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Abstract

We propose a history-based mechanism designed to strengthen the authen-
tication and intrusion detection processes. It can be applied to entities en-
dowed with communication, memory and processing capabilities that enable
them to record, recognise and report on their history. The mechanism is
supported by a pattern that provides the notions of history and its atomic
component, occurrence. Our proposal is test-bedded in a security and safety
system, framed within the context of smart environments, designed for the
protection of personnel and facilities and responsible for its self-protection
and self-monitoring.
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1. Introduction

The consolidation of increasingly complex communication infrastructures
and the development of artificial entities enhanced with ever-growing ca-
pabilities (such as sensing, communication, memory and processing) enable
environments of increasing sophistication. The most global of such environ-
ments is the Internet of Things, IoT, where electronic devices are embedded
into everyday physical objects, so that real and virtual worlds seamlessly
integrate within the resulting cyberphysical infrastructure (Miorandi et al.,
2012). Among the burgeoning fauna populating these environments, one
can find entities associated with humans to enhance their capabilities (e.g.,
smart-cards), smart-objects (Atzori et al., 2010), robots, bots and avatars
(Gavrilova and Yampolskiy, 2010), cognitive robots and cognitive computers
(Wang, 2010) or spimes (Sterling, 2005).
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As a result, it is natural to envision complex systems that can provide
critical services (such as security or logistics management) with reduced or
no human intervention. The management of such systems poses challenges,
not the least of which is to assure the identity of the entities supplying crucial
services or accessing sensitive information and resources.

In this paper, we focus on the issues of entity authentication and intru-
sion detection. Authentication, defined as proving that an entity (human
or not) is what he/it claims to be, relies on three types of authentication
factors: something the claimant knows (e.g., a PIN, a password), something
the claimant has (e.g., an ID-badge, a cryptographic key, a smart-card) or
something the claimant is (biometric-based authentication, based on an in-
dividual’s physical and/or behavioural traits or, in the case of non-human
entities, secret keys assigned to hardware components) (Burr et al., 2011).
None of these factors is free from concerns, some of which are summarised
below:

• What the claimant knows may be guessed by an attacker or discovered
by eavesdropping.

• What the claimant has may be lost, damaged, stolen or cloned. To
have deeper insight into the weaknesses of particular solutions, such as
smart-cards, we refer the reader to (Madhusudhan and Mittal, 2012).

• Biometric-like features can be defined in non-human entities. These fea-
tures include PUFs (Physical Unclonable Functions) (Suh and Devadas,
2007), radiofrequency certificates of authenticity (RF-COAs) and ra-
diofrequency distinct native attributes (RF-DNA) (Cobb et al., 2012),
that depend on complex physical characteristics of integrated circuits
and differ from chip to chip. Though promising, these solutions are not
yet mature or widely applicable.

To summarise, there is no single authentication factor providing a universal
solution to the authentication problem. It thus remains an open question.

In this paper, we propose a history-based scheme for authentication and
intrusion detection. Our proposal generalises the first factor (what the entity
knows) by increasing the complexity of the information an entity must prove
to possess to be authenticated. We aim to exploit the enhanced capabilities
of artificial entities to simulate the natural intelligence capability of humans.
Instead of relying on the knowledge of just a password or a PIN, our proposal
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mimics a natural way of verifying one person’s identity: interrogating him
on his past, exploiting the available knowledge about his history.

Our proposal incorporates features such as challenge-response mecha-
nisms (where an entity must successfully respond to a series of challenges)
and identity verification through multiple proofs of identity (Adi, 2010; Paci
et al., 2009; Bhargav-Spantzel et al., 2010). We consider such features in the
framework of the history of the entity to be authenticated. Far from being a
more restrictive option, ours can be seen as a generalisation of those solutions,
as an entity’s history encompasses everything that happens to it: learning
the response to a challenge or acquiring the identity attributes belong to an
entity’s history.

An advantage of our proposal is its dynamism and flexibility, because the
number and nature of questions posed to the claimant can be adapted to
the criticality of the context. In addition, it allows collaboration, as multiple
sources can be consulted to gather a thorough knowledge of the history of
a claimant; such a feature is highly relevant in decentralised environments
such as the IoT (Miorandi et al., 2012). Moreover, it enables tampering and
intrusion detection, because the inability of an entity to successfully account
for its own history may be an indication of integrity loss or impersonation.
Additionally, it is fully applicable to artificial entities, provided they have
enough storage and computational capabilities.

These advantages may render our proposal useful to reinforce authen-
tication processes, either by itself or by complementing other approaches.
As a result, it helps to prevent unauthorised disclosure of data and mali-
cious information modification or destruction and to assure the identity of
the entity that has performed an action. Thus, the confidentiality, integrity,
authenticity and non-repudiation are strengthened (ISO, 2012), (Ross et al.,
2008).

The paper is structured as follows: Section 2 explains the intuitive basis
of our approach in depth. In Section 3, we put our proposal in context,
comparing it with other approaches. Section 4 describes the security pattern
that supports our proposal. In Section 5, we describe a security and safety
system, designed based on our pattern and developed within the framework
of the project THOFU (Consortium, 2010). The last section of the paper
presents the conclusions and future directions for work.

3



2. Our proposed approach

Our proposal is inspired by the natural way in which people authenticate
entities: relying upon the available knowledge about the entity that must be
authenticated. Let us analyse some examples extracted from real life.

Our first example illustrates an intuitive way of authenticating someone
when meeting them for the first time or after a period without contact:
asking him/her questions that only the correct person would naturally know
the answers to. A celebrated case is that of Martin Guerre, absent from his
community from 1548 to 1556, whose identity was disputed by two different
persons (Davis, 1983).

Our second example is Himalayan mountaineers who need to prove they
have reached a summit. To do that, they subject themselves to an intensive
scrutiny by Elizabeth Hawley (Jolly, 2010), who exhaustively interrogates
them on the circumstances of their ascent; the right answers to her questions
provide a widely recognised (though unofficial) certification of the authentic-
ity of their claim.

In both cases, a system is required to decide on the authenticity of an
assertion made by a person. To do that, the system searches its memory of
all of the facts regarding that person that may help to confirm the assertion.
We remark that the system’s memory is collective (a community’s memory,
information gathered from several sources such as weather reports, or reports
coming from other expeditions).

Our proposal consists of providing the verifier with a mechanism for re-
membering, allowing it to exploit its knowledge about the entity’s history
to authenticate it. The verifier would be able to increase its knowledge by
aggregating information regarding the entity provided by other relied-upon
entities. The structure of the inquiry could range from simple question-
answer interchange to an exhaustive, extraordinarily complex interrogation
(if the entity requires access to a critical resource).

Our mechanism can be applied for different purposes, such as those
sketched below.

Demanding an entity to account for its history reinforces the first authen-
tication factor (what an entity knows). Either by itself, or as a complement
of other factors, our approach would help in strengthening defence against
impersonation.

On the other hand, our mechanism would help in avoiding identification
errors because it enables a verifier to check the current appearance, behaviour
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or state of an entity (e.g., a patient equipped with a smart bracelet that stores
his medical history and registers his vital signs) against those previously
recorded by the system.

Moreover, we can envision a surveillance system able to ‘perceive’ anoma-
lous circumstances, i.e., circumstances departing from the ones kept in its
memory (e.g., a too-high temperature or movement detected in a room at
night, when it is usually deserted, which may be indications of fire or a
robbery).

Intrusion detection systems are usually considered detective safeguards
raising a second line of defence once an intruder has circumvented preventive
safeguards such as authentication (Biermann et al., 2001; Ye et al., 2002).
Our proposed mechanism may provide support to an intrusion detection
system, as it allows matching the current behaviour of a user with the one
recorded by the system.

3. Related work

Considering its context of application, our proposal is related to research
in environments enabled by new technologies, where concerns arise over se-
curity (Caire and van der Torre, 2010), (Roman et al., 2011), (Ning and
Liu, 2012). Unlike Wireless Sensor Networks, whose nodes are limited in
power capacity, computational capabilities and memory (Akyildiz et al.,
2002) we focus on systems of entities with enhanced communication, mem-
ory and processing capabilities. A context closer to ours would be a system
of robots endowed with complex capabilities that face issues such as intru-
sion detection and the detection of misbehaviours, due to either fault or
malice (Bicchi et al., 2010), the detection, identification and determination
of behaviours (Ruiz-Del-Solar et al., 2010) or authentication(Gavrilova and
Yampolskiy, 2010), (Wang, 2010). Another related context where our pro-
posal could be applied is considered in (González Alonso et al., 2012), where
an architecture is proposed to assure the interoperability of service robots
and a digital home.

However, the previously cited works propose no specific solutions to deeply
examine the authentication problem and consider how to benefit from the
enhanced capabilities of the system. While (Gavrilova and Yampolskiy,
2010), (Bicchi et al., 2010) and (Ruiz-Del-Solar et al., 2010) just mention
the issue, the authentication mechanisms described in (Wang, 2010) and
(González Alonso et al., 2012) are very simple: (Wang, 2010) just verifies a
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match between a password communicated by a robot and the one stored in a
database. On the other hand, the security and privacy subprotocol presented
in (González Alonso et al., 2012) reduces authentication to the verification
of an encrypted identifier.

In the context of intrusion detection, for (Bicchi et al., 2010) an intruder
robot is a misbehaving agent whose behaviour does not adhere to a set of
general rules common to all entities. Our proposal allows an individual mon-
itoring of an entity: the current behaviour of an entity can be benchmarked
against its individual historical behaviour.

Our proposal can also be considered in comparison with other specific
authentication mechanisms found in the literature. While such proposals
have been raised in contexts different than ours, an analysis of their features,
challenges and advantages, as well as the requirements imposed on them,
provides a basis for validating our proposal.

In particular, our proposal incorporates features from other methods such
as challenge-response mechanisms (where an entity must successfully respond
to a series of challenges) and identity verification through multiple identity
proofs (Adi, 2010), (Paci et al., 2009), (Bhargav-Spantzel et al., 2010).
We consider such features in the framework of the history of the entity to be
authenticated, as explained below.

(Adi, 2010) proposes a challenge-response mechanism to authenticate an
entity’s identity: an entity E generates challenge-response pairs randomly
and communicates them to a trusted authority. Later, the authority can
use these pairs to verify the identity of an entity claiming to be E. Our
scheme generalises such mechanisms: questions can be meaningful and refer
to occurrences that happened to the entity; instead of relying on information
previously provided by the entity, the entity responsible for performing the
authentication can use information from its own experience or even gather
information from different sources.

In multiproof identity verification schemes, authentication relies on verify-
ing several identity attributes, possibly certified by different identity providers
(Paci et al., 2009). A user must prove he possesses one or several identity
attributes before he is allowed to access a service. Moreover, the service
provider may dynamically choose the required set of identity attributes (Bhargav-
Spantzel et al., 2010). Similar to such approaches, ours requires en entity to
prove its knowledge based on multiple features to be authenticated; unlike
such approaches, in our scheme, virtually any combination of occurrences
belonging to an entity’s history can be used to authenticate it, and no iden-
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tity providers are explicitly required (though they are not excluded). In
particular, as issuing and receiving a certificate can be modelled as occur-
rences happening to an entity and thus part of its history, certified identity
attributes and eventual communication with identity providers can be natu-
rally integrated into our proposal.

4. A security pattern for authentication and intrusion detection

In this section, we present a security pattern, named the history-based
authentication pattern, that provides a structured description of our history-
based proposal. Like other authentication patterns (Lee Brown et al., 1999),
it aims to reinforce the system security by preventing non-authorised entities
from entering the system or accessing its services and resources (see Table
1). Moreover, our pattern also intends to support intrusion detection in
cases where an intruder has circumvented authentication or other preventive
safeguards.

First we consider the context where our pattern is applicable. We restrict
our attention to systems providing services to an organisation (for instance,
security or logistic services). Moreover, we consider systems of uniquely iden-
tifiable artificial entities, endowed with enhanced processing, communication
and memory capabilities, such as robots or smart objects. Such capabili-
ties enable entities to be aware of their history and to report on it. As a
consequence, the system can exploit its knowledge of the history of the en-
tities, and a history-based solution can be proposed for authentication and
intrusion detection.

Several competing forces come into play in every authentication proposal,
thus some of them must be optimised at the expense of others. On the one
hand, the system must be protected against possible attacks, preserving the
confidentiality of the relevant information and avoiding illegal manipulations.
On the other hand, the available resources must be taken into account, so
that the solution should assign resources proportionally to the criticality of
the attack.

In the following subsections, we provide further details on the pattern
and describe its structure, participants and behaviour. We conclude with an
analysis of the proposal.
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Table 1: History–based authentication pattern.
Name

History–based authentication
Context
A system of uniquely identifiable artificial entities, endowed with processing,
communication and memory capabilities, such as robots or smart objects. The
purpose of the system is to provide a service to an organization (e.g., security
or logistic services).

Problem
For the sake of security, only valid entities should accomplish tasks related to
the service. For this reason, the entities must be properly authenticated, that
is, they must prove that they are what they claim to be. Moreover, situations
in which an intruder entity has circumvented preventive safeguards such as au-
thentication must be prevented by means of intrusion detection mechanisms.

Forces
- A third party could try to impersonate a legitimate entity. Different types of
attack are possible, ranging from stealing identifying information to cloning the
entity. The system should provide for prevention and early detection mecha-
nisms.
- Proportionality: the resources assigned to a task should be proportional to its
frequency and criticality level.
- Confidentiality: a third party eavesdropping on communications should not be
able to obtain information that may be relevant for identification and authenti-
cation purposes. Thus communication of such information should be secure.
- Tampering: the injection of incorrect data or the illegal manipulation of
authentication-related data stored by an entity should be prevented or detected
early.

Solution
The enhanced capabilities of the entities allow them to be aware of their history
and process queries related to it. Taking advantage of this fact, authentication
and intrusion detection can be based upon the entity’s history. Some entities
are specialised as verifiers. To exercise their role, they must be provided with
adequate authority and capabilities, as well as knowledge about the history of
the entities to be authenticated.
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Entity

identity:String

communicate(   receivers: Set(Entity),
communicatedObject : Object )

Occurrence

initTime:Date
endTime: Date

Communication

communicatedObject :Object

AuthenticableEntity

generateAuthenticator ( input:Set(Question) ): String

Verifier

authenticateEntity ( ae: AuthenticableEntity  ): Boolean
requestInformation ( trustedEntity : Entity,

entityUnderInvestigation : Entity )
generateQuestions( e: Entity ): Set(Question)
validate ( ae:AuthenticableEntity ,
                 questions: Set(Question),
                 authenticator: String ): Boolean

{incomplete}

1...*

1

entity

sender {subsets entity}

receiver {subsets entity}

trustedEntity

{incomplete, overlapping}

**

*

*

1...*

*

Figure 1: History–based Authentication Class Diagram.

4.1. Structure and Participants

As previously stated, we consider a system of uniquely identifiable entities
endowed with enhanced capabilities. This fact has been represented in the
UML class diagram of Figure 1 with the class Entity, which has an attribute
(Identity) and several methods. We restrict ourselves to the methods
that model the capabilities supporting our mechanism such as communicate,
which represents the communication capability of entities.

We understand the history of an entity as a set of elementary components,
which are in turn modelled by the notion of occurrence. An occurrence is
defined as something (an event, an incident or something else) that happens
to one or several entities during a period of time. We are aware that there is
an even simpler concept defined as something that happens, without referring
to any entity. This simpler concept is similar to the notion of event defined
in the glossary (Luckham and Schulte, 2011) as “anything that happens, or
is contemplated as happening”. However, because our goal is to manage the
entities’ history, our atomic concept will be occurrence. It should be noted
that our current concept of occurrence generalises the one we introduced in
(Domı́nguez et al., 2013).

The association between the classes Entity and Occurrence models the
ability of entities to remember occurrences regarding both their own history
and that of other entities.
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An entity builds up its history by registering the occurrences in which
it is involved. The integrity of the history relies on meeting the following
requirements every time an occurrence is recorded:

• The record reflects something that actually happened.

• The record reflects faithfully what really happened, that is, all of the
recorded aspects are in accordance with the aspects of what happened.

• The record is complete, that is, the set of the recorded aspects allows
us to determine and distinguish the occurrence that has been observed
and that has been recorded.

• The record has not been tampered with, that is, once recorded, it has
suffered no modification, perturbation or disguise.

Specialised types of occurrences can be derived from the basic notion.
A type especially relevant to our proposal is Communication, which mod-
els the registration of a communication act. The registered occurrence is
“an entity has taken part in an act of communication whose content is the
communicatedObject”. The association between Occurrence and Entity is
specialised into two associations indicating the role that each entity plays
(sender or receiver).

In particular, an entity can communicate with another one of its occur-
rences so that, in this case, the communicated object is an occurrence. As
a consequence, an entity can acquire (at least a partial) knowledge of the
history of other entities; this feature is highly relevant for our authentication
mechanism.

Two different types of entities can be differentiated in the authentication
process, the entity that has to be authenticated (authenticable entity) and
the entity that authenticates it (verifier).

An authenticable entity is an entity capable of recording, recognising and
reporting on its own history. In particular, it should be able to generate an
output in response to an input consisting of any combination of questions re-
garding its history. This output, hereinafter referred to as the authenticator,
proves that the entity knows the correct answers and serves to authenticate
it to the system. The simplest case of an authenticator is just the concatena-
tion of the answers to the posed questions. Authenticators may be strength-
ened by further processing the answers through computation methods such
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as hashing functions, encryption with secret keys or zero knowledge proof
techniques. We remark that an authenticable entity is inextricably linked
to its history: if dissociated from it, the entity is no longer able to generate
an authenticator and thus ceases being an authenticable entity. An example
of a history-aware entity would be a smart thing such as a spime (Ster-
ling, 2005), defined as a new category of space-time objects that are aware
of their surroundings and can memorise real-world events; if provided with
the capability to generate authenticators, a spime would be an authenticable
entity.

On the other hand, a verifier is an entity endowed with both the necessary
capabilities and the authority to authenticate other entities. To exercise its
role, it must have access to the history of the entity to be authenticated. Such
knowledge may be direct (derived from its own history) or communicated by
other trusted entities.

We note that specialisation of Entity into AuthenticableEntity and
Verifier is incomplete and overlapping. Incompleteness permits the exis-
tence of other sorts of entities in the system, such as sensors. In addition,
overlapping allows a verifier to be, in turn, authenticated by another entity.

4.2. Dynamics

First, the authenticable entity AE identifies itself to the verifier V by
means of the method communicate(V , identity). The steps of the authen-
tication process are described in Table 2, and shown graphically in Figure
2.

To authenticate AE, V first must possess sufficient knowledge about the
history of AE. V can rely on its current knowledge or gather information
from trusted entities (i.e., demand information on AE to a trusted entity
TE through requestInformation(TE, AE) and receive a set of occur-
rences regarding AE through communicate(V, Set(O)) ). Depending on the
centralised/distributed architecture of the system, such trusted entities could
be a central repository, a set of credential service providers (whose credentials
would authoritatively bind the identity of an entity and a subset of its his-
tory), or just trusted peers. Based upon the collected knowledge, V generates
a set of questions Set(Q) (invoking generateQuestions(AE))that are posed
to AE (communicate(AE, Set(Q)), which in turn generates an authentica-
tor (generateAuthenticator(Set(Q)))and returns it to V (communicate(V ,

authenticator)). After validating the received authenticator (validate(AE,Set(Q),
authenticator)), V may reach a definitive conclusion on the authenticity
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Table 2: Use case: AuthenticateEntity.
Identifier AuthenticateEntity
Description An entity is authenticated.
Involved actors An authenticable entity, AE, and a verifier, V .
Main flow 1. AE identifies itself to V .

2. If necessary, V collects information about the history of AE
from other entities in which V trusts (asks them to commu-
nicate occurrences regarding AE).

Step 2 can be repeated as many times as considered necessary
for V to have a sufficiently deep knowledge of AE’s history.
3. V develops a battery of questions (Q1 · · ·Qt) on the basis of
its knowledge of AE’s history.

4. V sends the questions to AE.
5. AE generates an authenticator to prove it knows the answers
to the questions posed by V .

6. AE sends the authenticator to V .
7. V validates the authenticator received from AE.
Steps 2 to 7 can be repeated as many times as necessary for V
to obtain an acceptable result for the authentication of AE.
8. V communicates the result of the authentication process to
AE.

Postconditions AE is authenticated.
Alternative
flows

If AE fails to prove its knowledge of the history of the entity it
claims to be, the authentication is negative.

of AE’s identity or pose new questions, possibly after gathering further in-
formation from its trusted parties.

To meet the proportionality requirement, the thoroughness of the ques-
tions posed during the interrogation depends on the criticality of the in-
formation/services/location the entity intends to access and the cause that
triggered the authentication process. Some of the new questions can be made
depending upon the answers formerly provided by AE (e.g., questions can be
raised to clarify an ambiguous answer or to obtain more detailed answers).

Finally, V reports on the success or failure of the authentication process
to AE (communicate(AE, result)).

4.3. Analysis of our proposal

We discuss the strengths and weaknesses of our history-based authenti-
cation proposal with respect to several properties. The list of properties to
be analysed has been taken from (Kienzle et al., 2002).
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AE: AuthenticableEntity V: Verifier TE: Entity

1: communicate (V, Identity)

2.a: requestInformation  (TE,AE)

2.b: communicate (V, Set(Occurrence) )

3: generateQuestions (AE)

4: communicate ( AE,Set(Question) )

5: generateAuthenticator  ( Set(Question) )

6: communicate (V, authenticator)

8: communicate ( AE, result)

loop [insufficient knowledge on AE]

7: validate (AE, Set(Question), authenticator)

 loop [not definitive authentication]

Figure 2: History–based Authentication Sequence diagram.

• Accountability : As well as any other type of authentication, our pro-
posal permits individual entities to be held accountable for their ac-
tions. Furthermore, the more complex the authentication process is,
the more difficult identity theft becomes. For this reason, attempts by
entities to repudiate the transactions they initiate will be made more
difficult.

• Availability : Our proposal could have an adverse effect on availability,
resulting in denying access to legitimate entities. For example, an en-
tity could forget its history, due to some type of hardware or software
problem, making a required resource unavailable to it. On the other
hand, our proposal enables the early detection or issues with an entity,
allowing replacement or repair before the damage goes further.

• Confidentiality : Our proposal allows entity data to be protected from
unauthorised disclosure with a greater level of confidence than other,
simpler authentication proposals. An impersonator would need to steal
the entire history of an entity to compromise confidentiality. Such an
attack requires a much stronger effort than just stealing a password.
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• Integrity : Like confidentiality, our proposal greatly enhances the in-
tegrity of data by enabling a stricter control of the entities involved in
the storage, process and transit of information.

• Manageability : Due to the overhead required to maintain the history
of the entities, using history has a larger impact on manageability than
other, simpler authentication technologies, such as passwords. For this
reason, our approach would be recommended when security is more
important than manageability. Being aware of this issue, we establish
the requirement of proportionality: the complexity of each realisation
of authentication must be proportional to the criticality of the circum-
stances.

• Usability : This property is only applicable to human users. There
must be a trade-off between the benefit of greater protection provided
by stronger authentication procedures and the user’s perception of ex-
tra security controls as a nuisance (Lee et al., 2012). Few people would
be willing to answer demanding interrogations about his/her past to
perform his/her day-to-day activities. Our model provides theoretical
support for the design and implementation of devices that, once as-
signed to a human user, could trace his/her history and automatically
provide an authenticator on his/her behalf whenever required. Secu-
rity would be reinforced at no extra cost in terms of ease of use for the
person possessing the device.

• Performance: Performance is affected by the need to store and manage
the history of the entities. In general, choosing more secure procedures
will generally have an adverse effect on performance.

• Cost : Costs will be incurred from the additional processing power re-
quired and the additional management overhead. However, this in-
vestment could cost less in the long term, because the system will be
less vulnerable to attacks, which are inherently expensive to detect and
recover from.

Taking into account the particular features of the previously described
pattern, we now describe the main benefits of our proposal:

• It is fully applicable to artificial entities, provided they have sufficient
storage and computational capacities.
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• It allows dynamism and flexibility: the verifier can choose in any mo-
ment which and how many questions an entity must answer to be au-
thenticated. The number and nature of questions can be adapted to the
criticality of the resource an entity intends to access or to its observed
behaviour. If an intrusion detection system raises suspicion about an
already authenticated entity, a more exhaustive authentication process
may be triggered.

• It allows collaboration: a verifier can complement its knowledge on
the entity’s history by consulting other trusted ‘colleagues’. Such a
feature is highly relevant in decentralised environments such as the
IoT (Miorandi et al., 2012).

• It provides a basis for tampering detection: a thorough analysis on
an entity’s data may reveal inconsistencies (either internal or with the
information stored in the entities belonging to the system) that may
be an indicator of integrity loss.

• Moreover, it enables intrusion detection: the system can reconstruct
the history of an entity from the memories of the components of the
system that have interacted with it. Discrepancy between the historic
appearance and behaviour and those currently perceived may be an
indication that an intruder has entered the system.

5. Case study

In this section, we present a case study consisting of a security system
based upon the previously described pattern. It has been designed within
the framework of the project THOFU, a multidisciplinary collaboration that
intends to perform a prospective study on technologic concepts and solu-
tions enabling advanced services in the context of the hotels of the future.
The project is being developed by a consortium composed of large companies,
small and medium businesses and technology centres, funded by CDTI (Span-
ish Centre for Technological and Industrial Development) and supported by
the Spanish Ministry of Science and Innovation (Consortium, 2010).

One of the main research areas of THOFU is related to security. Pre-
dictably, monitoring of comfort, safety and security of hotels and many other
social and industrial environments of the future will be assigned to perva-
sive systems. Such systems, operating with little or no human intervention,
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should in turn control and protect themselves to assure their correct perfor-
mance and their compliance with requirements such as privacy and security.

In this section, we outline the security system developed within the THOFU
framework, the THOFU Security System, hereinafter referred to as TSS. We
focus on the features of TSS related to history awareness, either as benefi-
ciaries or as enablers and supporters.

5.1. Description

The system is composed of entities that can be categorised into several
types, according to their roles:

• robots, responsible for the surveillance of the facilities and resources
of the organisation. Because they are required to identify and authen-
ticate themselves to the system, robots are a type of the authenticable
entities described in Section 4.1.

• controllers, responsible for monitoring the performance of other enti-
ties (e.g., robots and other controllers). In case an asset (resource or
capability) is unavailable or underperforms, they trigger a corrective
action. Because they should be able to authenticate the entities under
their control, controllers are a type of the verifiers described in Section
4.1. Moreover, controllers which are supposed to be in turn controlled
by other entities are also authenticable entities.

• registrar, which establishes the identity of every new entity that is
incorporated into the system. Moreover, it assures that both the new
entity and the system possess sufficient information and capabilities to
perform the authentication process.

• knowledge manager, a subsystem that registers the history of the
system as a whole, supporting the knowledge management processes.
Such knowledge could be observed as a very preliminary stage of the
system’s conscience.

5.2. Security requirements

To adequately face both the forces of our pattern (see Table 1) and those
naturally arising during the development of TSS, a set of security require-
ments is established. They should be met during the service life of an au-
thenticable entity AE (e.g., a robot or a controller).
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R1 The system must not possess all the information AE uses to authenti-
cate itself. In this way, an attacker with access to all of the information
about AE available in the system lacks vital information to imperson-
ate it. This requirement generalises standard requirements regarding
password management. See, for example, security goals G1 (No verifi-
cation table), G3 (No password reveal) and Security Requirement SR9
(Prevention of insider attacks) in (Madhusudhan and Mittal, 2012).

R2 History secrecy: AE leaks no useful information about its occurrences
to non-authorised parties such as eavesdroppers.

R3 Anonymity: a third party that eavesdrops on the communications be-
tween AE and other entities in the system must not be able to iden-
tify AE with a reasonable effort. This is one of the goals (G8: User
anonymity) raised in (Madhusudhan and Mittal, 2012).

R4 Unlikability: an eavesdropper should not be able to trace the history of
the interactions between AE and the system. In particular, the link be-
tween AE and its communications (individuating the communications
where AE has taken part) should not be established with a reasonable
effort.

R5 Unforgeability: only AE should be able to perform valid communica-
tions on its behalf.

R6 Proportionality: the amount of resources required for interactions be-
tween AE and the system (in particular, their computational cost) is
proportional to the frequency and criticality level of the interaction.

R7 Intrusion detection: if a third party succeeds in impersonating a legit-
imate entity, it should be unmasked as soon as possible.

R8 Fault and Tampering detection: the loss of the integrity of the informa-
tion stored in an entity (due to data corruption or malicious tampering)
should be detected as soon as possible.

5.3. An enabler for authenticator generation

As described in Section 4, authentication in our proposal relies on the
common knowledge of (at least part of) the history of AE, Set(O)AE, which
can be considered as a secret shared between AE and the system.

17



However, such common knowledge is not enough to assure the security
requirements posed in Section 5.2. Requirement R1 suggests that AE should
possess a secret key, SKAE. For the sake of security, AE must not communi-
cate the value of SKAE but prove its knowledge (using, e.g., zero knowledge
proof techniques; see (Camenisch and Stadler, 1997)).

On the other hand, requirement R2 in 5.2 implies the use of a procedure to
encode messages interchanged between authorised parties within the system.
We suggest the use of a hash function H : {0, 1}∗ → {0, 1}k, with k being a
sufficiently long integer. Upon registration, the system provides AE with the
capability to compute the function H, either simply by communicating the
algorithm for its computation or by equipping AE with a hardware device
that encodes H. In this last case, authentication would be multifactor (the
entity knows SKAE and Set(O)AE and has H), and thus, the security would
be enhanced. Moreover, protecting the device with a physical security mech-
anism, as advised in (Burr et al., 2011), would provide a safeguard against
tampering and duplication attacks.

In our proposed pattern, an authenticable entity must be able to gen-
erate an authenticator. To implement such capability, AE uses the tuple
(SKAE, Set(O)AE,H) (see Section 5.5.3 and Table 5). This tuple acts as a
token, i.e., something possessed and controlled by an entity, which is used
to authenticate its identity (Burr et al., 2011). Note that, because a history
grows over time, the token gets more and more complex (in size and com-
plexity) and thus more and more difficult to steal or forge. The strength of
the token is thus an increasing function of time.

5.4. Lifecycle

In this section, we will sketch the lifecycle of an authenticable entity AE
(a robot or a controller) within the security system TSS.

The goals of the description are threefold. First, we intend to illustrate
the compliance of the policy stating that the system, TSS, is responsible for
assuring its own security and monitoring its own performance. In particular,
during its operating phases, AE will be under the control of another com-
ponent of the system that assures an early reaction in case of misbehaviour
or underperformance. Second, our purpose is to show our proposal at work,
by focusing on the processes that benefit from the history-based mechanism
and on those processes that support it. Finally, our description should be
thorough enough to account for meeting the requirements in Section 5.2.
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Figure 3: Lifecycle.
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First, AE must be registered within the system (see Figure 3). In the
registration phase, the registrar establishes AE’s identity after validating the
identity proofs provided by AE (e.g., a credential issued by a trusted system
from where AE comes). The registrar also receives a commitment of AE’s
secret key f(SKAE), together with an initial set of occurrences from its previ-
ous history, Set(O)AE. The purpose of f(SKAE) is enabling AE to construct
Zero Knowledge Proofs of Knowledge of SKAE (AE must be able to prove
it knows SKAE without unveiling its value). If AE comes straight from the
factory, the initial set of occurrences may relate to its provenance (e.g., date
of manufacture and fabricant). The registrar provides AE with the capabil-
ity to compute a hash function H, either by communicating the code of H
to AE or by equipping AE with a hardware device with H encoded. For the
sake of simplicity, H is supposed to be common for all of the entities within
the system. Now AE possesses a preliminary token (SKAE, Set(O)AE,H),
and the registrar has enough information to authenticate AE.

Once registered, AE may be either assigned a task or stored while waiting
for an assignment. Whenever AE is assigned a task, its control is in turn
assigned to a verifier V that will be a controller. To endow V with the
capability to authenticate AE, the knowledge manager signs a credential
binding the identity of AE to its token, sign(IdAE∥f(SKAE)∥Set(O)AE),
and sends it to V . For the sake of security, the credential can be encrypted
using V ’s public key.

To meet requirement R3 (anonymity) AE computes a temporary iden-
tifier, Id′AE, upon receiving instructions from V . To meet requirement R4
(unlinkability), AE changes Id′AE from time to time at the behest of V . For
details on generating Id′AE, see use case UpdateId’ below, Section 5.5.1.

During the operation phase, AE and V communicate on a continuous ba-
sis. Different communication types, depending on their purpose, take place:

• AE maintains contact with V by sending signals to ensure that V knows
it is active. Because this type of communication occurs frequently,
to meet requirement R6 (proportionality), the signal must be easy to
generate by AE and to process by V . A possible signal fulfilling this
condition is just the value Id′AE.

• AE communicates occurrences related to the performance of its as-
signed task to V (see use case CommunicateOccurrenceToController
below, Section 5.5.2).
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In our proposal, building a new temporary identifier or communicating
a new occurrence requires an up–to–date knowledge of the history of AE.
Failing to perform such activities is a sign that there is something wrong with
AE: inability to account for its own history may be due to a communication
error (either in the reception of the request made by V or in the transmission
of the message), memory corruption (AE has forgotten part of its history)
or the entity being an impostor impersonating AE. Thus, our proposal
provides support for intrusion detection and fault and tampering detection
(requirements R7 and R8). V reacts to this situation by demanding that
AE authenticate itself. If AE succeeds and no errors arise in the following
communications, V may decide to close down the incident. Otherwise, AE is
put into quarantine and V transfers the problem to a specialised subsystem
that performs in–depth hardware and software testing on AE, decides the
subsequent step (e.g., repair or retire AE) and generates an error record.

There are different circumstances under which V may demand authenti-
cation from AE:

• Prior to assuming control of AE.

• On a random basis, without the need for a specific cause. The random
checks enhance the security (e.g., to unmask an impersonator who has
eavesdropped on AE’s identifying signal and uses it to impersonate
AE).

• After a silence time that is too long: V does not receive messages from
AE within a stipulated security time interval. This silence may be
due to acceptable causes (there is a natural physical obstacle between
AE and V interfering with communications), the malfunction of AE,
malicious interferences or an attack that has eliminated AE.

• In general, as a response to AE underperforming.

Authentication is performed under the guidelines of our pattern (Sub-
section 4.2). An adaptation of the use case AuthenticateEntity described in
Table 2, taking into account the features of TSS, will be provided below (see
use case AuthenticateEntity TSS below, Section 5.5.3).

The operation phase finishes in any of the following cases:

• AE successfully completes its task.
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• AE is relieved by another entity because new capabilities are required
for performing the task, AE has been assigned a more urgent task or
AE has worn out or become obsolete.

• Problems with the performance of AE, as noted above.

In all cases, when the operation phase is complete, V proceeds to update
the knowledge the system has about the history of AE.

5.5. Use cases

In this section, the use cases UpdateId’, CommunicateOccurrenceToCon-
troller andAuthenticateEntity TSS, previously presented, are described. They
exploit the knowledge V has about the history of AE.

5.5.1. UpdateId’

The purpose of this use case is to change the temporary identifier AE
uses to maintain contact with V , Id′AE, at the behest of V .

The use case proceeds as follows. First, V sends AE several questions
related to AE’s history. Then, AE computes its new temporary identifier,
Id′AE, applying the hash function H to the concatenation of its identifier IdAE

and the answers to the posed questions. A detailed description of the use
case is provided in Table 3.

This use case enables the system to meet requirements R3 (anonymity)
and R4 (unlinkability). It also enables intrusion and fault and tampering
detection processes (requirements R7 and R8), as explained below:

An eavesdropper without knowledge on AE’s history cannot deduce IdAE

from its pseudonym Id′AE. Let us suppose, on the other hand, that it has
been eavesdropping on the system for a long period of time and has thus reg-
istered the temporary identifiers used by the different authenticable entities.
It cannot relate each entity AE to the set of its successive identifiers, and,
thus, cannot reconstruct the history of its interactions with the system.

A third party A’ that has succeeded in impersonating AE but lacks a
thorough knowledge of its history can maintain the hoax only until V asks it
to update its temporary identifier. Its incapability to build a new identifier
recognisable by V would give it away, and its intrusion would be detected.

On the other hand, if an entity suffers memory corruption due to natural
causes or an attack, or if fake information has been injected into it, it would
fail when performing the use case UpdateId’. As this use case is supposed to
be executed frequently, the problem would be detected at an early stage.
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Table 3: Use case: UpdateId’.
Identifier UpdateId’
Description A new value is assigned to Id′AE , the temporary identifier of

AE.
Involved actors Entities AE and V (V controls AE).
Preconditions Both entities are registered in the system.

Monitoring of AE has been assigned to V ; thus, V knows
(IdAE , f(SKAE), Set(O)AE)

Main flow 1. Within a maximum interval ∆tUpdate, V sends AE a tuple
of questions (Q1 · · ·Qt) related to the history of AE, whose
answers are known by V . V can sign the tuple to assure he is
really the sender of the message.
2. AE processes the questions and obtains the answers
(A1 · · ·At).
3. AE computes Id′AE = H(IdAE∥A1∥ · · · ∥At), where H and
∥ stand for a hash function known by AE and V and the con-
catenation operator.

Postconditions A new temporary identifier for AE, Id′AE , has been obtained.
Alternative
flows

5.5.2. CommunicateOccurrenceToController

To communicate an occurrence o to V , AE generates a coded message
m, which is a function of o and a subset of the history of AE shared with
V . In particular, m is computed by applying the bitwise AND operator to
the occurrence to be communicated and the answers to the last battery of
questions posed to AE by V (see Table 4). Then, AE sends V its temporary
identifier, Id′AE, and the message m. Finally, V identifies AE by means of
Id′AE and extracts o from m.

A third party without such knowledge of AE’s history can neither recover
o from m nor build a valid message on behalf of AE. Thus, requirements R2
(history secrecy) and R5 (unforgeability) are met.

5.5.3. AuthenticateEntity TSS

AuthenticateEntity TSS adapts the use case AuthenticateEntity (see Table
2) to our test bed system. The main adaptations consist of adding the
specific manner in which the identification and the authenticator generation
are performed to the use case. On the one hand, AE identifies itself to V by
means of its temporary identifier. On the other hand, we detail the manner
in which AE generates an authenticator: AE computes a message m by
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Table 4: Use case: CommunicateOccurrenceToController.
Identifier CommunicateOccurrenceToController
Description AE communicates an occurrence to V .
Involved actors Entities AE and V (V controls AE).
Preconditions Both entities are registered in the system.

Monitoring of AE has been assigned to V ; thus, V knows
(IdAE , f(SKAE), Set(O)AE)

Main flow 1. AE processes m = o∗(A1∗· · ·∗At), where o is the occurrence
to be communicated, expressed in a given language, (A1 · · ·At)
are the answers to the last battery of questions posed by V to
AE, and ∗ is the bitwise AND operator. Note that Ai relate
to previous occurrences stored in the history of AE, known by
both AE and V , while o is a new occurrence that AE wants to
communicate to V .
2. AE sends V the tuple (Id′AE ,m), where Id′AE is the tempo-
rary identifier of AE.
3. V receives the message. Through Id′AE , V identifies AE.
4. V processes o = (A1 ∗ · · · ∗At) ∗m and thus reconstructs o.

Postconditions AE has communicated the occurrence o to V .
Alternative
flows

V receives an invalid communication, because the result of
(A1 ∗ · · · ∗At) ∗m contains syntax errors or is inconsistent (i.e.,
does not comply with the syntax of the language used for com-
municating occurrences, or its semantics is nonsense). In this
case, V proceeds to check AE’s identity by launching an au-
thentication process.
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concatenating the answers to the questions posed by V (m = A1|| · · · ||At)
and generates a zero knowledge proof of knowledge of its secret key SKAE

on the message m: proof [SKAE](m). To do so, techniques such as those
proposed by (Camenisch and Stadler, 1997) can be used. (An example of
how to build such proof is provided in Appendix A). The complete use case
appears in Table 5. To ease the reading of the use case, additions are marked
in bold.

We note that this use case meets requirement R2 (history secrecy): the
authenticator generated by AE leaks no information about the history of AE.
On the other hand, a third party unaware of SKAE or the history of AE can-
not successfully authenticate itself, meeting requirement R5 (unforgeability).
This use case provides sufficient flexibility to allow meeting requirement R6
(proportionality): the thoroughness of the interrogation suffered by AE may
vary, depending on the cause that triggered the authentication process.

5.6. Meeting Requirements

In this section we summarise how our system satisfies the requirements
stated in subsection 5.2:

• R1 is satisfied because AE communicates no information that may be
useful to rebuild its secret key SKAE, neither to the registrar nor to its
successive controllers. AE only provides Zero Knowledge Proofs of the
knowledge of SKAE.

• R2 (History secrecy) and R5 (Unforgeability) are met by both Com-
municateOccurrenceToController and authenticateEntity.

• R3 (Anonymity) and R4 (Unlinkability) are enabled by use case Up-
dateId’.

• R6 (Proportionality): the most frequent communications between AE
and V (sending Id′AE to maintain contact) requires minimal processing
by V . In addition, our proposal provides an authentication process
with flexibility to adapt its thoroughness to the context.

• R7 and R8 (Intrusion and fault & tampering detection) are reinforced
by the use case UpdateId’, which allows an early detection of such
threats.

25



Table 5: Use case: AuthenticateEntity TSS.
Identifier AuthenticateEntity TSS
Description An entity, formerly registered by the system, is authenti-

cated.
Involved actors An authenticable entity, AE, and a verifier V .
Preconditions AE has been previously registered in the system.

Monitoring of AE has been assigned to V ; thus, V knows
(IdAE , f(SKAE), Set(O)AE)

Main flow 1. AE identifies itself to V through its temporary identifier,
Id′AE .
2. If necessary, V collects information about the history of AE
from other entities in which V trusts (asks them to communicate
occurrences regarding AE).
3. Step 2 can be repeated as many times as considered necessary
for V to have a sufficiently deep knowledge of AE’s history.
4. V elaborates a battery of questions (Q1 · · ·Qt) based on its
knowledge of AE’s history.
5. V sends the questions to AE.
6. AE computes a message m by concatenating the an-
swers to the questions posed by V , m = A1|| · · · ||At, issues
a zero knowledge proof of knowledge of its secret key
on message m, proof [SKAE ](m) and sends the result to V .
7. V validates the authenticator proof [SKAE ](A1|| · · · ||At)
received from AE.
8. Steps 2 to 7 can be repeated as many times as necessary for
V to obtain an acceptable result for the authentication of AE.
9. V communicates the result of the authentication process to
AE.

Postconditions AE is authenticated.
Alternative
flows

If AE fails to prove knowledge of SKAE , or of the history of the
entity it claims to be, the authentication is negative.
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6. Conclusions and future work

A history-based mechanism has been proposed to reinforce the authenti-
cation processes, either by itself or when complementing other approaches.
It also supports intrusion detection.

Our proposal relies on the basic notion of occurrence, which supports the
notions of history and authenticable entity. It can be applied to systems with
entities endowed with communication, memory and processing capabilities.
Such capabilities enable the implementation of the previous notions.

Among the advantages of our proposal, we highlight its dynamism and
flexibility. Moreover, it enables collaboration and supports tampering and
intrusion detection. As a result, it helps to prevent unauthorised disclosure
of data and malicious information modification or destruction, and to assure
the identity of the entity that has performed an action. Thus, confiden-
tiality, integrity, authenticity and non-repudiation are strengthened (ISO,
2012), (Ross et al., 2008).

There are several lines of further work. Several aspects of occurrence
management are left open, such as persistence structures for storing the
occurrences and a model for communicating occurrences (including its syntax
and semantics). In addition, a goal for further work is to analyse the utility
and feasibility of our history-based approach for implementing other features
of the IoT (Miorandi et al., 2012) apart from authentication.
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Appendix A. Zero Knowledge Proof of Knowledge of SKAE

In this section, we suggest a possible algorithm providing a zero knowledge
proof of knowledge of SKAE and secure transmission of questions and answers
that could be used in the AuthenticateEntity TSS use case (Section 5.5.3).
We follow the techniques of (Camenisch and Stadler, 1997) relating to zero
knowledge proofs.
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Notations
Given a cyclic group G =< g >, the discrete logarithm of y ∈ G to the

base g is the smallest integer r so that gr = y.
∥ denotes the concatenation of two strings (possibly representing integer

numbers)
Z∗

n stands for the multiplicative group of integers modulo n.
Initialisation
AE computes:

• An RSA public key (n, e), together with its private key, d, (Rivest
et al., 1978).

• A cyclic group G =< g > of order n in which computing discrete
logarithms is infeasible.

• A secret key taken at random SKAE ∈ Z∗
n .

• The element y = gSKAE .

Registration
In the registration phase, AE communicates initial information to the

registrar: its identifier IdAE and its public key (n, e,G, g, y), together with
information on its provenance. Note that this public key replaces f(SKAE),
as denoted in the description of the registration phase (Section 5.4).

When V is charged with the monitoring of AE, it receives both IdAE and
the public key.

An authentication algorithm

1. V develops a battery of questions related to the history of AE known
by V , (Q1 · · ·Qt).

2. V encrypts them (e.g., by using AE’s public key, n, e) and sends the
resulting (Qe

1 · · ·Qe
t ), where exponentiations are performed modulo n.

3. AE decrypts the questions: Qi = (Qe
i )

d modulo n.

4. AE obtains the answers (A1 · · ·At) and concatenates them: m = A1∥ · · · ∥At.

5. AE computes (c, s), where c = H(m∥y∥g∥gr) for a random r ∈ Z∗
n,

and s = r − c · SKAE.
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6. AE sends the pair (c, s) to V .

7. V verifies c =?H(m∥y∥g∥gsyc), where m = A1∥ · · · ∥At. Note that V
knows all the required values: (n, e,G, g, y) have been communicated
when it has been assigned to monitor AE, and (A1 · · ·At) are the an-
swers to the questions it has posed to AE.

The ability to compute the pair (c, s) proves that AE knows the discrete
logarithm of y to the base g (i.e., SKAE). Thus (c, s) is an acceptable proof
of knowledge of SKAE on the message m. We note that m depends on the
questions raised by V , which are different every time authentication occurs
and unknown a priori by AE.
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