Effective Homology and Spectral Sequences

Ana Romero

Universidad de La Rioja (Spain)

Zaragoza, 13th July 2007

X a simplicial set, $\pi_i(X)$???

X a simplicial set, $\pi_i(X)$???

• Theoretical algorithm by Edgar Brown

X a simplicial set, $\pi_i(X)$???

• Theoretical algorithm by Edgar Brown

Postnikov tower

X a simplicial set, $\pi_i(X)$???

- Theoretical algorithm by Edgar Brown
- Postnikov tower
- Adams spectral sequence

X a simplicial set, $\pi_i(X)$???

- Theoretical algorithm by Edgar Brown
- Postnikov tower
- Adams spectral sequence
 Bousfield-Kan spectral sequence

X a simplicial set, $\pi_i(X)$???

- Theoretical algorithm by Edgar Brown
- Postnikov tower
- Adams spectral sequence

Bousfield-Kan spectral sequence

Spectral sequences

Spectral sequences

Definition. A spectral sequence $E = (E^r, d^r)_{r\geq 1}$ is a family of bigraded \mathbb{Z} -modules $E^r = \{E_{p,q}^r\}$, each provided with a differential $d^r = \{d_{p,q}^r\}$ of bidegree (-r, r-1) and with isomorphisms $H(E^r, d^r) \cong E^{r+1}$ for every $r \ge 1$.

Spectral sequences

Definition. A spectral sequence $E = (E^r, d^r)_{r\geq 1}$ is a family of bigraded \mathbb{Z} -modules $E^r = \{E_{p,q}^r\}$, each provided with a differential $d^r = \{d_{p,q}^r\}$ of bidegree (-r, r-1) and with isomorphisms $H(E^r, d^r) \cong E^{r+1}$ for every $r \ge 1$.

"If we think of a spectral sequence as a black box, then the input is a differential bigraded module, usually $E_{*,*}^1$, and, with each turn of the handle, the machine computes a successive homology according to a sequence of differentials. If some differential is unknown, then some other (any other) principle is needed to proceed. In the nontrivial cases, it is often a deep geometric idea that is caught up in the knowledge of a differential."

John McCleary, User's guide to spectral sequences (Publish or Perish, 1985)

There exists a *formal* expression for the groups $E_{p,q}^r$ and the differential maps $d_{p,q}^r$, but in many cases it is not sufficient to *compute* them.

There exists a *formal* expression for the groups $E_{p,q}^r$ and the differential maps $d_{p,q}^r$, but in many cases it is not sufficient to *compute* them.

Making use of the effective homology method, we have developed an algorithm which computes the whole set of their components.

There exists a *formal* expression for the groups $E_{p,q}^r$ and the differential maps $d_{p,q}^r$, but in many cases it is not sufficient to *compute* them.

Making use of the effective homology method, we have developed an algorithm which computes the whole set of their components.

It has been implemented as a new module for the Kenzo system.

There exists a *formal* expression for the groups $E_{p,q}^r$ and the differential maps $d_{p,q}^r$, but in many cases it is not sufficient to *compute* them.

Making use of the effective homology method, we have developed an algorithm which computes the whole set of their components.

It has been implemented as a new module for the Kenzo system.

This algorithm can be applied to calculate two classical examples of spectral sequences: Serre and Eilenberg-Moore.

Definition. Let X be a simplicial set with a base point $\star \in X_0$ and R a ring. Then RX is defined as the free simplicial R-module generated by X, where the base point and its degeneracies are put equal to zero.

Definition. Let X be a simplicial set with a base point $\star \in X_0$ and R a ring. Then RX is defined as the free simplicial R-module generated by X, where the base point and its degeneracies are put equal to zero.

Property. Given X a pointed simplicial set and R a commutative ring, there exists a canonical isomorphism

 $\pi_*(RX,\star) \cong \widetilde{H}_*(X;R)$

Definition. Let X be a simplicial set with a base point $\star \in X_0$ and R a ring. Then RX is defined as the free simplicial R-module generated by X, where the base point and its degeneracies are put equal to zero.

Property. Given X a pointed simplicial set and R a commutative ring, there exists a canonical isomorphism

 $\pi_*(RX,\star) \cong \widetilde{H}_*(X;R)$

One can iterate this constructor to obtain

 $R^k X \equiv R(R^{k-1}X)$ for all $k \in \mathbb{N}$

Definition. Let X be a simplicial set with a base point $\star \in X_0$ and R a ring. Then RX is defined as the free simplicial R-module generated by X, where the base point and its degeneracies are put equal to zero.

Property. Given X a pointed simplicial set and R a commutative ring, there exists a canonical isomorphism

 $\pi_*(RX,\star) \cong \widetilde{H}_*(X;R)$

One can iterate this constructor to obtain

 $R^k X \equiv R(R^{k-1}X)$ for all $k \in \mathbb{N}$

There exist canonical maps $\Phi: X \to RX$ and $\Psi: R^2X \to RX$ given by $\Phi(x) = 1 * x$ for all $x \in X$ and $\Psi(1 * y) = y$ for all $y \in RX$.

For every pair (p, j) such that $0 \le j \le p$, *coface* and *codegeneracy* operators are defined as

$$\partial^{j}: \quad R^{p}X \longrightarrow \quad R^{p+1}X, \quad \partial^{j} = R^{j}\Phi R^{p-j}$$
$$\eta^{j}: \quad R^{p+2}X \longrightarrow \quad R^{p+1}X, \quad \eta^{j} = R^{j}\Psi R^{p-j}$$

For every pair (p, j) such that $0 \le j \le p$, *coface* and *codegeneracy* operators are defined as

$$\begin{array}{lll} \partial^{j}: & R^{p}X \longrightarrow & R^{p+1}X, & \partial^{j} = R^{j}\Phi R^{p-j} \\ \eta^{j}: & R^{p+2}X \longrightarrow & R^{p+1}X, & \eta^{j} = R^{j}\Psi R^{p-j} \end{array}$$

Theorem (Bousfield-Kan spectral sequence). Let X be a simplicial set with base point $\star \in X_0$, and R a ring. There exists a second quadrant spectral sequence $E = (E^r, d^r)_{r \ge 1}$, whose E^1 term is given by

$$E_{p,q}^1 = \pi'_q(R^{p+1}X) = \pi_q(R^{p+1}X) \cap \operatorname{Ker} \eta^0 \cap \ldots \cap \operatorname{Ker} \eta^{p-1}$$

which in the case $R = \mathbb{Z}$ and under suitable hypotheses (for instance, if X is 1-reduced) converges to the homotopy groups $\pi_*(X; \star)$.

A. K. Bousfield and D. M. Kan. The homotopy spectral sequence of a space with coefficients in a ring. Topology, 11, pp. 79–106, 1972.

For the computation of the Bousfield-Kan spectral sequence associated with a simplicial set X, the first step is the determination of groups

 $\pi_q(R^{p+1}X) \cong \widetilde{H}_q(R^pX)$

$$X_1, X_2, \dots, X_n$$

$$\downarrow^{\varphi}$$
 X

$$X_1, X_2, \dots, X_n$$

$$\downarrow^{\varphi}$$
 X

$$X_1^{EH}, X_2^{EH}, \dots, X_n^{EH}$$

Definition. A reduction ρ between two chain complexes A_* and B_* (denoted by $\rho : A_* \Longrightarrow B_*$) is a triple $\rho = (f, g, h)$

satisfying the following relations:

 $fg = \mathrm{id}_B; gf + d_A h + h d_A = \mathrm{id}_A;$ fh = 0; hg = 0; hh = 0.

Definition. A reduction ρ between two chain complexes A_* and B_* (denoted by $\rho : A_* \Longrightarrow B_*$) is a triple $\rho = (f, g, h)$

satisfying the following relations:

$$fg = \mathrm{id}_B; \, gf + d_A h + h d_A = \mathrm{id}_A;$$

$$fh = 0; \, hg = 0; \, hh = 0.$$

Remark. If $A_* \Longrightarrow B_*$, then $A_* = B_* \oplus C_*$, with C_* acyclic, which implies that $H_n(A_*) \cong H_n(B_*)$ for all n.

Definition. A *(strong chain) equivalence* between the complexes A_* and B_* (denoted $A_* \iff B_*$) is a triple (D_*, ρ, ρ') where D_* is a chain complex, $\rho : D_* \Longrightarrow A_*$ and $\rho' : D_* \Longrightarrow B_*$.

Effective homology

Definition. A (strong chain) equivalence between the complexes A_* and B_* (denoted $A_* \iff B_*$) is a triple (D_*, ρ, ρ') where D_* is a chain complex, $\rho : D_* \Longrightarrow A_*$ and $\rho' : D_* \Longrightarrow B_*$.

Definition. An object with effective homology is a triple (X, HX_*, ε) where HX_* is an effective chain complex and $C_*(X) \iff HX_*$.

Effective homology

Definition. A (strong chain) equivalence between the complexes A_* and B_* (denoted $A_* \iff B_*$) is a triple (D_*, ρ, ρ') where D_* is a chain complex, $\rho : D_* \Longrightarrow A_*$ and $\rho' : D_* \Longrightarrow B_*$.

Definition. An object with effective homology is a triple (X, HX_*, ε) where HX_* is an effective chain complex and $C_*(X) \iff HX_*$.

Remark. This implies that $H_n(X) \cong H_n(HX_*)$ for all n.

Effective homology of $\boldsymbol{R}\boldsymbol{X}$

Effective homology of RX

Given X a 1-reduced pointed simplicial set with effective homology

Effective homology of RX

Given X a 1-reduced pointed simplicial set with effective homology

Our goal: an algorithm computing the effective homology of RX

Effective homology of $\boldsymbol{R}\boldsymbol{X}$

Effective homology of RX

Previous results:

Effective homology of $\boldsymbol{R}\boldsymbol{X}$

Previous results:

 Dold-Kan correspondence between the category A of simplicial Abelian groups and the category C of (positive) chain complexes:

functors $N_* : \mathcal{A} \to \mathcal{C}$ and $\Gamma : \mathcal{C} \to \mathcal{A}$

which satisfy $\Gamma \circ N_* = \mathrm{Id}_{\mathcal{A}}$ and $N_* \circ \Gamma = \mathrm{Id}_{\mathcal{C}}$.

Effective homology of RX

Previous results:

 Dold-Kan correspondence between the category A of simplicial Abelian groups and the category C of (positive) chain complexes:

functors $N_* : \mathcal{A} \to \mathcal{C}$ and $\Gamma : \mathcal{C} \to \mathcal{A}$

which satisfy $\Gamma \circ N_* = \mathrm{Id}_{\mathcal{A}}$ and $N_* \circ \Gamma = \mathrm{Id}_{\mathcal{C}}$.

• Eilenberg-MacLane spaces: $K = K(\pi, n)$ such that $\pi_n(K) = \pi$ and $\pi_i(K) = 0$ if $i \neq n$. They can be defined as $K = \Gamma(C_*(\pi, n))$ and are objects with effective homology.

Proposition 1. Given a simplicial set X, there exists an explicit isomorphism

 $RX \cong \Gamma(\widetilde{C}_*(X))$

Proposition 1. Given a simplicial set X, there exists an explicit isomorphism

 $RX \cong \Gamma(\widetilde{C}_*(X))$

Proposition 2. Let A_* and B_* be chain complexes and $\rho : A_* \Longrightarrow B_*$ a reduction between them. Then one can construct a new reduction

 $\Gamma(\rho): C_*(\Gamma(A_*)) \Longrightarrow C_*(\Gamma(B_*))$

$$RX \cong \Gamma(\widetilde{C}_*(X))$$

$$C_*(RX) \cong C_*(\Gamma(\widetilde{C}_*(X)))$$

Composing the results of Propositions 1 and 2:

 $C_*(RX) \cong C_*(\Gamma(\widetilde{C}_*(X)))$

 $C_*(RX) \cong C_*(\Gamma(\widetilde{C}_*(X))) \qquad C_*(\Gamma(\widetilde{C}_*(X))) \qquad C_*(\Gamma(\widetilde{C}_*(X))) \qquad C_*(\Gamma(\widetilde{HX}_*))$

$$C_*(RX) \cong C_*(\Gamma(\widetilde{C}_*(X))) = C_*(\Gamma(\widetilde{C}_*(X))) \xrightarrow{C_*(\Gamma(\widetilde{DX}_*))} C_*(\Gamma(\widetilde{HX}_*))$$

Composing the results of Propositions 1 and 2:

$$C_*(RX) \cong C_*(\Gamma(\widetilde{C}_*(X))) = C_*(\Gamma(\widetilde{C}_*(X))) \xrightarrow{C_*(\Gamma(\widetilde{DX}_*))} C_*(\Gamma(\widetilde{HX}_*))$$

Algorithm 1.

Input:

• a 1-reduced pointed simplicial set X,

• an equivalence $C_*(X) \not\leftarrow DX_* \Rightarrow HX_*$, where HX_* is an effective complex. *Output:* an equivalence $\mu_L : C_*(RX) \not\leftarrow C_*(\Gamma(\widetilde{DX}_*)) \Rightarrow C_*(\Gamma(\widetilde{HX}_*))$, where \widetilde{DX}_* and \widetilde{HX}_* are chain complexes obtained respectively from DX_* and HX_* , \widetilde{HX}_* is effective and $\widetilde{HX}_0 = \widetilde{HX}_1 = 0$.

Problem: effective homology of the simplicial Abelian group $\Gamma(\widetilde{HX}_*)$.

Problem: effective homology of the simplicial Abelian group $\Gamma(\widetilde{HX}_*)$. More generally: effective homology of $\Gamma(E_*)$ for E_* effective with $E_0 = E_1 = 0$.

Problem: effective homology of the simplicial Abelian group $\Gamma(HX_*)$. More generally: effective homology of $\Gamma(E_*)$ for E_* effective with $E_0 = E_1 = 0$.

$$E_* = \bigoplus_k C_*^k$$
 where each C_*^k is elementary

Problem: effective homology of the simplicial Abelian group $\Gamma(HX_*)$. More generally: effective homology of $\Gamma(E_*)$ for E_* effective with $E_0 = E_1 = 0$.

$$E_* = igoplus_k C^k_*$$
 where each C^k_* is elementary

Applying the functor Γ :

$$\Gamma(E_*) = \Gamma(\bigoplus_k C_*^k) \cong \bigoplus_k \Gamma(C_*^k) \cong \prod_k \Gamma(C_*^k)$$

Problem: effective homology of the simplicial Abelian group $\Gamma(HX_*)$. More generally: effective homology of $\Gamma(E_*)$ for E_* effective with $E_0 = E_1 = 0$.

$$E_* = igoplus_k C^k_*$$
 where each C^k_* is elementary

Applying the functor Γ :

$$\Gamma(E_*) = \Gamma(\bigoplus_k C_*^k) \cong \bigoplus_k \Gamma(C_*^k) \cong \prod_k \Gamma(C_*^k)$$

Our problem can be solved computing the effective homology of $\Gamma(C_*)$, for C_* an elementary chain complex.

Two types of elementary chain complexes:

Two types of elementary chain complexes:

• $C_* = C_*(\mathbb{Z}, m)$ for some m.

Two types of elementary chain complexes:

• $C_* = C_*(\mathbb{Z}, m)$ for some m. Then

 $\Gamma(C_*) = \Gamma(C_*(\mathbb{Z}, m)) = K(\mathbb{Z}, m)$

which is an object with effective homology.

Two types of elementary chain complexes:

• $C_* = C_*(\mathbb{Z}, m)$ for some m. Then

$$\Gamma(C_*) = \Gamma(C_*(\mathbb{Z}, m)) = K(\mathbb{Z}, m)$$

which is an object with effective homology.

• C_* is of the form

$$0 \longleftarrow 0 \longleftarrow \cdots \longleftarrow 0 \longleftarrow \mathbb{Z} \stackrel{d_{m+1}}{\longleftarrow} \mathbb{Z} \longleftarrow 0 \longleftarrow \cdots$$

Two types of elementary chain complexes:

• $C_* = C_*(\mathbb{Z}, m)$ for some m. Then

$$\Gamma(C_*) = \Gamma(C_*(\mathbb{Z}, m)) = K(\mathbb{Z}, m)$$

which is an object with effective homology.

• C_* is of the form

$$0 \longleftarrow 0 \longleftarrow \cdots \longleftarrow 0 \longleftarrow \mathbb{Z} \stackrel{d_{m+1}}{\longleftarrow} \mathbb{Z} \longleftarrow 0 \longleftarrow 0 \longleftarrow \cdots$$

Proposition 3. Let C_* be an elementary chain complex with $C_m \cong C_{m+1} \cong \mathbb{Z}$ and $C_n = 0$ for $n \neq m, m+1$. Then

 $\Gamma(C_*) \cong K(\mathbb{Z}, m) \times_{\tau} K(\mathbb{Z}, m+1)$

Two types of elementary chain complexes:

• $C_* = C_*(\mathbb{Z}, m)$ for some m. Then

$$\Gamma(C_*) = \Gamma(C_*(\mathbb{Z}, m)) = K(\mathbb{Z}, m)$$

which is an object with effective homology.

• C_* is of the form

$$0 \longleftarrow 0 \longleftarrow \cdots \longleftarrow 0 \longleftarrow \mathbb{Z} \stackrel{d_{m+1}}{\longleftarrow} \mathbb{Z} \longleftarrow 0 \longleftarrow \cdots$$

Proposition 3. Let C_* be an elementary chain complex with $C_m \cong C_{m+1} \cong \mathbb{Z}$ and $C_n = 0$ for $n \neq m, m+1$. Then

$$\Gamma(C_*) \cong K(\mathbb{Z}, m) \times_{\tau} K(\mathbb{Z}, m+1)$$

which implies $\Gamma(C_*)$ is also an object with effective homology.

Algorithm 2.

Input: an effective chain complex E_* such that $E_0 = E_1 = 0$.

Output: an equivalence $C_*(\Gamma(E_*)) \ll D\Gamma E_* \Longrightarrow H\Gamma E_*$, where $H\Gamma E_*$ is an effective chain complex.
Right equivalence

Algorithm 2.

Input: an effective chain complex E_* such that $E_0 = E_1 = 0$.

Output: an equivalence $C_*(\Gamma(E_*)) \ll D\Gamma E_* \Longrightarrow H\Gamma E_*$, where $H\Gamma E_*$ is an effective chain complex.

For the chain complex \widetilde{HX}_* , we obtain an equivalence

$$\mu_R: C_*(\Gamma(\widetilde{HX}_*)) \nleftrightarrow \widetilde{DR}_* \Longrightarrow HR_*$$

Composition of two equivalences:

Composition of two equivalences:

 $C_*(\Gamma(\widetilde{DX}_*))$ $C_*(RX)$ $C_*(\Gamma(\widetilde{HX}_*))$

Composition of two equivalences:

Composition of two equivalences:

Algorithm 3.

Input:

• a 1-reduced pointed simplicial set X,

• an equivalence $C_*(X) \iff DX_* \Longrightarrow HX_*$, where HX_* is an effective complex. Output: an equivalence $C_*(RX) \iff DR_* \Longrightarrow HR_*$, where HR_* is effective.

$$E_{p,q}^1 = \pi'_q(R^{p+1}X) = \pi_q(R^{p+1}X) \cap \operatorname{Ker} \eta^0 \cap \ldots \cap \operatorname{Ker} \eta^{p-1}$$

$$E_{p,q}^{1} = \pi'_{q}(R^{p+1}X) = \pi_{q}(R^{p+1}X) \cap \operatorname{Ker} \eta^{0} \cap \ldots \cap \operatorname{Ker} \eta^{p-1}$$

The groups $\pi_q(R^{p+1}X) \cong \widetilde{H}_q(R^pX)$ are computable thanks to our Algorithm 3

$$E_{p,q}^{1} = \pi'_{q}(R^{p+1}X) = \pi_{q}(R^{p+1}X) \cap \operatorname{Ker} \eta^{0} \cap \ldots \cap \operatorname{Ker} \eta^{p-1}$$

The groups $\pi_q(R^{p+1}X) \cong \widetilde{H}_q(R^pX)$ are computable thanks to our Algorithm 3 and the maps

$$\pi_q(\eta^j) \equiv \eta^j : \pi_q(R^{p+1}X) \longrightarrow \pi_q(R^pX) \quad 0 \le j \le p-1$$

can be expressed as finite integer matrices.

$$E_{p,q}^{1} = \pi'_{q}(R^{p+1}X) = \pi_{q}(R^{p+1}X) \cap \operatorname{Ker} \eta^{0} \cap \ldots \cap \operatorname{Ker} \eta^{p-1}$$

The groups $\pi_q(R^{p+1}X) \cong \widetilde{H}_q(R^pX)$ are computable thanks to our Algorithm 3 and the maps

$$\pi_q(\eta^j) \equiv \eta^j : \pi_q(R^{p+1}X) \longrightarrow \pi_q(R^pX) \quad 0 \le j \le p-1$$

can be expressed as finite integer matrices.

Algorithm 4.

Input:

• a 1-reduced pointed simplicial set X,

• an equivalence $C_*(X) \iff DX_* \Longrightarrow HX_*$, where HX_* is an effective complex. *Output:* the groups $E_{p,q}^1 = \pi'_q(R^{p+1}X)$ for each $p, q \in \mathbb{Z}$.

The differential map $d^1_{p,q}: E^1_{p,q} \to E^1_{p+1,q}$ is induced by

$$\delta_q^{p+1} = \sum_{j=0}^{p+1} (-1)^j \partial^j$$

The differential map $d^1_{p,q}: E^1_{p,q} \to E^1_{p+1,q}$ is induced by

$$\delta_q^{p+1} = \sum_{j=0}^{p+1} (-1)^j \partial^j$$

$$E_{p,q}^2 = \frac{\operatorname{Ker} d_{p,q}^1}{\operatorname{Im} d_{p-1,q}^1}$$
 is computable

The differential map $d^1_{p,q}: E^1_{p,q} \to E^1_{p+1,q}$ is induced by

$$\delta_q^{p+1} = \sum_{j=0}^{p+1} (-1)^j \partial^j$$

$$E_{p,q}^2 = \frac{\operatorname{Ker} d_{p,q}^1}{\operatorname{Im} d_{p-1,q}^1}$$
 is computable

Algorithm 5.

Input:

- a 1-reduced pointed simplicial set X,
- an equivalence $C_*(X) \iff DX_* \Longrightarrow HX_*$, where the chain complex HX_* is effective.

Output: the groups $E_{p,q}^2$ for each pair $p, q \in \mathbb{Z}$.

• We have developed an algorithm computing the effective homology of RX, which makes it possible to compute the levels 1 and 2 of the Bousfield-Kan spectral sequence.

- We have developed an algorithm computing the effective homology of RX, which makes it possible to compute the levels 1 and 2 of the Bousfield-Kan spectral sequence.
- Algorithm computing all the levels of the Bousfield-Kan spectral sequence. More ingredients:

- We have developed an algorithm computing the effective homology of RX, which makes it possible to compute the levels 1 and 2 of the Bousfield-Kan spectral sequence.
- Algorithm computing all the levels of the Bousfield-Kan spectral sequence. More ingredients:
 - cosimplicial spaces

- We have developed an algorithm computing the effective homology of RX, which makes it possible to compute the levels 1 and 2 of the Bousfield-Kan spectral sequence.
- Algorithm computing all the levels of the Bousfield-Kan spectral sequence. More ingredients:
 - cosimplicial spaces
 - towers of fibrations

- We have developed an algorithm computing the effective homology of RX, which makes it possible to compute the levels 1 and 2 of the Bousfield-Kan spectral sequence.
- Algorithm computing all the levels of the Bousfield-Kan spectral sequence. More ingredients:
 - cosimplicial spaces
 - towers of fibrations
 - effective homotopy theory