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Spectral sequences

Definition. A spectral sequence E = (Er, dr)r≥1 is a family of bigraded Z-modules

Er = {Er
p,q}, each provided with a differential dr = {dr

p,q} of bidegree (−r, r − 1)

and with isomorphisms H(Er, dr) ∼= Er+1 for every r ≥ 1.

“If we think of a spectral sequence as a black box, then the input is a differential

bigraded module, usually E1
∗,∗, and, with each turn of the handle, the machine

computes a successive homology according to a sequence of differentials. If some

differential is unknown, then some other (any other) principle is needed to proceed.

In the nontrivial cases, it is often a deep geometric idea that is caught up in the

knowledge of a differential.”

John McCleary, User’s guide to spectral sequences (Publish or Perish, 1985)
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Spectral sequences of filtered complexes

There exists a formal expression for the groups Er
p,q and the differential

maps dr
p,q, but in many cases it is not sufficient to compute them.

Making use of the effective homology method, we have developed an algo-

rithm which computes the whole set of their components.

It has been implemented as a new module for the Kenzo system.

This algorithm can be applied to calculate two classical examples of spectral

sequences: Serre and Eilenberg-Moore.
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Bousfield-Kan spectral sequence

Definition. Let X be a simplicial set with a base point ? ∈ X0 and R a ring.

Then RX is defined as the free simplicial R-module generated by X, where the

base point and its degeneracies are put equal to zero.

Property. Given X a pointed simplicial set and R a commutative ring, there

exists a canonical isomorphism

π∗(RX, ?) ∼= H̃∗(X; R)

One can iterate this constructor to obtain

RkX ≡ R(Rk−1X) for all k ∈ N

There exist canonical maps Φ : X → RX and Ψ : R2X → RX given by Φ(x) = 1 ∗x
for all x ∈ X and Ψ(1 ∗ y) = y for all y ∈ RX.
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For every pair (p, j) such that 0 ≤ j ≤ p, coface and codegeneracy operators are

defined as
∂j : RpX −→ Rp+1X, ∂j = RjΦRp−j

ηj : Rp+2X −→ Rp+1X, ηj = RjΨRp−j

Theorem (Bousfield-Kan spectral sequence). Let X be a simplicial set with

base point ? ∈ X0, and R a ring. There exists a second quadrant spectral sequence

E = (Er, dr)r≥1, whose E1 term is given by

E1
p,q = π′q(R

p+1X) = πq(R
p+1X) ∩Ker η0 ∩ . . . ∩Ker ηp−1

which in the case R = Z and under suitable hypotheses (for instance, if X is

1-reduced) converges to the homotopy groups π∗(X; ?).

A. K. Bousfield and D. M. Kan. The homotopy spectral sequence of a space with coefficients in

a ring. Topology, 11, pp. 79−106, 1972.
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Bousfield-Kan spectral sequence

For the computation of the Bousfield-Kan spectral sequence associated with

a simplicial set X, the first step is the determination of groups

πq(R
p+1X) ∼= H̃q(R

pX)
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Effective homology

A method which provides algorithms for the computation of homology

groups of complicated spaces: twisted cartesian products, classifying spaces,

loop spaces...

X1, X2, . . . , Xn

ϕ

��

XEH
1 , XEH

2 , . . . , XEH
n

ϕEH

��

X XEH
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Effective homology

Definition. A reduction ρ between two chain complexes A∗ and B∗ (denoted by

ρ : A∗⇒⇒B∗) is a triple ρ = (f, g, h)

A∗

h
�� f

++ B∗
g

kk

satisfying the following relations:

......fg = idB; gf + dAh + hdA = idA;

......fh = 0; hg = 0; hh = 0.

Remark. If A∗⇒⇒B∗, then A∗ = B∗ ⊕ C∗, with C∗ acyclic, which implies that

Hn(A∗) ∼= Hn(B∗) for all n.
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Definition. A (strong chain) equivalence between the complexes A∗ and B∗ (de-

noted A∗⇐⇐⇒⇒B∗) is a triple (D∗, ρ, ρ′) where D∗ is a chain complex, ρ : D∗⇒⇒A∗

and ρ′ : D∗⇒⇒B∗.
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v~v~ uu
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Definition. An object with effective homology is a triple (X, HX∗, ε) where HX∗

is an effective chain complex and C∗(X)
ε⇐⇐⇒⇒ HX∗.

Remark. This implies that Hn(X) ∼= Hn(HX∗) for all n.
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Effective homology of RX

Given X a 1-reduced pointed simplicial set with effective homology

DX∗
s{s{ oooooo
oooooo

"* "*MMMMMM

MMMMMM

C∗(X) HX∗

Our goal: an algorithm computing the effective homology of RX

DR∗
s{s{ nnnnnn
nnnnnn

"* "*MMMMMM

MMMMMM

C∗(RX) HR∗
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Effective homology of RX

Previous results:

• Dold-Kan correspondence between the category A of simplicial Abelian

groups and the category C of (positive) chain complexes:

functors N∗ : A → C and Γ : C → A

which satisfy Γ ◦N∗ = IdA and N∗ ◦ Γ = IdC.

• Eilenberg-MacLane spaces: K = K(π, n) such that πn(K) = π and

πi(K) = 0 if i 6= n. They can be defined as K = Γ(C∗(π, n)) and are

objects with effective homology.
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Proposition 1. Given a simplicial set X, there exists an explicit isomorphism

RX ∼= Γ(C̃∗(X))

Proposition 2. Let A∗ and B∗ be chain complexes and ρ : A∗⇒⇒B∗ a reduction

between them. Then one can construct a new reduction

Γ(ρ) : C∗(Γ(A∗))⇒⇒C∗(Γ(B∗))
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Composing the results of Propositions 1 and 2:

C∗(Γ(D̃X∗))

qyqy jjjjjjjj
jjjjjjjj

%- %-TTTTTTT
TTTTTTT

C∗(RX) ∼= C∗(Γ(C̃∗(X))) C∗(Γ(C̃∗(X))) C∗(Γ(H̃X∗))

Algorithm 1.

Input:

• a 1-reduced pointed simplicial set X,

• an equivalence C∗(X)⇐⇐DX∗⇒⇒HX∗, where HX∗ is an effective complex.

Output: an equivalence µL : C∗(RX)⇐⇐C∗(Γ(D̃X∗))⇒⇒C∗(Γ(H̃X∗)), where D̃X∗

and H̃X∗ are chain complexes obtained respectively from DX∗ and HX∗, H̃X∗ is

effective and H̃X0 = H̃X1 = 0.
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Right equivalence

Problem: effective homology of the simplicial Abelian group Γ(H̃X∗).

More generally: effective homology of Γ(E∗) for E∗ effective with E0 = E1 = 0.

E∗ =
⊕

k

Ck
∗ where each Ck

∗ is elementary

Applying the functor Γ:

Γ(E∗) = Γ(
⊕

k

Ck
∗ )
∼=

⊕
k

Γ(Ck
∗ )
∼=

∏
k

Γ(Ck
∗ )

Our problem can be solved computing the effective homology of Γ(C∗), for C∗ an

elementary chain complex.
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Γ(C∗) = Γ(C∗(Z, m)) = K(Z, m)

which is an object with effective homology.

• C∗ is of the form
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Two types of elementary chain complexes:

• C∗ = C∗(Z, m) for some m. Then

Γ(C∗) = Γ(C∗(Z, m)) = K(Z, m)

which is an object with effective homology.

• C∗ is of the form

0←− 0←− · · · ←− 0←− Z dm+1←− Z←− 0←− 0←− · · ·

Proposition 3. Let C∗ be an elementary chain complex with Cm
∼= Cm+1

∼= Z
and Cn = 0 for n 6= m, m + 1. Then

Γ(C∗) ∼= K(Z, m)×τ K(Z, m + 1)

which implies Γ(C∗) is also an object with effective homology.



Right equivalence



Right equivalence

Algorithm 2.

Input: an effective chain complex E∗ such that E0 = E1 = 0.

Output: an equivalence C∗(Γ(E∗))⇐⇐DΓE∗⇒⇒HΓE∗, where HΓE∗ is an effective

chain complex.



Right equivalence

Algorithm 2.

Input: an effective chain complex E∗ such that E0 = E1 = 0.

Output: an equivalence C∗(Γ(E∗))⇐⇐DΓE∗⇒⇒HΓE∗, where HΓE∗ is an effective

chain complex.

For the chain complex H̃X∗, we obtain an equivalence

µR : C∗(Γ(H̃X∗))⇐⇐ D̃R∗⇒⇒HR∗
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Final result

Composition of two equivalences:

C∗(Γ(D̃X∗))

rzrz llllllll
llllllll

%- %-TTTTTTT
TTTTTTT

D̃R∗
rzrz nnnnnnnn
nnnnnnnn

!) !)
JJJJJJ

JJJJJJ

C∗(RX) C∗(Γ(H̃X∗)) HR∗

Algorithm 3.

Input:

• a 1-reduced pointed simplicial set X,

• an equivalence C∗(X)⇐⇐DX∗⇒⇒HX∗, where HX∗ is an effective complex.

Output: an equivalence C∗(RX)⇐⇐DR∗⇒⇒HR∗, where HR∗ is effective.
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Bousfield-Kan spectral sequence: level 1

E1
p,q = π′q(R

p+1X) = πq(R
p+1X) ∩Ker η0 ∩ . . . ∩Ker ηp−1

The groups πq(R
p+1X) ∼= H̃q(R

pX) are computable thanks to our Algorithm 3

and the maps

πq(η
j) ≡ ηj : πq(R

p+1X) −→ πq(R
pX) 0 ≤ j ≤ p− 1

can be expressed as finite integer matrices.

Algorithm 4.

Input:

• a 1-reduced pointed simplicial set X,

• an equivalence C∗(X)⇐⇐DX∗⇒⇒HX∗, where HX∗ is an effective complex.

Output: the groups E1
p,q = π′q(R

p+1X) for each p, q ∈ Z.
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Bousfield-Kan spectral sequence: level 2

The differential map d1
p,q : E1

p,q → E1
p+1,q is induced by

δp+1
q =

p+1∑
j=0

(−1)j∂j

E2
p,q =

Ker d1
p,q

Im d1
p−1,q

is computable

Algorithm 5.

Input:

• a 1-reduced pointed simplicial set X,

• an equivalence C∗(X)⇐⇐DX∗⇒⇒HX∗, where the chain complex HX∗ is

effective.

Output: the groups E2
p,q for each pair p, q ∈ Z.
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Conclusions and further work

• We have developed an algorithm computing the effective homology

of RX, which makes it possible to compute the levels 1 and 2 of the

Bousfield-Kan spectral sequence.

• Algorithm computing all the levels of the Bousfield-Kan spectral se-

quence. More ingredients:

– cosimplicial spaces

– towers of fibrations

– effective homotopy theory


