
Mapping Models Between Different Modeling Languages ?

E. Domı́nguez1, A. L. Rubio2, and M. A. Zapata1

1 Dpto. de Informática e Ingenieŕıa de Sistemas.
Facultad de Ciencias. Edificio de Matemáticas.

Universidad de Zaragoza. 50009 Zaragoza. Spain.
{noesis, mazapata}@posta.unizar.es

2 Dpto. de Matemáticas y Computación. Edificio Vives.
Universidad de La Rioja. 26004 Logroño. Spain

arubio@dmc.unirioja.es

Abstract. In this paper we show a process for defining a translation between two different
modeling languages that allows to map a model expressed in a modeling language into a model
expressed in the other modeling language. This mapping construction process is tackled from a
metamodeling perspective and it is applied to fragments of OML and UML modeling languages.

1 Introduction

The Unified Modeling Language (UML) [18] is more and more widely accepted as a stan-
dard notation for object oriented software modeling. Since other object oriented modeling
languages are currently being used in different application domains, there is a great interest
in analyzing the similarities and differences between UML and other non–UML languages [1,
10]. Sometimes these comparisons are carried out in an informal way and in other cases a
precise mapping from the models of a modeling language into models of the other modeling
language is given [13, 17]. The problem is that these mappings are particular solutions defined
between two specific languages, so they cannot be reused for defining translations between
other modeling languages.

An approach that can be used for obtaining a general framework for model translation is
that of metamodelling, since it has been proven that the use of metamodels improves rigor and
facilitates system integration and interoperability [14]. The issue of defining model mappings
using a metamodelling approach has been faced in the literature in different contexts, and with
different metamodelling perspectives. For instance, within systems interoperability context,
Nicolle et al. [16] propose the definition of only one metamodel, which, like an ontology,
must generically represent the building blocks of data models. Grundy and Venable [9] deal
with integration of different notations, achieving the interoperability by means of a mapping
which is based on the construction of a metamodel for each one of the involved languages
and a metamodel integrating the initial ones. As another example, within the COMMA
project [11], an object-oriented core metamodel is proposed, so that the COMMA-compliant
methodologies can be derived from it, allowing a smooth translation of the core concepts to
be done.

A metamodelling perspective is also considered in [3], where we have proposed a concrete
method for conducting the construction of a mapping between models of different modeling
languages, using the Noesis technique as metamodeling language [5]. This approach also pro-
poses to construct a metamodel for each of the involved languages, but unlike the approaches
cited, our proposal consists of defining a chain of intermediate metamodels in order to bring
together the initial ones. One of the main advantages of this perspective is that the complex
problem of assuring that semantics are preserved in the mapping is delimited to simpler steps,
in which other existing transformations (for instance refactoring transformations [19]) can be
used.
? This work has been partially supported by DGES, projects TIC2000-1368-C03-01 and PB98-1621-C02-01

Transition

 isNormal: Boolean
 isGroup: Boolean

State Machine

StopState NonStop-State

NormalState StartState

Operation

EntryOperation ExitOperation

LeavingTransition RemainingTransition

Guard

Trigger

MessageException

Decomposition

State

1..*

*

0..1 0..1

1..*

substate
1

parent
1..*
target

* 1..*controls

*

1..*
source

*

*

1 controls

1

1..* fires

Fig. 1. UML metamodel of OML State Machines

The idea of this paper is to show how the mapping construction process proposed in [3] can
be used for constructing, in a general way, well–defined translations between UML and non–
UML languages. As a result, the method can be a helpful tool for analyzing the relationship
of UML to other languages. Furthermore, in this paper we follow the UML definition style
and for this reason we will use the UML itself as metamodeling language (instead of Noesis).
This will prove, in a practical way, the independence between the proposed method and the
chosen metamodeling language.

The paper is organized as follows: in the next section the mapping construction process
is presented (illustrating it by means of an example) and, finally, conclusions are given.

2 Mapping Definition Process

In order to compare UML with other non–UML languages, we propose to bring into play
the notion of mapping (or translation). Given two modeling languages L and L′, a mapping
refers to a method which allows a model of L′ to be determined starting from a model of
L1. The problem is that, in general, the definition of a mapping is a complex task. As a
way of facilitating this process in [3] we proposed a mapping definition method within a
metamodeling approach.

This method is based on the idea of defining a mapping starting from two metamodels (one
for each of the languages), in the belief that this approach facilitates the mapping construction
process. To be precise, within our proposal, the construction of a mapping between a language
L, with metamodel M , and a language L′, with metamodel M ′, consists of considering a finite
chain of metamodels M=M1, M2, ...,Mn=M ′ so that: 1) on the one hand, two consecutive
metamodels Mi, Mi+1 must differ slightly in order to make the development of a mapping
between their models easier; 2) on the other hand, the composition of these easier mappings
provides a complete mapping, which must fulfill our requirements. In order to construct this
sequence of metamodels a five–step process is proposed. A noteworthy advantage of this
multi–step process perspective is that it allows to delimit the difficulties in assuring that
semantics are preserved in the translation. For instance, as it will be shown, in the third step
the initital metamodels are approached by means of transformations that have been proved
to be correct with respect to the semantics [2, 7, 15, 19].

As we have said before, in [3] we proposed to use the Noesis technique as metamodeling
language, but in this paper we are going to use UML as the language for constructing the
1 When the two languages are the same the mapping is called transformation.

6WDWH9HUWH[

'HFRPSRVLWLRQ

LV&RQFXUUHQW� %RROHDQ

&RQQHFWRU

W\SH� &RQQHFWRU.LQG

6\QFK6WDWH

ERXQG� 8QOLPLWHG,QWHJHU

6WDWH

7UDQVLWLRQ

1RQ,QWHUQDO7UDQVLWLRQ ,QWHUQDO7UDQVLWLRQ

(YHQW

�

����

��������

�

���

SDUHQW

VXEVWDWH

���

SDUHQW

�

�

�VRXUFH
�

�WDUJHW

�

���

����

����

����

�WULJJHU

����

����

���

���

����

����

����

�GHIHUUDEOH(YHQW

�HQWU\

�H[LW

�GR$FWLYLW\

6WDWH0DFKLQH

H[SUHVVLRQ�%RROHDQ([SUHVVLRQ

*XDUG

����

�JXDUG

�RXWJRLQJ

�LQFRPLQJ

�WUDQVLWLRQ

����

���

SDUHQW

�

3VHXGRVWDWH

W\SH� 3VHXGRVWDWH.LQG

����

�WRS

� �HIIHFW

$FWLRQ

�IURP &RPPRQ %HKDYLRU�

6WXE6WDWH

UHIHUHQFH6WDWH� 1DPH

�VXEPDFKLQH

�

���

�

SDUHQW

6XEPDFKLQH6WDWH)LQDO6WDWH

Fig. 2. UML metamodel of UML State Machines

metamodels (and so we also prove that the method can be used whichever it was the chosen
metamodeling language). Therefore, the proposed mapping construction process must be
applied after two UML metamodels are given.

In order to illustrate each step of the process we will present, as a practical application, the
construction of a mapping from the state machines of OML [8, 12] into the state machines of
UML [18]. Firstly a UML metamodel of each of these modeling languages has to be given. We
have constructed a metamodel of the OML state machines (Figure 1) taken into account the
OML metamodels proposed in [8] and [12] (but using UML as metamodeling language instead
of OML). On the other hand, in [4], we propose a metamodel of UML state machines which
appears in Figure 2. Once the two metamodels are defined, the steps for the construction of
a mapping must be followed.

Step 1. Setting the mapping context. The context in which the mapping is meaning-
ful is determined in this step, that is to say, it must be analyzed if a mapping can be defined
for every model of the source metamodel. In order to do this, the ranges of application of the
involved metamodels must be compared. In our particular example every OML state machine
can be mapped into a UML state machine, but in general, if the ranges of application of the
involved metamodels are different can be necessary to restrict the context.

Step 2. Understanding the similarities and differences. The goal of this step is to
understand the similarities and differences between the two given modeling languages with the
aim of getting a general perspective of the mapping that will be determined in the following
steps. In order to do this, besides the published comparisons about the involved languages,
the comparison of the two metamodels can be useful since they reveal aspects which can
go unnoticed in informal comparisons [6]. For instance, the main concepts (state, transition,
operation, trigger) of the OML State Machines metamodel also appear (some of them with
different names) in the UML State Machines metamodel, but the subclasses are different
so that this aspect has to be taken into account during the mapping construction process.
Furthermore, it is very important the fact that the notion of concurrent decomposition is not
considered within the OML state machines.

Step 3. Approaching the initial metamodels. In this step, starting from the two
initial metamodels, increasingly more similar intermediate metamodels are defined. The idea

Table 1. Class diagrams transformations in the OML State Machines Metamodel

1. GeneralizeAssociationEnd (NonStop–state, source, State)
2. RemoveClass (NonStop–state)
3. AbstractToConcrete (State)
4. RemoveClass (NormalState)
5. SplitAssociation (Controls, {Entry, Exit})
6. AbstractToConcrete (Operation)
7. RemoveClass (EntryOperation)
8. RemoveClass (ExitOperation)
9. RemoveAttribute (Transition, isNormal)

10. RemoveAttribute (Transition, isGroup)
11. RemoveClass (Exception)
12. RemoveClass (Message)

is to smooth away their differences applying UML class diagrams transformations that are
known to be correct with respect to the semantics. There are several papers (see [7, 15, 19])
that propose UML class diagrams transformations taking into account their semantics. These
transformations, in general, allow a class, attribute, method or association to be added, moved
or removed when the diagram holds several predefined constraints. Furthermore, other more
complex transformations such as generalization, merge, in line and split [2] have also been
proposed. Following the ideas proposed in the different above–mentioned papers we have
applied a sequence of transformations to the OML State Machines metamodel (Table 1)
obtaining as a result the equivalent metamodel that appears in Figure 3.

Step 4. Determining specific mappings. When it is considered that the metamodels
cannot be approached any further by means of UML diagrams transformations that have
been proposed in the literature, then ad hoc mappings have to be defined (when two or more
mappings are defined the additional intermediate metamodels have to be determined). In this
step the particular semantics of the involved techniques has to be taken into account in order
to construct the specific mapping. In our example we can establish pairs of synonym concepts
– (state, state), (operation, action), (trigger, event), etc – between the metamodels achieved
in the previous step so that the instances of one concept can be considered as instances of
the synonymous concept. This simple mapping can be defined for all the concepts except for
the transition concept. In this case, each transition of the OML state machine (which has
several source and target state vertices) has to be mapped into several transitions (with only
one source and one target state vertex) adding the necessary fork and junction connectors.
Finally, the different concurrent components of the OML state machine must be determined
in order to establish the corresponding concurrent decompositions in the UML state machine.
We are aware of this last step of the mapping from an OML state machine into a UML state
machine is not obvious and that it must be analyzed and determined in a more precise way.
This study remains an ongoing work.

Step 5. Determining the complete mapping. Finally, the global mapping from the
source metamodel to the target one is defined as a suitable composition of the mappings
obtained in the two previous steps.

3 Conclusions

We have shown practically how the mapping construction process we proposed in [3] can be
applied in order to define a translation between UML and non–UML modeling languages.
In particular, this process can help to delimit the difficulties in assuring that semantics are
preserved in the translation. At the same time, the independence between the method and

State Machine

Operation

Guard

TriggerRemainingTransitionLeavingTransition

Decomposition

State

1..*

*

0..1 0..1

1..*

substate
1

parent

1..*

target

*

0..1

*

1..*

source

*

*1
controls

1

1..* fires

entry

*

Transition

0..1

exit

StartStateStopState

Fig. 3. Modified UML metamodel of OML State Machines

the metamodeling language has also been proven. As a future work the utility of this method
in order to define mappings between different UML models can be analyzed.

References

1. K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes III, J. Letkowski, M. Aronson, Extending
UML to Support Ontology Engineering for the Semantic Web, in M. Gogolla, C. Kobryn (Eds.), UML’01
– The Unified Modeling Language, LNCS 2185, Springer, 2001, pp. 342–360.

2. K. T. Claypool, E.A. Rundensteiner, G.T. Heineman, Evolving the Software of a Schema Evolution Sys-
tem, in H. Balsters, B. de Brock, S. Conrad (Eds.), Database Schema Evolution and Meta–Modeling, LNCS
2065, Springer, 2000, pp. 68–84.

3. E. Domı́nguez, M.A. Zapata, Mappings and Interoperability: a Meta–Modelling Approach, in T. Yakhno
(Eds.), Adv. in Info. Syst., ADVIS’00, LNCS 1909, Springer, 2000, pp. 352–362.

4. E. Domı́nguez, A.L. Rubio, M.A. Zapata, Dynamic Semantics of UML State Machines: a Metamodeling
Perspective, Journal of Database Management, to be published, 2002.

5. E. Domı́nguez, M.A. Zapata, J.J. Rubio, A Conceptual approach to meta–modelling, in A. Olivé, J.A.
Pastor (Eds.), Adv. Info. Syst. Eng., CAISE’97, LNCS 1250, Springer, 1997, pp. 319–332.

6. G. Eckert, P. Golder, Improving object–oriented analysis, Information and Software Technology, 36 (2),
1994, pp. 67–86.

7. A. S. Evans, Reasoning with UML class diagrams, Workshop on Industrial Strength Formal Methods,
WIFT’98, IEEE Press, 1998.

8. D. Firesmith, B. Henderson-Sellers, I. Graham, The OML Reference Manual, SIGS Books, 1997.
9. J.C. Grundy, J.R. Venable, Providing Integrated Support for Multiple Development Notations, in J. Iivari,

K. Lyytinen (Eds.), Adv. Info. Syst. Eng., CAISE’95, LNCS 932, Springer, 1995, pp. 255–268.
10. B. Henderson-Sellers, C. Atkinson, D. Firesmith, Viewing the OML as a variant of the UML, in R. France,

B. Rumpe (Eds.), UML’99 – The Unified Modeling Language, LNCS 1723, Springer, 1999, pp. 49–66.
11. B. Henderson-Sellers, A. Bulthuis, Object-Oriented Metamethods, Springer, 1997.
12. B. Henderson-Sellers, D. Firesmith, I. Graham, OML metamodel: relationships and state modelling, Jour-

nal of Object-Oriented Programming (ROAD), SIGS Publications, 10, 1, 1997, pp. 47–51.
13. S. K. Kim, D. Carrington, Formalizing the UML Class Diagram Using Object–Z, in R. France, B. Rumpe

(Eds.), UML’99 – The Unified Modeling Language, LNCS 1723, Springer, 1999, pp. 83–98.
14. C. Kobryn, Architectural Patterns for Metamodeling, in A. Evans, S. Kent, B. Selic (Eds.), UML’00 –

The Unified Modeling Language, LNCS 1939, Springer, 2000, p. 497.
15. K. Lano, J. Bicarregui, Semantics and Transformations for UML Models, in J. Bezivin, P.-A. Muller

(Eds.), UML’98 – The Unified Modeling Language, LNCS 1618, Springer, 1998, pp. 107–119.
16. C. Nicolle, D. Benslimane, K. Yetongnon, Multi–Data models translations in Interoperable Information

Systems, in J. Mylopoulos, Y. Vassiliou (Eds.), Adv. Info. Syst. Eng., CAISE’96, LNCS 1080, Springer,
1996, pp. 176–192.

17. A. Olivé, M.R. Sancho, Porting ROSES to UML - An Experience Report, in J. Bezivin, P.-A. Muller
(Eds.), UML’98 – The Unified Modeling Language, LNCS 1618, Springer, 1998, pp. 64–77.

18. OMG, UML Specification Version 1.4 formal/01-09-67. Available at http://www.omg.org. September,
2001.

19. G. Sunyé, D. Pollet, Y. Le Traon, J.M. Jézéquel, Refactoring UML models, in M. Gogolla, D. Kobryn
(Eds.) UML’01 – The Unified Modeling Language, LNCS 2185, Springer, 2001, pp. 134–148.

