
Enhancing the Learning of Database Access
Programming using Continuous Integration and

Aspect Oriented Programming*
Beatriz Pérez

Departamento de Matemáticas y Computación
Universidad de La Rioja

Logroño, Spain
beatriz.perez@unirioja.es

Abstract—Database access programming is a noteworthy com-
ponent of Software Engineering (SE) education on databases
that students are expected to acquire during training for their
careers. In our university, we cover such an education in a course
that emphasizes the use of the JDBC API to access databases.
This paper presents our experiences in developing and running a
framework to enhance the learning experience of database access
programming, which is motivated by several factors. First, our
students face great demands on acquiring JDBC acknowledge,
and providing them with constructive feedback serves a critical
role. Second, the increasing number of students leads to high
efforts in managing and grading their assignments. Finally, we
consider of strategic importance to bring modern industrial SE
techniques into the classroom, so that students obtain a better
experience with industry practices.

Our framework draws upon constructive alignment and auto-
mated formative assessment, combining Continuous Integration
(CI) and Aspect Oriented Programming (AOP). We include
an innovative application of AOP, a programming technique
that aims to modularize inherently scattered functionality into
single functional units, to help students adopt well-established
JDBC best practices. We also use well-known industrial software
tools (Travis CI and GitHub) to manage and grade students’
assignments and support automated integration testing with
databases. The findings of this study, applied to a class of 53
students, suggest positive effects, such as motivate students to
implement JDBC best practices, streamline the management
and grading of their assignments, help them get familiar with
industrial tools, or improve their grades.

Index Terms—JDBC, Travis CI, GitHub, AOP, Integration
tests, Best practices

I. INTRODUCTION

Software engineering (SE) methods and practices, used in
industrial development projects, are in continuous change.
With this in mind, it is of strategic importance that SE
education is responsive for such changing industry trends,
aiming at bridging the gap between current SE education and
software industry [1]. In the last decades, there have been
different attempts from universities and other higher education
institutions to bring modern industrial software development
techniques into the classroom [1]. Among such industry prac-
tices, we note version control, code reviews, or Continuous
Integration (CI) [2] which mainly aims at automating the
integration of code changes from multiple contributors into

a single software project located in a central repository, after
which automated builds and tests are run. These practices are
supported by a range of techniques, tools and technologies,
such as Travis for CI, or GitHub for version control [2].

In the particular case of programming courses, several pro-
posals have attempted to replicate modern industry practices
in the classroom. Most of those works use CI tools to teach
basic programming courses, normally, in the first years of
SE degree programs at universities [3]–[5]. In these courses
students learn basic concepts of programming languages (such
as Java or C++) and practice, among others, design and
implementation of code in a CI environment. Later, students’
deliveries are checked against unit tests where students’ classes
and methods are tested. The skills and acknowledge acquired
through first programming courses make students qualified to
face the challenges implied by other programming aspects that
encompass an added difficulty. This is the case of database
access programming, which is a noteworthy component of
SE education on databases (DBs). In the university where
this work has been conducted, we are covering such an
education in a course in the second year of a SE degree
program. The course addresses the use of Java Database
Connectivity (JDBC) [6], which is a mechanism that allows
Java to communicate with relational databases. As part of
the course, students have to perform several programming
exercises that use JDBC to access DBs. In this case, instead of
unit tests, students’ programs are checked against integration
tests, where the combination of such programs with DBs is
tested. Both designing and managing integration test entails
an added difficulty because of the need to consider additional
components (databases) to combine [7]. Following software
industry’s recommendations, teachers also encourage students
to adopt (the often forgotten) well-established JDBC best
practices, promoting better software quality and sustainability.
Until now, students submit their assignments through the
course’s management system (CMS) and teachers have to
check them manually on their computers, which makes of
managing and grading deliveries a hard task (Section II).

In this paper, we outline our proposal for overcoming such
challenges, which keeps in mind six main motivating ques-

tions, distinguishing among those student-focused: 1) motivate
and encourage students to implement JDBC best practices, 2)
improve the development and delivery of their assignments,
easing automated testing, 3) help students get familiar with
modern industrial tools, and 4) improve their grades; and
those teacher-focused: 5) streamline the management process
of students’ assignments, and 6) their grading. To achieve
such goals, we have set out a framework that is drawn upon
constructive alignment and automated formative assessment,
combining (i) the integration of CI and version control (Travis
CI and GitHub) in our course, to manage and grade stu-
dents’ assignments and to support the execution of database
integration tests, and (ii) a novel application of the Aspect
Oriented Programming (AOP) paradigm [8] which, together
with our integration tests, implements our automated formative
assessment approach to help students reach JDBC learning
goals, focusing mainly on the adoption of best practices
(Section III). We have applied our framework to 53 students
attending the course. The findings drawn from the conducted
case study show that the six main motivated intentions are
achieved (Section IV). Related work and a discussion about
these findings, including limitations, challenges and lessons
learned, appear in Sections V and VI, respectively. Finally,
conclusions are drawn in Section VII.

II. COURSE BACKGROUND AND MOTIVATION

Our programming course includes in its program principles
and concepts involved in the development of database access
applications, such as 1) general issues of architectures of
database applications (focusing on the three-tier architecture:
presentation, business and persistence layers), and 2) tech-
niques to implement the persistence layer (such as JDBC
or Object-Relational Mapping -ORM- frameworks). JDBC
constitutes the main part of the course syllabus, where students
are instructed about basic and advanced aspects of this library.
Traditionally, the format of the course alternates master classes
(28 hours in total) with 11 laboratory sessions (2 hours
each), to transmit conceptual knowledge and procedural skills
combining theory and practice. We devote 6 master class
hours to teach JDBC, where lectures are also interspersed with
guided group discussion periods and problem solving activ-
ities. Students perform 5 JDBC laboratory assignments (one
session per each assignment), where they are asked to develop
JDBC programs which interact with different MySQL/Oracle
DBs. These activities allow them to consolidate the knowledge
transmitted in master classes. Besides the JDBC library itself,
students learn JDBC best practices (BPs) as suggested in spe-
cialised bibliography on the topic [9], [10], which mainly help
write effective and robust JDBC code, while ensuring optimal
performance of it. The main intended learning outcome of
the course regarding JDBC is that the students acquire the
knowledge and skills necessary to properly use this library,
paying special attention to the adoption of well-established
JDBC BPs. For a better understanding of our approach, we
next describe some JDBC background information, and go on
to present the issues that motivate this work.

1 Connection conn = null;

2 PreparedStatement stmt1, stmt2, stmt3 = null; ResultSet rs = null;

3 try {

4 conn = DriverManager.getConnection(<parameters>);

5 conn.setAutoCommit(false); //Turn off the auto commit mode

6 stmt1= conn.prepareStatement(SelectSQL);//Create PreparedStatement

...

7 rs= stmt1.executeQuery();//Execute the Select and get the ResultSet

8 while(rs.next()){ //Iterate through the ResultSet and manage results

9 Integer id =rs.getInt(1);//Use getXXXs referencing columns by index

10 if(rs.wasNull()) { id = null; } { //Check null values

...

11 }

12 stmt2=conn.prepareStatement(ModificationSQL1);//Create PreparedStatement

13 stmt2.executeUpdate(); //Execute the Modification instruction

...

14 conn.commit(); //Commit transaction

15 }

16 catch (SQLException e) {

17 try { if (conn != null) conn.rollback();} //Rollback transaction

18 catch (SQLException e) { //Handle } //Handle

20 }finally { //Clean up all resources

21 try {if(rs/stmt1../conn != null) rs/stmt1../conn.close(); }

22 catch(SQLException e) { //Handle}

23 } //end finally

Fig. 1: Code fragment illustrating a usual JDBC program

A. JDBC Fundamental

The JDBC API [6] consists of a collection of (mainly)
interfaces and classes which allows Java programs to interact
with databases. Figure 1 illustrates a fragment of a usual JDBC
program which executes both data retrieving (Select) and
modification instructions (Insert/Update/Delete). Briefly
speaking, to start working with JDBC, first you need the
DriverManager class which is used to keep track of available
JDBC drivers and to generate a database connection, that is,
a Connection object which represents the interconnection
between the Java client program and the database. Connections
allow generating database statements and are represented by
the Connection interface, whose main methods are close,
commit, rollback and setAutocommit. These three last
methods are used when enabling manual-transaction support
instead of the auto-commit mode that JDBC uses by default.
setAutocommit is used to set the auto-commit mode so
that, if it is turned on, every SQL statement is committed
to the database upon its completion and, if it is turned off,
the SQL statements would need to be committed/rollbacked
explicitly by using the commit/rollback methods, so that
all statements are grouped in one transaction (see lines 5,
14 and 17). The Statement interface provides methods
for executing queries, such as executeQuery, for retriev-
ing data (Select), and executeUpdate, for modifying
data (Insert/Update/Delete). PreparedStatement is a
Statement sub-type which allows executing pre-compiled
SQL statements on databases (thus, improving performance),
and prevents SQL injection attacks [6]. When executing a
Select, you get back a ResultSet. The ResultSet inter-
face is used for accessing the set of results returned by a
Select (see the next method in line 8). A getXXX method
for each data type XXX can be used to retrieve column values
(using either column index or column name as parameter,
being this latter option not recommended because of perfor-
mance reasons [9]). When retrieving a null value from a non-
primitive column, the corresponding getXXX method gives

TABLE I: Best practices and defined AOP pointcuts

BP Description Pointcuts

BP1 Properly end up all resources (ResultSets, if any,

Statements/PreparedStatements and Connections).

Figure 1: line 21

Per each JDBC resource, two pointcuts are defined which check if such a resource has been created/closed,

respectively, that is, these two pointcuts capture the invocation of the corresponding create/close methods,

respectively (8 pointcuts).

BP2 Use PreparedStatementswhen possible, instead of Statements.

Figure 1: lines 2, 6 and 12

The pointcut defined to check if a Statement is created, is used to check that Statements are used (instead of

PreparedStatements).

BP3 Disable autocommit mode when performing modifications on the database, and commit/

rollback when corresponds.

Figure 1: lines 5, 14 and 17

Pointcuts are defined to check if, when the executeUpdatemethod is invoked, setAutocommit/commit

methods are also invoked, that is, a pointcut captures de invocation of the executeUpdatemethod and two

ones capture the call to setAutocommit and commit, respectively (3 pointcuts).

BP4 Reference table columns by number when retrieving row values with getXXX.

Figure 1: line 9

A pointcut is defined to check if getXXXmethods are invoked with a string as argument representing a column

name, that is, such a pointcut captures calls to any getXXXmethod with a string as parameter (1 pointcut).

BP5 Use wasNull to check if retrieved rows lack values.

Figure 1: line 10

Pointcuts are defined to check if, when a getXXX method is invoked being XXX a primitive type, the method

wasNull is also invoked, that is, a pointcut captures the call to any getXXXmethod and another one captures

calls to wasNull (2 pointcuts).

back a null constant, but if it is primitive, it gives back a
0 (e.g., getInt returns 0 if the value retrieved was either 0
or null). Thus, wasNull is used to know if the last column
extracted from the ResultSet was null (see line 10). In the
course we also teach a set of JDBC best practices, described
in Table I, collected from specialised bibliography [9].

B. Problem Definition

As for the management of assignments, the course’s CMS
only allows distributing and delivering them, that is, it does
not provide an integrated environment for grading them. Until
now, students deliver their assignments through the CMS
and then the teacher has to manually check them on her/his
personal computer. Per each JDBC method developed by a
student in an assignment, not only does the teacher must
verify its correct functionality, but also she/he must check
if the student has adopted JDBC best practices. Regarding
checking functionality, until now, it is performed by verifying
if each method passes its integration tests. This process gets
complicated if the student’s code does not pass the tests
or even it does not compile, increasing the time and effort
devoted by the teacher to find the problem. As for checking
the adoption of best practices, it requires the instructor to go
through the code line by line, informing the student about not
adopted best practices. This task turns out to be a lot more
work, since we have noticed that students tend to give best
practices scant attention. Another aspect to consider refers to
when students ask for office hours to get feedback on their
work. Until now, they come to the teacher’s office with their
work stored in their USB flash drives, which the teacher inserts
into her/his personal computer, with the security risks it may
entail, also taking up valuable time.

In this process, tests play a significant role, both for teachers
(for grading), and for students (for evaluating their projects
during development). However, integration test design brings
an added difficulty against unit tests design. For unit tests, this
is easy as long as we stay away from global state. However,
this becomes a bit of a challenge with integration tests that
interact with DBs, since one test can corrupt the DB and
cause subsequent tests to fail. Thus, it requires the DB to be
in a consistent starting point each time a test is run. Until
now, either students while developing their assignments or
teachers when grading the deliveries, needs to manually clean

the database and sets up data between test runs. This tedious
task results in a disadvantage added to the just mentioned
drawbacks around assignments’ management and grading.

III. OVERVIEW OF OUR FRAMEWORK

Aiming at facing the previous challenges, we have based
upon constructive alignment considering also automated for-
mative assessment, combining Continuous Integration (CI)
and Aspect Oriented Programming (AOP). Constructive align-
ment [11] is based on the idea that teaching and learning
activities, as well as assessment tasks, must be aligned with
the outcomes students are expected to achieve from their par-
ticipation in the course. Assessment tasks are often classified
into formative, interim and summative [12]–[14]. Formative
assessment aims to assess students’ performance during the
instructional period, for the purpose of providing feedback
that they can use to improve their learning. Interim assessment,
which takes place several times during the instructional period,
aims both to assess students’ knowledge and skills relative to
a specific set of academic goals, and to inform decisions at the
classroom level and beyond. Summative assessment, which is
conducted at the end of the learning process, aims to assess
how well students have performed on a certain task, typically
to determine a final grade [12]–[14].

In the course at hand, the students’ performance is evaluated
through three evidences of learning, each mainly associated
with one of the previous assessment types. First, 5% (0.5
points) of the course grade corresponds to students’ efforts
in the 11 formative laboratory assignments (each of the 5
JDBC assignments is worth around 0.045 points). Second,
students take 2 interim partial exams: A1, taken after the
two firsts JDBC assignments, and A2, taken after all the
JDBC assignments, which are worth 5% and 20% (0.5 and
2 points), respectively. Third, representing the remainder 70%
(7 points), a summative final exam is taken at the end of the
course, where JDBC is not evaluated. Thus, starting from the
outcome we intend students to learn regarding JDBC, and
considering the teaching/learning activities defined to enable
learners to meet that outcome (as presented in Section II),
we have revised our formative assessment methods to ensure
they are consistent with such outcome, keeping in mind our
identified problems. More specifically, we have: 1) revised
the testing methods included in our JDBC assignments so

as to provide students with appropriate formative feedback
to enhance their JDBC learning, and 2) adopted well-known
industrial software tools both to streamline the management
process of students’ assignments and to support the automated
execution of such tests. At this point it is worth noting that,
although we mainly focus on providing students with support
to reach JDBC learning goals through our JDBC assignments
(formative), such assessment items also help teachers assess
how well students have learned (summative). Grading practices
or assignments has long been a controversial issue among
educators and academics, that we will discuss later on.

A. Automated Formative Assessment
The most common form of assessment for programming

assignments is to check that the program functions according
to the given requirements [15]. However, in our case, checking
just for functionality does not ensure us that students have
adopted JDBC best practices. For this reason, we need to use
specific methods to check both aspects.

Regarding functionality, as stated before, the integration
tests used until now lead us to face several challenges when
interacting with databases. Aimed at addressing them, we have
decided to use DbUnit [16], a database testing framework
based on JUnit which allows us to setup and teardown a
database between tests, as well as to check expected table
contents once a test completes. Before each test run, DbUnit
exports to the database an XML file with the dataset of
the initial database state. Once the test completes, it makes
comparisons between the actual data in the database, and the
expected datasets (given also as XML files), so as to determine
the test’s success or failure. In particular, students might use
test failures as hints of errors in their code.

As for the adoption of best practices, we have based on
the Aspect oriented programming (AOP) paradigm [8], [17].
AOP promotes software design so that the designer focuses
on the functional (core) concerns of a system as opposed
to non-functional concerns (e.g., logging or security). Non-
functional concerns tend to cut across the system rendering it
difficult to understand, maintain, and modify. AOP builds on
top of existing programming methodologies, augmenting them
with constructs to modularize these crosscutting concerns,
while the core concerns are implemented using the chosen
base methodology. AOP allows a developer to modularize
these crosscutting concerns into entities called aspects, which
can then be woven into the core code by an aspect weaver,
building the final system. Among the AOP language extensions
for Java, we use AspectJ [18], which expresses crosscutting
mainly through join points, which are well-defined points
in a program execution (e.g., objects’ creation or methods’
call), and pointcuts, which are distinguished selections of
join points that meet some specified criteria (e.g., the call
of a method with a certain name or with a parameter of a
concrete type). After a pointcut selects join points, the focus
is augmenting those join points with additional or alternative
behaviour (e.g., that related to logging). Advices are method-
like constructs defining such a complementary crosscutting

1 pointcut connection_create() : withincode(* *.Persistence.*(..)) &&

2 call(* java.sql.DriverManager.getConnection(..));

3 pointcut connection_close() : withincode(* *. Persistence.*(..)) &&

4 call(* java.sql.Connection.close());

5 after():connection_create(){ // Advices

//We access the array associated to the tested JDBC method, of the dataMap map

6 int[] aux=dataMap.get(thisEnclosingJoinPointStaticPart.getSignature().getName());

7 aux[6] += 1; //aux[6] stores the number of created Connections

// We update the array in the map

8 dataMap.put(thisEnclosingJoinPointStaticPart.getSignature().getName(), aux);}

9 after():connection_close(){ …

10 int[] aux=dataMap.get(thisEnclosingJoinPointStaticPart.getSignature().getName());

11 aux[7] += 1; //aux[7] stores the number of closed Connections

12 dataMap.put(thisEnclosingJoinPointStaticPart.getSignature().getName(), aux);}

13 protected void JDBCAdoption(...) { ...

14 if (aux[6] != 0 && aux[7] == 0) {

15 logger.log(Level.INFO, indent+ANSI_YELLOW+"\t Check your code! Your JDBC method

16 creates a connection but, after finishing it, it does not clean up the resource.");

17 }else if (aux[6] != 0 && aux[6] == aux[7]) {

18 logger.log(Level.INFO, indent+ANSI_GREEN+"\t Well done! Your JDBC method creates

19 a connection and you also clean up the resource."); ...

Fig. 2: Code fragment of our aspect

******************* Method: Employee sol.Persistence.getEmployee(String) ********************

Args: 1 AGar01

************** Method: Branch sol.Persistence.getBranch(Connection,String) **************

Args: 1 ConnectionImpl 2 BrZa01

Well done! You create as many PreparedStatements as the ones you close (1)

Well done! You create as many ResultSets as the ones you close (1)

Well done! Your JDBC method takes a connection from another method and you just uses it.

Check you code! You are invoking getXXX methods using column names, which is not recommended.

************ Method: End Branch sol.Persistence.getBranch(Connection, String) ************

Well done! You create as many PreparedStatements as the ones you close (1)

Well done! You create as many ResultSets as the ones you close (1)

Well done! Your JDBC method creates a connection and you also clean up the resource.

Check you code! You invoke getXXX methods with primitive types, but you do not check for null values.

****************** Method: End Employee sol.Persistence.getEmployee(String)*******************

Fig. 3: Best Practices feedback report for a JDBC program

behavior at join points. Depending on the declaration, advice
bodies are executed before or after a specified join point,
or they can surround (around) a join point. Finally, aspects
embed crosscutting logic by including the defined pointcuts
and advices [18].

We have based on AOP to monitor the JDBC methods devel-
oped by each student while they are tested, so that not only are
we able to check if the student adopted JDBC best practices,
but we can also provide the student with feedback on her/his
progress regarding the implementation of best practices. To the
best of our knowledge, it is the first work that proposes this
paradigm to check the adoption of programming best practices.
We have designed an AspectJ aspect, called AOP module
(available at [19]), which is automatically applied each time
a student’s JDBC method is run, monitoring it. This aspect
defines suitable pointcuts, 15 in total, to capture occurrences
during the execution of each JDBC method. The captured data
allow us to identify if the method implements BPs. Table I
shows, per each BP, a description of the pointcuts defined to
check its adoption, while Figure 2 shows an extract of our
aspect. For example, to check if connections are ended up, we
define two pointcuts to capture calls to getConnnection,
in order to know if a connection has been created, and to
close, in order to know if such a connection has been finally
end up (see lines from 1 to 4 in Figure 2). We note that the
aspect searches for occurrences that take place in methods
within a Java class named Persistence, which corresponds
to the name students must give to the class that implements
the persistence layer in each assessment (see lines 1 and 3).
The defined pointcuts are accompanied by suitable advices,
each one devoted to record the number of times the associated

[all tests pass][at least one
test fails]

[tests fail or
not implemented

BP aspects]

[tests pass and
BP aspects

are implemented]

[wants to provide detailed
student's feedback]

At any time

[decides
to submit
the code]

Student Travis CI Teacher

[wants to grade]

[wants to take a
quick look to

the code]

[wants to
grade]

[wants to
grade]

Legend

GitHub
Classroom

Travis CI Eclipse IDEGitHub Database
access

Fig. 4: Workflow per assignment

join point is matched during the execution of the JDBC
method being tested (e.g., see the advices defined in lines
from 5 to 8 and from 9 to 12, respectively). Such data is
automatically stored by the advices in a Java Map. This Map
has, the names of the tested JDBC methods, as keys, and
arrays with the data gathered by the advices for such methods,
as values (e.g., lines 6-7 and 10-11). Finally, an additional
method (see lines from 13 to 19) performs specific checks
per each tested JDBC method (e.g., that the number of calls
to getConnnection and close match), using the data in
the associated array, and logs suitable coloured messages into
the console of the student’s IDE (our students use Eclipse
as IDE), informing about the BPs implemented by the tested
method. Another pair pointcut/advice, respectively, captures
code exceptions, and parses the overall stack trace into an only
log message showing the exception class, a link to the code
line, and details about what caused the exception. As a result,
each test run displays, for the JDBC tested method, a coloured
feedback report similar to the one in Figure 3 showing, when
applicable, hints of the execution errors in the code (in red),
not adopted BPs (in yellow) and motivational messages (in
green), using indented text when invoking nested methods.

B. Managing Students Assignments
For managing students’ assignments, we have used Travis

as one of the most popular CI open-source services which can
be easily integrated with cloud repositories, such as GitHub,
an open-source repository service for collaboration and version
control. Specifically, based on the steps given in [20], we have
created an organization in GitHub Classroom which allows us
to create programming assignments and distribute them to the
students enrolled in the course. Then, following [21], we have
set up Travis so that 1) it has access to our organization (and
thus to all students’ assignments), and 2) it is able to automati-
cally run suitable tests designed by the teacher every time new
code is pushed up to a student’s repository. After that, per each
course’s assignment, we just need to set up a template repos-
itory in GitHub Classroom, including a Travis configuration

file (with, e.g., database installation/configuration aspects, or
data regarding how to setup and run tests), the instructions for
students, the starter code, and a test suite (with our integration
tests and the AOP module) that will run against the students’
code checking for its correctness and best practices.

Figure 4 depicts a workflow with the interaction between
participants and the Travis CI server, where each swimlane
groups the activities performed by each actor. Having defined
an assignment with the template repository to be completed
by each student, GitHub Classroom allows instructors to send
out an invitation to students, which, when accepted, will
automatically setup a new private repository in GitHub for that
student for the current assignment (see the Student’s swinline
in Figure 4). The students can easily clone the repository in
Eclipse to start coding and run integration tests. Each time
a student runs a test, best practices are also automatically
checked for compliance by using our AOP module. Both the
tests and the AOP module are used as a self-evaluation tool
to check which test has passed/failed and at what extend best
practices have been implemented, displaying the correspond-
ing feedback report as coloured messages. The student can
work on her/his assignment either until it is completed or
until the due date for the assignment. We thus help students
by providing feedback on their work and let them improve it
accordingly. Since students do the assessment work at least
partly by themselves, it also reduces the teacher’s assessment
workload. At any moment during the development of the
assignment and, in particular, when the student wants to hand
in the assignment, she/he can decide to push the code to
her/his GitHub repository to be accessible via the web (see
bottom of the Student’s swinline in Figure 4). GitHub will
automatically notify Travis of the change, which in turn, will
clone the repository and automatically run the configured
integration tests, together with the AOP module (see Travis’s
swinline in Figure 4). Whenever students want, they can also
check Travis feedback through the corresponding Travis’ URL,
which shows, in addition to the information displayed in the

Eclipse console, the build status in green colour, if all tests
pass, or in red, otherwise. When the student asks for help
(or even when the teacher wants to grade a student), the
teacher can pull the student’s repository from Eclipse, run the
tests, inspect the code, and give her/his comments of praise,
criticism or advice (see the Teacher’s swinline in Figure 4).
Furthermore, teachers can easily check the correctness of a
student’s build by consulting Travis feedback, or access the
online GitHub assignment’s repository to revise the code. This
way of working allows creating a real-time feedback loop be-
tween instructor and students, and streamline the management
process and grading of deliveries. Supplementary material,
with a template assignment and a more detailed explanation
of the proposed workflow, is available at [19].

IV. FINDINGS

Next, we highlight the results obtained from the appli-
cation of our framework to a class of 53 students in the
last academic year 2019/20. We based on four data sources:
students’ qualifications, logs obtained from the execution of
the students’ tests, feedback gathered from the students, and
teachers’ perceptions.

A. Students’ qualifications

As described previously, the JDBC skills acquired by the
students are evaluated through two varied evidences of learn-
ing. On the one hand, 5 JDBC laboratory assignments, which
are worth around 0.045 points each. On the other hand,
students have to take two partial exams: A1 and A2, which are
worth 0.5 and 2 points, respectively. The remainder 7 points
correspond to the final exam, where JDBC is not evaluated.
JDBC laboratory assignments and exam A1 are low-stakes
assessments we mainly use (as other authors argue [22]–[24])
to encourage students to be actively engaged in their JDBC
learning and pay more attention to course content, while they
get more prepared for high-stakes assessments (i.e., exam A2).
Given the low weight of such assessment strategies, in this
analysis we have decided to base on exam A2 marks. We
have compared the marks obtained by the students who have
attended the course in 2019/20, with those obtained by the
students in the previous year 2018/19. Both courses were
taught by the same instructor (the author of this paper), which
provides a control for instructor variability and allows for more
accurate comparisons of students’ JDBC learning.

The results obtained from our analysis were very good,
even better than expected. On the one hand, results show
that students in 2019/20 raise their score average by 59.57%
(means 1.50, in 2019/20, and 0.94, in 2018/19). On the other
hand, we have asked ourselves if we could come to the
conclusion that our proposal has an effect on the scores of
students attending the course in this last academic year, and
that there is a significant difference between the scores of
both courses. Thus, the null hypothesis (H0: µ18/19 = µ19/20)
assumes that the independent variable (learning method) has
no effect on the dependent variable (score), that is, there are
no differences between means, while the alternative hypothesis

(H1: µ18/19 6= µ19/20) assumes that the learning method has
an effect on students’ scores (i.e., the means are different).
After performing a t-test, the results yielded (t(90)=5.74,
p<0.01, d=1.15) statistically significant differences between
the exam scores of both groups, so we can reject the null
hypothesis and accept the alternative one. Cohen’s [25] also
showed a large effect (d=1.15). Furthermore, the instructor
detected a significant improvement regarding the adoption of
BPs in students’ assignments in 2019/20. Since both groups
are considered to be equal in terms of the knowledge level
concerning the course, we could conclude that the method has
a significant effect on the scores. To replicate this analysis,
the data and a documented R script can be found at [19].

B. Logs from tests’ executions

Aimed at finding students’ trends regarding how they adopt
best practices, we have configured our AOP module to output
formatted messages not only to the Travis/Eclipse console (as
described previously), but also to a log file (in a CSV format
for data exploitation, including the data shown in console
and also timestamps). Each student’s assignment repository
contains such a log file, which is populated in each test run.

We have used Process Mining Techniques for extracting
information from such log files. Generally speaking, the basic
idea behind process mining is to extract knowledge from event
logs recorded by an information system. An event in an event
log refers to an activity and is related to a particular process
instance [26]. In our particular situation, the AOP module
creates a new event in the external log file each time a JDBC
method is tested, recording the information regarding the best
practices adopted by the method. There are different process
mining techniques to analyze log files. As stated in [27],
dotted chart and other similar formats that organize temporal
data along a time axis are easy to interpret and can allow
for visual identification of patterns. More specifically, a doted
chart shows the spread of events over time by plotting a dot
for each event in the log. In our particular case, we have used
the Dotted Chart Analysis utility of the ProM process mining
framework [28] to investigate patterns of students’ behaviour
regarding the implementation of best practices between test
runs. For such a task, per each student, we have first merged
the log files obtained from her/his assignments into an only log
file and, later, we have processed it obtaining a log file with
4 columns including: the anonymous student ID (student), the
name of the tested method (method), the timestamp associated
to the test run (timestamp), and the level of adoption of best
practices by the method in such test run (adoptedBPs). This
last column contains a value ranging from 0 (the method does
not adopt any BP) to 4 (all BPs have been adopted). Finally,
taking this file as source of the Dotted Chart Analysis utility,
it spreads, per each method, its test runs over time, showing
each test run in a different colour depending on the value
of the adoptedBP column. Among the results obtained from
this analysis, we have observed that students are used to test
all methods each time they test each assignment, instead of
testing just the method they are developing. Additionally, we

N Questions

Q1
Do you find GitHub useful to store your assignments, so that the teacher

can easily access them to provide immediate feedback?

Q2 Do you find it easy to hand in your assignments through GitHub?

Q3 Do you find it easy to use GitHub from the Eclipse IDE?

Q4 Would do you use GitHub for your personal projects?

Q5 Do you find Travis suggestions useful?

Q6
Do you feel confident when using integration tests to check the

functionality of your JDBC code?

Q7 Do you consider DbUnit useful to setup databases for integration tests?

Q8
Have you found it useful to use the AOP module to check the

implementation of JDBC best practices (BPs)?

Q9
Do you think that the use of the AOP approach has motivated you to pay

more attention to the implementation of JDBC BPs?

Q10
Do you think it would be a good idea for other courses to use AOP to

implement BPs in other programming languages?

Fig. 5: Likert scale and open questions

have found out that students usually start testing methods with
not, or scarcely, implemented best practices, and finally go
through the complete, or almost complete, adoption of BPs.
Supplementary material, including log files and their analysis,
can be seen in [19].

C. Feedback from students

To know students’ perception on the experience, we con-
ducted a voluntary and anonymous survey composed of a
set of 13 questions: (i) 10 mandatory Likert scale questions
(with responses from ‘1 - strongly disagree’ to ‘5 - strongly
agree’), where students could give their opinion on three
different aspects (GitHub and Travis, integration tests and the
AOP module), (ii) 1 optional open question, where students
were encouraged to reflect upon the proposal, and make
their comments, regarding their experiences and suggestions,
respectively, and (iii) 2 questions asking students to choose
between GitHub and the course’s CMS to perform different
tasks. 33 out of 53 students took part in the survey (62,26%
response rate), perhaps because it was optional.

Figure 5 shows the Likert scale and open questions, while
students’ responses are shown by means of the boxplot in
Figure 6, and the diverging stacked bar chart with percentages
in Figure 7. The first five questions (from Q1 to Q5) refer to
students’ perception of the use of GitHub and Travis. The
usefulness of GitHub both to store (Q1) and deliver (Q2)
their assignments was rated very high (see, e.g., the very high
medians in Figure 6). Most of the students find it easy to use
GitHub (Q3). As for Q4, students reflect a positive appraisal
of the use of GitHub for their personal projects (see, e.g., the
high median in Figure 6). Considering students’ comments
from the open question, some students report that they feel
really comfortable using GitHub for assignments’ management
and positively value the use of both GitHub and Travis in
the course, so that they can get familiar with commonly used
industrial tools. Although a small majority of students are
neutral regarding if they find Travis suggestions useful (see
the median or the 64% value of question Q5 in Figure 6 and
Figure 7, respectively), 24% of students think they are helpful

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1
2

3
4

5

Question

A
n
s
w
e
r

Fig. 6: Boxplot of the likert scale analysis (the ’s are outliers).

0%

0%

0%

0%

0%

0%

0%

0%

15%

12%

100%

100 %

91%

88%

88%

85%

82%

79%

76%

24%24%

52% 24%

48% 30%

36% 45%

48% 36%

48% 39%

18% 70%

18% 73%

12% 88%

12% 88%

6% 6%

15%

0%

0%

9%

12%

64%

9%

12%

18%

21%

15%Q10

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Q1

100 50 50 1000

Percentage

Response

Fig. 7: Diverging stacked bar chart of the likert responses.

(see Figure 7). Students’ assessment regarding integration tests
is shown in the answers to the next pair of questions (Q6 and
Q7). As for Q6, a large amount of students feel confident
when using integration tests to check code’s functionality of
their JDBC methods (see, e.g., the high mean in Figure 6).
As comments, some students positively value to get instant
feedback regarding if they are on the right track. As for Q7,
a representative sample of the responses consider the use of
DbUnit useful to manage test data (see the very high median
in Figure 6 and 88% in Figure 7). In the open question,
some of them positively appreciate its independence on any
particular database environment. The last block of questions,
from Q8 to Q10, deals with the students’ perception of the
AOP proposal for checking JDBC best practices. Most of
the students agree on the effectiveness of the AOP aspect to
help them check the adoption of best practices (Q8). As for
question Q9, results indicate that most of the students feel
that the use of the AOP module motivated them to give more

attention to the implementation of JDBC BPs. When asked
about whether it would be a good idea for other courses to
adopt AOP to implement BPs in other programming languages
(Q10), most of students agree (see, e.g., the high median in
Figure 6). Some students also report that they really appreciate
the feedback (hints, not adopted JDBC BPs and motivational
messages when they succeed) reported by the AOP module.
Finally, in the case of the remainder 2 questions regarding
the use of the course’s CMS or GitHub, around 90% prefer
GitHub to the CMS to distribute the template assignments (the
remainder 10% keep neutral), while 77% prefer GitHub to the
CMS (8%) to hand in the assignments (being 15% neutral).

D. Teachers’ perceptions

While setting up the course in GitHub Classroom and its
connection to Travis constituted an easy task thanks to the
available documentation [20], [21], most of the effort spent
by the instructor in the beginning was devoted to configuring
each assignment’s repository. More specifically, we need to
configure each assignment’s repository to setup the corre-
sponding database in Travis; while Travis gives support for a
wide number of databases (e.g., MySQL), for other databases
(e.g., Oracle), we need to explicitly install and configure
them. Additionally, we devote extra time to design quality
DbUnit tests [16] for each assignment, task which requires,
for example, to setup and teardown databases, hand special
datatype values, or apply performance tricks to speed up tests.
We note that, once we have configured repositories in both
MySQL and Oracle, and designed DbUnit tests, we can reuse
some of these details to get a head start for next assignments
(for example, assignments that share a database will use the
same database configuration in Travis and the same setup and
teardown aspects in DbUnit tests).

As for time spent on feedback and grading, we do not
have registered data from previous years, so we can not
provide an objective comparison with previous years, but give
our perceptions. We have experienced a significant reduction
in working times, specially in grading. As such, per each
assignment, the teacher can check both if integration tests are
passed and if best practices are adopted, just by accessing
Travis and taking a quick glance at its feedback. It usually
takes around 1 minute. Depending on the previous results, the
teacher can decide to manually inspect the code on GitHub,
which usually takes another 2-3 minutes of additional time.
With the previous system, this process used to take around 20
minutes (we have to download the assignment from the CMS,
import it into Eclipse, configure the local database, run tests,
manually inspect the code to check BPs, etc.). Thus we have
observed a significant reduction of time.

V. RELATED WORK

Our proposal for enhancing JDBC learning mainly relies
on adopting CI techniques, and providing automatic formative
assessment based on integration tests and AOP.

On the one hand, the implementation of modern industry
practices, such as CI, in SE courses is not new. Focusing on

programming courses, several works have used CI tools to
teach (mainly) basic programming courses, with motivating
outcomes, some of them common to ours, such as improving
the management process of students’ assignments and effi-
ciency of deliveries [3], [4], [29]–[33], providing real-time
formative [3], [4], [29], [32]–[34] or summative [3], [4], [29],
[33] feedback, streamline grading of students’ tasks [3]–[5],
[29], [33], [35], improving students’ grades [4], [31] or im-
proving collaborative learning and project management [34],
[36], [37], while exposing students to industry tools.

On the other hand, a large number of approaches to au-
tomated program assessment can be found in the literature
(e.g., see surveys [15], [38], [39]), which mainly differ on the
kind of feedback they provide. Based on the types of feedback
components identified in [38], our proposal mainly focuses on
providing knowledge about both mistakes and how to proceed.
In the former case, we inform about solution errors, such as
runtime errors that are reported by the AOP module, and test
failures, shown by the integration tests. In the latter case, our
AOP module mainly provides hints and solutions for “error”
correction (that is, what is needed to be done to adopt a not
implemented BP). To the best of our knowledge, our approach
is the first one that provides automatic formative feedback
to help students adopt programming best practices, and uses
AOP (commonly used for system monitoring purposes) to give
such an assessment, encouraging and motivating students to
implement best practices. As for the technique to generate
feedback [38], our proposal, as well as the previous cited
CI-based solutions that provide formative assessment [3], [4],
[29], [32]–[34], bases on dynamic code analysis, using existing
test frameworks for automated testing. However, while those
works use JUnit, for unit tests, we use DBUnit, for integration
tests, which becomes a bit of challenge as shown previously.

VI. DISCUSSION

In this section, we discuss fine-grained aspects of the
proposal, highlighting findings and lessons learned (in bold
text), and limitations (in italic text). We have organised this
discussion around four different aspects.

A. Assignments’ management and grading, and industrial
tools’ familiarization

Preliminary results show that the intervention benefited
all parties involved. From the students’ feedback, we can
conclude that the students value positively the use of GitHub
not only for storing and handing in their assignments
(Q1/Q2), but also for their personal projects (Q4). Even,
they prefer this tool to the course’s CMS to distribute and
hand in assignments; while delivering assignments just re-
quires accepting the corresponding teacher’s GitHub invitation,
handing in an assignment is reduced to commit the work from
the Eclipse’s Git perspective. In contrast, results shown that
most of students pay little attention to Travis feedback (Q5).
Our personal perception is that, having been developing and
testing their projects using Eclipse, students probably are used
to check their feedback in the Eclipse console view. Thus, they

would not have any need for checking it again through Travis.
Regardless, students state that the proposal helps them get
familiar with both industrial tools.

From teachers’ point of view, although some effort was
spent in the beginning to configure assignments, the benefits
in terms of efficiency are significant, both when students
ask for help and when teachers have to grade students’
assignments. In both cases, Travis feedback and GitHub online
access to students’ code have proven to be very useful. In this
regard, so that teachers can check last version of students’
work in both situations, students must get used to have
previously committed their code (which sometimes is a real
challenge, thus teachers have to be continuously reminding
students of this fact). We note that, with the proposed system,
student work is not on University owned servers (in contrast
to commercial CMSs), which might represent a limitation.

B. Grading formative activities

There has been quite a bit of controversy about grading
formative assessment activities or not. While some works
suggest that the evaluative aspect of grading may distract
students from a focus on learning [40], other authors argue that
low stakes assessments encourage students to pay more atten-
tion [22]–[24]. As mentioned above, the grade assigned to the
course’s laboratory assignments is of minor importance, and is
clearly designed to motivate students and acknowledge their
effort. However, when tasks are graded, some students may
decide to copy other students’ work [22], [41]. If undetected,
plagiarism can facilitate students’ progress through courses
without achieving the desired learning goals [41]. It makes
of detecting plagiarism an ongoing challenge each academic
year. In particular, we use the MOSS tool to detect cheating
on students’ assignments [41]. We have to recognise that, so
far, no incidence has been observed in the students, who
have shown responsibility in their assignments.

C. Usefulness and quality of the feedback

Focusing on the feedback itself provided by our test suite,
we find it useful that students can benefit from rapid
feedback loop, instead of waiting for work to be graded.
Additionally, the feedback report helps them gain an under-
standing of their work: (i) failing integration tests provide a
hint or guidance on what might be wrong, so students can iter-
atively improve on their work, and (ii) AOP feedback provides
rewarding messages highlighting adopted BPs (green), hints
regarding not adopted BPs (yellow) and execution errors (red).
In fact, students reported that AOP feedback has motivated
them to give more attention to the adoption of JDBC BPs.

As for the quality of automatic feedback, teachers often
agree that it is not possible to assess automatically all the
issues related to good programming [15]. Although not many,
there are some aspects that are not checked by our AOP
strategy, such as the use of optimized SQL instructions or
the creation of resources outside loops. We consider these
aspects not explicitly related to JDBC knowledge, but to
prior knowledge students are expected to gain from previous

courses. In any case, to provide a higher quality feedback,
the teacher can combine the automatic assessment provided
by our proposal with a manual inspection of the code, look-
ing for such few, not checked, aspects. Overall, given these
results and considering students’ feedback, our vision is that
our AOP-based approach could also be applied to other
courses which teach, for example, programming BPs or finite
resources’ management (e.g., connections, threads, or files).
As for technological aspects, the unique requirement for
using our approach is to have an AOP implementation
compatible with the programming language taught in the
course, which we do not consider a hindrance given the large
number of languages that implement AOP (e.g., PHP, Python
or C#) [42].

D. Students’ scores
Although the experiment has been applied only during an

academic year, which could be considered a limitation, the
results obtained suggest positive effects; not only have we
detected a significant improvement regarding the adoption
of JDBC best practices by the students attending the course
in this academic year 2019/20, but we have also experienced
statistically significant differences between the exam scores
of the analyzed academic courses. Thus, we can conclude
that, far from leading to a detrimental effect on students’ JDBC
marks, the experience has contributed to an improvement in
the academic performance.

Based on the highlighted results, we can say that the
main intentions that led to the introduction of the proposed
framework are achieved, which motivates us to continue with
this proposal.

VII. CONCLUSIONS

We have presented our experiences in developing and run-
ning a framework to enhance the learning of JDBC, combining
CI, mainly to manage and grade students’ assignments and
support the execution of integration tests, and a novel appli-
cation of AOP, mainly to encourage students to adopt JDBC
best practices. In the particular case of CI, although it has
already been used in teaching (mainly) basic programming
courses which use unit test, we have to face with integration
tests, which brings more complexity to testing design and
management. The proposal is underpinned by an academic
year experience, and by an evaluation using objective (stu-
dents’ marks and tests’ logs), and subjective data (students’
feedback and instructor’s perceptions). The results drawn from
this experience show that the six main motivating intentions
that led to the introduction of this intervention, are achieved.

As future work, we plan to extend our framework to cover
ORM programs, as the other technique taught in the course to
implement the persistence layer. As advanced previously, we
also intend to examine the possibility of applying our proposal
to other courses.

VIII. DATA AVAILABILITY

The data that support the findings of this study are openly
available in its supplementary material [19].

REFERENCES

[1] D. Oguz and K. Oguz, “Perspectives on the gap between the software
industry and the software engineering education,” IEEE Access, vol. PP,
pp. 1–1, 08 2019.

[2] G. B. Ghantous and A. Gill, “Devops: Concepts, practices, tools, benefits
and challenges,” in Proceedings of the 21st Pacific Asia Conference on
Information Systems (PACIS’17), 2017, p. 96.

[3] V. Gennarelli. (2017) Real-time feedback for students using
continuous integration tools. Available at https://github.blog/
2017-03-01-real-time-feedback-for-students-using-continuous-integra
tion-tools/. Accessed January 2021.

[4] ——. (2019) How GitHub Classroom and Travis CI improved
students’ grades - The GitHub Blog. At https://github.blog/
2019-02-12-how-github-classroom-and-travis-ci-improved-students-gra
des/. Accessed January 2021.

[5] E. Kral and P. Capek, “Towards using continuous integration tools to
teach programming courses,” in Proceedings of International Conference
on Computational Science and Computational Intelligence (CSCI’15),
2015, pp. 871–872.

[6] F. Maydene, J. Ellis, and J. Bruce, JDBC API Tutorial and Reference
(Third Edition). Addison-Wesley Pub Co, 2003.

[7] EDUCBA. (2021) Difference between Unit Test vs Integration Test.
Available at https://www.educba.com/unit-test-vs-integration-test/. Ac-
cessed January 2021.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.
Loingtier, and J. Irwi, “Aspect-oriented programming,” in Proceed-
ings of the European Conference on Object-Oriented Programming
(ECOOP’97), Berlin, Heidelberg, 1997, pp. 220–242.

[9] The O’Reilly Authors, Java Enterprise Best Practices. Expert Tips &
Tricks for Java Enterprise Programmers. O’Reilly, 2010.

[10] J. C. Gutjahr and A. Loew, “Scalability and Performance: JDBC Best
Practices and Pitfalls,” in Proceedings of the Net.ObjectDays Workshops,
2002, pp. 449–463.

[11] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
Education, vol. 32, pp. 347–364, 10 1996.

[12] B. S. Bloom, “Some theoretical issues relating to educational evaluation.
I RW Tyler (Red.), Education evaluation: New roles, new means.” 1969.

[13] B. S. Bloom, J. T. Hastings, and G. F. Madaus, Handbook on Formative
and Summative Evaluation of Student Learning. McGraw-Hill Book
Co, New York, 1971.

[14] M. Perie, S. Marion, B. Gong, and J. Wurtzel, “The role of interim as-
sessments in a comprehensive assessment system: A policy brief,” Dover,
NH: National Center for the Improvement of Educational Assessment.,
2007.

[15] K. M. Ala-Mutka, “A survey of automated assessment approaches for
programming assignments,” Computer Science Education, vol. 15, no. 2,
pp. 83–102, 2005.

[16] DbUnit. (2021) Version: 2.7.1-SNAPSHOT. Available at http://DbUnit.
sourceforge.net/. Accessed January 2021.

[17] G. Kiczales and M. Mezini, “Aspect-oriented programming and modular
reasoning,” in Proceedings of the 27th International Conference on
Software Engineering (ICSE’05). New York, NY, USA: ACM, 2005,
pp. 49–58.

[18] R. Laddad, Aspectj in action: enterprise AOP with Spring applications.
Manning Publications Co., 2009.

[19] Supplementary Material. (2021) Enhancing the Learning of Database
Access Programming using CI and AOP. Available at https://zenodo.
org/record/4434507.

[20] A. Jones. (2021) Set up your digital classroom
with github classroom. Available at https://github.blog/
2020-03-18-set-up-your-digital-classroom-with-github-classroom/.
Accessed January 2021.

[21] Education Travis CI. (2021) How can Travis CI help with your studies?
Available at https://education.travis-ci.com/. Accessed January 2021.

[22] I. J. M. Arnold, “Cheating at online formative tests: Does it pay off?”
Internet Higher Education, vol. 29, pp. 98–106, 2016.

[23] A. B. G. Alexandron, M.E. Wiltrout and J. Ruipérez-Valiente, “Assess-
ment that matters: Balancing reliability and learner-centered pedagogy in
mooc assessment,” in Proceedings of the Tenth International Conference
on Learning Analytics Knowledge (LAK’20), 2020, pp. 512–517.

[24] S. Schut, J. van Tartwijk, E. Driessen, C. van der Vleuten, and S. Heen-
eman, “Understanding the influence of teacher–learner relationships on

learners’ assessment perception,” Internet Higher Education, vol. 25, p.
441–456, 2019.

[25] J. Cohen, Statistical power analysis for the behavioral sciences. Rout-
ledge, 1988.

[26] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes (1st edition). Springer-Verlag
Berlin Heidelberg, 2011.

[27] P. Reimann and K. Yacef, Using process mining for understanding
learning. Handbook of design in educational technology. New York:
Routledge, 2013.

[28] M. Song and W. M. P. V. der Aalst, “Supporting process mining by
showing events at a glance,” in Proceedings of 17th Annual Workshop
on Information Technologies and Systems (WITS’07), 2007, pp. 139–
145.

[29] S. Heckman and J. King, “Developing software engineering skills using
real tools for automated grading,” 2018, p. 794–799.

[30] K. L. Reid and G. V. Wilson, “Learning by doing: introducing version
control as a way to manage student assignments,” in Proceedings of
the 36th ACM Technical Symposium on Computer Science Education
(SIGCSE’05), 2005, p. 272–276.

[31] M. L. Pilla, “Teaching computer architectures through automatically cor-
rected projects: Preliminary results,” International Journal of Computer
Architecture Education, vol. 6, pp. 62–67, 2017.

[32] C. Matthies, A. Treffer, and M. Uflacker, “Prof. CI: Employing Con-
tinuous Integration Services and GitHub Workflows to Teach Test-
Driven Development,” in Proceeding of IEEE Frontiers in Education
Conference (FIE), 2018, pp. 1–8.

[33] C. H. Tran, “Applying test-driven development in evaluating student
projects,” 2 2020, faculty of Science and Engineering, Department of
Information Technologies.

[34] C. Hsing and V. Gennarelli, “Using github in the classroom predicts
student learning outcomes and classroom experiences: Findings from
a survey of students and teachers,” in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, (SIGCSE’19),
2019, pp. 672–678.

[35] Y. Cai and M. Tsai, “Improving programming education quality with
automatic grading system,” in Proceedings of the Second International
Conference of Innovative Technologies and Learning (ICITL’19), 2019,
pp. 207–215.

[36] C. Z. Kertész, “Using github in the classroom – a collaborative learning
experience,” in Proceedings of the 21st International Symposium for
Design and Technology in Electronic Packaging (SIITME’15), 2015, pp.
381–386.

[37] J. Sus and W. Billingsley, “Using continuous integration of code and
content to teach software engineering with limited resources,” in Pro-
ceedings of the 34th International Conference on Software Engineering
(ICSE’12), 06 2012, pp. 1175–1184.

[38] H. Keuning, J. Jeuring, and B. Heeren, “Towards a systematic review
of automated feedback generation for programming exercises,” in Pro-
ceedings of the 2016 ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE’16). ACM, 2016, pp. 41–46.

[39] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based assess-
ment of programming: A review.” ACM J. Educ. Resour. Comput., vol. 5,
no. 3, p. 4–es, 2005.

[40] T. Wolsey, “Efficacy of instructor feedback on written work in an online
program,” International Journal on E-Learning, vol. 7, no. 2, pp. 311—
-329, 2008.

[41] J. Pierce and C. Zilles, “Investigating student plagiarism patterns and
correlations to grades,” in Proceedings of the 48th ACM Technical
Symposium on Computer Science Education, (SIGCSE’17), 03 2017,
pp. 471–476.

[42] Y. Lilis and A. Savidis, “A survey of metaprogramming languages,”
ACM Comput. Surv., vol. 52, no. 6, Oct. 2019.

https://github.blog/2017-03-01-real-time-feedback-for-students-using-continuous-integra
https://github.blog/2017-03-01-real-time-feedback-for-students-using-continuous-integra
tion-tools/
https://github.blog/2019-02-12-how-github-classroom-and-travis-ci-improved-students-gra
https://github.blog/2019-02-12-how-github-classroom-and-travis-ci-improved-students-gra
des/
https://www.educba.com/unit-test-vs-integration-test/
http://DbUnit.sourceforge.net/
http://DbUnit.sourceforge.net/
https://zenodo.org/record/4434507
https://zenodo.org/record/4434507
https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/
https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/
https://education.travis-ci.com/

	Introduction
	Course Background and motivation
	JDBC Fundamental
	Problem Definition

	Overview of our framework
	Automated Formative Assessment
	Managing Students Assignments

	Findings
	Students' qualifications
	Logs from tests' executions
	Feedback from students
	Teachers' perceptions

	Related Work
	Discussion
	Assignments' management and grading, and industrial tools' familiarization
	Grading formative activities
	Usefulness and quality of the feedback
	Students' scores

	Conclusions
	Data Availability
	References

