
D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part II, LNCS 6395, pp. 361–375, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Modeling Issues: A Survival Guide for a Non-expert
Modeler

Emilio Rodriguez-Priego, Francisco J. García-Izquierdo, and Ángel Luis Rubio

Departamento de Matemáticas y Computación
Universidad de La Rioja

Edificio Vives, Luis de Ulloa s/n
E-26004 Logroño (La Rioja, Spain)

{emilio.rodriguez,francisco.garcia,arubio}@unirioja.es

Abstract. While developing an integral security model to be used in a Service
Oriented Architecture (SOA) context, we find a lot of ambiguities and inaccu-
racies when authors speak of models, metamodels, profiles and so on. This led
us to study a great number of references in a search for precise definitions to
help us to address our research. Our study and discussions were so extensive
that we are convinced they will be a valuable contribution to the community. In
particular, in this paper we present several Reference Concept Maps that depict
graphically a large number of definitions with their associated bibliographical
references. Nevertheless, we truly believe that there are still a lot of concepts to
be clarified and that this clarification is essential so that basic modeling con-
cepts can be best used by non-expert modelers.

Keywords: Modeling concepts, Reference Concept Maps, Metamodeling
issues, Stereotypes.

1 Introduction

To be clear from the very beginning: our goal was not to write a paper like this. Our
main current research interest concerns security, more specifically the development of
an integral security model to be used in Service Oriented Architecture contexts [1].
As a first step of our research we began a deep revision of the literature that quickly
showed us that a majority of approaches related to our field of interest define either a
UML Profile or a MOF/UML metamodel. But this situation only gave rise to new
questions: Which approach is best suited for our needs? How can we evaluate each of
them (considering that they even provide different results)? And most important, what
are the really essential concepts underlying each approach?

From here we began a nearly endless journey (with a lot of branches) through a
vast amount of references dealing with models, profiles, metamodels and with model-
ing concepts in general. Unfortunately, we came across the fact that there is no appar-
ent consensus about the terminology, not even about what should be the minimal set
of basic modeling concepts. In our opinion this is a real obstacle on the way to the
development of a specific model/metamodel, especially for people like us, who have

362 E. Rodriguez-Priego, F.J. García-Izquierdo, and Á.L. Rubio

recently arrived in the modeling world coming from the security world. We devoted a
great amount of time trying to understand the usually imprecisely defined concepts,
the terminology inconsistencies among several authors, the ambiguities in the official
standards, and so on. When we were somewhere in the middle of this journey, we met
the paper ‘Modeling Modeling’ [2], presented in the latest edition of the MODELS
conference. Unlike that paper, it was not our aim to make ‘a contribution towards a
theory of modeling’. However, some sentences throughout that paper (especially in
the introduction: ‘a lot of people are using models […] without knowing it’, ‘there is
[…] neither precise description about what we do when we model, nor rigorous de-
scription of the relations among modeling artifacts’) encourage us to continue our
work. The survey that we present in this paper is a summary of our walk-arounds and
private discussions about modeling concepts, and we consider that it can be a valuable
contribution for the modeling community.

We have revised a total of 200 references regarding modeling, from ‘ancient’ ref-
erences of 1956 to extremely recent (dated 2010) ones1. Obviously we are not able to
include all these references in the paper because of space reasons. Therefore, we have
made a selection of 66 papers which we believe are a significant sample of all the
articles reviewed. The paper can be regarded as a well suited guide to find documen-
tation related to recognized problems around modeling. More specifically, this guide
is structured as follows. In the following section we deal with those we consider to be
the basic modeling concepts. One of the main contributions of this section is the use
of a new type of concept map [3], which summarizes the most relevant definitions of
these basic concepts found in the literature. Section 3 is devoted to discussing some of
the most critical issues about modeling, comparing the contributions of a broad spec-
trum of authors. In the last Section of the paper we present some conclusions.

2 Basic Concepts in Modeling

The basic modeling concepts have been and are still under discussion in the literature.
In order to clarify these terms we did an analysis of the main references using concept
maps [3]. These maps, which we named Reference Concept Maps (RCM), help to
identify the key concepts that appear in each of the term definitions and their relation-
ships. A RCM shows main concepts related to other concepts displayed in different
colors depending on their conceptual proximity, within a definition, to the main con-
cepts. Links between the concepts include the numbers of the references where the
term definitions are given. The use of RCM to summarize definitions can be consi-
dered as an original contribution of this paper. This section aims to enumerate asepti-
cally modeling concepts and their definitions without critically evaluating them. We
postpone this discussion to section 3.

2.1 Pure Modeling Concepts

Let’s start at the beginning, the concept of Model. Surprisingly, or not, there is no
generally accepted definition of model. The RCM of Fig. 1 shows that, in a first level,

1 The complete list can be consulted in Citeulike http://www.citeulike.org/group/13305 or

Mendeley http://www.mendeley.com/research-papers/collections/1689661/Model-Theory/

 Modeling Issues: A Survival Guide for a Non-expert Modeler 363

model can be identified as different concepts: representation [4, 5, 6, 7, 8, 9], abstrac-
tion [10, 11], statement [12], simplification [7, 13, 14], description [6, 15, 16, 17],
specification [6, 15], system [18, 19], entity [14, 19, 20], set [21], replacement [12,
14, 18] or subject [22]. In a second level, model is related to terms such as system [7,
10, 11, 12, 13, 15, 16, 18, 19, 21], reality [6, 8], original [14, 19, 20], software [17] or
mental construction [9]. Lack of space prevents us from developing all the definitions
completely, but the reader can easily do it following each reference number through-
out the RCM links.

Fig. 1. References Concept Map for model

In the RCM of Fig. 2 we summarize the definitions of other concepts related to
model, definitions that seem to confirm the claim in [4] stating that “everything is a
model”. Metamodel is directly related to model [11, 12, 15, 18, 23, 24], specification
[4, 6, 21], definition [10, 12, 13, 24], representation [6] and description [7], and indi-
rectly related to concept [7, 13, 24], abstraction [4], modeling [23], or abstract syntax
[10, 12, 24]. Megamodel is essentially a model of models [5] or a model of MDE
concepts [25]. And Ontology is generally defined as a type of model or special model
[6, 26] or as a model subset [9]. Finally, the reader can also see how the concept of
Modeling Language is closely related to other concepts apart from the Model concept
(Fig. 1). In general, most authors, e.g. [10, 12, 24], identify the abstract syntax of a
(modeling) language with the concept of metamodel (set of concepts used to create
models), and its notation with its concrete syntax (textual or graphical representation
of those concepts) [27, 28]. Both syntaxes have a many-to-many relation, meaning

364 E. Rodriguez-Priego, F.J. García-Izquierdo, and Á.L. Rubio

Fig. 2. References Concept Map for metamodel, megamodel, ontology and modeling language

that a model can be expressed in different notations, and that a notation can be used
by different languages [12].

2.2 Relationship Related Concepts

The two main types of relationships addressed by literature are representa-
tion/specification and conformance. The former are the basic relations between a mod-
el and its modeled entity. Depending on the point of view, the Representation relation-
ship, or the models being related by it, have different names: represented-by [4], repre-
sentation-of [29, 30], descriptive models [4, 21, 31], backward-looking models [12],
model as copy [26] or reverse engineering [30]. The same happens to Specification,
which also has different names: prescriptive models [4], specification models [21],
forward-looking models [12], model as original [26] and forward engineering [30]. On
the other hand, and regarding to conformance, some authors [4, 7, 29] name the rela-
tion between a model and its metamodel conforms-to, differentiating it from the pre-
vious representation/specification relations used to relate a model and its modeled
entity.

2.3 The OMG Approach to Modeling Concepts and Relationships

Classes, Metaclasses and Stereotypes. UML [32] defines Class as “a type that has
objects as its instances”, and type as “a named element that is used as the type for a
typed element” (note that this is an ‘empty’ definition, because the definition contains
the defined concept). In addition, UML defines class as “a kind of classifier whose
features are attributes and operations”. There is no explicit definition of metaclass in
[32], being understood that a metaclass is a class whose instances are classes. A ste-
reotype is “a limited kind of metaclass that cannot be used by itself, but must always
be used in conjunction with one of the metaclasses it extends” [32].

 Modeling Issues: A Survival Guide for a Non-expert Modeler 365

Instantiation. OMG names the relationship between an instance and the class to
which it belongs instance-of [32], and uses it in each one of the different levels of
abstraction (instance-class, class-metaclass and metaclass-metametaclass).

Inheritance/Generalization. OMG defines Generalization as “a taxonomic relation-
ship between a more general classifier and a more specific classifier” [32].

Package. “A package is a container for types and other packages” [32]. The package
concept plays a very relevant role in the modeling based on OMG standards, since
“the Model construct is defined as a Package” [33].

Merge. The Merge concept is defined by OMG [32] as “a directed relationship be-
tween two packages, that indicates that the contents of the two packages are to be
combined”. The Merge semantics is very similar to that of inheritance, in such a way
that it can be considered as the application of inheritance to packages. Nevertheless, it
is a complex concept, which requires an extensive description of ten pages [32, pages
161-170], and its application is not without problems [34, 35, 36, 37]. There are simp-
ler proposals for the extension of models that do not use Merge [38].

3 Discussions about Modeling

Some modeling concepts have generated a lot of controversy and endless discussions,
whereas other concepts are not clear enough and are still difficult to apply. Next, we
list what, in our opinion, are the main causes of confusion in the use of the modeling
concepts and theories. They are numbered and classified into three groups: 1) issues
about relations between object-oriented concepts and modeling, 2) main points of
discussions related to modeling layers, and 3) metamodeling issues, mainly focusing
on stereotypes.

3.1 OO Modeling Issues

OOM1–Modeling as an Object Oriented Implementation. The overlapping of
object orientation (hereafter OO) concepts (class, instance, object, inheritance…) and
modeling concepts (model, representation, specification…) is likely to be one of the
main sources of confusion when one tries to understand what the modeling is and how
it is applied. The adoption by OMG, responsible for most of the more widely used
modeling standards, of an OO approach for the construction of models, has only made
the mess bigger. The source of such confusion stems from the fact that both OO con-
cepts and modeling concepts are homomorphic [12]. Concepts such as class, instance,
inheritance, etc can be used to unambiguously model physical systems. But, when the
modeled system is at the same time a model, the use of such terms is confusing and
repetitive. Note that then, the same model elements that make up the modeled system
are being used to metamodel. This is what several authors call concept replication [39,
40]. Actually, as [25] points out, “object-oriented technologies are used to implement
MDA standards”, instead of being the foundation of modeling. Just as an example,
MOF describes its generic term ‘Element’ as an ‘Object’ specialization. This may be

366 E. Rodriguez-Priego, F.J. García-Izquierdo, and Á.L. Rubio

very confusing for a reader versed in OO, who cannot easily understand that object
and model element are equivalent concepts.

OOM2–Overuse of the Class Concept. Whenever the class concept is used in mod-
eling, we have to ask ourselves “class, what class?” Depending on the specification,
even on the package being used (e.g. UML-profile), UML and MOF repeatedly em-
ploy the class and instance concepts with apparently similar, but essentially different,
meanings. This leads to great terminological confusion that forces the modeler to
carefully consider the context in which the concept is used, to exactly understand its
sense. The specifications even warn about the possibility of the same term being used
with different intentions in the same section. E.g., [33] section 18.1.1 says: “Thus, in
this clause, when we mention ‘Class’ in most cases we are dealing with the meta-
metaclass ‘Class’ (used to define every meta class in the UML superstructure specifi-
cation (Activity, Class, State, Use Case, etc.)” (emphasis added). The sentence seems
to say that the reader must recognize in most cases the actual class to which the sec-
tion refers. Specifically, as we are later presenting in the stereotypes section, this
overuse has caused lively discussions about the true meaning of class in some cases
[41, 42].

OOM3–Overuse of the Instance-Of Concept. The fact that, throughout the different
UML versions, the term instance has been used both to denominate the M0 level
instances and the “abstract metaclass” that represents them at M2 level has caused
quite a few discussions about the nature of instance [4, 12, 13, 21, 40]. Actually, in-
stance doesn’t have a double nature, but, by calling them in the same way, both con-
cepts are being mixed up into a single one. UML version 2 tries to resolve the contro-
versy introducing a new concept, InstanceEspecification, defined as “a model element
that represents an instance in a modeled system”.

Though the term instance has been clarified, the instance-of expression is frequent-
ly used [10, 32], in such a way that in the OMG approach, virtually every treated
concept is instance-of something. Nevertheless, several authors [4, 7, 12, 43] specify
that this approach is too restrictive because there are semantic differences among the
instantiation undergone between a metamodel and a model, or a model and a modeled
real object, or a predicate calculus formula that is generated-by the predicate calculus
grammar [7]. E.g., a model is not always an instance of a metamodel [4], though it
can be implemented using instances of model elements that, at the same time, are
realized using classes. Note that a metamodel could be implemented using relational
tables, and its associated models realized using tuples of these tables [6, 44]. If, on the
other hand, the Entity-Relationship had been the choice for the modeling, the discus-
sion, and the confusion, would have involved the terms entity-type, entity, associa-
tion-type, association and model, model element, and so on. The homomorphism
existing among these concepts is the root of the confusion. To resolve the situation,
some authors propose that, to fully understand the model and metamodel concepts,
the discussion should be carried to the ontological level [24].

OOM4–The Object Orientation in Modeling Does not Necessarily Lead to an
Object Oriented Model. In UML, the identification of a model element with a class
(of M2 level) may lead us to think that object orientation concepts are always present

 Modeling Issues: A Survival Guide for a Non-expert Modeler 367

in modeling. Actually, this is not true, because UML lacks a strict object oriented
approach from the modeling point of view. E.g., the static part of a model, which
UML names structure, and its dynamic part, named behavior, are usually separated
[45]. Though the specification introduces some relationships between both parts of a
model, they are not very explicit indeed. Most diagrams focus on a certain single
aspect (static or dynamic), but there doesn’t exist any diagram that clearly expresses
both together, as should be expected from a full object oriented approach. The object
orientation appearance of UML is mainly reflected in the class diagrams, in which a
class exhibits its collection of attributes (state) and methods. However, the inclusion
of methods in class models is paradoxically infrequently used when they are used to
express models. Some authors [46] conclude that, even when they are building high
level models, they don’t need to include methods in their models. In practice, the
definition of methods in UML classes are often referred to the management of
the class state (set- and get- methods), rather than to the representation of the class
behavior.

Summarizing, we could say that whereas UML is implemented using an OO ap-
proach, models created using UML rarely follow that approach, except when a class
view is used. Moreover in the M2 level (UML specification), the behavioral part of
the UML metamodel is devoted to specify the behavior of an hypothetic UML model-
ing tool.

OOM5–A Model Shouldn’t Be More Complicated than its Modeled Entity. As
we have pointed out in section 2.1 (RCM of Fig. 1), a model can be considered as a
simplification of reality that can be used to handle it in a simpler way. The UML
metamodel is an example in which this rule is violated. The UML metamodel is so
complex that it can only be analyzed, managed and verified effectively with the aid
of tools. Such complexity implies that determining the semantics of the modeling
concepts defined in UML is not a simple task if it is done manually, because “the
required information is scattered across the metamodel” [47].

The more complex a system is, the greater the possibility of making errors. Some
authors have used different formal techniques, which are usually supported by auto-
mated tools, to study certain aspects of UML. Thanks to them, a number of errors and
inconsistencies across different versions of the UML metamodel have been found,
e.g.: [37] on package merge, [48] on associations, [49, 50] on general UML seman-
tics, [51] on generalization and overriding, and [52] on UML 1.x.

3.2 Model Layers Issues

ML1–Lack of a Minimal Top Level Model. UML and MOF are based on a hie-
rarchy made up of four levels named M3 (meta-metamodel), M2 (metamodel), M1
(model) and M0 (run-time instances). This structure is closely inspired by the ANSI
IRDS and by EIA/CDIF [53]. The application of these levels in UML is quite confus-
ing. On the one hand [32] states that MOF is the meta-metamodel for UML and other
metamodels, saying also that a part of UML called Core is used to specify MOF. The
obvious question is then: would Core be the meta-metamodel of both? To solve the
problem, the authors name that Core subset of UML Metalanguage kernel, a claim
that seems to imply that that metalanguage is a constituent part of the metamodel,

368 E. Rodriguez-Priego, F.J. García-Izquierdo, and Á.L. Rubio

contributing even more to the confusion of both terms. The confusion is greater due to
the same concepts (package, class…) being extensively used in the definitions of
metamodel and metalanguage.

Again, the (over)use of the term instance-of to relate concepts belonging to two
consecutive levels is the root of the problem. The unsuitability of this approach is
reflected in the various problems that arise when trying to implement this scheme
without relinquishing its OO root. E.g., some proposals to resolve the problem are: to
distinguish between two types of instance-of (ontological and linguistic) [54, 55]; the
possibility of instantiation across levels (deep instantiation) [40, 56, 46]; to differen-
tiate between linear hierarchies and non-linear hierarchies (the instantiation is also
produced within the same level) [43]; to define relationships between levels different
from instance-of, e.g., conforms-to, represented-by [4, 12] and others.

The self-model character that both MOF and CDIF give to the M3 level is also
subject to analysis. Without leaving the 4-levels approach, [57] proposes a somewhat
simpler top self-model alternative (14 classes compared to 18 in Ecore and 24 in
MOF). [21] gives the name minimal reflexive metamodel to that metamodel in which
“any statement in the minimal reflexive metamodel can be represented in terms of
elements of the minimal reflexive metamodel”. The paper also analyses the problems
of its application. [43] discusses the pros and cons between a recursive top level me-
tamodel and an axiomatic top level metamodel. [12] analyzes the problems driven
from the fact that MOF is not minimal, concluding that “true self-model should be
minimal”. To our knowledge, despite the fact that several authors [12, 37] have ex-
pressed its need, there is no proposal of minimal top model (recursive or axiomatic)
that helps to avoid these problems, clarifies the modeling theory and constitutes the
true kernel of modeling. It is understood that this is an open research problem that
poses many difficulties. E.g. [12] suggest the use of two ontological universal con-
cepts: “things” (nodes) and “connections between things” (arcs). However, even with
this simple approach, the authors find problems, presenting an example in which a
certain concept can be considered as a node or as an arc.

ML2–Bidirectionality and Cardinality between Model and Modeled System. A
central issue that always comes up in any discussion about the essence of modeling is
the use of a model as a description or as a specification of a modeled system. As we
have mentioned before (sec. 2.2), literature uses different names to denominate the
description and specification of models. We must take into account that these terms
are always used to characterize the way the model is used, not to label the model
itself.

When used as a description, the model represents (describes) an existing system,
whereas, when used as a specification, the model specifies (prescribes) a system that
doesn’t exist yet. This bidirectional feature of modeling has great importance for
MDE, since it allows understanding and the application of the modeling to the de-
scription of existing models or to the generation of new ones. Nevertheless, the bidi-
rectionality is lost when the OMG specifications are used, mainly due to instance-of
being the only relation between modeling levels. This means, e.g., that in UML it is
easy to create new instances belonging to a system specified by a model, but, in turn,
UML does not provide a mechanism to check that a certain entity is described by a

 Modeling Issues: A Survival Guide for a Non-expert Modeler 369

model. A conscientious revision of MOF may show this bidirectionality in certain
situations, only when the instances have been previously created ([23] sec. 9.2).

[58, Fig. 3] considers another type of model, called explorative, which is at the
same time prescriptive and descriptive and in which “modifications are applied to
the model rather than to the real system”. “When their effect seems to be positive, the
modifications are applied to the original”. This approach is also addressed by [30],
which calls them models at runtime. The complexity of this solution lies mainly in
two aspects: 1) the model must keep up with the changes in the system and viceversa;
and 2) the system needs to gain access to the model. In this scenario, the models are
not necessarily represented by a set of objects. Instead, they make up a repository of
modeling elements, which constitutes by itself a system that interacts with the systems
that it specifies or describes.

The cardinality of the relationship between elements from one level to the next
(models and modeled systems) is another important aspect not addressed in
UML/MOF. [12] proposes an interesting classification, distinguishing among (1)
isotypical mappings, “as those that map one model entity to one system under study
(SUS)” entity; (2) prototypical mappings, “that map one model entity to a set of SUS
entities give by example”; and (3) metatypical mappings, that “is prototypical map-
pings given declaratively”.

3.3 Metamodeling Issues

MM1–Stereotypes issues. OMG provides a widely used alternative to the construc-
tion of metamodels called UML Profiles [59, 60, 61], redefined in the latest revision
of the standard [62]. The first problem we encounter when applying this option is to
decide whether, instead of using it, it is more convenient to use an approach based
directly on MOF metamodeling. The specification authors [32], after describing the
mechanism, admit that “there is no simple answer for when you should create a new
metamodel and when you instead should create a new profile”, deducing that there is
an answer to that question, but that the answer is complicated. However, it is neces-
sary to answer that question, since from that claim it is also deduced that the MOF
and UML Profiles approaches are so significantly different that an inappropriate
choice in an entire application can compromise the result. Next, we discuss the most
relevant aspects of the semantics associated with the definition of a UML Profile, just
as they are defined in [32, 33], aspects that give an idea of its complexity, as well as
the difficulties that its application entails.

MM1.1–An UML-Profile is a package. If we trace the terms involved in the package
concept definition throughout the UML specification [32, 33] we find a complex
labyrinth of cross-definitions (‘packageable element’, ‘element’, ‘concept’, etc.) scat-
tered across the modeling levels. This fact is a confirmation of the opinion stated in
[47] about the understandability of the UML semantics, which can only be addressed
using “query/extraction tools”. Another example of this complexity is the fact that the
UML-Profile specification provides for the possibility of inheritance between profiles,
a feature that is rarely used.

370 E. Rodriguez-Priego, F.J. García-Izquierdo, and Á.L. Rubio

MM1.2–In what level is UML-Profile defined? The M2 elements of a UML-Profile
are defined using a M3 concept (Stereotype), which is materialized in a M2 concept
[32, 33]. The problem with this approach is that stereotype is a specialization of
another concept, called again ‘class’, that embraces all UML Elements (e.g., Actor,
Activity, etc. of M2 level) and, therefore, it should be defined at the M3 level (actual-
ly it should be MOF::Class). To solve the problem, the authors resort to the trick of
using the implementation of MOF::Class defined in the UML-InfrastructureLibrary
package, establishing that Profiles::Class inherits from InfrastructureLibrary::
Core::Constructs::Class. Though it seems correct, a new problem arises, because,
having forced the definition of M3 level concepts at the M2 level, it isn’t possible to
perform the XMI serialization of a model. To do it, not surprisingly, the authors have
to define a correspondence between Stereotype and MOF:Class and between Pro-
file::Class and MOF::Class [33] section 13.1.6]. This non-trivial usage of an M3 con-
cept by an element of M2 has led to many discussions and criticism of the semantics
of UML-Profile (see e.g. [41, 42]).

MM1.3–The extension association. [33] introduces another type of association named
Extension, which links a Stereotype (M3) with a Profile::Class (M3). As expected,
Extension is a specialization of InfrastructureLibrary::Core::Constructs::Association.
Despite a stereotype being a Profile::Class specialization, to extend a stereotype with
another stereotype is not allowed, whereas, though with some restrictions, it is al-
lowed for a stereotype to participate in associations ([32], sec. 13.1.6). Note that this
allows the definition of a stereotype that, for example, extends to both Actor and State
concepts, and that, besides, is associated with another stereotype that extends to an
activity. The specification [33], sec. 18.1.2] leaves in the modeler’s hands that “the
specialized semantics do not contradict the semantics of the reference metamodel”.

MM1.4–Interoperability, not yet. One of the main arguments for using UML Profiles
is that they are supported by various UML editors, which facilitates the exchange
between the different tools. Nevertheless, this theoretical interoperability is not al-
ways feasible due to: (1) there are several mutually incompatible versions of XMI and
UML; (2) the XMI standard does not consider the diagram representation, and, cur-
rently, this functionality is covered by proprietary extensions; (3) usually tools do not
implement the whole standard because of the complexity of the OMG specifications.
In 2006, OMG issued the UMLDI [63] standard, with the purpose of supporting “sto-
rage and exchange of information pertaining to the layout of UML Models”. In prac-
tice, as admitted by OMG, “the DI standard itself is not precise enough to enable
consistent exchange of diagrams between different tools” [64, pag. 21], and it is cur-
rently subject to a revision process that finally will enable its adoption by the UML
tool providers.

MM2–Inheritance and Metamodeling. Two types of relationships are the basis of
object orientation: instance-of, between an instance and its class, and inherits-from
between a subclass and its superclass [4]. Although both relationships are applied to
different elements, some confusion may appear when they are described using the
natural language. E.g., the integer ‘8’ can be obtained from the class ‘Integer’ and,
therefore, we can say that ‘8 is an integer’. Similarly, if ‘Animal’ is the superclass of

 Modeling Issues: A Survival Guide for a Non-expert Modeler 371

‘Cat’, we can say that ‘cat is an animal’. In both cases, ‘is-a’ has different meanings.
In the first case, 8 is an instance of the class Integer, whereas an instance of Cat is
also an instance of Animal (thanks to the transitivity, it is an instance of Animal be-
cause it is an instance of Cat). Papers such as [65, 66] analyze the consequences de-
rived from the use of the inheritance or the instantiation across levels in modeling
(metamodeling). [4] studies the use of the inheritance and the instantiation relation-
ships in OO, comparing them to the conforms-to and represented-by relationships in
the modeling theory. On the other hand, [6] defines a similarity relationship that em-
braces different relationships: subset-of, is-described-by, is-represented-by, instance-
of and is-a. The paper concludes that ‘is-a’ is a specialization of subset-of and is-
described-by, but not of instance-of, and that described-by and instance-of are specia-
lizations of is-represented-by.

The confusion that, from a generic point of view, exists between classification (a
concept close to instantiation) and generalization (inheritance) has been recently
analyzed again by [67], highlighting that there still exists a conceptual problem con-
cerning inheritance and instantiation, concepts that are still incorrectly applied. This
problem arises more frequently when UML is used, especially due to two reasons: 1)
the semantics of the inheritance in UML “is highly complex, scattered over many
diagrams, constraints and additional operations sections and is very difficult to under-
stand” [51]; and 2) the confusing definition of stereotypes, placed between the M2
and M3 levels, has resulted in misuses of stereotypes in M1, when the correct model-
ing technique should have been to use inheritance (see e.g. [42, 68]).

4 Conclusions

The main conclusion that we can draw is that, despite of the many discussions (that
have been widely documented in literature), there are still a lot of confusing notions in
the field of model-driven engineering. Even after our journey we feel close to the
authors of [2], when quoting Ludewig [58], who in turn claims that “nobody can just
define what a model is […] endless discussions have proven that there is no common
understanding consistent of models”. We believe that a solid foundation for a mini-
mum set of modeling concepts is critical to the success of MDE.

Here we have made a modest contribution in this sense summarizing a series of is-
sues that we, mere model users, consider should be resolved. In addition, we propose
several Reference Concept Maps, which can serve as a tool from which to continue
the discussions. Much work remains to be done by model/metamodel engineers to
enable ‘classical’ software engineers to use model engineering concepts and tools in
an easy and reliable way. This fact can be verified very graphically since, at the time
of writing, on the download page for the formal specification of UML the following
discouraging note is presented: “Version 2.0 does not have XML or XSD associated
files due to structural problems with the UML metamodel”.

Acknowledgments. Partially supported by Comunidad Autónoma de La Rioja,
project FOMENTA 2008/01, and by Ministerio de Ciencia e Innovación de España,
project TIN2009-13584.

372 E. Rodriguez-Priego, F.J. García-Izquierdo, and Á.L. Rubio

References

1. Rodriguez-Priego, E., Garcia-Izquierdo, F.J.: Securing code in services oriented architec-
ture. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp.
550–555. Springer, Heidelberg (2007)

2. Muller, P.A., Fondement, F., Baudry, B.: Modeling Modeling. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 2–16. Springer, Heidelberg (2009)

3. Novak, J.D., Cañas, A.J.: The theory underlying concept maps and how to construct and
use them. Technical report, Florida Institute for Human and Machine Cognition (2008)

4. Bézivin, J.: On the unification power of models. Software and Systems Modeling 4(2),
171–188 (2005)

5. Barbero, M., Jouault, F., Bézivin, J.: Model Driven Management of Complex Systems:
Implementing the Macroscope’s Vision. In: ECBS 2008, IEEE Int. Conf. on the Engineer-
ing of Computer-Based Systems, Washington, DC, USA, pp. 277–286. IEEE Computer
Society, Los Alamitos (2008)

6. Aßmann, U., Zschaler, S., Wagner, G.: Ontologies, Meta-models, and the Model-Driven
Paradigm. In: Ontologies for Software Engineering and Software Technology, pp. 249–
273. Springer, Heidelberg (2006)

7. Ober, I., Prinz, A.: What do we need metamodels for? In: 4th Nordic Workshop on UML
and Software Modelling, pp. 8–28 (2006)

8. Pidd, M.: Tools for Thinking: Modelling in Management Science, 3rd edn. John Wiley and
Sons, Chichester (February 2009)

9. Sánchez, D.M., Cavero, J.M., Marcos, E.: On models and ontologies. In: 1st Int. Workshop
on Philosophical Foundations of Information Systems Engineering, PHISE 2005 (2005)

10. Kühne, T.: Matters of (meta-) modeling. Software and Systems Modeling 5(4), 369–385
(2006)

11. OMG: MetaObject Facility (MOF) 1.4. Technical report (April 2002)
12. Gonzalez-Perez, C., Henderson-Sellers, B.: Modelling software development methodolo-

gies: A conceptual foundation. Journal of Systems and Software 80(11), 1778–1796 (2007)
13. Bézivin, J.: Towards a precise definition of the OMG/MDA framework. In: Proc. of the

16th Int. Conf. on Automated Software Engineering (ASE), pp. 273–280. IEEE Computer
Society, Los Alamitos (2001)

14. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Wien (1973)
15. OMG: MDA Guide Version 1.0.1. Technical report (June 2003)
16. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architec-

ture:Practice and Promise. Addison-Wesley, Reading (May 2003)
17. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cam-

bridge (April 2006)
18. Favre, J.M.: Foundations of meta-pyramids: Languages vs. metamodels Episode II: Story

of thotus the baboon. In: Language Engineering for Model-Driven Software Development,
vol. 4101 (2005)

19. Klir, G.J.: Facets of Systems Science. Kluwer Academic Publishers, Dordrecht (August
2001)

20. Asikainen, T., Männistö, T.: Nivel: a metamodelling language with a formal semantics.
Software and Systems Modeling 8(4), 521–549 (2009)

21. Seidewitz, E.: What Models Mean. IEEE Software 20(5), 26–32 (2003)

 Modeling Issues: A Survival Guide for a Non-expert Modeler 373

22. Rensink, A.: Subjects, Models, Languages, Transformations. In: Language Engineering for
Model-Driven Software Development, Dagstuhl. Dagstuhl Seminar Proceedings, Schloss
Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), vol. 04101 (2005)

23. OMG: MetaObject Facility (MOF) 2.0 Core specification. Tech. Rep. (January 2006)
24. Kurtev, I.: Metamodels: Definitions of Structures or Ontological Commitments. In: Work-

shop on TOWERS of models. Collocated with TOOLS Europe (2007)
25. Favre, J.M.: Towards a basic theory to model model driven engineering. In: Proc. of the

Workshop on Software Model Engineering (WISME 2004), Joint Event with UML 2004
(October 2004)

26. Sánchez, D.M., Cavero, J.M., Marcos, E.: The concepts of model in information systems
engineering: a proposal for an ontology of models. The Knowledge Engineering Re-
view 24(Special Issue 01), 5–21 (2009)

27. Kühne, T.: What is a Model? In: Dagstuhl Seminar. Dagstuhl Seminar Proceedings, Inter-
nationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany (2005)

28. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Trans. Model.
Comput. Simul. 12(4), 290–321 (2002)

29. Favre, J.M., Nguyen, T.: Towards a megamodel to model software evolution through
transformations. In: SETRA Workshop. ENCTS, vol. 127, pp. 59–74. Elsevier, Amster-
dam (2004)

30. Jouault, F., Bézivin, J., Barbero, M.: Towards an advanced model-driven engineering tool-
box. Innovations in Systems and Software Engineering 5(1), 5–12 (2009)

31. Favre, J.M.: Foundations of Model (driven) (Reverse) Engineering - Episode I: Story of
the Fidus Papyrus and the Solarus. In: Dagsthul Seminar on Language Engineering for
Model- Driven Software Development (2004)

32. OMG: UML Infrastructure v2.2. Technical report (February 2009)
33. OMG: UML Superstructure v2.2. Technical report (February 2009)
34. Zito, A., Diskin, Z., Dingel, J.: Package Merge in UML 2: Practice vs. Theory? Model

Driven Engineering Languages and Systems, 185–199 (2006)
35. Zito, A., Dingel, J.: Modeling UML2 package merge with Alloy. In: First Alloy Workshop

(2006)
36. Bottoni, P., D’Antonio, F., Missikoff, M.: Towards a Unified View of Model Mapping and

Transformation. In: Proceedings of the Open Interop Workshop on Enterprise Modelling
and Ontologies for Interoperability (EMOI-INTEROP), co-located with CAiSE 2006 Conf.
(June 2006)

37. Dingel, J., Diskin, Z., Zito, A.: Understanding and improving UML package merge. Soft-
ware and Systems Modeling 7(4), 443–467 (2008)

38. Barbero, M., Jouault, F., Gray, J., Bézivin, J.: A Practical Approach to Model Extension.
MDA-Foundations and Applications, 32–42 (2007)

39. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Software and
Systems Modeling 7(3), 345–359 (2008)

40. Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling. In: Gogolla, M., Ko-
bryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg (2001)

41. Weisemöller, I., Schürr, A.: A Comparison of Standard Compliant Ways to Define Do-
main Specific Languages. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 47–58.
Springer, Heidelberg (2008)

374 E. Rodriguez-Priego, F.J. García-Izquierdo, and Á.L. Rubio

42. Henderson-Sellers, B., Gonzalez-Perez, C.: Uses and abuses of the stereotype mechanism
in uml 1.x and 2.0. In: Model Driven Engineering Languages and Systems, pp. 16–26
(2006)

43. Gitzel, R., Hildenbrand, T.: A Taxonomy of metamodel hierarchies. Technical report, De-
partment of Information Systems. University of Mannheim (2005)

44. Thomas, D.: MDA: Revenge of the modelers or UML utopia? IEE Software 21(3), 15–17
(2004)

45. Merunka, V.: Critical Assessment of the Role of UML for Information System Develop-
ment. In: Systems Integration, pp. 445–452 (2003)

46. Gitzel, R., Ott, I., Schader, M.: Ontological Extension to the MOF Metamodel as a Basis
for Code Generation. The Computer Journal 50(1), 93–115 (2007)

47. France, R.B., Ghosh, S., Dinh Trong, T., Solberg, A.: Model-Driven Development Using
UML2.0: Promises and Pitfalls. Computer 39(2), 59–66 (2006)

48. Milicev, D.: On the Semantics of Associations and Association Ends in UML. IEEE
Transactions on Software Engineering 33(4), 238–251 (2007)

49. Shan, L., Zhu, H.: A Formal Descriptive Semantics of UML. In: Liu, S., Maibaum, T.,
Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 375–396. Springer, Heidelberg (2008)

50. Akehurst, D.H., Howells, W.G.J., Bordbar, B., Mcdonald-Maier, K.D.: Maths vs (Meta)
Modelling: Are we reinventing the Wheel? In: ICSOFT 2008, Porto, Portugal (2008)

51. Buttner, F., Gogolla, M.: On generalization and overriding in UML 2.0. In: Proc. UML
2004 Workshop OCL and Model Driven Engineering, pp. 69–83 (2004)

52. Fuentes, J.M., Quintana, V., Llorens, J., Genova, G., Prieto Diaz, R.: Errors in the UML
metamodel? SIGSOFT Software Engineering Notes 28(6), 3 (2003)

53. Flatscher, R.G.: Metamodeling in EIA/CDIF—meta-metamodel and metamodels. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 12(4), 322–342 (2002)

54. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation. IEEE
Software 20(5), 36–41 (2003)

55. Gaševic, D., Kaviani, N., Hatala, M.: Ón Metamodeling in Megamodels. Model Driven
Engineering Languages and Systems, 91–105 (2007)

56. Varró, D., Pataricza, A.: A Unifying Semantic Framework for Multilevel Metamodeling.
Tech. rep., Budapest Univ. of Technology and Economics (2001)

57. Jouault, F., Bézivin, J.: KM3:A DSL for Metamodel Specification. In: Gorrieri, R., Wehr-
heim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer, Heidelberg
(2006)

58. Ludewig, J.: Models in software engineering - an introduction. Software and Systems
Modeling 2(1), 5–14 (2003)

59. Bruni, R., Hölzl, M., Koch, N., Lluch Lafuente, A., Mayer, P., Montanari, U., Schroeder,
A., Wirsing, M.: A service-oriented UML profile with formal support. In: Baresi, L., Chi,
C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 455–469. Sprin-
ger, Heidelberg (2009)

60. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Security requirement with a uml 2.0
profile. In: Proceedings of the First Int. Conf. on Availability, Reliability and Security
(ARES), pp. 670–677. IEEE Computer Society, Los Alamitos (2006)

61. Houmb, S.H., Den Braber, F., Lund, M.S., Stølen, K., Informatics, S.T.: Towards a UML
profile for model-based risk assessment. In: Critical Systems Development with UML-
Proceedings of the UML 2002 Workshop, pp. 79–91 (2002)

62. Selic, B.: What’s new in UML 2.0. IBM rational software (2005)

 Modeling Issues: A Survival Guide for a Non-expert Modeler 375

63. OMG: Diagram Interchange Specification, v1.0. Tech. rep. (2006)
64. OMG: Diagram Definition RFP-OMG Document 07-09-02. Tech. rep. (2007)
65. Atkinson, C., Henderson-Sellers, B., Kühne, T.: To Meta or Not to Meta. That Is the Ques-

tion. Journal of Object-Oriented Programming 13(8), 32–35 (2000)
66. Atkinson, C., Kühne, T.: Profiles in a strict metamodeling framework. Science of Comput-

er Programming 44(1), 5–22 (2002)
67. Kuhne, T.: Contrasting Classification with Generalisation. In: Proceedings of the Sixth

Asia-Pacific Conf. on Conceptual Modelling, New Zealand (2009)
68. Atkinson, C., Kühne, T., Sellers, B.H.: Systematic stereotype usage. Software and Systems

Modeling 2(3), 153–163 (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

