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Spectral sequences

Definition. A spectral sequence E = (E",d"),>1 is a family of bigraded Z-modules
E" = {E, ,}, each provided with a differential d" = {d; ,} of bidegree (—r,r — 1)
and with isomorphisms H(E",d") = E™*! for every r > 1.

“If we think of a spectral sequence as a black box, then the input is a differential
bigraded module, usually E,}* and, with each turn of the handle, the machine
computes a successive homology according to a sequence of differentials. If some
differential is unknown, then some other (any other) principle is needed to proceed.
In the nontrivial cases, it is often a deep geometric idea that is caught up in the

knowledge of a differential.”

John McCleary, User's guide to spectral sequences (Publish or Perish, 1985)
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Spectral sequences of filtered complexes

There exists a formal expression for the groups F; = and the differential

maps d, ., but in many cases it is not sufficient to compute them.

Making use of the effective homology method, we have developed an algo-

rithm which computes the whole set of their components.
It has been implemented as a new module for the Kenzo system.

This algorithm can be applied to calculate two classical examples of spectral

sequences: Serre and Eilenberg-Moore.
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Definition. Let X be a simplicial set with a base point x € Xy and R a ring.
Then RX is defined as the free simplicial R-module generated by X, where the

base point and its degeneracies are put equal to zero.

Property. Given X a pointed simplicial set and R a commutative ring, there

exists a canonical isomorphism

~

mT.(RX, %) = H.(X; R)
One can iterate this constructor to obtain
R*X = R(RF'X) forall k € N

There exist canonical maps ® : X — RX and ¥ : R2X — RX given by ®(z) = 1xz
forall z € X and V(1 *xy) =y for all y € RX.
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For every pair (p,j) such that 0 < j < p, coface and codegeneracy operators are

defined as ‘ _ ‘ ‘
&: RX — RMX, ¢ =ROR

o RPPX — RPYX, ) = RIVRP

Theorem (Bousfield-Kan spectral sequence). Let X be a simplicial set with
base point x € Xy, and R a ring. There exists a second quadrant spectral sequence

E = (E",d"),>1, whose E' term is given by
E;,q = W;(RPHX) =7, (RFIX)NKern’ N... N Kern™

which in the case R = 7Z and under suitable hypotheses (for instance, if X is
1-reduced) converges to the homotopy groups m.(X;*).

A. K. Bousfield and D. M. Kan. The homotopy spectral sequence of a space with coefficients in
a ring. Topology, 11, pp. 79—106, 1972.
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Bousfield-Kan spectral sequence

For the computation of the Bousfield-Kan spectral sequence associated with

a simplicial set X, the first step is the determination of groups

T (RPX) = Hy(RPX)
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A method which provides algorithms for the computation of homology
groups of complicated spaces: twisted cartesian products, classifying spaces,

loop spaces...

FH EFH EFH
Xl’XQ,...,Xn Xl 7X2 ,...7Xn
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Definition. A reduction p between two chain complexes A, and B, (denoted by
p:A.==> B,)is a triple p = (f, g, h)

h

satisfying the following relations:
fg=1idp; gf + dah + hdy = idy;
fh=0; hg=0; hh = 0.

Remark. If A, == B,, then A, = B, ® C,, with C, acyclic, which implies that
H,(A,) = H,(B,) for all n.



Effective homology




Effective homology

Definition. A (strong chain) equivalence between the complexes A, and B, (de-
noted A, «== B,) is a triple (D, p, p') where D, is a chain complex, p : D, == A,
and p' : D, == B,.

D,

&

A, B,



Effective homology

Definition. A (strong chain) equivalence between the complexes A, and B, (de-
noted A, «== B,) is a triple (D, p, p') where D, is a chain complex, p : D, == A,
and p' : D, == B,.

D,
2\
A, B,

Definition. An object with effective homology is a triple (X, HX,,¢) where H X,
is an effective chain complex and C,(X) «== HX,.



Effective homology

Definition. A (strong chain) equivalence between the complexes A, and B, (de-
noted A, «== B,) is a triple (D, p, p') where D, is a chain complex, p : D, == A,
and p' : D, == B,.

D,
2\
A, B,

Definition. An object with effective homology is a triple (X, HX,,¢) where H X,
is an effective chain complex and C,(X) «== HX,.

Remark. This implies that H,(X) = H,(HX,) for all n.
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Effective homology of RX

Given X a 1-reduced pointed simplicial set with effective homology

DX,
& N
Cy(X) HX,

Our goal: an algorithm computing the effective homology of RX

DR,
e
C.(RX) HR.
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Effective homology of RX

Previous results:

e Dold-Kan correspondence between the category A of simplicial Abelian

groups and the category C of (positive) chain complexes:
functors N,: A—Cand':C — A

which satisfy ' o N, = Id4 and N, o I' = Id.

e Eilenberg-Maclane spaces: K = K(m,n) such that 7,(K) = 7 and
mi(K) = 0if i # n. They can be defined as K = I'(C.(m,n)) and are

objects with effective homology.
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Left equivalence

Proposition 1. Given a simplicial set X, there exists an explicit isomorphism

~

RX = T(C.(X))

Proposition 2. Let A, and B, be chain complexes and p : A, == B, a reduction

between them. Then one can construct a new reduction

L(p) : Cu(T'(As)) == C(T'(B.))
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Composing the results of Propositions 1 and 2:

Algorithm 1.
Input:

e a l-reduced pointed simplicial set X,

e an equivalence C,(X) «= DX, == HX,, where HX, is an effective complex.
Output: an equivalence piz, : C.(RX) «=C,(I(DX,)) == C,(I'(HX,)), where DX,
and HX ,+ are chain complexes obtained respectively from DX, and HX,, HX 4 18
effective and ]?)/(0 = I?)/(l = 0.
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Right equivalence

Problem: effective homology of the simplicial Abelian group I’(I/f)/(*)
More generally: effective homology of I'(E.) for E, effective with Fy = F; = 0.

E, = @ C* where each C* is elementary
k

Applying the functor I':

I(E.) =T(@PchH =2@Prch = ]rch
k k k

Our problem can be solved computing the effective homology of I'(C,), for C, an

elementary chain complex.
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Right equivalence

Two types of elementary chain complexes:
o C. = C.(Z,m) for some m. Then
I(C,) =T(C(Z,m)) = K(Z,m)
which is an object with effective homology.
e (), is of the form

00— e—0e—Z™ 7 g0

Proposition 3. Let C, be an elementary chain complex with C,, = Cy,11 = 7
and C,, =0 forn #m,m+ 1. Then

0(C,) = K(Z,m) %, K(Z,m + 1)

which implies I'(C,) is also an object with effective homology.
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Input: an effective chain complex FE, such that Ey = E; = 0.

Output: an equivalence C,(T'(E,)) «= DI'E, == HT'E,, where HT'E, is an effective
chain complex.



Right equivalence

Algorithm 2.
Input: an effective chain complex FE, such that Ey = E; = 0.
Output: an equivalence C,(T'(E,)) «= DI'E, == HT'E,, where HT'E, is an effective

chain complex.

For the chain complex H X, we obtain an equivalence

ur: C.(T(HX,))«= DR, = HR,
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Final result

Composition of two equivalences:

C.(D(DX,)) DR,
= T~ — N
)

C.(RX) C.(T(HX.,

Algorithm 3.
Input:
e a l-reduced pointed simplicial set X,

e an equivalence C,(X) «= DX, == HX,, where HX, is an effective complex.
Output: an equivalence Cy(RX) «= DR, == HR,, where HR, is effective.
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Bousfield-Kan spectral sequence: level 1

E;;,q = W;(RPHX) = Wq(RpHX) N Ker 770 N...N Ker np_l

~

The groups 7,(RP™1X) = H,(RPX) are computable thanks to our Algorithm 3

and the maps

mg() = 1 mg(RPHX) — m(RPX) 0<j<p-1
can be expressed as finite integer matrices.
Algorithm 4.

Input:

e a l-reduced pointed simplicial set X,

e an equivalence C\(X)«= DX, == HX,, where HX, is an effective complex.
Output: the groups E;,q = WQ(RPHX) for each p, q € Z.
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The differential map d; , : E, , — E}, , is induced by

p+1
= S
j=0
1
s Kerdp’q .

is computable

Dq 1
Im dp_l,q



Bousfield-Kan spectral sequence: level 2

The differential map d})’q ; E;,q — E;Jrl’q is induced by

p+1
55“ = E (—1) ¢’
J=0
Ker d!
2 Pg
= ——— is computable
P, 1
Imd,

Algorithm 5.
Input:
e a l-reduced pointed simplicial set X,
e an equivalence C,(X)<«= DX, == HX,, where the chain complex HX, is

effective.

Output: the groups E;  for each pair p,q € Z.
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Conclusions and further work

e We have developed an algorithm computing the effective homology
of RX, which makes it possible to compute the levels 1 and 2 of the

Bousfield-Kan spectral sequence.

e Algorithm computing all the levels of the Bousfield-Kan spectral se-
quence. More ingredients:
— cosimplicial spaces
— towers of fibrations

— effective homotopy theory



