
An MDA–Based Approach to Managing

Database Evolution (position paper) �

Eladio Domı́nguez a Jorge Lloret a Ángel L. Rubio b

Maŕıa A. Zapata a

aDpto. de Informática e Ingenieŕıa de Sistemas.
Facultad de Ciencias. Edificio de Matemáticas.

Universidad de Zaragoza. 50009 Zaragoza. Spain.
bDpto. de Matemáticas y Computación. Edificio Vives.

Universidad de La Rioja. 26004 Logroño. Spain

1 Introduction

In this paper we are going to present the status of an ongoing research about the relation-
ships between a particular architecture [5] that tackles with a concrete problem related to
database technology –the problem of database evolution- and the Model-Driven Architec-
ture (MDA [14]).

The requirements of a database do not remain constant during its life time and therefore
the database has to evolve in order to fulfil the new requirements. Since database evolution
activities consume a large amount of resources [13] they are considered of great practical
importance and, as a consequence, much research has been focused on analyzing ways
of facilitating this task [2,16]. In particular, among the several problems that are related
to evolution activities (see [11]), one of the most important is that of ‘forward database
maintenance problem’ (or ‘redesign problem’, according to [16]). This problem faces how
to reflect in the logical and extensional schemata the changes that have occurred in the
conceptual schema of a database. As a contribution towards achieving a satisfactory so-
lution to this problem (that has not been found yet, despite a lot of efforts by different
researchers [16,13]), some of the authors of the present paper have presented in [5] an
architecture for managing database evolution.

On the other hand, the MDA is an initiative led by the Object Management Group (OMG)
that embodies “the expanded vision necessary to support interoperability with specifica-
tions that address integration through the entire systems life cycle: from business mod-
eling to system design [...] and evolution”[14]. Therefore, although MDA deals mainly

� This work has been partially supported by DGES, projects TIC2000-1368-C03-01, TIC2002-
01626, and by Ibercaja-University of Zaragoza, project IB 2002-TEC-03

Email addresses: noesis@posta.unizar.es (Eladio Domı́nguez),
jlloret@posta.unizar.es (Jorge Lloret), arubio@dmc.unirioja.es (Ángel L. Rubio),
mazapata@posta.unizar.es (Maŕıa A. Zapata).

Preprint submitted to Elsevier Science 19 June 2003



with software development and less with data modeling issues, it is implied explicitly
in evolution tasks. We have found out that several key features of MDA are shared by
our above-mentioned architecture for managing database evolution. Firstly, the notion of
mapping, used in MDA in order to transform Platform Independent Models (PIMs) into
Platform Specific Models (PSMs) –and backwards-, is also a central point when dealing
with database modeling and evolution. Secondly, both approaches made an intensive use
of metamodels in order to represent ‘modeling knowledge’.

In this paper we make a proposal of how to get both worlds (database evolution and MDA)
closer. The main aim of the work is to investigate how to take advantage of the advances
in the MDA field (in particular the development of MDA-based tools) in order to use
them in a databases evolution context. The remainder of the paper is organized as follows.
Section 2 explains our view of the relationships between database engineering and MDA,
presenting in Section 3 the specific relationships between MDA and our architecture for
managing database evolution. Finally, some conclusions are outlined in Section 4.

2 Database Engineering and MDA

Several recent papers have already addressed some similarities between database tech-
nology and MDA concepts (see [15,10]). However it is far from being clear how should
database engineering concepts be reinterpreted in terms of MDA.

Traditionally, in the databases field, the term ‘conceptual schema’ refers to a model that
captures the user’s information requirements, for example by means of an Entity/ Rela-
tionship (ER) Model. Following the ANSI-SPARC Architecture [3], a conceptual schema is
independent of any physical implementation (and of any Database Management System,
DBMS). Moreover, a conceptual schema is independent of any computational aspects.
Because of that, we think that the ‘conceptual schema’ idea corresponds with the MDA
‘Business Model’ concept. Unfortunately, the MDA Specification Document leaves out
Business Models quickly, and focuses its attention on PIMs and PSMs, so much so that
Business Models are omitted from the MDA Metamodel Description (page 12 of [14]). We
advocate for making use of the footnote on page 7 of this Document, where it is said that
“while [Business Model] need not be explicitly present in a particular usage of the MDA
Scheme, MDA accommodates it consistently in the same overall architecture”.

The next step in a database development process is to obtain, starting from the conceptual
schema, a ‘logical schema’ that is described using the (Object-) Relational Model. The
logical schema is closer to computational aspects, but it is not dependent on any particular
DBMS. Therefore, a logical schema can be seen as a Platform Independent Model from the
point of view of MDA. This idea is strengthened by analyzing one of the core specifications
of the MDA, the Common Warehouse Metamodel (CWM [4]). This specification includes a
metamodel for Relational data resources, that is based in the SQL Standard [12]. However,
as it has been proven in the literature [18,17], each particular DBMS implements its specific
version of SQL, in such a way that a (object-) relational schema that it is assumed to
be in accordance with the standard, can be not valid for a particular DBMS. This is
the main reason because we think that a description of a ‘logical schema’ based on the
(object-) relational approach and/or the standard SQL should be considered as a ‘Platform
Independent Model’, and that a description of that schema using the particular version

2



of SQL of a particular DBMS should be considered as a ‘Platform Specific Model’. These
ideas are strengthened by the functionality of different software tools that are used to
automatize the data modeling process, such as DB-MAIN [11]. A user of this tool can
draw a conceptual (ER) schema, that is automatically translated to a logical (relational)
schema. Then, the tool allows the user to guide the translation process of this logical
schema towards SQL code adapted to a particular platform (DBMS), such as Oracle.

In order to illustrate graphically these ideas, in Figure 1 we show a modification of the
MDA Metamodel Description from the one presented in [14]. There are three basic dif-
ferences between the original description and our proposal. Firstly, Business Models are
explicitly included as a new (meta)class, which leads to include two associations between
‘Business Model’ and ‘PIM’ classes. Secondly, an association class ‘BM-PIM Mapping
Techniques’ is included, in order to represent the translation modeling knowledge from
Business Models (conceptual schemas in the database context) to PIMs (logical schemas).
It seems surprising to us that in the original MDA Metamodel Description there are ex-
plicit association classes to represent ‘PSM Mapping Techniques’ (from PSM to PSM) and
‘PIM Mapping Techniques’ (from PIM to PIM), but there not exists analogous associa-
tion classes to represent ‘PIM to PSM Mapping Techniques’ or ‘PSM to PIM Refactoring
Techniques’. Our proposed inclusion of the class ‘BM-PIM Mapping Techniques’ (that in
our opinion it is essential, at least in the database context), makes us think about the
necessity of other classes (like, for instance, ‘PIM-BM Refactoring Techniques’, useful for
database reverse engineering). Lastly, our metamodel description includes a ‘BM Mapping
Techniques’ association class, which is a key point in a database evolution setting, since,
as we have said before, in the forward database maintenance problem the changes in the
conceptual schema (Business Model) are taken into account to determine changes in the
logical and extensional schemata.

We recognize that this is not the only possible interpretation. There exists some controversy
in the literature about the use of ER schemata as Business Models [9]. As another example,
in [10] a different approach is considered, since ER schemata are identified as PIMs, and
relational schemata are identified as ‘prototypical’ PSMs. Moreover, relational schemata
are used somehow as Business Models in [1]. However we think that all these approaches
are not mutually exclusive, since it is a matter of ‘level of detail’. Different kinds of ER
schemata can be used at different levels of abstraction and with different levels of detail.
In fact, this is likely quite near of the MDA vision, since it defines concepts such as
‘abstraction’, ‘refinement’ and ‘viewpoint’.

3 Database evolution and MDA

In this section we are going to outline the basic characteristics of our proposed architecture
for managing database evolution (for details, see [5]). Afterwards, we are going to show
which are the relationships between this architecture and our interpretation (that has been
described in the previous section) of the database concepts in terms of MDA.

Our proposed architecture for managing database evolution makes use of a structural
artifact that consists of three components: an information schema, an information base
and an information processor. The information schema defines all the knowledge relevant to
the system (and therefore it plays a ‘metamodel’ role), the information base describes the

3



Metamodel

PSM

PIM

Business Model

PIM Mapping
Techniques

PSM Mapping
Techniques

BM Mapping
Techniques

<<based on>>

<<are described with>>

Mapping from
BM to PIM

Refactoring from
PIM to BM

Mapping from
PIM to PSM

Refactoring from
PSM to PIM

<<are described with>>

<<are described with>>

<<based on>>

1..n

1..n

1..n
1..n 1..n

1..n

1..n

1..n1..n

<<based on>>

Mapping from
PSM to PSM

Mapping from
PIM to PIM

Mapping from
BM to BM

BM-PIM Mapping
Techniques

<<based on>>

1..n

��������	
 ���


�����	
 ���


���� ��������
���


Fig. 1. MDA Metamodel Description (modified from [14]) and its relation with database concepts

specific objects perceived in the Universe of Discourse (a ‘model’ role), and the information
processor receives messages reporting the occurrence of events in the environment. In
order to respond to the events received, the information processor can send structural
events towards the information base and/or towards the information schema and can
generate internal events that inform other processors of the changes performed in it. This
structural artifact is used within our architecture giving rise to four structures which are
used to store, respectively, the conceptual modeling knowledge, the translation process,
the logical modeling knowledge and the extension. The corresponding components of each
one of these structures as well as the way in which they are related appear in Figure 2.
The name of each one of these components has been modified in an attempt to capture
the type of knowledge that they store.

There are two main characteristics of this architecture that make it different of other
proposals. On the one hand it includes an explicit translation component that stores
information about the way in which a concrete conceptual database schema is translated
into a logical schema. This component plays an important role in enabling the automatic
propagation of evolution from the conceptual to the extensional schemata. On the other
hand, a meta–modeling approach [6] has been followed for the definition of the architecture.
Within this architecture, three meta–models are considered which capture, respectively,
the conceptual, logical and translation modeling knowledge.

There are several relationships between this architecture and MDA concepts. First of
all, both make a explicit use of metamodels. For example, metamodels are used within
the architecture in order to check the validity of events issued from the environment to
carry out evolution tasks. Second, the translation information is stored explicitly in our
architecture, so that it embeds a certain notion of ‘mapping’. This component is essential in
our database evolution architecture, because when a modification of the conceptual schema
is carried out, a new set of elementary translations is determined without it being necessary
to apply once again the translation algorithm from scratch. Last, the consideration of MDA
concepts have made us to think about the relationship between the logical and extensional
information systems of our architecture. In [5] we said that “the logical database schema
can be seen as the information base of the logical information system or as the information

4



External
events

Logical
information system

Extensional
information systemTranslation

information system

extensional
information
 processor

database
extension

logical
database
 schema

logical
information
 processor

logical
meta-schema

translation
base

translation
information
 processor

translation
meta-schema

Conceptual
information system

conceptual
database
 schema

conceptual
information
 processor

conceptual
meta-schema

meta
model
layer

model
 layer

user
data
layer

Fig. 2. Architecture for Database Evolution

schema of the extensional one. For this reason two different components of our architecture
store the same information”. However, this situation led us to define in our architecture
“some rules, called correspondence rules (in the same sense as in [13]). These rules govern
the correspondence between the elements of each one of the two components”. The MDA
notions suggest that these ‘correspondence rules’ must play a more relevant role, since they
are acting as ‘PIM to PSM Mapping’. We think that this point needs of further research.

Finally, it is necessary to point out that we have developed an implementation of the
architecture that has allowed us to test its functionality. This implementation is based on
the RDBMS Oracle 8i and the Programming Language PL/SQL. In this implementation
we use the DBMS as a kind of ‘MOF Repository’, in a very similar way as described in
Chapter 9 of [8]. In particular, Frankel says in that Chapter that “to a MOF Repository,
transformations rules are just another kind of metadata that it manages according to the
general pattern”, and that “one strategy for producing the code to execute the transfor-
mations is to create a generator that reads a set of M1 [Model Layer] transformation rules
and generates the transformation code that executes the rules on M0 [User-Data Layer]
Data”. This description corresponds quite accurately with the behavior of our current
implementation.

4 Conclusions

In this paper we have shown some ideas of an ongoing research about relating MDA and
a particular architecture for managing database evolution. We think that the database
evolution context can be an interesting and valid application area for MDA, and we have
seen several points where both approaches possibly can benefit from each other:

• The experience accumulated along the years by database researchers and practitioners
in the fields of schemata translation and evolution can be useful to make advances in
the MDA field. For example, the interpretation of our database evolution architecture
in MDA terms has led us to propose an enhancement of the MDA metamodel.

• The other way round, taking the MDA ideas into account in the database context can
give place to introduce new viewpoints on current database approaches. In our case,
the use of the MDA approach has suggested us the need of further research about the
notion of ‘correspondence rules’ within our evolution architecture.

• The database evolution context can take advantage of the advances in the MDA field.
In particular, we see the foreseeable development of MDA-based tools as an opportunity
for database researchers and practitioners.

5



References

[1] Serge Abiteboul, Victor Vianu, Brad Fordham, Yelena Yesha, Relational Transducers for
Electronic Commerce, Journal of Computer and System Sciences, Vol. 61, N. 2, 2000, 236–
269.

[2] L. Al-Jadir, M. Léonard, Multiobjects to Ease Schema Evolution in an OODBMS, in T. W.
Ling, S. Ram, M. L. Lee (eds.), Conceptual modeling, ER-98, LNCS 1507, Springer, 1998,
316–333.

[3] ANSI/SPARC Report, ACM SIGMOD Newsletter, Vol. 7, N. 2, 1975.
[4] Common Warehouse Metamodel Specification Version 1.1, OMG Document formal/03-03-02.
[5] E. Domı́nguez, J. Lloret, M. A. Zapata, An architecture for Managing Database Evolution,

Proceedings of ER 2002 Workshop on Evolution and Change in Data Management, To appear
in LNCS, 2002, 64–75.

[6] E. Domı́nguez, M. A. Zapata, J. J. Rubio, A Conceptual Approach to Meta–Modelling, in
A. Olivé, J. A. Pastor (Eds.), Advanced Information Systems Engineering, CAISE’97, LNCS
1250, Springer, 1997, 319–332.

[7] R. A. Elmasri, S. B. Navathe, Fundamentals of Database Systems (3rd ed.), Addison-Wesley,
2000.

[8] David Frankel, Model Driven Architecture – Aplying MDA to Enterprise Computing, Wiley
Publishing, 2003.

[9] Michalis Glykas, George Valiris, Formal methods in object oriented business modeling,
Journal of Systems and Software, Vol. 48, N. 1, 1999, 27–41.

[10] M. Gogolla, A. Lindow, M. Richters, P. Ziemann, Metamodel Transformation
of Data Models, Workshop in Software Model Engineering, Dresden, Germany,
http://www.metamodel.com/wisme-2002/, 2002.

[11] J. L. Hainaut, V. Englebert, J. Henrard, J. M. Hick, D. Roland, Database Evolution: the
DB-MAIN approach, in P. Loucopoulos (ed.), Entity-Relationship approach- ER’94, Springer
Verlag, LNCS 881, 1994, 112–131.

[12] ISO/IEC 9075-2: 1999, Information Technology - Database languages - SQL - Part 2:
Foundation (SQL/Foundation), 1999.

[13] J. R. López, A. Olivé, A Framework for the Evolution of Temporal Conceptual Schemas
of Information Systems, in B. Wangler, L. Bergman (eds.), Advanced Information Systems
Eng., CAiSE 2000, Springer, LNCS 1789, 2000, 369–386.

[14] J. Miller, J. Mukerji (eds.), Model Driven Architecture (MDA), Object Management Group,
Document number ormsc/2001-07-01, July 9, 2001.

[15] Bernard Morand, Models transformations: from mapping to mediation, Workshop in
Software Model Engineering, Dresden, Germany, http://www.metamodel.com/wisme-2002/,
2002.

[16] A. S. da Silva, A. H. F. Laender, M. A. Casanova, An Approach to Maintaining Optimized
Relational Representations of Entity-Relationship Schemas, in B. Thalheim (ed.), Conceptual
Modeling- ER’96, Springer Verlag, LNCS 1157, 1996, 292–308.

[17] C. Turker, Schema Evolution in SQL-99 and Commercial (Object-) Relational DBMS. In:
H. Balsters, B. De Brock, S. Conrad (eds.), Database Schema Evolution and Meta-Modeling,
Post-Proceedings of the 9th Int. Workshop on Foundations of Models and Languages for Data
and Objects, LNCS 2065, 2001, 1–32.

[18] C. Turker, M. Gertz, Semantic Integrity Support in SQL:1999 and Commercial (Object-)
Relational Database Management Systems, The VLDB Journal Vol. 10, No. 4, 2001, 241–
269.

6


