
Let 0 < € < 61, define the following numbers

_ 2/p—1 2/p—1

CTivet/m-1p) T 1+ 2U/m—1p)

1 04 B 1 0,
T el 2(pe - 1/p) 01—

=

a1 = 11

8=

b= p[l+2(1/p1—1/p)] 01 — ¢
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Further, denote for (z,y) € [—1,1]?

e J e v
wol(z,y) = |z|* <1og ) +[y|? (logm) -

||

Set

D= {(z,y) € [-1,1]*: po(z,y) < 1}

and

fla,y) = fela,y) = { ([)SDO(z’y)]il ! Z Eig% ; gj

Carrying out a routine calculations, one can show that the function f has the fol-
lowing properties:

(i) for any 1 <v <2p/(2—p) feL"(R?;

of of

(it) == € LP"(R?), = € LP*(R?);

ox y

91—5 @ _

> —ay 1 00
i) [ (e 1AL " G = .

This implies that the values of 0y in Theorem 1 can not be reduced.
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