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Introduction

Algebraic Topology consists in trying to use as much as possible “algebraic” methods
to attack topological problems; in the simplest cases, it consists in associating to topo-
logical spaces some algebraic invariants which describe their essential properties. For
instance, one can define some special groups associated with a topological space, in a way
that respects the relation of homeomorphism of spaces. This allows one to study some
interesting properties about topological spaces by means of statements about groups,
which are often easier to prove. More generally, there exist several functors which assign
to some topological spaces some algebraic objects. Very frequently, if this functor works
on a topological space of “finite type”, then the result is also an algebraic object of finite
type. But in general there do not exist algorithms capable of computing these algebraic
objects of finite type according to the different functors of Algebraic Topology.

Two important algebraic invariants are homotopy groups and homology (and coho-
mology) groups. The simplest one is the computation of the usual homology groups (with
coefficients in Z) of finite simplicial complexes. It is not hard to write such an algorithm:
a simplicial complex determines a chain complex of finite type and its homology groups
are deduced from elementary operations with the differential operators, as explained for
example in [KMM04]. A more difficult problem is to compute the homotopy groups of
a finite simplicial complex X, denoted πn(X).

The definition of homotopy group was given by Hurewicz in [Hur35] and [Hur36]
as a generalization of the fundamental group, originally due to Poincaré in [Poi95], a
paper which can be considered the origin of Algebraic Topology. At this time only some
groups of the first non-trivial space, namely the 2-sphere S2, were known; to be precise,
Heinz Hopf [Hop35] computed π2(S

2) = Z and π3(S
2) = Z. The group π4(S

2) = Z2 was
determined by Hans Freudenthal in 1937 [Fre37], but then little more was known about
homotopy groups of spaces until 1950. The following groups πn(S

2) were obtained by
Jean-Pierre Serre for 5 ≤ n ≤ 9 [Ser51]. In fact, for n = 6, Serre proved the group π6(S

2)
has twelve elements, but he was not able to choose between both possible solutions Z12

and Z2 ⊕ Z6, the first historical example where a topologist faced a serious extension
problem. Two years later, Barratt and Paechter [BP52] proved there exists an element
of order 4 in π6(S

2), so that finally π6(S
2) = Z12. Other references about computation

of homotopy groups of spheres are, for instance, [Tod62], [Mah67], and [Rav86].
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2 Introduction

Serre also obtained a general finiteness result [Ser53] which asserts that, if X is a
simply connected space such that the homology groups Hn(X; Z) are of finite type, then
the homotopy groups πn(X) are also Abelian groups of finite type. In 1957, Edgar Brown
published in [Bro57] a theoretical algorithm for the computation of these groups, based
on the Postnikov tower and making use of finite approximations of infinite simplicial
sets, transforming in this way the finiteness results of Serre into a computability result.
Nevertheless, Edgar Brown himself quoted in his paper that his algorithm has no prac-
tical use, even with the most powerful computer you can imagine: it is a consequence of
the hyper-exponential complexity of the algorithm designed by Brown.

The effective homology method appeared in the eighties trying to make available
real algorithms for the computation of homology and homotopy groups. Introduced by
Francis Sergeraert in [Ser87] and [Ser94], the present state of this technique is described
in [RS97] and [RS06]. It is based on the notion of object with effective homology, which
connects a space with its homology by means of chain equivalences, and it is closely
related with the homology perturbation theory, whose fundamental references are the
classical works of Shi Weishu [Shi62] and Ronnie Brown [Bro67], and those of Victor
Gugenheim, Larry Lambe, and Jim Stasheff [GL89] [GLS91].

The effective homology method has been concretely implemented in the system Kenzo
[DRSS99] (whose previous version was called EAT [RSS97]), a Common Lisp program
which has made it possible to compute some complicated homology groups so far un-
reachable. In particular, Kenzo can compute, for instance, the homology groups of total
spaces of fibrations, of iterated loop spaces, of classifying spaces, etc. Other useful pa-
pers about the effective homology method and the Kenzo system are [RS88], [Rub91],
[RS02], and [RS05a].

Spectral sequences are a different technique traditionally considered to calculate ho-
mology and homotopy groups of spaces (see, for instance, [McC85] or [Hat04]). For ex-
ample, the Serre spectral sequence [Ser51] gives information about the homology groups
of the total space of a fibration when the homology groups of the base and fiber spaces
are known. On the other hand, the Eilenberg-Moore spectral sequence [EM65b] gives
information about the homology groups of the base space (resp. the fiber space) from
the homologies of the total space and of the fiber (resp. base space). For the compu-
tation of homotopy groups, the spectral sequences of Adams [Ada60] or Bousfield-Kan
[BK72a] can be considered.

But the various classical spectral sequences pose a very important problem: they are
not algorithms. A spectral sequence is a family of “pages” (Er

p,q, d
r)r≥1 of differential

bigraded modules, each page being made of the homology groups of the preceding one.
Then, as expressed by John McCleary in [McC85]:

It is worth repeating the caveat about differentials mentioned in Chapter 1: knowledge
of Er

∗,∗ and dr determines Er+1
∗,∗ but not dr+1. If we think of a spectral sequence as

a black box, then the input is a differential bigraded module, usually E1
∗,∗, and, with

each turn of the handle, the machine computes a successive homology according to
a sequence of differentials. If some differential is unknown, then some other (any
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other) principle is needed to proceed. From Chapter 1, the reader is acquainted with
several algebraic tricks that allow further calculation. In the nontrivial cases, it is
often a deep geometric idea that is caught up in the knowledge of a differential.

In most cases, it is in fact a matter of computability: the higher differentials of the
spectral sequence are mathematically defined, but their definition is not constructive. In
other words, the differentials are not computable with the usually provided information.

Another different problem of spectral sequences is the extension problem at abut-
ment. A spectral sequence gives one a filtration of the looked-for (homology or homo-
topy) groups, but then in some cases several solutions are possible. This was the problem
Jean-Pierre Serre found when trying to compute π6(S

2), a problem which can be solved
making use of the effective homology technique.

The goal of this work has been to relate spectral sequences and effective homology,
showing that the effective homology method can be used to produce algorithms com-
puting the various components of some spectral sequences, higher differentials included.

The organization of the memoir is as follows. The first chapter includes some pre-
liminary notions and results that will be used in the rest of this work. To be precise, in
the first section we introduce chain complexes and spectral sequences, two fundamental
notions in Homological Algebra. The second section is devoted to simplicial topology,
focusing on simplicial sets, homotopy groups, and Eilenberg-MacLane spaces. Finally,
the effective homology method and the Kenzo system are explained in the third section.

After this first chapter, the memoir is divided into two different parts. Chapters 2
and 3 are devoted to spectral sequences associated with filtered complexes, which under
favorable natural conditions converge to their homology groups. On the other hand,
Chapters 4 and 5 deal with the Bousfield-Kan spectral sequence, related with the com-
putation of homotopy groups.

Chapter 2 contains several algorithms for the computation of the different compo-
nents of spectral sequences associated with filtered complexes with effective homology:
the groups Er

p,q, the differential maps drp,q for every level r, as well as the stage r at which
the convergence has been reached for each degree n, and the filtration of the homology
groups induced by the filtration of the chain complex. Our results can be applied, for
instance, for the computation of spectral sequences associated with bicomplexes. These
algorithms have been implemented as a new module for the Kenzo system, which is also
explained in this chapter by means of some elementary examples.

The results presented in Chapter 2 make it also possible to compute two classical
examples of spectral sequences, those of Serre and Eilenberg-Moore, which are studied
in Chapter 3. If the spaces involved in the corresponding fibrations are objects with
effective homology, the different components of the associated spectral sequences can
be determined making use of our algorithms. In this way, we make constructive these
spectral sequences that, up to now, were not algorithms. Both situations have been
illustrated by means of several examples implemented in Common Lisp.
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Other spectral sequences of great interest are not associated with filtered complexes.
This is the case of the Bousfield-Kan spectral sequence, which first appeared in [BK72a]
trying to generalize the Adams spectral sequence [Ada60]. Although there exists a formal
definition of the Adams spectral sequence, problems are found in order to compute
it, as explained in the introduction of [Tan85]. First of all, we must determine the
cohomology of the Steenrod algebra [Ste62], then we must find the higher differentials,
and finally extension problems at abutment can appear. In this case, our previous
algorithms for spectral sequences associated with filtered complexes cannot be used, but
the effective homology method can also be useful to develop a constructive version of
the Bousfield-Kan spectral sequence.

As a first step toward this effective version of the Bousfield-Kan spectral sequence, the
main result of Chapter 4 is an algorithm computing the effective homology of the Z-free
simplicial Abelian group RX generated by a 1-reduced simplicial set X. The “ordinary”
homology of RX is easily deduced from Cartan’s work [Car55] about Eilenberg-MacLane
spaces, but this information is unsufficient for our purpose: effective homology is def-
initely required here. Our algorithm makes use of several constructions of Algebraic
Topology such as the Dold-Kan correspondence between the categories of chain com-
plexes and simplicial Abelian groups, fibrations or Eilenberg-MacLane spaces. Some
parts of this algorithm have been implemented by means of a set of programs in Com-
mon Lisp which are also explained in this chapter.

Chapter 5 is devoted to the Bousfield-Kan spectral sequence associated with a simpli-
cial set X, trying to construct an algorithm (based on the effective homology technique)
computing the whole set of its components. The first part of this chapter contains some
algorithms to deal with cosimplicial structures, which are one of the main ingredients in
this spectral sequence; the second one is focused on the construction of the Bousfield-Kan
spectral sequence. We begin this part with a proof of the convergence, based on elemen-
tary computations of Homological Algebra. Then the results of Chapter 4 are used to
compute its first two stages. For the computation of the higher levels, we include the
sketch of a new algorithm which is not yet finished.

The memoir ends with a chapter which includes conclusions and further work, and
the bibliography.



Chapter 1

Preliminaries

In the first chapter of this memoir we include the definitions, notations, and basic results
that we will use in the rest of this work. In particular, the first section is devoted to two
fundamental notions in Homological Algebra: chain complexes and spectral sequences.
The second section contains some definitions and results of simplicial topology. Finally,
we present the fundamental ideas of the effective homology method.

1.1 Basics on Homological Algebra

1.1.1 Chain complexes

The following basic definitions can be found, for instance, in [Mac63].

Definition 1.1. Let R be a ring with a unit element 1 6= 0. A left R-module M is an
additive Abelian group together with a map p : R×M →M , denoted by p(r,m) ≡ rm,
such that for every r, r′ ∈ R and m,m′ ∈M

(r + r′)m = rm+ r′m

r(m+m′) = rm+ rm′

(rr′)m = r(r′m)

1m = m

A similar definition is given for a right R-module. Unless the distinction being neces-
sary, we will talk of an R-module M without specifying if it is a right or a left R-module.

For R = Z (the integer ring), a Z-module M is simply an Abelian group. The map
p : Z×M →M is given by

p(n,m) =


m+

n· · · +m if n > 0
0 if n = 0

(−m)+
−n· · · +(−m) if n < 0

5



6 Chapter 1 Preliminaries

Definition 1.2. A subset S of an R-module M is a submodule if S is closed under
addition and for all elements r ∈ R and s ∈ S, one has rs ∈ S.

One can easily observe that a submodule S of and R-module M is itself an R-module.

Definition 1.3. Let R be a ring and M and N be R-modules. An R-module morphism
α : M → N is a function from M to N such that for every m,m′ ∈M and r ∈ R

α(m+m′) = α(m) + α(m′)

α(rm) = rα(m)

Definition 1.4. Given a ring R, a chain complex C∗ of R-modules is a pair of sequences
C∗ = (Cn, dn)n∈Z where, for each degree n ∈ Z, Cn is an R-module, the homogeneous
component of degree n of C =

⊕
n∈ZCn, and dn : Cn → Cn−1 (the differential map) is

an R-module morphism (of degree −1) such that dn−1 ◦ dn = 0 for all n.

The module Cn is called the module of n-chains. The image Bn = Im dn+1 ⊆ Cn is
the (sub)module of n-boundaries. The kernel Zn = Ker dn ⊆ Cn is the (sub)module of
n-cycles.

Given a chain complex C∗ = (Cn, dn)n∈Z, the identities dn−1◦dn = 0 are equivalent to
the inclusion relations Bn ⊆ Zn: every boundary is a cycle. But the converse in general
is not true. Thus the next definition makes sense.

Definition 1.5. Let C∗ = (Cn, dn)n∈Z be a chain complex of R-modules. For each degree
n ∈ Z, the n-homology module of C∗ is defined as the quotient module

Hn(C∗) =
Zn
Bn

Definition 1.6. A chain complex C∗ = (Cn, dn)n∈Z is acyclic if Hn(C∗) = 0 for all n,
that is to say, if Zn = Bn for every n ∈ Z.

Definition 1.7. A morphism of chain complexes of R-modules (or a chain complex
morphism) f : C∗ → D∗ between two chain complexes of R-modules C∗ = (Cn, dCn)n∈Z
and D∗ = (Dn, dDn)n∈Z is a graded R-module morphism (degree 0) which commutes with
the differential map. In other words, f consists of R-module morphisms fn : Cn → Dn

satisfying dDn ◦ fn = fn−1 ◦ dCn for each n.

It is not difficult to prove that a chain complex morphism f : C∗ → D∗ induces an
R-module morphism on the corresponding homology modules

H∗(f) : H∗(C∗) −→ H∗(D∗)

Definition 1.8. Let f, g : C∗ → D∗ be morphisms of chain complexes of R-modules.
A (chain) homotopy h from f to g, written h : f ' g, is a set of R-module morphisms
hn : Cn → Dn+1 such that hn−1 ◦ dCn + dDn+1 ◦ hn = fn − gn for all n.
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Theorem 1.9. [Mac63] Given f, g : C∗ → D∗ chain complex morphisms and h : f ' g
a chain homotopy, then the morphisms induced by f and g on homology are the same:

Hn(f) = Hn(g) : Hn(C∗) −→ Hn(D∗) for all n ∈ Z

Definition 1.10. A chain complex morphism f : C∗ → D∗ is said to be a chain equiv-
alence if there exist a morphism g : D∗ → C∗ and homotopies h1 : IdC∗ ' g ◦ f and
h2 : IdD∗ ' f ◦ g.

Corollary 1.11. [Mac63] If f : C∗ → D∗ is a chain equivalence, the induced map

Hn(f) : Hn(C∗) −→ Hn(D∗)

is an isomorphism for each dimension n.

Definition 1.12. Let M be a right R-module, and N a left R-module. The tensor
product M ⊗RN is the Abelian group generated by the symbols m⊗n for every m ∈M
and n ∈ N , subject to the relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n
m⊗ (n+ n′) = m⊗ n+m⊗ n′

mr ⊗ n = m⊗ rn

for all r ∈ R, m,m′ ∈M , and n, n′ ∈ N .

If R = Z (the integer ring), then M and N are Abelian groups and their tensor
product will be denoted simply by M ⊗N .

Definition 1.13. Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be chain complexes of
right and left R-modules respectively. The tensor product C∗⊗RD∗ is the chain complex
of Z-modules C∗ ⊗R D∗ = ((C∗ ⊗R D∗)n, dn)n∈Z with

(C∗ ⊗R D∗)n =
⊕
p+q=n

(Cp ⊗R Dq)

where the differential map is defined on the generators x ⊗ y with x ∈ Cp and y ∈ Dq,
according to the Koszul rule for the signs, by

dn(x⊗ y) = dCp(x)⊗ y + (−1)px⊗ dDq(y)

Definition 1.14. Let C∗ and C ′∗ be chain complexes of right R-modules, D∗ and D′∗
chain complexes of left R-modules, and f : C∗ → C ′∗ and g : D∗ → D′∗ chain complex
morphisms. The tensor product f⊗R g : C∗⊗RD∗ → C ′∗⊗RD′∗ is the morphism of chain
complexes given by

(f ⊗R g)(x⊗ y) = fp(x)⊗ gq(y)

for a generator x⊗ y of Cp ⊗R Dq.
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Proposition 1.15. [Mac63] Let C∗ and C ′∗ be chain complexes of right R-modules, D∗
and D′∗ chain complexes of left R-modules, f 1, f2 : C∗ → C ′∗ and g1, g2 : D∗ → D′∗
morphisms of chain complexes. Given s and t chain homotopies such that s : f 1 ' f 2

and t : g1 ' g2, then there exists a chain homotopy u : f 1 ⊗ g1 ' f 2 ⊗ g2. Concretely,
u : C∗⊗RD∗ → C ′∗⊗RD′∗ is defined for any generator x⊗ y ∈ Cp⊗RDq, respecting the
Koszul rule for the signs, by

u(x⊗ y) = sp(x)⊗ g1
q (y) + (−1)pf 2

p (x)⊗ tq(y)

Chain complexes together with chain complex morphisms form a category that we
will denote by C. In a similar way, it is possible to define the category of cochain
complexes.

Definition 1.16. Given a ring R, a cochain complex of R-modules is a pair of sequences
C∗ = (Cn, δn)n∈Z where, for each n ∈ Z, Cn is an R-module and δn : Cn−1 → Cn

(the coboundary map) is an R-module morphism (in this case of degree +1) such that
δn+1 ◦ δn = 0 for all n.

The kernel Zn = Ker δn+1 ⊆ Cn is called the module of n-cocycles, Bn = Im δn ⊆ Cn

is the module of n-coboundaries, and the quotient Hn(C) = Zn/Bn is the n-cohomology
module of C∗.

The corresponding definitions can also be given for cochain complex morphism,
cochain homotopy or tensor product of two cochain complexes. See [Wei94] for details.

In many situations the ring R is the integer ring, R = Z. In this case, a chain
complex C∗ is given by a graded Abelian group {Cn}n∈Z and a graded group morphism
of degree −1, {dn : Cn → Cn−1}n∈Z, satisfying dn−1 ◦ dn = 0 for all n. In most part
of this work, we will choose R = Z; unless otherwise stated, the integer ring must be
considered.

From now on in this memoir, we will only work with non-negative chain complexes,
that is to say, C∗ = (Cn, dn)n∈Z such that Cn = 0 if n < 0. A non-negative chain complex
C∗ will be therefore denoted by C∗ = (Cn, dn)n∈N. Moreover, the chain (and cochain)
complexes we work with are supposed to be free.

Definition 1.17. A chain complex C∗ = (Cn, dn)n∈N of Z-modules is said to be free if
Cn is a free Z-module for each n ∈ N.

The same definition can be given for a cochain complex C∗ = (Cn, δn)n∈N.

Most often, our free Z-modules will be provided with a natural distinguished basis of
generators gi. Every n-chain (or n-cochain) can be expressed then as a linear combination∑

λigi

where each λi ∈ Z, and gi is a generator of Cn. A product λigi is called a term, and a
sum of terms is a combination.
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The next definition is necessary for Theorem 1.19, which expresses a very important
property of free complexes that will be used later.

Definition 1.18. A chain complex C∗ = (Cn, dn)n∈N is called short if there exists m ∈ N
such that Cn = 0 for n 6= m,m + 1, and dm+1 : Cm+1 → Cm is monomorphic. A chain
complex C∗ is called elementary if C∗ is short and, moreover, Cm ∼= Z (which implies
that Cm+1

∼= Z or Cm+1
∼= 0).

Theorem 1.19. [Dol72] Every free chain complex C∗ = (Cn, dn)n∈N is a direct sum of
short (free) complexes. Furthermore, if every Cn is finitely generated, then C∗ is a direct
sum of elementary complexes.

1.1.2 Spectral sequences

We include in this section some basic definitions and properties about spectral se-
quences, which have been mostly extracted from [Mac63]. A more complete reference is
of course [McC85].

Definition 1.20. Let R be a ring, a bigraded R-module is a family of R-modules
E = {Ep,q}p,q∈Z. A differential d : E → E of bidegree (−r, r−1) is a family of morphisms
of R-modules dp,q : Ep,q → Ep−r,q+r−1 for each p, q ∈ Z, such that dp−r,q+r−1 ◦ dp,q = 0.
The pair (E, d) is called a differential bigraded module.

The relations dp−r,q+r−1◦dp,q = 0 allow us to define the homology of E as the bigraded
R-module H(E, d) = H(E) = {Hp,q(E)}p,q∈Z with

Hp,q(E) =
Ker dp,q

Im dp+r,q−r+1

Definition 1.21. A spectral sequence E = (Er, dr)r≥1 is a sequence of bigraded
R-modules Er = {Er

p,q}p,q∈Z, each provided with a differential dr = {drp,q}p,q∈Z of bidegree
(−r, r − 1) and with isomorphisms H(Er, dr) ∼= Er+1 for every r ≥ 1.

In some situations, only the first levels of a spectral sequence are given; in other
words, only (Er, dr)1≤r≤k are known (very frequently k = 1 or 2). Since each Er+1

in the spectral sequence is (up to isomorphism) the bigraded homology module of the
preceding differential bigraded module (Er, dr), the stage k in the spectral sequence,
given by Ek = {Ek

p,q} and dk = {dkp,q}, allows us to build the bigraded module at
the level k + 1, Ek+1 = {Ek+1

p,q }. But then our information is not sufficient to define
the next differential dk+1, which therefore must be independently defined too. In this
way, a finite number of stages of the spectral sequence does not allow us to compute the
whole spectral sequence, some extra information is necessary to determine the successive
differential maps.

Definition 1.22. Let E = (Er, dr)r≥1 and E ′ = (E ′r, d′r)r≥1 be two spectral sequences.
A morphism of spectral sequences f : E → E ′ is a family of morphisms of bigraded
modules {f r : Er → E ′r}r≥1 of bidegree (0, 0), with dr ◦ f r = f r ◦ dr, and such that each
f r+1 is the map induced by f r on the homology module H(Er, dr) ∼= Er+1.
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A spectral sequence E can be presented as a tower

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Z2 ⊆ Z1 ⊆ Z0 = E1

of bigraded submodules of E1, where Er+1 = Zr/Br and the differential dr+1 can be
taken as a mapping Zr/Br → Zr/Br, with kernel Zr+1/Br and image Br+1/Br.

We say that the module Zr−1 is the set of elements that live till stage r, while Br−1

is the module of elements that bound by stage r. Let Z∞ =
⋂
r Z

r be the submodule of
E1 of elements that survive forever and B∞ =

⋃
r B

r the submodule of those elements
which eventually bound. It is clear that B∞ ⊆ Z∞ and therefore the spectral sequence
determines a bigraded module E∞ = {E∞p,q}p,q∈Z given by

E∞p,q =
Z∞p,q
B∞p,q

which is the bigraded module that remains after the computation of the infinite sequence
of successive homologies. The modules E∞p,q are called the final modules of the spectral
sequence E.

Definition 1.23. A spectral sequence E = (Er, dr)r≥1 is a first quadrant spectral se-
quence if for all r ≥ 1 Er

p,q = 0 when p < 0 or q < 0. A second quadrant spectral sequence
E is one with Er

p,q = 0 if p > 0 or q < 0.

Let us remark that these conditions for r = 1 imply the same conditions for higher r,
in other words, E = (Er, dr)r≥1 is a first quadrant spectral sequence if E1

p,q = 0 when
p < 0 or q < 0. And in the same way for a second quadrant spectral sequence.

If E is a first quadrant spectral sequence, it is useful to represent the bigraded
modules Er = {Er

p,q}p,q∈Z at the lattice points of the first quadrant of the plane. In the
figures that follow we consider the levels r = 1, 2, and 3, but only some differential maps
drp,q are included.

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=1

//

OO

d1
4,1

oo
d1
3,1

oo
d1
2,1

oo
d1
1,1

oo
d1
4,2

oo
d1
3,2

oo
d1
2,2

oo
d1
1,2

oo

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=2

//

OO

d2
3,2OOOO

ggOOOO

d2
4,1OOOO

ggOOOO

d2
2,2OOOO

ggOOOO

d2
3,1OOOO

ggOOOO

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=3

//

OO

d3
3,0JJJJJJJJJJ

ddJJJJ

d3
4,1JJJJJJJJJJ

ddJJJJ
d3
3,1JJJJJJJJJJ

ddJJJJ

Similarly, in the case of a second quadrant spectral sequence, the bigraded modules
Er = {Er

p,q}p,q∈Z can be displayed at the lattice points of the second quadrant of the
(p, q)-plane. However, we consider more convenient to represent them also in the first
quadrant. To this aim, we simply change the sign of the first index p, that is to say, we
represent the module Er

p,q at the point (−p, q) (which is in the first quadrant). In this
way the differential maps have shift (r, r − 1).
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• • • • •

• • • • •

• • • • •

• • • • •

p

q r=1

//

OO

d1
−3,1 //

d1
−2,1 //

d1
−1,1 //

d1
0,1 //

d1
−3,2 //

d1
−2,2 //

d1
−1,2 //

d1
0,2 //

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=2

//

OO

d2
−1,1oooo

77oooo

d2
−2,2oooo

77oooo
d2
0,2oooo

77oooo

d2
0,1oooo

77oooo

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=3

//

OO

d3
−1,0tttttttttt

::tttt

d3
0,1tttttttttt

::tttt
d3
−1,1tttttttttt

::tttt

Definition 1.24. A spectral sequence E = (Er, dr)r≥1 is said to be convergent if for
every p, q ∈ Z there exists rp,q ≥ 1 such that drp,q = 0 = drp+r,q−r+1 for all r ≥ rp,q.

If E = (Er, dr)r≥1 is convergent, one has Er
p,q = E

rp,q
p,q for all r ≥ rp,q, and therefore

E∞p,q = E
rp,q
p,q .

A first quadrant spectral sequence E = (Er, dr)r≥1 is always convergent: r > p
implies drp,q = 0, and for r > q+1 it is clear drp+r,q−r+1 = 0. However, a second quadrant
spectral sequence is not necessarily convergent.

Definition 1.25. A spectral sequence (Er, dr)r≥1 is said to be bounded below if for each
degree n ∈ Z there exists an integer s = s(n) such that E1

p,q = 0 when p < s and
p+ q = n.

For instance, a first quadrant spectral sequence is bounded below, it suffices to con-
sider s(n) = 0 for all n ∈ Z.

Theorem 1.26. [Mac63] Let E = (Er, dr)r≥1 and E ′ = (E ′r, d′r)r≥1 be two spectral
sequences and f : E → E ′ a morphism between them such that the bigraded module
morphism fk : Ek = {Ek

p,q}p,q∈Z → E ′k = {E ′kp,q}p,q∈Z is an isomorphism for some k ≥ 1.
Then f r : Er → E ′r is an isomorphism for every r ≥ k. Furthermore, if E and E ′ are
bounded below, then f∞ : E∞ → E ′∞ is also an isomorphism.

1.2 Simplicial Topology

1.2.1 Simplicial sets

Simplicial sets were first introduced by Eilenberg and Zilber [EZ50], who called them
semi-simplicial complexes. They can be used to express some topological properties
of spaces by means of combinatorial notions. A good reference for the definitions and
results of this section is [May67].
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Definition 1.27. Let D be a category, the category sD of simplicial objects over D is
defined as follows.

• An object K ∈ sD consists of

– for each integer n ≥ 0, an object Kn ∈ D;

– for every pair of integers (i, n) such that 0 ≤ i ≤ n, face and degeneracy
maps ∂i : Kn → Kn−1 and ηi : Kn → Kn+1 (which are morphisms in the
category D) satisfying the simplicial identities :

∂i∂j = ∂j−1∂i if i < j

ηiηj = ηj+1ηi if i ≤ j

∂iηj = ηj−1∂i if i < j

∂iηj = Id if i = j, j + 1

∂iηj = ηj∂i−1 if i > j + 1

• Let K and L be simplicial objects, a simplicial map (or simplicial morphism)
f : K → L consists of maps fn : Kn → Ln (which are morphisms in D) which
commute with the face and degeneracy operators, that is to say, fn−1 ◦ ∂i = ∂i ◦ fn
and fn+1 ◦ ηi = ηi ◦ fn for all 0 ≤ i ≤ n.

If a D-object has elements, the elements of Kn are called the n-simplices of K. An
n-simplex x is degenerate if x = ηjy with y ∈ Kn−1, 0 ≤ j < n; otherwise x is called
non-degenerate.

Definition 1.28. A simplicial set is a simplicial object over the category of sets. The
category of simplicial sets will be denoted by S.

The following property is satisfied by every simplicial set. It is a very important
feature that will be used several times in this memoir.

Property 1.29. [May67] Let K be a simplicial set. Any degenerate n-simplex x ∈ Kn

can be expressed in a unique way as a (possibly) iterated degeneracy of a non-degenerate
simplex y in the following way:

x = ηjk . . . ηj1y

with y ∈ Kr, k = n− r > 0, and 0 ≤ j1 < · · · < jk < n.

This canonical form can easily be obtained by means of the simplicial identities.

An important example of simplicial set is the one associated with every topological
space X. Let ∆n be the standard geometric n-simplex, that is, the subset of Rn+1

∆n = {(t0, . . . , tn)| 0 ≤ ti ≤ 1,
n∑
i=0

ti = 1}
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Definition 1.30. Given a topological space X, the singular simplicial set of X, written
S(X), is defined as the simplicial set with singular n-simplices

Sn(X) = {f : ∆n → X| f is continuous}

where the faces and degeneracies ∂i : Sn(X)→ Sn−1(X) and ηi : Sn(X)→ Sn+1(X) are
defined as

(∂if)(t0, . . . , tn−1) = f(t0, . . . , ti−1, 0, ti, . . . , tn−1)

(ηif)(t0, . . . , tn+1) = f(t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1)

Another useful example of simplicial set is the standard m-simplex ∆[m].

Definition 1.31. For m ≥ 0, the standard m-simplex ∆[m] is a simplicial set built as
follows. An n-simplex of ∆[m] is any (n + 1)-tuple (a0, . . . , an) of integers such that
0 ≤ a0 ≤ · · · ≤ an ≤ m, and the face and degeneracy operators are defined as

∂i(a0, . . . , an) = (a0, . . . , ai−1, ai+1, . . . , an)

ηi(a0, . . . , an) = (a0, . . . , ai, ai, ai+1 . . . , an)

It is not hard to show that ∆[m] has exactly one non-degenerate m-simplex, the
element (0, 1, . . . ,m) ≡ im. The usefulness of this simplicial set is due to the following
property.

Property 1.32. [May67] Let K be a simplicial set and x ∈ Kn. There exists a unique
simplicial morphism

∆(x) : ∆[n] −→ K

which maps in = (0, . . . , n) into x.

This universal property allows us to define the standard maps

∂j = ∆(∂jin) : ∆[n− 1] −→ ∆[n] 0 ≤ j ≤ n

ηj = ∆(ηjin) : ∆[n+ 1] −→ ∆[n] 0 ≤ j ≤ n

Definition 1.33. For a simplicial set K, the n-skeleton K [n] ⊆ K is the (sub)simplicial
set generated by all the simplices of K of dimension ≤ n.

Let K be a simplicial set and ? ∈ K0 a chosen 0-simplex (called the base point). We
will also denote by ? the degenerate simplices ηn−1 . . . η0? ∈ Kn for every n.

Definition 1.34. A simplicial set K is said to be reduced (or 0-reduced) if K0 = {?},
in other words, if K has only one 0-simplex. Given m ≥ 1, K is m-reduced if Kn = {?}
for all n ≤ m.
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Definition 1.35. Let f and g be simplicial maps from a simplicial set K to a simplicial
set L. A (simplicial) homotopy from f to g, written h : f ' g, is a set of functions
hi : Kn → Ln+1 for each pair of integers (i, n) such that 0 ≤ i ≤ n, satisfying:

∂0h0 = f

∂n+1hn = g

∂ihj = hj−1∂i if i < j

∂j+1hj+1 = ∂j+1hj

∂ihj = hj∂i−1 if i > j + 1

ηihj = hj+1ηi if i ≤ j

ηihj = hjηi−1 if i > j

The categories S of simplicial sets and C of chain complexes of Z-modules are closely
connected: given a simplicial set K, it is possible to construct, in a very easy way, an
associated chain complex.

Definition 1.36. Let K be a simplicial set, we define the chain complex associated
with K, C∗(K) = (Cn(K), dn)n∈N, in the following way:

• Cn(K) = Z[Kn] is the free Z-module generated by Kn. Therefore an n-chain
c ∈ Cn(K) is a combination c =

∑m
i=1 λixi with λi ∈ Z and xi ∈ Kn for 1 ≤ i ≤ m;

• the differential map dn : Cn(K)→ Cn−1(K) is given by

dn(x) =
n∑
i=0

(−1)i∂i(x) for x ∈ Kn

and it is extended by linearity to the combinations c =
∑m

i=1 λixi ∈ Cn(K).

Let us remark that if a simplex x ∈ Kn is degenerate, x = ηjy with 0 ≤ j < n and
y ∈ Kn−1, then dn(x) is a sum of degenerate (n− 1)-simplices:

dn(ηjy) =
n∑
i=0

(−1)i∂iηjy =

j−1∑
i=0

(−1)iηj−1∂iy + (−1)jy + (−1)j+1y

+
n∑

i=j+2

(−1)iηj∂i−1y =

j−1∑
i=0

(−1)iηj−1(∂iy) +
n∑

i=j+2

(−1)iηj(∂i−1y)

As a consequence, the next definition makes sense.

Definition 1.37. The normalized (non-degenerate) chain complex associated with K,
CN
∗ (K) = (CN

n (K), dNn )n∈N, is given by
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• CN
n (K) = Cn(K)/Z[Dn(K)], where Dn(K) is the set of degenerate elements of

Kn. We can also think of CN
n (K) as the free Z-module generated by the set of

non-degenerate n-simplices of K, denoted by NDn(K). This means that an n-chain
c ∈ CN

n (K) is a combination c =
∑m

i=1 λixi where λi ∈ Z and xi is a non-degenerate
n-simplex of K for all 1 ≤ i ≤ m;

• the differential map dNn : CN
n (K)→ CN

n−1(K) is given by

dNn (x) =
n∑
i=0

(−1)i∂i(x) mod NDn−1(K) for x ∈ NDn(K)

We observe that dNn (x) is obtained from dn(x) by canceling the degenerate sim-
plices. The definition is extended by linearity to the combinations of CN

n (K).

Definition 1.38. Given a simplicial set K, the n-homology group of K, Hn(K), is the
n-homology group of the chain complex C∗(K):

Hn(K) = Hn(C∗(K))

Analogously, given a ring R one can consider the chain complex of R-modules
(R[K])∗, where (R[K])n is the free R-module generated by the n-simplices of K, and
the differential map dn is given again by the alternate sum of the faces. This allows us
to define the n-homology group of K with coefficients in R as the n-homology module of
the chain complex (R[K])∗, or equivalently, that of C∗(K)⊗R∗ where R∗ = (Rn, dn)n∈N
is the chain complex of R-modules given by R0 = R and Rn = 0 for all n 6= 0 (with dn
the null map for all n):

Hn(K;R) = Hn((R[K])∗) = Hn(C∗(K)⊗R∗)

If R = Z, then (Z[K])∗ = C∗(K)⊗Z∗ is simply the chain complex associated with K,
that is, C∗(K).

Theorem 1.39 (Normalization Theorem). [Mac63] Given a simplicial set K, the
canonical projection C∗(X)→ CN

∗ (X) ∼= C∗(K)/D∗(K) is a chain equivalence.

This theorem implies the homology groups of C∗(K) are isomorphic to those of
CN
∗ (K), and therefore

Hn(K) = Hn(K; Z) = Hn(C∗(K)) ∼= Hn(C
N
∗ (K))

If K is m-reduced for some m ∈ N, then we observe that H0(K) = Z and Hn(K) = 0
for all 0 < n ≤ m.

We can also consider the reduced n-homology group of K, H̃n(K), defined as

H̃n(K) = Hn(C̃∗(K))
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with C̃∗(K) = C∗(K)/C∗(?). Clearly one has H̃n(K) = Hn(K) for n 6= 0, and H̃0(K)
has one less free generator than H0(K).

A simplicial map f : K → L defines a chain complex morphism on the associated
chain complexes, f̄ : C∗(K) → C∗(L). The group morphism f̄n : Cn(K)→ Cn(L) is
defined by linear extension on the generators of Cn(K), which are the n-simplices of K.
Since f is compatible with the face operators, then f̄ commutes with the differential
maps, that is to say, f̄ is a chain complex morphism. On the other hand, as far as f
also commutes with the degeneracy operators, then the chain complex morphism f̄ is
also well-defined on the normalized chain complexes, f̄ : CN

∗ (K)→ CN
∗ (L).

Remark 1.40. Let f, g : K → L be simplicial maps, and f̄ , ḡ : C∗(K) → C∗(L) the
corresponding chain complex morphisms. Let h : K → L be a simplicial homotopy,
h : f ' g. Then we can construct h̄ : C∗(K) → C∗+1(L) which is a chain homotopy,
h̄ : f̄ ' ḡ. Given x ∈ Kn a generator of Cn(K), we define

h̄(x) =
n∑
i=0

(−1)ihi(x) ∈ Cn+1(L)

and we extend the definition to the elements of Cn(X) by linearization. In this way, the
map h̄ satisfies d ◦ h̄+ h̄ ◦ d = f − g.

We can also consider the maps f̄ and ḡ defined on the normalized chain complexes
CN
∗ (K) and CN

∗ (L). Thanks to the identities of Definition 1.35, it is clear that if x is a
degenerate n-simplex of K then h̄(x) =

∑n
i=0(−1)ihi(x) is a combination of degenerate

(n + 1)-simplices of L. This allows us to define the map h̄ on the normalized chain
complexes, h̄ : CN

∗ (K)→ CN
∗+1(L) given by

h̄(x) =
n∑
i=0

(−1)ihi(x) mod NDn+1(L) for x ∈ NDn(K)

and by linear extension we define h̄(c) for every combination c ∈ CN
n (K) = Z[NDn(K)].

It is clear that the equation d◦h̄+h̄◦d = f−g holds and in this way h̄ : CN
∗ (K)→ CN

∗+1(L)
is also a chain homotopy, h̄ : f̄ ' ḡ.

Definition 1.41. A simplicial (Abelian) group G is a simplicial object over the category
of (Abelian) groups, in other words, it is a simplicial set where each Gn is an (Abelian)
group and the face and degeneracy operators are group morphisms. The category of
simplicial Abelian groups will be denoted by A.

Every simplicial Abelian group can be considered as a chain complex, written G∗.
The group of n-chains is the set of n-simplices Gn (which in this case is an Abelian
group), and the differential map dn : Gn → Gn−1 is given by dn =

∑n
i=0(−1)i∂i.

Definition 1.42. Given two simplicial sets K and L, the Cartesian product K ×L is a
simplicial set with n-simplices

(K × L)n = Kn × Ln
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and if (x, y) ∈ Kn × Ln, the face and degeneracy operators are defined as

∂i(x, y) = (∂ix, ∂iy) for 0 ≤ i ≤ n

ηi(x, y) = (ηix, ηiy) for 0 ≤ i ≤ n

If K and L are simplicial Abelian groups, then K × L is also a simplicial Abelian
group, and it can also be seen as the direct sum of K and L: K × L ∼= K ⊕ L.

Definition 1.43. Let G be a simplicial group (called the fiber space), B a simplicial set
(the base space), and τ = {τn : Bn → Gn−1}n≥1 (called the twisting operator) satisfying

∂0τ(b) = τ(∂1b) · τ(∂0b)
−1

∂iτ(b) = τ(∂i+1b), if 0 < i ≤ n− 1

ηiτ(b) = τ(ηi+1b), if 0 ≤ i ≤ n− 1

τ(η0b) = en

where en is the null element of the group Gn, and b ∈ Bn.

Then the (principal) twisted (Cartesian) product E(τ) ≡ G×τ B is the simplicial set
defined by

E(τ)n = Gn ×Bn, and for each (g, b) ∈ Gn ×Bn

∂i(g, b) = (∂ig, ∂ib), if 0 < i ≤ n

∂0(g, b) = (∂0g · τ(b), ∂0b)

ηi(g, b) = (ηig, ηib), for 0 ≤ i ≤ n

It is not difficult to prove, thanks to the identities that the twisting operator τ
satisfies, that E(τ) is a simplicial set. In fact, the condition that E(τ) defined in this
way is a simplicial set is equivalent to the requirement that τ satisfies the necessary
equations.

The twisting operator τ : B∗ → G∗−1 defines a (principal) fibration G ↪→ E → B of
base space B, fiber space G and total space E = E(τ) = G×τ B.

A fibration G ↪→ E → B can also be defined by the projection p : E → B (which
must satisfy some specific properties). For details, see [May67].

1.2.2 Homotopy groups

The n-homotopy group of a topological space X with a base point x0 is defined as the
set of homotopy classes of continuous maps f : Sn → X that map a chosen base point
a ∈ Sn to the base point x0 ∈ X. For a Kan simplicial set K with a base point ? ∈ K0,
a more algebraic definition of homotopy groups can be given. In fact, it can be seen
that both definitions are closely connected by means of the realization functor. All the
definitions and results of this section (and details about the connection with the usual
definition of homotopy group of a topological space) can be found in [May67].
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Definition 1.44. A simplicial set K is said to satisfy the extension condition if for
every collection of n + 1 n-simplices x0, x1, . . . , xk−1, xk+1, . . . , xn+1 which satisfy the
compatibility condition ∂ixj = ∂j−1xi for all i < j, i 6= k, and j 6= k, there exists an
(n+ 1)-simplex x ∈ Kn+1 such that ∂ix = xi for every i 6= k. A simplicial set which
satisfies the extension condition is called a Kan simplicial set.

Definition 1.45. Let K be a simplicial set. Two n-simplices x and y of K are said to be
homotopic, written x ∼ y, if ∂ix = ∂iy for 0 ≤ i ≤ n, and there exists an (n+1)-simplex
z such that ∂nz = x, ∂n+1z = y, and ∂iz = ηn−1∂ix = ηn−1∂iy for 0 ≤ i < n.

If K is a Kan simplicial set, then ∼ is an equivalence relation on the set of n-simplices
of K for every n ≥ 0.

Let ? ∈ K0 be a base point, we recall that we also denote by ? the degeneracies
ηn−1 . . . η0? ∈ Kn for every n. We define K̃n as the set of all x ∈ Kn such that ∂ix = ?
for every 0 ≤ i ≤ n.

Definition 1.46. Given a Kan simplicial set K and a base point ? ∈ K0, we define

πn(K, ?) = K̃n/(∼)

The set πn(K, ?) admits a group structure for n ≥ 1 and it is Abelian for n ≥ 2. It is
called the n-homotopy group of K.

Very frequently, if no confusion is possible, we will omit the base point and denote
the n-homotopy group of K by πn(K).

It is not hard to observe that every Kan simplicial set morphism f : K → L induces
a group morphism on the corresponding homotopy groups

π∗(f) : π∗(K) −→ π∗(L)

Definition 1.47. A Kan simplicial set K with a base point ? ∈ K0 is said to be
contractible if πn(K, ?) = 0 for all n.

Definition 1.48. A Kan simplicial set K is said to be minimal if, for every n-simplices
x, y ∈ Kn and 0 ≤ k ≤ n such that ∂ix = ∂iy for all 0 ≤ i ≤ n with i 6= k, then
∂kx = ∂ky.

It can be proved that a Kan simplicial set K is minimal if and only if x ∼ y implies
x = y, so that each homotopy class has only one element.

In most cases the computation of the homotopy groups of a simplicial setK, πn(K), is
more difficult than that of the homology groups, Hn(K). The Hurewicz theorem, which
was proved in the series of papers [Hur35] and [Hur36], expresses an interesting relation
between both invariants that will be useful to determine some homotopy groups of K
(in the first degrees) when the homology groups Hn(K) are known. Before introducing
this important theorem, we need the following definition.
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Definition 1.49. Let K be a Kan simplicial set with a base point ? ∈ K0. Let [x] ∈
πn(K, ?), then ∂ix = ? for all 0 ≤ i ≤ n so that x can be considered as a cycle of

C̃n(K) = Cn(K)/Cn(?). We define

h : πn(K, ?) −→ H̃n(K) = Hn(C̃∗(K))

by h([x]) = {x}, where {x} denotes the homology class of x in H̃n(K). It can be seen
that the maps h are well-defined and are morphisms of groups. They are called the
Hurewicz homomorphisms.

Theorem 1.50 (Hurewicz Theorem). [Whi78] Let K be an (m − 1)-reduced
Kan simplicial set (with a base point ? ∈ K0), for m ≥ 2. Then Hn(K) = 0

for every 0 < n ≤ m− 1, the map h : πm(K, ?) → H̃m(K) is an isomorphism, and

h : πm+1(K, ?)→ H̃m+1(K) is an epimorphism.

The case where K is a simplicial Abelian group is more favorable. First of all, it
can be seen that every simplicial group G is a Kan simplicial set (with base point equal
to the null element e0 of the group G0), and therefore it makes sense to consider its
homotopy groups πn(G, e0) ≡ πn(G). Furthermore, John Moore defined the so-called
Moore complex allowing one to express the homotopy groups of a simplicial group as
homology groups of a chain complex.

Definition 1.51. Let G be a simplicial Abelian group, the normalization N∗(G) =
(Nn(G), dn)n∈N is a chain complex, the Moore complex of G, defined by

Nn(G) = Gn ∩Ker ∂0 ∩ . . . ∩Ker ∂n−1

with differential map dn : Nn(G)→ Nn−1(G) given by dn = (−1)n∂n.

Proposition 1.52. [May67] The n-homotopy group of a simplicial Abelian group G
coincides with the n-homology group of the chain complex N∗(G) for every degree n

πn(G) = Hn(N∗(G))

1.2.3 Eilenberg-MacLane spaces

Eilenberg-MacLane spaces were introduced in [EM53] and play an important role in
many contexts in Algebraic Topology, as cohomology operations or computations of
homotopy groups. Furthermore, it is known that every simplicial Abelian group has
the homotopy type of a product of Eilenberg-MacLane spaces. All the definitions and
results that follow can be found in [May67].

Definition 1.53. An Eilenberg-MacLane space of type (π, n) is a simplicial group K
(with base point e0 ∈ K0) such that πn(K) = π and πi(K) = 0 if i 6= n. The simplicial
group K is called a K(π, n) if it is an Eilenberg-MacLane space of type (π, n) and in
addition it is minimal.
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Various methods can be used to construct the spaces K(π, n)’s, although the results
are necessarily isomorphic [May67, Theorem 23.6]. Let us consider the following one.

Let π be an Abelian group. First of all, we construct a simplicial Abelian group
K = K(π, 0) given by Kn = π for all n ≥ 0, and with face and degeneracy operators
∂i : Kn = π → Kn−1 = π and ηi : Kn = π → Kn+1 = π, 0 ≤ i ≤ n, equal to the identity
map of the group π.

For n ≥ 0, we build recursively K(π, n) by means of the classifying space constructor.

Definition 1.54. Let G be a simplicial Abelian group. The classifying space of G,
writtenW(G), is the simplicial Abelian group built as follows. The n-simplices ofW(G)
are the elements of the Cartesian product

W(G)n = Gn−1 ×Gn−2 × · · · ×G0

In this way, W(G)0 is the null group and has only one element that we denote by [ ].
For n ≥ 1, an element of W(G)n has the form [gn−1, . . . , g0], with gi ∈ Gi. The face and
degeneracy operators are given by

η0[ ] = [e0]

∂i[g0] = [ ], i = 0, 1

∂0[gn−1, . . . , g0] = [gn−2, . . . , g0]

∂i[gn−1, . . . , g0] = [∂i−1gn−1, . . . , ∂1gn−i+1, ∂0gn−i + gn−i−1, gn−i−2, . . . , g0], 0 < i ≤ n

η0[gn−1, . . . , g0] = [en, gn−1, . . . , g0]

ηi[gn−1, . . . , g0] = [ηi−1gn−1, . . . , η0gn−i, en−i, gn−i−1, . . . , g0], 0 < i ≤ n

where en denotes the null element of the Abelian group Gn.

We define inductively Wn
(G) =W(Wn−1

(G)) for all n ≥ 1, W0
(G) = G.

Theorem 1.55. [May67] Let π be an Abelian group and K = K(π, 0) as explained
before. Then Wn

(K) is a K(π, n).

This particular type of spaces have some fundamental properties which lead to a proof
that every simplicial Abelian group has the homotopy type of a product of K(π, n)’s.
For details, see [May67] or [GJ99].

Theorem 1.56. [May67] Let G be a simplicial Abelian group, and πn ≡ πn(G). Then
G is homotopy equivalent to the infinite Cartesian product of Eilenberg-MacLane spaces∏

n≥0

K(πn, n)

Eilenberg-MacLane spaces will appear several times in this work. In this section we
have only included the definition and some basic information about them, in Section 4.1.2
some other useful remarks will be considered.
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1.3 Effective Homology

The computation of homology groups of topological spaces is one of the first problems
in Algebraic Topology, and these groups can be difficult to reach, for example when loop
spaces or classifying spaces are involved. The methods of effective homology (introduced
in [Ser87] and [Ser94]) give in particular to their user algorithms computing for example
the homology groups of the total space of a fibration, of an arbitrarily iterated loop
space (Adams’ problem), of a classifying space, etc. The main idea consists in keeping
systematically a deep and subtle connection between the homology of any object and
the object itself.

1.3.1 Definitions and fundamental results

In this section, we present some definitions (including the notion of object with effective
homology) and fundamental results about the effective homology method. More details
can be found in [RS02] and [RS06].

Definition 1.57. An effective chain complex is a free chain complex of Z-modules
C∗ = (Cn, dn)n∈N where each group Cn is finitely generated, a provided algorithm returns
a (distinguished) Z-basis in each degree n, and each differential map dn is also given by
an algorithm.

If a chain complex C∗ = (Cn, dn)n∈N is effective, the differential maps dn : Cn → Cn−1

can be expressed as finite integer matrices, and then it is possible to know everything
about C∗: we can compute the subgroups Ker dn and Im dn+1, we can determine whether
an n-chain c ∈ Cn is a cycle or a boundary, and in the last case, we can obtain z ∈ Cn+1

such that c = dn+1(z). In particular an elementary algorithm computes its homology
groups using, for example, the Smith Normal Form technique (for details, see [KMM04]).

On the other hand, in many situations we must deal with locally effective chain
complexes. In this case we can have an infinite number of generators for each group Cn,
so that no global information is available. For example, it is not possible in general to
compute the subgroups Ker dn and Im dn+1, which can have infinite nature. However,
“local”1 information can be obtained: we can compute, for instance, the boundary of a
given element.

More generally, we talk of locally effective objects when only “local” computations
are possible. For instance, we can consider a locally effective simplicial set; the set of
n-simplices is not necessarily of finite type, but we can compute the faces of any specific
n-simplex.

The effective homology technique consists in combining locally effective objects with
effective chain complexes by means of chain equivalences. In this way, we will be able

1The qualifier “componentwise” would be more appropriate, but a little heavy.
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to compute homology groups of locally effective objects even if we cannot obtain global
information about them.

Definition 1.58. A reduction ρ (also called contraction by other authors) between
two chain complexes C∗ and D∗, denoted in this memoir by ρ : C∗⇒⇒D∗, is a triple
ρ = (f, g, h)

C∗

h
�� f

++
D∗

g
kk

where f and g are chain complex morphisms, h is a graded group morphism of degree +1,
and the following relations are satisfied:

1) f ◦ g = IdD∗ ;

2) dC ◦ h+ h ◦ dC = IdC∗ −g ◦ f ;

3) f ◦ h = 0; h ◦ g = 0; h ◦ h = 0.

We observe that this is a particular case of chain equivalence (Definition 1.10), where
h1 = h : IdC∗ ' g ◦ f and the second homotopy h2 : IdD∗ ' f ◦ g is the null map.

These relations express that C∗ is the direct sum of D∗ and an acyclic chain complex.
This decomposition is simply C∗ = Ker f ⊕ Im g, with Im g ∼= D∗ and H∗(Ker f) = 0.
In particular, this implies that the graded homology groups H∗(C∗) and H∗(D∗) are
canonically isomorphic.

Very frequently, the small chain complex D∗ is effective, so that we can compute its
homology groups by means of elementary operations with integer matrices. On the other
hand, in many situations the big chain complex C∗ is locally effective and therefore its
homology groups cannot directly be determined. However, if we know a reduction from
C∗ over D∗ and D∗ is effective, then we are also able to compute the homology groups
of C∗ by means of those of D∗.

Given a chain complex C∗, a trivial reduction ρ = (f, g, h) : C∗⇒⇒C∗ can be con-
structed, where f and g are the identity map and h = 0.

It can be seen that in the definition of reduction the important equations are 1)
and 2). As we show in the next Remark, given a triple (f, g, h) satisfying 1) and 2) it is
possible to modify them weakly so that they also satisfy 3).

Remark 1.59. Let C∗ and D∗ be chain complexes, f : C∗ → D∗ and g : D∗ → C∗ chain
complex morphisms, and h : C∗ → C∗+1 a graded group morphism of degree +1 such
that

1) f ◦ g = IdD∗ ;

2) dC ◦ h+ h ◦ dC = IdC∗ −g ◦ f .
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Then it is possible to define h′ : C∗ → C∗+1 (a graded group morphism of degree +1)
such that ρ′ = (f, g, h′) is a reduction ρ′ : C∗⇒⇒D∗.

Proof. First, let us consider h1 given by h1 = h−g◦f ◦h which satisfies dC ◦h1+h1◦dC =
dC ◦ h+ h ◦ dC = IdC∗ −g ◦ f and also f ◦ h1 = 0. Then, we define h2 = h1 − h1 ◦ g ◦ f ,
for which the equations dC ◦ h2 + h2 ◦ dC = dC ◦ h + h ◦ dC = IdC∗ −g ◦ f , f ◦ h2 = 0,
and h2 ◦ g = 0 hold. Finally, let us define h′ = h2 ◦ dC ◦ h2. In this way, h′ satisfies
dC ◦h′+h′ ◦dC = dC ◦h+h◦dC = IdC∗ −g ◦ f , f ◦h′ = 0, h′ ◦ g = 0, and h′ ◦h′ = 0.

As we see in the next two propositions, we can easily construct the composition and
the tensor product of two reductions.

Proposition 1.60. Let ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ = (f ′, g′, h′) : D∗⇒⇒E∗ be two
reductions. Another reduction ρ′′ = (f ′′, g′′, h′′) : C∗⇒⇒E∗ is defined by:

f ′′ = f ′ ◦ f
g′′ = g ◦ g′

h′′ = h+ g ◦ h′ ◦ f

Proposition 1.61. Let ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ be two
reductions. Another reduction ρ′′ = (f ′′, g′′, h′′) : C∗ ⊗ C ′∗⇒⇒D∗ ⊗D′∗ is defined by:

f ′′ = f ⊗ f ′

g′′ = g ⊗ g′

h′′ = h⊗ IdC′∗ +(g ◦ f)⊗ h′

Definition 1.62. A strong chain equivalence ε between two chain complexes C∗ and
D∗, denoted by ε : C∗⇐⇐⇒⇒D∗, is a triple (B∗, ρ1, ρ2) where B∗ is a chain complex, and
ρ1 and ρ2 are reductions from B∗ over C∗ and D∗ respectively:

B∗
ρ1
u}u} sss

ssssss
sss ρ2

!) !)KKK
KKK

KKK
KKK

C∗ D∗

A strong chain equivalence ε : C∗⇐⇐⇒⇒D∗ can also be seen as a particular case
of the classical notion of chain equivalence (Definition 1.10). If ε = (B∗, ρ1, ρ2) with
ρ1 = (f1, g1, h1) and ρ2 = (f2, g2, h2), then one can see that the compositions f2 ◦ g1 and
f1 ◦ g2 define a chain equivalence with chain homotopies f1 ◦ h2 ◦ g1 and f2 ◦ h1 ◦ g2.

From now on in this memoir, we will use the word equivalence for a strong chain
equivalence ε : C∗⇐⇐⇒⇒D∗.

To define the composition of two equivalences, the Bicone constructor is necessary.

Definition 1.63. Let C∗ = (Cn, dCn)n∈N and D∗ = (Dn, dDn)n∈N be chain complexes,
and f : C∗ → D∗ a chain complex morphism. The Cone of f , written Cone(f)∗, is
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the chain complex Cone(f)∗ = A∗ = (An, dAn)n∈N given by An = Cn ⊕ Dn+1
2, with

differential map dAn(c, d) = (dCn(c), fn(c)− dDn+1(d)).

Definition 1.64. Let B∗ = (Bn, dBn)n∈N, C∗ = (Cn, dCn)n∈N, and D∗ = (Dn, dDn)n∈N
be chain complexes, and f : B∗ → C∗, g : D∗ → C∗ chain complex morphisms. The
Bicone of f and g, written BiCone(f, g)∗, is constructed from Cone(f)∗ and Cone(g)∗
by identifying both target chain complexes C∗. That is to say, BiCone(f, g)∗ is a chain
complex BiCone(f, g)∗ = A∗ = (An, dAn)n∈N with n-chain group An = Bn ⊕ Cn+1 ⊕Dn

and differential map dAn(b, c, d) = (dBn(b), fn(b)− dCn+1(c) + gn(d), dDn(d)).

Proposition 1.65. [RS97] Let ε : A∗⇐⇐⇒⇒C∗ and ε′ : C∗⇐⇐⇒⇒E∗ be two equivalences
as in the following diagram:

B∗
ρ1
u}u} sss

ssssss
sss ρ2

!) !)KKK
KKK

KKK
KKK

D∗ρ′1
u}u} sss

ssssss
sss ρ′2

!) !)KKK
KKK

KKK
KKK

A∗ C∗ C∗ E∗

with ρ1 = (f1, g1, h1) : B∗⇒⇒A∗, ρ2 = (f2, g2, h2) : B∗⇒⇒C∗, ρ
′
1 = (f ′1, g

′
1, h
′
1) : D∗⇒⇒C∗,

and ρ′2 = (f ′2, g
′
2, h
′
2) : D∗⇒⇒E∗. We consider the Bicone BiCone(f2, f

′
1)∗. Then, it is

possible to build a new equivalence ε′′ as follows:

BiCone(f2, f
′
1)∗

qyqy kkkkkkkkk
kkkkkkkkk

%- %-SSSSSSSSS

SSSSSSSSS

A∗ E∗

Details about the different components in the new reductions can be found in [RS06].

In a similar way we can define reductions and (strong) equivalences of cochain com-
plexes. All the results included in this section are also true in this case.

Once we have introduced the notion of equivalence, it is possible to give the definition
of object with effective homology, which is the fundamental idea of the effective homology
technique.

Definition 1.66. An object with effective homology X is a quadruple (X,C∗(X), HC∗, ε)
where

• X is a locally effective object;

• C∗(X) is a (locally effective) chain complex canonically associated with X, that
allows us to study the homological nature of X;

• HC∗ is an effective chain complex;

• ε is an equivalence ε : C∗(X)⇐⇐⇒⇒HC∗.

2Usually, An = Cn−1 ⊕ Dn is preferred, but this choice is necessary when the Cone is used to
construct the composition of two equivalences.
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For instance, if K is a simplicial set, then the chain complex canonically associated
with K, C∗(K), is described in Definition 1.36. Equivalently, we can also consider the
normalized chain complex CN

∗ (K) introduced in Definition 1.37. It has been already
said that the homology groups of both chain complexes are isomorphic, and in fact
there exists a reduction C∗(K)⇒⇒CN

∗ (K).

Theorem 1.67. Let K be a simplicial set, C∗(K) the chain complex associated with K,
and CN

∗ (K) the normalized chain complex. Then it is possible to build a reduction
ρ : C∗(K)⇒⇒CN

∗ (K).

In this way, K is a simplicial set with effective homology if an equivalence be-
tween C∗(K) or CN

∗ (K) and an effective chain complex is known. Clearly, using The-
orem 1.67 and the composition of reductions and equivalences, from and equivalence
ε : C∗(K)⇐⇐⇒⇒HC∗ we can determine ε′ : CN

∗ (K)⇐⇐⇒⇒HC∗ and reciprocally an equiv-
alence ε′ : CN

∗ (K)⇐⇐⇒⇒HC∗ allows us to construct ε : C∗(K)⇐⇐⇒⇒HC∗.

It is clear that if X is an object with effective homology, then the homology groups
of X (which are those of the associated chain complex C∗(X)) are isomorphic to the
homology groups of the effective chain complex HC∗, that can easily be computed using
some elementary operations. But it is important to understand that in general the HC∗
component of an object with effective homology is not made of the homology groups
of X; this component HC∗ is a free Z-chain complex of finite type, in general with a
non-null differential.

The main problem now is the following: given a chain complex C∗ = (Cn, dn)n∈N, is
it possible to determine its effective homology? We must distinguish three cases.

• First of all, if a chain complex C∗ is by chance effective, then we can choose the
trivial effective homology: ε is the equivalence C∗⇐⇐C∗⇒⇒C∗, where the two
components ρ1 and ρ2 are both the trivial reduction on C∗.

• In some cases, some theoretical results are available providing an equivalence be-
tween some chain complex C∗ and an effective chain complex. Typically, the
Eilenberg-MacLane space K(Z, 1) has the homotopy type of the circle S1 and a
reduction C∗(K(Z, 1))⇒⇒C∗(S

1) can be built.

• The most important case: let X1, . . . , Xn be objects with effective homology and
Φ a constructor that produces a new space X = Φ(X1, . . . , Xn) (for example,
the Cartesian product of two simplicial sets, the classifying space of a simplicial
group, etc). In natural “reasonable” situations, there exists an effective homology
version of Φ that allows us to deduce a version with effective homology of X, the
result of the construction, from versions with effective homology of the arguments
X1, . . . , Xn.

For instance, given two simplicial sets K and L with effective homology, then the
Cartesian product K ×L is an object with effective homology too, and this is also valid
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for twisted Cartesian products. We will see in Section 3.1.2 how this effective homology
is obtained.

1.3.2 Perturbation theorems

The next two theorems will be useful when obtaining the effective homology version of
some topological constructors. The main idea is that given a reduction, if we perturb
one of the complexes then it is possible to perturb the other one so that we obtain a new
reduction between the perturbed complexes. The first theorem (the Trivial Perturbation
Lemma) is very easy, but it can be useful. The Basic Perturbation Lemma is not trivial
at all. It was discovered by Shih Weishu [Shi62], although the abstract modern form
was given by Ronnie Brown [Bro67].

Definition 1.68. Let C∗ = (Cn, dn)n∈N be a chain complex. A perturbation δ of the
differential d is a collection of group morphisms δ = {δn : Cn → Cn−1}n∈N such that the
sum d+ δ is also a differential, that is to say, (d+ δ) ◦ (d+ δ) = 0.

The perturbation δ produces a new chain complex C ′∗ = (Cn, dn + δn)n∈N; it is the
perturbed chain complex.

Theorem 1.69 (Trivial Perturbation Lemma, TPL). Let C∗ = (Cn, dCn)n∈N and
D∗ = (Dn, dDn)n∈N be two chain complexes, ρ = (f, g, h) : C∗⇒⇒D∗ a reduction, and
δD a perturbation of dD. Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ can be
constructed where:

1) C ′∗ is the chain complex obtained from C∗ by replacing the old differential dC by
the perturbed differential (dC + g ◦ δD ◦ f);

2) the new chain complex D′∗ is obtained from the chain complex D∗ only by replacing
the old differential dD by (dD + δD);

3) f ′ = f ;

4) g′ = g;

5) h′ = h.

The perturbation δD of the small chain complex D∗ is naturally transferred (using
the reduction ρ) to the big chain complex C∗, obtaining in this way a new reduction ρ′

(which in fact has the same components as ρ) between the perturbed chain complexes.
On the other hand, if we consider a perturbation dC of the top chain complex C∗, in
general it is not possible to perturb the small chain complex D∗ so that there exists a
reduction between the perturbed chain complexes. As we will see, we need an additional
hypothesis.
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Theorem 1.70 (Basic Perturbation Lemma, BPL). [Bro67] Let us consider a
reduction ρ = (f, g, h) : C∗⇒⇒D∗ between two chain complexes C∗ = (Cn, dCn)n∈N and
D∗ = (Dn, dDn)n∈N, and δC a perturbation of dC . Furthermore, the composite function
h ◦ δC is assumed locally nilpotent, in other words, given x ∈ C∗ there exists m ∈ N
such that (h ◦ δC)m(x) = 0. Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ can be
constructed where:

1) C ′∗ is the chain complex obtained from the chain complex C∗ by replacing the old
differential dC by (dC + δC);

2) the new chain complex D′∗ is obtained from D∗ by replacing the old differential dD
by (dD + δD), with δD = f ◦ δC ◦ φ ◦ g = f ◦ ψ ◦ δC ◦ g;

3) f ′ = f ◦ ψ = f ◦ (IdC∗ −δC ◦ φ ◦ h);

4) g′ = φ ◦ g;

5) h′ = φ ◦ h = h ◦ ψ;

with the operators φ and ψ defined by

φ =
∞∑
i=0

(−1)i(h ◦ δC)i

ψ =
∞∑
i=0

(−1)i(δC ◦ h)i = IdC∗ −δC ◦ φ ◦ h,

the convergence of these series being ensured by the locally nilpotency of the composi-
tions h ◦ δC and δC ◦ h.

These two theorems can be applied in many important cases for the computation
of the effective homology of several complicated spaces (loop spaces, classifying spaces,
total spaces of fibrations, etc). Furthermore, they have been intensively used in this
memoir, as we will see in the following chapters.

1.3.3 The Kenzo program

Kenzo is a 16,000 lines program written in Common Lisp [Gra96], which is devoted to
Symbolic Computation in Algebraic Topology. It was developed by Francis Sergeraert
and some coworkers, and is www-available (see [DRSS99] for documentation and details).
It works with rich and complex algebraic structures (chain complexes, differential graded
algebras, simplicial sets, simplicial groups, morphisms between these objects, reductions,
etc.) and has obtained some results (for example homology groups of iterated loop spaces
of a loop space modified by a cell attachment, components of complex Postnikov towers,
etc.) which had never been determined before.
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The fundamental idea of the Kenzo system for the computation of homology groups is
the notion of object with effective homology. Specifically, to obtain the homology groups
of a space X, the program proceeds in the following way: if the complex is effective,
then its homology groups can be determined by means of elementary operations with
differential matrices. Otherwise, the program uses the effective homology of the space,
which is located in one of its slots.

Chain complexes are the simplest algebraic structure implemented in Kenzo. From
them, by inheritance, the rest of structures (such as simplicial sets, simplicial groups,
algebras, coalgebras, etc.) are built. The definition of this class is included in the
following lines.

(DEFCLASS CHAIN-COMPLEX ()
((cmpr :type cmprf :initarg :cmpr :reader cmpr1)
(basis :type basis :initarg :basis :reader basis1)
;; BaSe GeNerator
(bsgn :type gnrt :initarg :bsgn :reader bsgn)
;; DiFFeRential
(dffr :type morphism :initarg :dffr :reader dffr1)
;; GRound MoDule
(grmd :type chain-complex :initarg :grmd :reader grmd)
;; EFfective HoMology
(efhm :type homotopy-equivalence :initarg :efhm :reader efhm)
;; IDentification NuMber
(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
;; ORiGiN
(orgn :type list :initarg :orgn :reader orgn)))

The relevant slots are cmpr, a function coding the equality between the generators;
basis, the function defining the distinguished ordered basis of each group of n-chains,
or the keyword :locally-effective if the chain complex is not effective; dffr, the
differential morphism, which is an instance of the class MORPHISM; efhm, which stores
information about the effective homology of the chain complex; and orgn, used to keep
record of information about the object.

The class CHAIN-COMPLEX is extended by inheritance with new slots, obtaining more
elaborate structures. For instance, extending it with an aprd (algebra product) slot, we
obtain the ALGEBRA class. Multiple inheritance is also available; for example, the class
SIMPLICIAL-GROUP is obtained by inheritance from the classes KAN and HOPF-ALGEBRA.

It is worth emphasizing here that simplicial sets have also been implemented as a
subclass of CHAIN-COMPLEX. To be precise, the class SIMPLICIAL-SET inherits from the
class COALGEBRA, which is a direct subclass of CHAIN-COMPLEX, with a slot cprd (the
coproduct). The class SIMPLICIAL-SET has then one slot of its own: face, a Lisp
function computing any face of a simplex of the simplicial set. The basis is in this
case (when working with effective objects) the list of non-degenerate simplices, and the
differential map of the associated chain complex is given by the alternate sum of the
faces, where the degenerate simplices are canceled.
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To explain roughly the general style of Kenzo computations, let us consider a di-
dactic example. According to Section 1.2.3, the “minimal” simplicial model of the
Eilenberg-MacLane space K(Z, 1) is defined by K(Z, 1)n = Zn; an infinite number of
simplices is required in every dimension n ≥ 1. This does not prevent such an object
from being installed and handled by the Kenzo program.

> (setf kz1 (k-z 1))
[K1 Abelian-Simplicial-Group]

The k-z Kenzo function constructs the standard Eilenberg-MacLane space and this
object is assigned to the symbol kz1. In ordinary mathematical notation (as seen in
Section 1.2.3), a 3-simplex of kz1 could be for example [3|5| − 5], denoted by (3 5 -5) in
Kenzo. The faces of this simplex can be determined:

> (dotimes (i 4)
(print (face kz1 i 3 ’(3 5 -5))))

<AbSm - (5 -5)>
<AbSm - (8 -5)>
<AbSm 1 (3)>
<AbSm - (3 5)>
nil

The faces are computed as explained in Section 1.2.3; in particular the face of index 2
is degenerate: ∂2[3|5| − 5] = η1[3]. Local (in fact simplex-wise) computations are so
possible, the object kz1 is locally effective. But no global information is available. For
example if we try to obtain the list of non-degenerate simplices in dimension 3, we obtain
an error.

> (basis kz1 3)
Error: The object [K1 Abelian-Simplicial-Group] is locally-effective.

This basis in fact is Z3, an infinite set whose element list cannot be explicitly stored
nor displayed. So that the homology groups of kz1 cannot elementarily be computed.
But K(Z, 1) has the homotopy type of the circle S1; the Kenzo program knows this fact,
reachable as follows. We can ask for the effective homology of K(Z, 1):

> (efhm kz1)
[K22 Homotopy-Equivalence K1 <= K1 => K16]

A reduction K1 = K(Z, 1)⇒⇒ K16 is constructed by Kenzo. What is K16?

> (orgn (k 16))
(circle)
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What about the basis of this circle in dimensions 0, 1 and 2?

>(dotimes (i 3)
(print (basis (k 16) i)))

(*)
(s1)
nil
nil

The first nil means ∅ and the second nil is “technical” (independently produced by
the iterative dotimes). The basis are available, the boundary operators too:

> (? (k 16) 1 ’s1)
----------------------------------------------------------------------{CMBN 0}
------------------------------------------------------------------------------

The boundary of the unique non-degenerate 1-simplex is the null combination of
degree 0. So that the homology groups of K(Z, 1) are computable through the effective
equivalent object K16:

> (homology kz1 0 3)
Homology in dimension 0 :
Component Z
---done---

Homology in dimension 1 :
Component Z
---done---

Homology in dimension 2 :
---done---

In this way, Kenzo computes the homology groups of complicated spaces by means
of the effective homology method. In particular, as we will see in Chapter 3, Kenzo is
able to compute the homology groups of twisted products or loop spaces.



Chapter 2

Effective homology and spectral
sequences of filtered complexes:
algorithms and programs

In the first chapter of this memoir (concretely, in Section 1.1.2) we have introduced the
definition and some general results about spectral sequences, but we have not yet said
when (or where) a spectral sequence can arise. As we will see in this work, many classical
examples of spectral sequences are defined by means of filtrations.

Given a filtered chain complex (and under certain good conditions), there exists a
spectral sequence which converges to its homology groups. However, the formal expres-
sion that defines the groups Er

p,q includes some subgroups which are not necessarily of
finite type and in many cases one cannot compute them. Thus, this formal expression
is not always sufficient to compute the spectral sequence.

On the other hand, if the filtered chain complex is an object with effective homology,
we have seen in Section 1.3 that it is possible to compute its homology groups. In this
chapter we show that the effective homology method can also be useful to determine
spectral sequences. Combining the notions of object with effective homology and spectral
sequence, we have developed an algorithm that allows us to determine every component
of the spectral sequence associated with a filtered chain complex: the groups Er

p,q, the
differential maps drp,q in every stage r, the convergence level, and the induced filtration
of the homology groups.

The work explained in this chapter has been presented in [RRS06] and [Rom06b].

2.1 Filtrations and spectral sequences

In this section we present the definition and some useful results about the spectral
sequence associated with a filtered chain complex, most of them extracted from [Mac63].

31
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Definition 2.1. An increasing filtration F of a chain complex C∗ = (Cn, dn)n∈N is a
family of sub-chain complexes FpC∗ = (FpCn, dn)n∈N (that is, FpCn ⊆ Cn satisfying
dn(FpCn) ⊆ FpCn−1) for each p ∈ Z such that

· · · ⊆ Fp−1Cn ⊆ FpCn ⊆ Fp+1Cn ⊆ · · · for all n ∈ N

Similarly, a decreasing filtration F of C∗ = (Cn, dn)n∈N is a family of sub-chain complexes
F pC∗ = (F pCn, dn)n∈N, for each p ∈ Z, such that

· · · ⊆ F p+1Cn ⊆ F pCn ⊆ F p−1Cn ⊆ · · · for all n ∈ N

We will mostly work with increasing filtrations and we will call them simply filtra-
tions. The pair (C∗, F ) is said to be a filtered (chain) complex.

Note 2.2. A filtration F of a chain complex C∗ induces a filtration FH of the graded
homology group H∗(C∗). Let ip : FpC∗ ↪→ C∗ be the p-injection; then one defines
FHpHn(C∗) = Hn(ip)(Hn(FpC∗)). In other words, the filtration FH is given by

FHpHn(C∗) =
Fp(Ker dn) ∪ Im dn+1

Im dn+1

where Fp(Ker dn) = Ker dn ∩ FpCn.

Definition 2.3. A filtration F of C∗ = (Cn, dn)n∈N is said to be bounded below if for
each degree n there exists s = s(n) such that FsCn = 0. F is called bounded if for each
n there are integers s = s(n) < t = t(n) such that FsCn = 0 and FtCn = Cn. F is
canonically bounded if F−1Cn = 0 and FnCn = Cn for all n.

Definition 2.4. A filtration F of a chain complex C∗ is called convergent above if each
Cn is the union of all FpCn. F is said to be convergent below if for all n ∈ N the
intersection of all FpCn is equal to zero. Obviously F bounded implies F is convergent
above and convergent below.

Since Fp−1C∗ is a chain subcomplex of FpC∗ for each p ∈ Z, it makes sense to
consider the quotient FpC∗/Fp−1C∗. We say that the elements of FpC∗/Fp−1C∗ have
filtration index (or filtration degree) equal to p.

It is convenient to write the indices of the grading as (p, q), where q = n − p is the
complementary degree. For every pair of integers p, q, we can consider

Cp,q =
FpCp+q
Fp−1Cp+q

If F is convergent above and convergent below then it is clear that Cn =
⊕

p+q=nCp,q.
The filtration F produces in this way a bigraded Z-module, {Cp,q}p,q∈Z, with differential
maps dip,q : Cp,q → Cp−i,q+i−1 for each i ≥ 0; this is called a multicomplex.



2.1 Filtrations and spectral sequences 33

Definition 2.5. A multicomplex C∗,∗ = {Cp,q, dip,q}p,q∈Z,i≥0 is a bigraded Z-module with
maps dip,q : Cp,q → Cp−i,q+i−1 for all p, q ∈ Z and i ≥ 0, such that for each p, q ∈ Z and
k ≥ 0 the following equation holds∑

i+j=k

djp−i,q+i−1 ◦ dip,q = 0

We note that, for each fixed p, the operator d0 : Cp,∗ → Cp,∗−1 is a differential map,
that is to say, for every q ∈ Z one has d0

p,q−1 ◦ d0
p,q = 0. Nevertheless, for i ≥ 1 the

operator di does not necessarily satisfy dip−i,q+i−1 ◦ dip,q = 0.

Definition 2.6. Given a multicomplex C∗,∗ = {Cp,q, dip,q}p,q∈Z,i≥0, the total graded mod-
ule T∗ = T∗(C∗,∗) is defined by

Tn =
⊕
p+q=n

Cp,q

The formal infinite sum dn =
∑

i≥0 d
i : Tn → Tn−1 given by

dn(x) =
∑
i≥0

dip,q(x) if x ∈ Cp,q, with p+ q = n

defines an operator of degree −1 on the total graded module whenever the sum is finite
for each element. In this case, the equation

∑
i+j=k d

j
p−i,q+i−1 ◦ dip,q = 0 implies that

dn−1 ◦ dn = 0, and therefore T∗ = T∗(C∗,∗) = (Tn, dn)n∈Z is a chain complex, which is
called the total (chain) complex of C∗,∗.

If C∗,∗ is the multicomplex associated with a filtration F of a chain complex C∗
(which is convergent above and convergent below), then dn(x) =

∑
i≥0 d

i
p,q(x) has only

a finite number of terms for each x ∈ Cp,q. Therefore T∗(C∗,∗) is a chain complex.

In this way, filtrations can be seen as multicomplexes. Reciprocally, a multicomplex
C∗,∗ = {Cp,q, dip,q}p,q∈Z,i≥0 can be considered as defining a filtration F of the total chain
complex T∗(C∗,∗). The filtration F is given by the first degree p:

FpTn =
⊕
h≤p

Ch,n−h

A similar filtration can also be defined by means of the second degree q.

Canonically bounded filtrations correspond to first quadrant multicomplexes, that is,
C∗,∗ = {Cp,q, dip,q}p,q∈Z,i≥0 such that Cp,q = 0 when p < 0 or q < 0. A first quadrant
multicomplex C∗,∗ can be represented with a diagram as the following one. Only some
maps dip,q are included.
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C0,0 C1,0 C2,0 C3,0 C4,0

C0,1 C1,1 C2,1 C3,1 C4,1

C0,2 C1,2 C2,2 C3,2 C4,2

C0,3 C1,3 C2,3 C3,3 C4,3

p

q

//

OO

��

oo

ggOOOOOOOOOOOOOO

ffLLLLLLLLLLLLLLLLLLLLLLLLL

��

oo

ggOOOOOOOOOOOOOO

ffLLLLLLLLLLLLLLLLLLLLLLLLL��

oo

ggOOOOOOOOOOOOOO

oo

Similarly, a second quadrant multicomplex C∗,∗ = {Cp,q, dip,q}p,q∈Z,i≥0 is one with
Cp,q = 0 when p > 0 or q < 0. As in the case of second quadrant spectral sequences, sec-
ond quadrant multicomplexes will be represented in the first quadrant of the (p, q)-plane,
drawing Cp,q with p < 0 at the point (−p, q).

C0,0 C−1,0 C−2,0 C−3,0 C−4,0

C0,1 C−1,1 C−2,1 C−3,1 C−4,1

C0,2 C−1,2 C−2,2 C−3,2 C−4,2

C0,3 C−1,3 C−2,3 C−3,3 C−4,3

p

q

//

OO

��

//

77oooooooooooooo

88pppppppppppppppppppppppppp

66mmmmmmmmmmmmmm

��

//

77oooooooooooooo

88pppppppppppppppppppppppppp ��

//

��

Definition 2.7. LetH∗ = {Hn}n∈N be a graded module. A spectral sequence (Er, dr)r≥1

is said to converge to H∗ (denoted by E1 ⇒ H∗) if there is a filtration FH of H∗ and for
each p one has isomorphisms of graded modules

E∞p,∗
∼=

FHpH∗

FHp−1H∗

The collection H∗ = {Hn}n∈N is called the abutment of the spectral sequence.

The next theorem gives the definition of the spectral sequence associated with a
filtered complex, that will appear many times in this memoir.

Theorem 2.8. [Mac63] Let F be a filtration of a chain complex C∗ = (Cn, dn)n∈N.
There exists a spectral sequence E = E(C∗, F ) = (Er, dr)r≥1, defined by

Er
p,q =

Zr
p,q ∪ Fp−1Cp+q

dp+q+1(Z
r−1
p+r−1,q−r+2) ∪ Fp−1Cp+q
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where Zr
p,q is the submodule Zr

p,q = {a ∈ FpCp+q| dp+q(a) ∈ Fp−rCp+q−1} ⊆ FpCp+q,
and drp,q : Er

p,q → Er
p−r,q+r−1 is the morphism induced on these subquotients by the

differential map dp+q : Cp+q → Cp+q−1. The first level of the spectral sequence satisfies

E1
p,q
∼= Hp+q

(
FpC∗
Fp−1C∗

)
Furthermore, if F is bounded, then E1 ⇒ H∗(C∗); to be precise, there are natural
isomorphisms

E∞p,q
∼=

FHp(Hp+q(C∗))

FHp−1(Hp+q(C∗))

with FHp(H∗(C∗)) induced by the filtration F of C∗, as explained in Note 2.2.

The convergence of the spectral sequence holds under weaker conditions than
bounded, for instance when the filtration F is convergent above and convergent below.

Theorem 2.9. [McC04] Let C∗ = (Cn, dn)n∈N be a chain complex and F a filtration
of C∗ which is convergent below and convergent above. Then the associated spectral
sequence E = E(C∗, F ) = (Er, dr)r≥1 converges to the graded homology group H∗(C∗).

Theorem 2.8 gives a formal expression for the groups and the differential maps of the
spectral sequence associated with a filtered complex, which converges to its homology
groups if the filtration is convergent below and convergent above. Nevertheless, we must
bear in mind that in many cases this expression is not sufficient to compute Er

p,q and
drp,q. If C∗ is not of finite type, it may occur that the subgroups Zr

p,q are not computable
and therefore we cannot always determine, using this formula, the groups Er

p,q.

Definition 2.10. Given two chain complexes C∗ and D∗ with filtrations FC and FD
respectively, a filtered chain complex morphism f : (C∗, FC) → (D∗, FD) is a chain
complex morphism f : C∗ → D∗ which is compatible with the filtrations, that is to say,

f(FCpC∗) ⊆ FDpD∗

A filtered chain complex morphism f : (C∗, FC) → (D∗, FD) induces a morphism of
spectral sequences f : E(C∗, FC)→ E(D∗, FD). For each level r we have a morphism of
bigraded modules

f r : E(C∗, FC)r = {E(C∗, FC)rp,q}p,q∈Z −→ E(D∗, FD)r = {E(D∗, FD)rp,q}p,q∈Z

The spectral sequence construction is functorial:

• the map induced by the identity of a filtered chain complex is the identity map of
the associated spectral sequence. In other words, given IdC∗ : C∗ → C∗ one has

(IdC∗)
r = Id : E(C∗, FC)rp,q −→ E(C∗, FC)rp,q for all r ≥ 1 and p, q ∈ Z



36 Chapter 2 Effective homology and spectral sequences of filtered complexes I

• the map induced by a composition is the composition of the induced maps. That
is to say, if f : (B∗, FB)→ (C∗, FC) and g : (C∗, FC)→ (D∗, FD) are filtered chain
complex morphisms, then

(g ◦ f)r = gr ◦ f r : E(B∗, FB)rp,q −→ E(D∗, FD)rp,q for all r ≥ 1 and p, q ∈ Z

Theorem 2.11. [Mac63] Let C∗ and D∗ be chain complexes with filtrations FC and FD,
both of them bounded below and convergent above. Let f : (C∗, FC) → (D∗, FD) be
a filtered chain complex morphism such that for some k ≥ 1 the induced morphism of
bigraded modules

fk : E(C∗, FC)k −→ E(D∗, FD)k

is an isomorphism. Then f r is an isomorphism for all∞ ≥ r ≥ k. Moreover, the induced
map on the graded homology groups H∗(f) : H∗(C∗)→ H∗(D∗) is also an isomorphism.

Definition 2.12. Given two filtered complex morphisms f, g : (C∗, FC)→ (D∗, FD) and
a chain homotopy h : f ' g, we say that h has order ≤ k if

h(FCpC∗) ⊆ FDp+k
D∗+1

Proposition 2.13. [Mac63] Let f, g : (C∗, FC) → (D∗, FD) be filtered chain complex
morphisms, and h : f ' g a chain homotopy of order ≤ k. Then the induced maps on
the corresponding spectral sequences coincide for every level r > k, that is,

f r = gr : E(C∗, FC)r −→ E(D∗, FD)r for all r > k

2.2 Main theoretical results

As stated by Theorem 2.8, the groups Er
p,q of the spectral sequence associated with a

filtered chain complex (C∗, F ) are given by the following subquotient of FpCp+q:

Er
p,q =

Zr
p,q ∪ Fp−1Cp+q

dp+q+1(Z
r−1
p+r−1,q−r+2) ∪ Fp−1Cp+q

However, it is worth emphasizing that the subgroups Zr
p,q and dp+q+1(Z

r−1
p+r−1,q−r+2)

which appear in this formula are not always computable and therefore in many cases
this formal expression does not provide an algorithm for the construction of the spectral
sequence.

This problem can be solved making use of the effective homology method. In this
section we include several results which relate the notions of spectral sequence and
effective homology, that will be used in Section 2.3 for the development of an algorithm
computing spectral sequences of filtered complexes with effective homology.

First of all, the next theorem explains that reductions of filtered complexes (satisfying
certain natural conditions) have a good behavior with respect to the associated spectral
sequences.
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Theorem 2.14. Let ρ = (f, g, h) : C∗⇒⇒D∗ be a reduction between two chain complexes
C∗ = (Cn, dCn)n∈N and D∗ = (Dn, dDn)n∈N, such that filtrations FC and FD are defined
on C∗ and D∗ respectively. If the maps f and g are filtered complex morphisms (that is,
they are compatible with the filtrations) and the homotopy operator h has order ≤ k,
then the induced morphism of spectral sequences f : E(C∗, FC) → E(D∗, FD) gives an
isomorphism of bigraded modules at each stage r > k:

f r : E(C∗, FC)r ∼= E(D∗, FD)r for all r > k

Proof. First of all, since f ◦ g = IdD∗ , the induced morphisms on the spectral sequence
coincide for every level r, that is:

(f ◦ g)r = (IdD∗)
r : E(D∗, FD)r −→ E(D∗, FD)r for all r ≥ 1

Then, due to the functoriality of the spectral sequence construction, it follows that
(f ◦ g)r = f r ◦ gr and (IdD∗)

r = IdE(D∗,FD)r , and therefore

f r ◦ gr = IdE(D∗,FD)r : E(D∗, FD)r −→ E(D∗, FD)r for all r ≥ 1

On the other hand, the equation dC ◦h+h◦dC = IdC∗ −g ◦f implies h : g ◦f ' IdC∗ ,
and h has order ≤ k, so that using Proposition 2.13 we obtain

(g ◦ f)r = (IdC∗)
r : E(C∗, FC)r −→ E(C∗, FC)r if r > k

and therefore

gr ◦ f r = IdE(C∗,FC)r : E(C∗, FC)r −→ E(C∗, FC)r if r > k

Thus, the maps f r : E(C∗, FC)r −→ E(D∗, FD)r and gr : E(D∗, FD)r −→ E(C∗, FC)r

are inverse morphisms of bigraded modules for all r > k. Therefore one has

f r : E(C∗, FC)r ∼= E(D∗, FD)r for r > k

The next corollary is a very useful result that combines both spectral sequence and
effective homology concepts and is one of the main results on which our algorithm for
computing spectral sequences associated with filtered complexes (which will be explained
in Section 2.3) is based.

Corollary 2.15. Let C∗ = (Cn, dCn)n∈N be a chain complex with a filtration FC . Let us
suppose that C∗ is an object with effective homology, such that there exists an equiv-
alence C∗

ρ1⇐⇐ D∗
ρ2⇒⇒ HC∗ with ρ1 = (f1, g1, h1) and ρ2 = (f2, g2, h2), and such that

filtrations FD and FHC are also defined on the chain complexes D∗ and HC∗. If the
maps f1, f2, g1, and g2 are morphisms of filtered chain complexes and both homotopies
h1 and h2 have order ≤ k, then the spectral sequences of the complexes C∗ and HC∗ are
isomorphic for r > k:

E(C∗, FC)rp,q
∼= E(HC∗, FHC)rp,q for all p, q ∈ Z and r > k
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Proof. The result is obtained applying Theorem 2.14 to the reductions ρ1 : D∗⇒⇒C∗ and
ρ2 : D∗⇒⇒HC∗. The inverse morphisms are (f2 ◦ g1)

r : E(C∗, FC)rp,q → E(HC∗, FHC)rp,q
and (f1 ◦ g2)

r : E(HC∗, FHC)rp,q → E(C∗, FC)rp,q.

This corollary can be applied for the computation of the spectral sequence associated
with a filtered complex C∗ with effective homology, whenever D∗ and HC∗ are also
filtered chain complexes.

In some cases, (C∗, FC) is a filtered complex but filtrations are not defined on the
chain complexes D∗ and HC∗. The results that follow allow us to propagate the filtration
FC to D∗ and HC∗ (defining filtrations FD and FHC respectively), in a way that the
three associated spectral sequences are isomorphic from some stage r on.

Proposition 2.16. Let ρ = (f, g, h) : C∗⇒⇒D∗ be a reduction between two chain
complexes C∗ = (Cn, dCn)n∈N and D∗ = (Dn, dDn)n∈N. Let us suppose that D∗ is a
filtered chain complex, with a filtration FD. Then it is possible to define a filtration FC
of C∗ such that the spectral sequences E(C∗, FC) and E(D∗, FD) are isomorphic at every
level r ≥ 1:

E(C∗, FC)rp,q
∼= E(D∗, FD)rp,q for all p, q ∈ Z and r ≥ 1

Proof. We define
FCpCn = {x ∈ Cn| f(x) ∈ FDpDn}

It is clear that FCpCn ⊆ FCp+1Cn and dCn(FCpCn) ⊆ FCpCn−1, so that FC is a
filtration of the chain complex C∗. Furthermore, it is not difficult to prove that the
three components of the reduction, f , g, and h, are then compatible with the filtrations
FC and FD. We can apply therefore Theorem 2.14 (in this case the order of the homotopy
operator h is ≤ 0) and one has that f : E(C∗, FC) → E(D∗, FD) is an isomorphism for
every stage r > 0. Therefore one has

E(C∗, FC)rp,q
∼= E(D∗, FD)rp,q for p, q ∈ Z and r ≥ 1

Proposition 2.17. Let ρ = (f, g, h) : C∗⇒⇒D∗ be a reduction between two chain
complexes C∗ = (Cn, dCn)n∈N and D∗ = (Dn, dDn)n∈N. We suppose now that C∗ is a
filtered complex (with a filtration FC) such that the composition g ◦ f is compatible
with the filtration, that is to say, g ◦ f(FCpC∗) ⊆ FCpC∗, and such that the homotopy h
has order ≤ k. Then there exists a filtration FD of D∗ such that the spectral sequences
E(C∗, FC) and E(D∗, FD) are isomorphic at every level r > k:

E(C∗, FC)rp,q
∼= E(D∗, FD)rp,q for all p, q ∈ Z and r > k

Proof. The filtration FD of the chain complex D∗ is given by

FDpDn = {x ∈ Dn| g(x) ∈ FCpCn}
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As in the previous proposition, we observe that FDpDn ⊆ FDp+1Dn and
dDn(FDpDn) ⊆ FDpDn−1. Furthermore, the definition of FD and the condition that
g ◦ f is compatible with FC imply that g and f respect the filtrations too. Since h has
order ≤ k, thanks to Theorem 2.14 one has

E(C∗, FC)rp,q
∼= E(D∗, FD)rp,q for all p, q ∈ Z and r > k

It is worth remarking the difference between both propositions. In the first one, a
filtration is defined on the small chain complex, and it is then naturally transferred to
the big chain complex without any extra hypotheses. Moreover, both spectral sequences
are isomorphic at every level r. On the other hand, in the second proposition a filtration
of the big chain complex is given. In this case, one cannot directly propagate it to the
small one, we need g ◦ f being compatible with the filtration. The spectral sequences
are then isomorphic from some stage k on, and in general k can be greater than 1.

Corollary 2.18. Let C∗ = (Cn, dCn)n∈N be a chain complex with effective homology,

with an equivalence C∗
ρ1⇐⇐ D∗

ρ2⇒⇒ HC∗ where ρ1 = (f1, g1, h1) and ρ2 = (f2, g2, h2).
Let FC be a filtration of C∗, such that given an element x ∈ Dn with f1(x) ∈ FCpCn, then
f1 ◦ g2 ◦ f2(x) ∈ FCpCn and f1 ◦ h2(x) ∈ FCp+k

Cn+1 for some k ≥ 0. Then we can define
a filtration FHC of the chain complex HC∗ such that the spectral sequences E(C∗, FC)
and E(HC∗, FHC) are isomorphic after level k:

E(C∗, FC)rp,q
∼= E(HC∗, FHC)rp,q for all p, q ∈ Z and r > k

Proof. First of all, we define a filtration FD of D∗ by

FDpDn = {x ∈ Dn| f1(x) ∈ FCpCn}

As seen in Proposition 2.16, the maps f1, g1, and h1 are compatible with the filtrations
FC and FD and then the spectral sequences E(C∗, FC) and E(D∗, FD) are isomorphic at
every level:

E(C∗, FC)rp,q
∼= E(D∗, FD)rp,q for all p, q ∈ Z and r ≥ 1

Then, the filtration FHC of HC∗ is given by

FHCpHCn = {x ∈ HCn| g2(x) ∈ FDpDn} = {x ∈ HCn| f1 ◦ g2(x) ∈ FCpCn}

If we want the reduction ρ2 to have a good behavior with respect to the filtrations
FD and FHC , we must suppose that the composition g2 ◦ f2 is compatible with the
filtration FD. This means that given x ∈ FDpDn, then g2 ◦ f2(x) ∈ FDpDn; equivalently,
given x ∈ Dn such that f1(x) ∈ FCpCn, then f1 ◦ g2 ◦ f2(x) ∈ FCpCn. Furthermore,
the homotopy operator h2 must have order ≤ k for some k ≥ 0, in other words, given
x ∈ FDpDn, then h2(x) ∈ FDp+k

Dn+1. This means that each x ∈ Dn with f1(x) ∈ FCpCn
satisfies f1 ◦ h2(x) ∈ FCp+k

Cn+1.
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If these hypotheses are satisfied, Proposition 2.17 allows us to affirm that the spec-
tral sequences E(D∗, FD) and E(HC∗, FHC) are isomorphic at every stage r > k, and
composing with the previous result we have isomorphisms

E(C∗, FC)rp,q
∼= E(HC∗, FHC)rp,q for all p, q ∈ Z and r > k

The inverse isomorphisms are (f2 ◦ g1)
r : E(C∗, FC)rp,q → E(HC∗, FHC)rp,q and

(f1 ◦ g2)
r : E(HC∗, FHC)rp,q → E(C∗, FC)rp,q.

Corollaries 2.15 and 2.18 will make it possible to compute spectral sequences of
(complicated) filtered complexes with effective homology, obtaining in this way a real
algorithm, as will be explained in Section 2.3. This algorithm is based on the following
idea: if a filtered complex is effective, then its spectral sequence can be computed by
means of elementary operations with matrices (in a similar way to the computation of ho-
mology groups); otherwise, the effective homology is needed to compute the groups Er

p,q

by means of an analogous spectral sequence deduced of an appropriate filtration of the
associated effective complex, which is isomorphic to the spectral sequence of the initial
complex after some level r.

2.3 An algorithm computing spectral sequences of

filtered complexes

Using the theoretical results presented in Section 2.2, it is possible to develop an al-
gorithm computing spectral sequences associated with filtered complexes with effective
homology (under suitable hypotheses). This algorithm will allow us to determine not
only the groups Er

p,q, but also the differential maps drp,q, as well as the convergence level
of the spectral sequence for each degree n ∈ N, and the filtration of the graded homology
group induced by the filtration of the chain complex.

Let C∗ = (Cn, dn)n∈N be a chain complex. We only work with free chain complexes,
so that for each degree n a (possibly infinite) set of generators Gn = {gni } is known.
A filtration F of C∗ will be given by means of the filtration index of each generator
g ∈ Gn, Flin(g) ∈ Z, and then the filtration index of a combination c =

∑m
i=1 λigi (with

λi ∈ Z, λi 6= 0, gi ∈ Gn) will be

Flin(c) = max{Flin(gi)| 1 ≤ i ≤ m}

Then we take FpCn = {x ∈ Cn| Flin(x) ≤ p}, which defines a filtration F of C∗
which is convergent above and convergent below. Moreover, for every c ∈ Cn, one has
Flin(c) = min{p ∈ Z| c ∈ FpCn}.

In order to compute the spectral sequence E(C∗, F ) we must distinguish two sit-
uations: if C∗ is effective, then the spectral sequence can be determined by means of
elementary operations; if C∗ is not effective (C∗ is locally effective), then we must use
the effective homology.
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2.3.1 Effective chain complexes

Let C∗ = (Cn, dn)n∈N be an effective chain complex with a filtration F . In this case all
the components of the spectral sequence can directly be determined as follows.

2.3.1.1 Groups

For each degree n ∈ N, the group Cn is finitely generated. We have a finite set of
generators Gn = {gn1 , . . . , gnmn

} (for some mn ≥ 0), and we consider it ordered by the
filtration index, that is to say, Flin(gni ) ≤ Flin(gni+1) for all 1 ≤ i < mn.

Let us remark that every subgroup A ⊆ Cn is a free subgroup and it is generated by a
set of combinations {c1, . . . , cl} for some 0 ≤ l ≤ mn, with cj =

∑mn

i=1 λ
j
ig
n
i for 1 ≤ j ≤ l.

This subgroup can then be identified with a matrix (that we also denote by A) with mn

rows and l columns that has the coefficient λji in the (i, j)-position (i-row and j-column).

On the other hand, for each n ∈ N, the differential dn : Cn ∼= Zmn → Cn−1
∼= Zmn−1

can be expressed as a matrix Dn with mn−1 rows and mn columns, which is given by
the coefficients of dn(g

n
1 ), . . . , dn(g

n
mn

) in the base {gn−1
1 , . . . , gn−1

mn−1
}.

For each r ≥ 1 and p, q ∈ Z, we want to compute the group Er
p,q (defined in Theo-

rem 2.8), which is given by the formula:

Er
p,q =

Zr
p,q ∪ Fp−1Cp+q

dp+q+1(Z
r−1
p+r−1,q−r+2) ∪ Fp−1Cp+q

where Zr
p,q is the submodule Zr

p,q = {a ∈ FpCp+q| dp+q(a) ∈ Fp−rCp+q−1}.

First of all, the subgroup Zr
p,q can be determined as the kernel of a submatrix of

Dn with n = p + q. To be precise, we take only the columns of Dn corresponding to
the generators gnj with Flin(gnj ) ≤ p, and the rows of the elements gn−1

i which satisfy

p−r < Flin(gn−1
i ) ≤ p. The kernel of this submatrix (that can be computed, for example,

using the Smith Normal Form method [KMM04]) is a subgroup of Cn, generated by a
list of combinations. Therefore it can be represented by a matrix, that we call also Zr

p,q.

Similarly, the subgroup Zr−1
p+r−1,q−r+2 can be expressed as a matrix Zr−1

p+r−1,q−r+2,

and the group dp+q+1(Z
r−1
p+r−1,q−r+2) is given simply by the matrix multiplication

Dn+1 · Zr−1
p+r−1,q−r+2.

Furthermore, we can also think in the subgroup Fp−1Cp+q = Fp−1Cn as the matrix
Fp−1,n whose only non-null elements are those at the positions (i, i) with Flin(gni ) ≤ p−1,
which are equal to 1.

The subgroup in the numerator of the formula, Zr
p,q ∪ Fp−1Cp+q, is given then by

the concatenation of the columns of the two corresponding matrices (in this case the
generators are not necessarily linearly independent). Similarly, one can determine the
generators of the denominator, dp+q+1(Z

r−1
p+r−1,q−r+2) ∪ Fp−1Cp+q.
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Once we have the generators of both groups, an elementary algorithm based on the
Smith Normal Form technique allows us to determine a basis-divisors representation
that describes completely the quotient Er

p,q.

The group Er
p,q is a finitely generated group and therefore it is isomorphic to a group

of the form

Zα ⊕ Zβ1 ⊕ · · · ⊕ Zβk

where Zβ denotes the group of integers modulo β, α is a non-negative integer, βi > 1 for
all i, and each βi divides βi+1. The number α is called the Betti number and β0, . . . , βk
are the torsion coefficients of the group.

The basis-divisors description of this group consists in a list of combinations
(c1, . . . , cα+k) which generate the group, as well as the list of non-negative integers
(β1, . . . , βk, 0, α. . ., 0) that contains the torsion coefficients and α 0’s corresponding to
the free factor. The list of divisors can be seen as the list of the coefficients of the
elements that appear in the denominator with regard to the list of combinations that
generate the group.

In this way, the basis-divisors representation of Er
p,q can be obtained by means of

elementary operations with matrices and determines completely the group, so that we
have obtained the following algorithm.

Algorithm 1.
Input:

• an effective chain complex C∗ = (Cn, dn)n∈N, with a filtration F defined by means
of the filtration index of the generators of each Cn,

• the numbers r ≥ 1 and p, q ∈ Z.

Output: a basis-divisors description of the quotient group Er
p,q of the spectral sequence

E = E(C∗, F ), in other words,

• a list of combinations (c1, . . . , cα+k) which generate the group,

• and a list of non-negative integers (β1, . . . , βk, 0, α. . ., 0) (such that βi divides βi+1)
where α is the Betti number of the group and β1, . . . , βk are the torsion coefficients.

We will show several examples of the computation of the groups Er
p,q of some filtered

chain complexes in Sections 2.4, 3.1 and 3.2.

2.3.1.2 Differential maps

Given r ≥ 1 and p, q ∈ Z, the computation of the differential map drp,q : Er
p,q → Er

p−r,q+r−1

is not difficult once we have determined the groups Er
p,q and Er

p−r,q+r−1 (with their
basis-divisors representation).
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Let us suppose that Er
p,q is generated by a set of combinations {c1, . . . , ct} with

divisors (b1, . . . , bt) = (β1, . . . , βk, 0, α. . ., 0) (where t = k + α). Similarly, Er
p−r,q+r−1 is

generated by {c′1, . . . , c′t′}, with divisors (b′1, . . . , b
′
t′) = (β′1, . . . , β

′
k, 0,

α′. . ., 0).

Then, let a be a class of the quotient

Er
p,q =

Zr
p,q ∪ Fp−1Cp+q

dp+q+1(Z
r−1
p+r−1,q−r+2) ∪ Fp−1Cp+q

This class must be given by means of its coefficients {λ1, . . . , λt} (with λi ∈ Z)
with respect to the set of generators {c1, . . . , ct}. Then, we consider the element
x =

∑t
i=1 λici ∈ a.

To apply the differential map drp,q to the class a = [x], we need an element z ∈ a = [x]
such that z ∈ Zr

p,q, in other words, we must build the projection of x ∈ Zr
p,q ∪ Fp−1Cp+q

over the factor Zr
p,q. To this aim, we consider the set of generators of the numerator

given by the concatenation of the two matrices Zr
p,q and Fp−1,p+q, and compute a set of

coefficients of x with respect to this new generator system (in general these coefficients
are not unique since the generators are not necessarily linearly independent). These co-
efficients can be computed using again the Smith Normal Form technique. This provides
a decomposition x = z + y with z ∈ Zr

p,q and y ∈ Fp−1Cp+q; we consider only the first
factor z ∈ Zr

p,q.

If we apply now the differential map dp+q = dn to the element z ∈ Zr
p,q we obtain

dp+q(z) ∈ Zr
p−r,q+r−1, and therefore one can consider [dp+q(z)] ∈ Er

p−r,q+r−1. Moreover
it is clear that a = [x] = [z], so that we can define drp,q(a) = drp,q([x]) = [dp+q(z)] ∈
Er
p−r,q+r−1. Finally, if we want to express the class drp,q(a) = [dp+q(z)] with regard to

the basis-divisors description of the quotient Er
p−r,q+r−1, we only have to compute the

coefficients of dp+q(z) with respect to the set of generators {c′1, . . . , c′t′}, and “simplify”
them considering the corresponding divisors (b′1, . . . , b

′
t′).

Algorithm 2.
Input:

• an effective chain complex C∗ = (Cn, dn)n∈N, with a filtration F defined by means
of the filtration index of the generators of each Cn,

• the integers p, q, and r ≥ 1,

• a class a ∈ Er
p,q, given by means of the coefficients {λ1, . . . , λt} with respect to

the basis {c1, . . . , ct} of the group Er
p,q determined by Algorithm 1.

Output: the coefficients of the class drp,q(a) ∈ Er
p−r,q+r−1 with respect to the basis

{c′1, . . . , c′t′} computed by means of Algorithm 1.
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2.3.1.3 Convergence level

As far as the chain complex C∗ is effective, the filtration F is bounded and therefore the
associated spectral sequence E(C∗, F ) is convergent. This implies that for each pair of
integers (p, q) there exists r = r(p, q) ≥ 1 such that Er

p,q = E∞p,q. Given a degree n ∈ N
there exist s = s(n) < t = t(n) such that FsCn = 0 and FtCn = Cn, and therefore for
r = r(n) = max{r(p, q)| s < p ≤ t, q = n − p}, one has that every Er

p,q with p + q = n
satisfies

Er
p,q = E∞p,q

∼=
FHpHn(C∗)

FHp−1Hn(C∗)

On the other hand, Hn(C∗) is computable and it is a finitely generated Abelian group,
of the form

Hn(C∗) ∼= Zα ⊕ Zβ1 ⊕ · · · ⊕ Zβk

for some α ≥ 0 and βi > 1 such that βi divides βi+1.

The induced filtration of Hn(C∗) is finite:

0 = FHsHn(C∗) ⊆ FHs+1Hn(C∗) ⊆ · · · ⊆ FHtHn(C∗) = Hn(C∗)

Then it is not difficult to observe that the Betti number α must coincide with the sum
of the Betti numbers of the groups Er

p,q
∼= FHp(Hn(C∗))/FHp−1(Hn(C∗)) (for r = r(n),

s < p ≤ t, and q = n − p). Similarly, the product of all the torsion elements β1 · · · βk
must be equal to the product of the torsion elements of all the groups Er

p,q.

Reciprocally, if for some stage r the sum of the Betti numbers and the product of the
torsion coefficients of the groups Er

p,q coincide with the Betti number and the torsion

coefficients of the homology group Hn(C∗), then for every r′ ≥ r one has Er′
p,q = Er

p,q for
all p+ q = n, and therefore E∞p,q = Er

p,q, so that the convergence of the spectral sequence
has been reached.

Thus, given a degree n one can compute the Betti number and the torsion elements
of Hn(C∗) and compare them with those of the groups E1

p,q (for s < p ≤ t and q = n−p),
E2
p,q, and so on, until we reach a stage r for which they coincide. This will be the smallest

r such that Er
p,q = E∞p,q for all p, q ∈ Z with p+ q = n, which is the convergence level of

the spectral sequence for degree n.

Algorithm 3.
Input:

• an effective chain complex C∗ = (Cn, dn)n∈N, with a filtration F defined by means
of the filtration index of the generators of each Cn,

• a degree n ≥ 0.

Output: the smallest r ≥ 1 such that Er
p,q = E∞p,q for all p, q ∈ Z such that p+ q = n.
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2.3.1.4 Filtration of the homology groups

The filtration F of the chain complex C∗ = (Cn, dn)n∈N induces a filtration FH of the
graded homology group H∗(C∗) given by

FHpHn(C∗) =
Fp(Ker dn) ∪ Im dn+1

Im dn+1

where Fp(Ker dn) = Ker dn ∩ FpCn.

Given n ∈ N, there exist s = s(n) < t = t(n) such that FsCn = 0 and FtCn = Cn.
Then we observe that Fp(Ker dn) = Zr

p,n−p for r ≥ p− s, and therefore we can compute
a basis of the subgroup Fp(Ker dn) as explained in Section 2.3.1.1. A basis of Im dn+1

is given simply by the differential matrix Dn+1, and therefore an elementary algorithm
provides us the basis-divisors representation of the quotient group defining FHpHn(C∗).

Algorithm 4.
Input:

• an effective chain complex C∗ = (Cn, dn)n∈N, with a filtration F given by the
filtration index of the generators of each Cn,

• a degree n ≥ 0 and a filtration index p ∈ Z.

Output: a basis-divisors representation of the group FHpHn(C∗).

2.3.2 Locally effective chain complexes

Let us consider now a filtered chain complex (C∗, FC), where C∗ = (Cn, dCn)n∈N is
not effective, so that for some m ∈ N the group of m-chains Cm can have an infinite
number of generators. Therefore, some differential maps dCn : Cn → Cn−1 cannot be
represented as matrices and the process explained in Section 2.3.1 for computing the
different components of the spectral sequence cannot be applied.

Let us suppose that C∗ is a chain complex with effective homology

D∗
ρ1
u}u} sss

ssssss
sss ρ2

"* "*MMM
MMM

MMM
MMM

C∗ HC∗

where ρ1 = (f1, g1, h1) and ρ2 = (f2, g2, h2).

If the different components of the reductions ρ1 and ρ2 satisfy the hypotheses of
Corollary 2.18 (that is to say, there exists k ∈ Z such that for each element x ∈ Dn with
f1(x) ∈ FCpCn, then f1 ◦ g2 ◦ f2(x) ∈ FCpCn and f1 ◦ h2(x) ∈ FCp+k

Cn+1), then we can
propagate the filtration FC and define filtrations FD and FHC of the chain complexes
D∗ and HC∗ respectively such that the spectral sequences E(C∗, FC) and E(HC∗, FHC)
are isomorphic after the stage k:

E(C∗, FC)rp,q
∼= E(HC∗, FHC)rp,q for all r > k
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In this way, (HC∗, FHC) becomes an effective filtered chain complex an therefore the
algorithms explained in Section 2.3.1 can be used for the computation of the associated
spectral sequence E(HC∗, FHC). Concretely, it is possible to determine the groups Er

p,q

with the corresponding generators, the differential maps drp,q, the convergence level for
each degree n ∈ N, and the filtration of the homology groups H∗(HC∗) induced by the
filtration FHC .

Then, thanks to the isomorphisms between the spectral sequences E(C∗, FC) and
E(HC∗, FHC) (which are induced by the compositions f2 ◦ g1 and f1 ◦ g2), we can also
compute every component of the spectral sequence associated with C∗.

Nevertheless, in many classical situations it is not necessary to transfer the filtration
FC of C∗ to the chain complexes D∗ and HC∗, since natural filtrations FD and FHC (dif-
ferent in general from those deduced from FC) are also defined on these chain complexes.
Furthermore, in most cases it is not difficult to prove that both reductions ρ1 and ρ2 in
the effective homology of C∗ have a good behavior with respect to the three filtrations
FC , FD, and FHC . Then, applying Corollary 2.15, one has that the spectral sequences
associated with (C∗, FC) and (HC∗, FHC) will be isomorphic after some stage k (very
frequently k = 0 or 1). In this way, it is possible to determine the spectral sequence
E(C∗, FC) (groups and differential maps after the stage k, convergence level, filtration
of the homology groups) by means of the spectral sequence E(HC∗, FHC) which can be
computed following the algorithms of Section 2.3.1.

The definition of the filtrations FD and FHC and their compatibility with the different
components of the reductions must be studied in each particular situation. Several
examples will be presented in Sections 2.4, 3.1, and 3.2.

2.4 Bicomplexes

A bicomplex is a particular case of filtered chain complex (or equivalently, a particular
case of multicomplex). As we will see in this memoir, many useful spectral sequences
arise from bicomplexes.

First of all, let us include here some basic definitions, which can be found in [Mac63].

Definition 2.19. A bicomplex (or double complex ) C∗,∗ is a bigraded free Z-module
C∗,∗ = {Cp,q}p,q∈Z provided with morphisms d′p,q : Cp,q → Cp−1,q and d′′p,q : Cp,q → Cp,q−1

satisfying d′p−1,q ◦ d′p,q = 0, d′′p,q−1 ◦ d′′p,q = 0, and d′p,q−1 ◦ d′′p,q + d′′p−1,q ◦ d′p,q = 0.
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We can picture this by means of a diagram of the form

Cp−1,q−1 Cp,q−1 Cp+1,q−1

Cp−1,q Cp,q Cp+1,q

Cp−1,q+1 Cp,q+1 Cp+1,q+1

oo
d′p,q−1oo

d′p+1,q−1oo oo

oo
d′p,qoo

d′p+1,qoo oo

oo
d′p,q+1oo

d′p+1,q+1oo oo

��

d′′p−1,q

��

d′′p−1,q+1

��

��

��

d′′p,q

��

d′′p,q+1

��

��

��

d′′p+1,q

��

d′′p+1,q+1

��

��

We observe that it is a particular case of multicomplex with d0
p,q = d′′p,q (the vertical

differential map), d1
p,q = d′p,q (the horizontal differential map), and dip,q = 0 for i > 1.

Note that here both operators d′ : C∗,q → C∗−1,q (for a fixed q) and d′′ : Cp,∗ → Cp,∗−1

(for each p) are differential maps, so that both columns and rows are chain complexes.

The total (chain) complex T∗ = T∗(C∗,∗) = (Tn, dn)n∈Z is in this case the chain
complex given by

Tn =
⊕
p+q=n

Cp,q

and differential map dn(x) = d′p,q(x) + d′′p,q(x) for x ∈ Cp,q.

Definition 2.20. The n-homology group of a bicomplex C∗,∗ = {Cp,q, d′p,q, d′′p,q}p,q∈Z is
the n-homology group of the total complex T∗ = T∗(C∗,∗)

Hn(C∗,∗) = Hn(T∗)

We can also consider approximations of the homology of a bicomplex by means of
the homology of the columns and the rows.

Definition 2.21. Given a bicomplex C∗,∗ = {Cp,q, d′p,q, d′′p,q}p,q∈Z, the second homology
H ′′(C∗,∗) is defined with respect to d′′ in the usual way as

H ′′p,q(C∗,∗) ≡ H ′′p,q =
Ker d′′p,q
Im d′′p,q+1

The equations d′ ◦ d′′ + d′′ ◦ d′ = 0 and d′ ◦ d′ = 0 allows us to consider, for each
q ∈ Z, a differential d′ : H ′′∗,q → H ′′∗−1,q induced by the original d′. We obtain in this
way a (non-free) chain complex H ′′∗,q = (H ′′p,q, d

′
p,q)p∈Z and therefore it makes sense to

construct the homology groups

H ′pH
′′
q (C∗,∗) = Hp(H

′′
∗,q) =

Ker d′p,q : H ′′p,q → H ′′p−1,q

Im d′p+1,q : H ′′p+1,q → H ′′p,q
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Analogously, we can define the first homology H ′(C∗,∗) given by

H ′p,q(C∗,∗) ≡ H ′p,q =
Ker d′p,q
Im d′p+1,q

and then

H ′′qH
′
p(C∗,∗) = Hq(H

′
p,∗) =

Ker d′′p,q : H ′p,q → H ′p,q−1

Im d′′p,q+1 : H ′p,q+1 → H ′p,q

Two different filtrations can be canonically associated with bicomplexes, producing
two different spectral sequences. They are directly related with the iterated homologies
H ′′H ′(C∗,∗) and H ′H ′′(C∗,∗). Details about the construction of these spectral sequences
can be found in [Mac63].

Definition 2.22. Let C∗,∗ = {Cp,q, d′p,q, d′′p,q}p,q∈Z be a bicomplex and T∗ = T∗(C∗,∗) the
total chain complex. The first filtration F ′ of T∗ is defined by means of the column
number p, that is to say,

F ′pTn =
⊕
h≤p

Ch,n−h

The associated spectral sequence E ′ = E(T∗, F
′) is called the first spectral sequence of

the bicomplex C∗,∗.

In a similar way, one can consider the second filtration F ′′ given by the row number,

F ′′q Tn =
⊕
h≤q

Cn−h,h

and construct the second spectral sequence E ′′ = E(T∗, F
′′).

Theorem 2.23. [Mac63] Let C∗,∗ = {Cp,q, d′p,q, d′′p,q}p,q∈Z be a bicomplex and
E ′ = (E ′r, d′r)r≥1 the associated first spectral sequence. There are natural isomorphisms

E ′1p,q
∼= H ′′p,q(C∗,∗) and E ′2p,q

∼= H ′pH
′′
q (C∗,∗)

If Cp,q = 0 for p < 0, then E ′ ⇒ H∗(C∗,∗) = H∗(T∗).

Similarly, for the second spectral sequence E ′′ = (E ′′r, d′′r)r≥1 one has

E ′′1p,q
∼= H ′p,q(C∗,∗) and E ′′2p,q

∼= H ′′qH
′
p(C∗,∗)

Moreover if Cp,q = 0 for q < 0, then E ′′ ⇒ H∗(C∗,∗).

This theorem shows that the iterated homologies H ′H ′′(C∗,∗) and H ′′H ′(C∗,∗) ap-
proximate the homology of the bicomplex, H∗(C∗,∗).

As in the general case, the spectral sequence of a bicomplex is directly computable
when the total complex T∗(C∗,∗) is effective. In this case, all the components of the
spectral sequence can be determined applying the algorithms of Section 2.3.1. However,
if the total complex is not effective, then its effective homology is necessary. In the next
section we explain how the effective homology of a first quadrant bicomplex is computed
when the effective homology of each column is known.
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2.4.1 Effective homology of a bicomplex

Let us consider a first quadrant bicomplex C∗,∗ = {Cp,q, d′p,q, d′′p,q}p,q∈Z, which satisfies
Cp,q = 0 if p < 0 or q < 0.

C0,0 C1,0 C2,0 C3,0

C0,1 C1,1 C2,1 C3,1

C0,2 C1,2 C2,2 C3,2

C0,3 C1,3 C2,3 C3,3

p

q

//

OO

oo oo oo

oo oo oo

oo d′oo oo

oo oo oo

��

��

��

��

��

��

��

d′′
��

��

��

��

��

The identity d′′p,q−1 ◦ d′′p,q = 0 implies that each column Cp
∗ = (Cp,q, d

′′
p,q)q∈N (p fixed)

is a chain complex, so it makes sense to look for the relation between the homologies of
the columns Cp

∗ and that of the bicomplex (which is the homology of the total complex
T∗ = T∗(C∗,∗)).

Let us suppose that the columns Cp
∗ are objects with effective homology, such that

there exist reductions ρp = (fp, gp, hp) : Cp
∗⇒⇒HCp

∗ where HCp
∗ = (HCp

q , d
p
q)q∈N is an

effective chain complex for all p ∈ N (the left reduction in the effective homology of each
column is trivial). Then we are going to construct a new effective chain complex HC∗
which provides us the effective homology of the total complex T∗. This is one of the
typical examples of application of the Basic Perturbation Lemma, which was introduced
in Section 1.3.2.

As a first step, we build a chain complex T ′′∗ = (T ′′n , d
′′
n)n∈N, total complex of the

bicomplex C ′′∗,∗ = {Cp,q, 0, d′′p,q}p,q∈N, where only the vertical arrows d′′p,q are considered.
This means that T ′′∗ is given by

T ′′n =
⊕
p+q=n

Cp,q

with differential map d′′n(x) = d′′p,q(x) for x ∈ Cp,q.

Using the reductions ρp = (fp, gp, hp) : Cp
∗⇒⇒HCp

∗ , it is not hard to construct a
reduction ρ′′ = (f ′′, g′′, h′′) from T ′′∗ over the total complex T∗(HC

′′
∗,∗) of a new bicomplex

HC ′′∗,∗ = {HCp
q , 0, d

p
q}p,q∈N. This new bicomplex HC ′′∗,∗ has in the p-column the chain

complex HCp
∗ , the vertical arrows are given by the differential maps of each HCp

∗ , and
the horizontal arrows are null. The three components f ′′, g′′, and h′′ of the reduction ρ′′

coincide with the corresponding maps fp, gp, and hp of each column. In other words,
given x a generator of Tn = Tn(C

′′
∗,∗) such that x ∈ Cp,q, and y a generator of Tn(HC

′′
∗,∗)

with y ∈ HC ′′p,q = HCp
q , then f ′′(x) = fp(x) ∈ HC ′′p,q = HCp

q , g
′′(y) = gp(y) ∈ Cp,q, and

h′′(x) = hp(x) ∈ Cp,q+1.
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C0,0 C1,0 C2,0 C3,0

C0,1 C1,1 C2,1 C3,1

C0,2 C1,2 C2,2 C3,2

C0,3 C1,3 C2,3 C3,3

HC0
0 HC1

0 HC2
0 HC3

0

HC0
1 HC1

1 HC2
1 HC3

1

HC0
2 HC1

2 HC2
2 HC3

2

HC0
3 HC1

3 HC2
3 HC3

3

p

q

p

q

//

OO

//

OO

��

��

��

��

d′′1,2
��

��

��

d′′2,2
��

��

��

��

��

��

��

��

��

d12 ��

��

��

d22 ��

��

��

��

��
f ′′

--

g′′

mm

h′′

``

It is clear that for each degree n the component Tn(HC
′′
∗,∗) =

⊕
p+q=nHC

p
q is a

(finite) sum of finite type groups, so that the chain complex T∗(HC
′′
∗,∗) is an effective

chain complex.

The reduction ρ′′ : T ′′∗ ⇒⇒T∗(HC
′′
∗,∗) is the first ingredient for the application of the

Basic Perturbation Lemma. We also need a perturbation δ of the differential map d′′,
which is defined by means of the horizontal arrows, the maps d′p,q. In this way we obtain
the initial total complex T∗ = T∗(C∗,∗), where now all the arrows are considered.

The homotopy operator h′′ in the reduction ρ′′ maps an element x ∈ Cp,q to an
element h′′(x) ∈ Cp,q+1, while the perturbation δ = d′ decreases by one unit the first de-
gree p. Therefore it is not difficult to see that the composition h′′◦δ is locally nilpotent, so
that the conditions of the BPL are satisfied. A reduction ρ = (f, g, h) : T∗⇒⇒T∗(HC∗,∗)
is deduced, where the bicomplex HC∗,∗ is obtained from HC ′′∗,∗ by replacing the initial
differential map dpq (with only vertical arrows) by a perturbed differential dpq + δHC .

The perturbation δHC is defined as

δHC = f ′′ ◦ d′ ◦ φ ◦ g′′ = f ′′ ◦ ψ ◦ d′ ◦ g′′

where φ and ψ are given by the series

φ =
∞∑
i=0

(−1)i(h′′ ◦ d′)i

ψ =
∞∑
i=0

(−1)i(d′ ◦ h′′)i = IdT ′′∗ −d
′ ◦ φ ◦ h′′

This adds new arrows of different shifts to the bicomplex HC ′′∗,∗, which produces a
multicomplex HC∗,∗. In the following figure only some arrows are included:
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HC0
0 HC1

0 HC2
0 HC3

0

HC0
1 HC1

1 HC2
1 HC3

1

HC0
2 HC1

2 HC2
2 HC3

2

HC0
3 HC1

3 HC2
3 HC3

3

p

q

//

OO

��

oo

ggOOOOOOOOOOOOOO

ffMMMMMMMMMMMMMMMMMMMMMMMM

ggOOOOOOOOOOOOOO

ffMMMMMMMMMMMMMMMMMMMMMMMM

��

oo

ggOOOOOOOOOOOOOO

oo

The components of the reduction ρ = (f, g, h) are

f = f ′′ ◦ ψ = f ′′ ◦ (IdT ′′∗ −d
′ ◦ φ ◦ h′′),

g = φ ◦ g′′,
h = φ ◦ h′′ = h′′ ◦ ψ

Given x ∈ Cp,q, then f(x) ∈ HCp
q⊕HC

p−1
q+1⊕· · ·⊕HC0

p+q. Similarly, if y ∈ HCp
q , then

g(y) ∈ Cp,q⊕Cp−1,q+1⊕· · ·⊕C0,p+q. Finally, h(x) ∈ Cp,q+1⊕Cp−1,q+2⊕· · ·⊕C0,p+q+1. In
the following figure, we represent some arrows which take part of the maps f , g, and h.
The differential maps of the bicomplex C∗,∗ and the multicomplex HC∗,∗ are not drawn.

C0,0 C1,0 C2,0 C3,0

C0,1 C1,1 C2,1 C3,1

C0,2 C1,2 C2,2 C3,2

C0,3 C1,3 C2,3 C3,3

HC0
0 HC1

0 HC2
0 HC3

0

HC0
1 HC1

1 HC2
1 HC3

1

HC0
2 HC1

2 HC2
2 HC3

2

HC0
3 HC1

3 HC2
3 HC3

3

p

q

p

q

//

OO

//

OO

f

--

f //

f

22

gqq

g

nn g

mm

h

``

h

aa

h
aa

It is clear that the multicomplex HC∗,∗ is an effective chain complex, and therefore
the reduction ρ = (f, g, h) : T∗⇒⇒T∗(HC∗,∗) provides us the searched effective homology
of T∗ = T∗(C∗,∗).

The method explained in this section can also be applied for the computation of
the effective homology of a first quadrant multicomplex C∗,∗ = {Cp,q, dip,q}p,q∈N,i≥0 when
the columns Cp

∗ = (Cp,q, d
0
p,q)q∈N are objects with effective homology. Again, we consider

first the multicomplex where the only non-null arrows are the vertical maps d0, and then
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the perturbation is given by the sum
∑

i≥1 d
i. Using the BPL as before it is possible

to construct a new effective chain complex HC∗ and a reduction T∗ = T∗(C∗,∗)⇒⇒HC∗,
obtaining in this way the effective homology of the multicomplex C∗,∗.

We can consider also the case in which for each column Cp
∗ , instead of a reduction

ρp : Cp
∗⇒⇒HCp

∗ , we have an equivalence

Dp
∗ρp

1

u}u} ttt
tttttt
ttt ρp

2
"* "*MMM

MMM
MMM

MMM

Cp
∗ HCp

∗

where each HCp
∗ is an effective chain complex. Then the effective homology of the total

complex T∗ = T∗(C∗,∗) is given by an equivalence

D∗
ρ1
u}u} sss

ssssss
sss ρ2

"* "*MMM
MMM

MMM
MMM

T∗ HC∗

where D∗ and HC∗ are the total complexes of a bicomplex and a multicomplex obtained
by application of the Trivial Perturbation Lemma and the Basic Perturbation Lemma
respectively, following the same method as explained before.

The condition of C∗,∗ being a first quadrant bicomplex (or multicomplex) guaran-
tees the local nilpotency which is necessary for the application of the BPL. In fact the
result holds under weaker conditions than first quadrant, it is sufficient that C∗,∗ is a
bicomplex associated with a bounded filtration, that is to say, for every n ∈ Z there
exist s = s(n) < t = t(n) such that Cp,q = 0 if p < s or p > t. We will see an inter-
esting example of a bounded second quadrant bicomplex in Chapter 3, concretely in
Section 3.2.

We have seen therefore that the effective homology of the total complex T∗ = T∗(C∗,∗)
of a first quadrant bicomplex can be computed when the columns are objects with
effective homology. In particular, the effective homology of T∗ allows us to compute
the homology groups of the bicomplex. Furthermore, it can be useful to determine the
associated spectral sequence, as we explain in the next section.

2.4.2 Spectral sequence of a bicomplex

Let C∗,∗ = {Cp,q, d′p,q, d′′p,q}p,q∈N be a first quadrant bicomplex and T∗ = (Tn, dn)n∈N its
total complex. We consider the first spectral sequence E ′ = (E ′r, d′r)r≥1, which is the
spectral sequence determined by the filtration F ′ of T∗ given by the first degree (the
column number), in other words,

F ′pTn =
⊕
h≤p

Ch,n−h

If each group Cp,q is of finite type for every p, q ∈ N, then the total complex T∗ is
effective (as far as C∗,∗ is a first quadrant bicomplex, Tn has a finite number of factors
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Cp,q with p + q = n), and therefore the different components of the spectral sequence
can be computed by means of elementary operations as explained in Section 2.3.1. On
the other hand, if for some pair (p, q) the group Cp,q is not of finite type, then T∗ is
not an effective chain complex and therefore the associated spectral sequence E ′ cannot
directly be determined, the effective homology is necessary.

We have seen in Section 2.4.1 that, given reductions ρp = (fp, gp, hp) : Cp
∗⇒⇒HCp

∗
for each column p ≥ 0, where HCp

∗ = (HCp
q , d

p
q)q∈N is an effective chain complex, it is

possible to construct a reduction ρ = (f, g, h) : T∗⇒⇒T∗(HC∗,∗), HC∗,∗ being also an
effective chain complex (concretely, an effective multicomplex).

In particular, the multicomplex HC∗,∗ can be considered as a filtered chain complex,
where the filtration FHC of the total chain complex T∗(HC∗,∗) is given again by the first
degree (the column number). This produces a spectral sequence E(T∗(HC∗,∗), FHC)
which converges to the homology groups of T∗(HC∗,∗). Since T∗(HC∗,∗) is effective, this
spectral sequence can directly be computed as explained in Section 2.3.1.

Furthermore, we recall that given two elements x ∈ Cp,q and y ∈ HCp
q ,

then f(x) ∈ HCp
q ⊕HC

p−1
q+1 ⊕ · · · ⊕HC0

p+q, g(y) ∈ Cp,q ⊕ Cp−1,q+1 ⊕ · · · ⊕ C0,p+q, and
h(x) ∈ Cp,q+1 ⊕ Cp−1,q+2 ⊕ · · · ⊕ C0,p+q+1. Thus, the three components f , g, and h of
the reduction ρ are compatible with the filtrations of T∗ = T∗(C∗,∗) and T∗(HC∗,∗) (both
of them defined by means of the column number), and therefore from Theorem 2.14 we
deduce that both spectral sequences E ′ = E(T∗, F

′) and E(T∗(HC∗,∗), FHC) associated
with C∗,∗ and HC∗,∗ are isomorphic for all the stages r ≥ 1, in other words, for every
level. The isomorphisms are induced by the maps f and g.

We can compute in this way all the components of the first spectral sequence E ′ of
the bicomplex C∗,∗ by means of the spectral sequence associated with the multicomplex
HC∗,∗ (which is easily calculable) and the morphisms f and g.

Algorithm 5.
Input:

• a first quadrant bicomplex C∗,∗ = {Cp,q, d′p,q, d′′p,q}p,q∈N,

• reductions ρp = (fp, gp, hp) : Cp
∗⇒⇒HCp

∗ for each column p ≥ 0, where
HCp

∗ = (HCp
q , d

p
q)q∈N is an effective chain complex.

Output: every component of the first spectral sequence E ′ = E(T∗(C∗,∗), F
′):

• the groups E ′rp,q for every p, q ∈ Z and r ≥ 1, with a basis-divisors description,

• the differential maps drp,q for all p, q ∈ Z and r ≥ 1,

• the convergence level for each degree n ∈ N,

• the filtration of the homology groups H∗(C∗,∗) = H∗(T∗), that is, the groups
FHpHn(C∗,∗) for each degree n ∈ N and filtration index p ∈ Z.

The same algorithm is also valid when C∗,∗ is a bounded bicomplex. If C∗,∗ is not
bounded it is also possible to compute the groups Er

p,q (which only depend on the columns
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p− r + 1, . . . , p+ r − 1) and the differential maps drp,q for every p, q, r ∈ Z, although in
this case one cannot always determine the final groups E∞p,q.

2.4.3 Examples

In this section we consider two examples of bicomplexes, with their associated spectral
sequences. First of all, we introduce a didactic example with only a few non-null (finite
type) groups, so that its spectral sequence can easily be computed by hand. The second
example is the Bar construction of an algebra, which in some cases is a locally effective
(not effective) bicomplex, and therefore in general it is not possible to determine directly
its spectral sequence.

2.4.3.1 A didactic example

Let us consider the following first quadrant bicomplex C∗,∗ (only the non-null groups have
been drawn), where the differential maps d′1,1, d

′
2,0, and d′′1,1 are given by the matrices

D′1,1 =

(
2 0
0 2

)
, D′2,0 =

(
2 0

)
, and D′′1,1 =

(
1 0

)
.

Z Z2

Z2 Z2

p

q

//

OO

d′2,0

oo

d′1,1

oo

d′′1,1

��

We choose a set of generators of each group, for instance C0,1 = Z[a1, a2], C1,0 = Z[b],
C1,1 = Z[c1, c2], and C2,0 = Z[d1, d2]. Then, the first spectral sequence of the bicomplex
can easily be computed.

The different groups Er
p,q are given by the formula

Er
p,q =

Zr
p,q ∪ F ′p−1Tp+q

dp+q+1(Z
r−1
p+r−1,q−r+2) ∪ F ′p−1Tp+q

where T∗ = (Tn, dn)n∈N is the total complex of C∗,∗ and F ′ is the first filtration of T∗
defined by the column number.

At level r = 1 one has E1
0,1 = Z[a1, a2] ∼= Z2, E1

1,0 = Z[a1, a2, b]/Z[a1, a2, b] = 0,
E1

1,1 = Z[c2] ∼= Z, and E1
2,0 = Z[c1, c2, d1, d2]/Z[c1, c2] ∼= Z2. The rest of the groups E1

p,q

are necessarily equal to zero. We have therefore only one possibly non-null differential
map, d1

1,1 : E1
1,1
∼= Z → E1

0,1
∼= Z2, and it is not difficult to see that it is given by the

matrix

(
0
2

)
.
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For r = 2, one has the groups E2
0,1
∼= E1

0,1/ Im d1
1,1 = Z[a1, a2]/Z[2a2] ∼= Z2 ⊕ Z,

E2
1,0 = E1

1,0 = 0, E2
1,1
∼= Ker d1

1,1 = 0, and E2
2,0
∼= E1

2,0
∼= Z[d1, d2] ∼= Z2. The differ-

ential map d2
2,0 : E2

2,0
∼= Z2 → E2

0,1
∼= Z2 ⊕ Z can be expressed by means of the matrix(

0 0
−4 0

)
.

The only two groups that remain in stage r = 3 are E3
0,1
∼= E2

0,1/ Im d2
2,0
∼= Z2 ⊕ Z4

and E3
2,0
∼= Ker d2

2,0
∼= Z. Since all the maps drp,q are necessarily null for r ≥ 3, the

groups E3
p,q coincide with the corresponding E∞p,q, and therefore the convergence level of

the spectral sequence is less than or equal to 3 for every degree n.

We can represent the whole spectral sequence by means of the three following dia-
grams:

0 Z2

Z2 Z

p

q
r=1

//

OO

d11,1oo

0 Z2

Z2 ⊕ Z 0

p

q
r=2

//

OO

d22,0

ggOOOOOOOOOOOOO
0 Z

Z2 ⊕ Z4 0

p

q
r=3

r=∞

//

OO

On account of the isomorphisms E∞p,q
∼= F ′Hp

(Hp+q(T∗))/F
′
Hp−1

(Hp+q(T∗)), the filtra-
tion of the homology groups H∗ = H∗(C∗,∗) is necessarily given by

F ′−1H1 = 0 ⊂ F ′0H1
∼= Z2 ⊕ Z4

∼= H1(C∗,∗)
F ′1H2 = 0 ⊂ F ′2H2

∼= Z ∼= H2(C∗,∗)
0 ∼= Hn(C∗,∗) for all n 6= 1, 2

In this particular case the spectral sequence determines completely the homology
groups of the filtered complex. Nevertheless this is not the general situation, in Chapter 3
we will see some examples where, for the computation of the looked-for homology groups,
we must deal with an extension problem with several possible solutions.

The next section includes an example of bicomplex which is not effective. The effec-
tive homology is then necessary to determine the different components of the associated
spectral sequence.

2.4.3.2 The Bar construction

The Bar construction of an algebra is the algebraic version of the classifying space of a
simplicial group and it provides an example of bicomplex which is used, for instance, in
the computation of the effective homology of Eilenberg-MacLane spaces. The definitions
that follow can be found in [Mac63].

Definition 2.24. A Z-algebra A is a Z-module with two morphisms, an associative
product π : A ⊗ A → A and a unit I : Z → A, such that the following diagrams are
commutative:
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A⊗ A⊗ A
π⊗IdA

wwppppppppppp
IdA⊗π

''NNNNNNNNNNN Z⊗ A I⊗IdA//

∼=
%%KKKKKKKKKKK A⊗ A
π

��

A⊗ ZIdA⊗Ioo

∼=
yysssssssssss

A⊗ A π
// A A⊗ Aπ

oo A

Definition 2.25. A differential (graded) algebra is a chain complex A∗ = (An, dn)n∈N
together with a Z-module morphism I : Z → A0 (the coaugmentation) and a chain
complex morphism π : A∗⊗A∗ → A∗, such that they satisfy the commutativity properties
of an algebra.

Definition 2.26. Let A∗ = (An, dn)n∈N be a differential graded algebra with A0
∼= Z.

Then it is possible to define a chain complex, Bar(A∗)∗, whose n-component Bar(A∗)n is
the free Z-module generated by the elements of the form [g1|g2| . . . |gk] such that gj ∈ Cnj

and
∑k

j=1(nj + 1) = n, and whose differential map is given as sum of two components,
the tensorial differential dt and the simplicial differential ds defined as:

dt([g1| . . . |gk]) = −
k∑
i=1

(−1)αi [g1| . . . |gi−1|dni
(gi)|gi+1| . . . |gn]

ds([g1| . . . |gk]) =
k∑
i=2

(−1)αi [g1| . . . |gi−2|π(gi−1 ⊗ gi)|gi+1| . . . |gk]

where dni
(gi) is the differential of a generator gi ∈ Cni

in the original chain complex A∗,
and αi =

∑i−1
j=1 nj.

The object [g1|g2| . . . |gk] with
∑k

j=1(nj + 1) = n is called a bar, and it is an n-chain

of the k-th iterated suspension of the tensor product A⊗ k· · · ⊗A. The integer n is the
total degree, k is the simplicial degree, while n− k is the tensorial degree.

The chain complex Bar(A∗)∗ can be represented as the following first quadrant bi-
complex, where Ā∗ is equal to A∗ without its component of degree 0. The vertical
differential is given by the component dt, and ds is the horizontal differential.

Z 0 0 0

0 Ā1 0 0

0 Ā2 (Ā∗ ⊗ Ā∗)2 0

0 Ā3 (Ā∗ ⊗ Ā∗)3 (Ā∗ ⊗ Ā∗ ⊗ Ā∗)3

p

q

//

OO

dsoo

dsoo dsoo

dt ��

dt �� dt ��
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This first quadrant bicomplex produces a spectral sequence that converges to the
homology groups of Bar(A∗)∗. If A∗ is not an effective chain complex, neither is Bar(A∗)∗,
and therefore the effective homology is necessary for the computation of the associated
spectral sequence.

Let us suppose that A∗ is an object with effective homology such that there exists
an equivalence ε : A∗⇐⇐D∗⇒⇒HA∗, where HA∗ is an effective chain complex. Then
it is not difficult to determine the effective homology of each column of the bicomplex
Bar(A∗)∗, which is given by the iterated tensor product of the equivalence ε. Once
we have the effective homology of the columns we can apply the process explained in
Section 2.4.1 for computing the effective homology of the total complex of a bicomplex,
which in our case is the chain complex Bar(A∗)∗.

Using this effective homology, we can determine the homology groups of Bar(A∗)∗ and
also the spectral sequence associated with this bicomplex, as explained in Section 2.4.2,
even if A∗ is not an effective chain complex.

In Section 2.5.2.2 we will show an example of the computation of the effective homol-
ogy of Bar(A∗)∗ and the corresponding spectral sequence for the case A∗ = C∗(K(Z, 2)).

2.5 Implementation

The algorithms explained in Section 2.3 have been implemented as a new module for the
Kenzo system. The set of programs we have developed (with about 2500 lines) allows
computations of spectral sequences of filtered complexes, when the effective homology
of this complex is available. The programs determine not only the groups Er

p,q, but
also the differential maps drp,q of the spectral sequence, as well as the level r on which
the convergence has been reached for each degree n, and the filtration of the homology
groups induced by the filtration of the chain complex.

In Section 2.5.1 we explain the essential part of these programs, describing the func-
tions with the same format as in the Kenzo documentation [DRSS99]. In Section 2.5.2
we will see some examples of calculations.

2.5.1 A new module for the Kenzo system

In the development of the new module for Kenzo that allows one to compute spectral
sequences associated with filtered complexes, the first step has been to enhance the class
system of Kenzo with the class FILTERED-CHAIN-COMPLEX, whose definition is:

(DEFCLASS FILTERED-CHAIN-COMPLEX (chain-complex)
((flin :type chcm-flin :initarg :flin :reader flin1)))
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This class inherits from the class CHAIN-COMPLEX, and has one slot of its own:

flin (FiLtration INdex function) a Lisp function that, from a degree n and a
generator g ∈ Cn, returns the filtration index Flin(g) = min{p ∈ Z| g ∈ FpCn}.

We have also written several functions that allow us to construct filtered complexes
and to obtain some useful information about them (when they are finitely generated in
each degree). The description of some of these methods is shown here:

build-flcc :cmpr cmpr :basis basis :bsgn bsgn :intr-dffr intr-dffr
:dffr-strt dffr-strt :flin flin :orgn orgn

The returned value is an instance of type FILTERED-CHAIN-COMPLEX. The key-
word arguments are similar to those of the function build-chcm (that constructs
a chain complex), with the new argument flin which is the filtration index func-
tion.

change-chcm-to-flcc chcm flin flin-orgn
This method builds a FILTERED-CHAIN-COMPLEX instance from an already cre-
ated chain complex chcm. The user must introduce the filtration index function,
flin, and flin-orgn, a list explaining the origin of the filtration, that will be used
to define the origin of the filtered chain complex.

fltrd-basis flcc n p
Returns the elements of the basis of FpCn, where C∗ is the effective filtered chain
complex flcc.

flcc-dffr-mtrx flcc n p
Matrix of the differential map of degree n of the subcomplex FpC∗, where
C∗ = flcc is an effective chain complex.

The core of this new module consists in several functions that construct the different
elements of the spectral sequence associated with a filtered complex (groups, differen-
tial maps, convergence level, and filtration of the homology groups), implementing the
algorithms presented in Section 2.3. The main functions are:

spsq-group flcc r p q
Displays on the screen the components (Z or Zm) of the group Er

p,q of the spectral
sequence of the filtered chain complex flcc.

spsq-basis-dvs flcc r p q
Returns a basis-divisors description of the group Er

p,q, with a list of combinations
which generate it and a list of non-negative integers corresponding to the Betti
number and the torsion coefficients of the group.

spsq-dffr flcc r p q int-list
Computes the differential map drp,q : Er

p,q → Er
p−r,q+r−1. The list int-list specifies

the coefficients of the element we want to apply the differential to with respect
to the generators of the group Er

p,q (the role of int-list can be better understood
by means of the examples of Section 2.5.2).
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spsq-cnvg flcc n
Determines the level r at which the convergence of the spectral sequence has
been reached for a specific degree n.

hmlg-fltr flcc n p
Computes the group FHpHn(C∗), with C∗ = flcc an effective filtered chain com-
plex.

To provide a better understanding of these new tools, some elementary examples of
their use are shown in the next section. Furthermore, in Chapter 3 we will present more
interesting examples where the application of the programs allows the computation of
some groups and differential maps which are beyond the calculations appearing in the
literature.

2.5.2 Examples

In this section we present some examples of application of the programs we have de-
veloped for computing spectral sequences associated with filtered complexes. First, we
consider as a didactic example the effective bicomplex introduced in Section 2.4.3.1, com-
puting in a detailed way all the components of the associated spectral sequence. As a
second example, we will show the computation of some elements of the spectral sequence
associated with the Bar construction of the differential graded algebra A∗ = C∗(K(Z, 2)).

2.5.2.1 Bicomplexes

Bicomplexes are a particular case of filtered complexes and therefore they can be im-
plemented using the general function build-flcc presented in Section 2.5.1. However,
we have also developed a set of programs that allow us to work with bicomplexes in an
easier way. The most important functions are:

build-bicm :bcbasis bcbasis :dffr1 dffr1 :dffr2 dffr2 :cmpr cmpr
:orgn orgn

The returned value is an instance of type CHAIN-COMPLEX. The keyword argu-
ments are: cmpr, the comparison function for generators; bcbasis, the bigraded
basis of the bicomplex (it can be a function of two integer parameters defining the
distinguished basis, or the keyword :locally-effective); dffr1, a Lisp function
describing the horizontal differential morphism; dffr2, a Lisp function defining
the vertical differential map; and orgn, the origin description of the bicomplex.

change-bicm-to-flcc bicm
This method builds a FILTERED-CHAIN-COMPLEX instance from the already cre-
ated bicomplex bicm.

Let us construct the bicomplex introduced in Section 2.4.3.1. It can be built by
means of the following instructions.
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> (defun bcbasis (degr1 degr2)
(if (and (= degr1 0) (= degr2 1)) ’(a1 a2)

(if (and (= degr1 1) (= degr2 0)) ’(b)
(if (and (= degr1 1) (= degr2 1)) ’(c1 c2)

(if (and (= degr1 2) (= degr2 0)) ’(d1 d2)
’( )
)))))

bcbasis
> (defun dif1 (degr1 degr2 gnrt)

(if (and (= degr1 1) (= degr2 1) (eql gnrt ’c1)) (list (cons 2 ’a1))
(if (and (= degr1 1) (= degr2 1) (eql gnrt ’c2)) (list (cons 2 ’a2))

(if (and (= degr1 2) (= degr2 0) (eql gnrt ’d1)) (list (cons 2 ’b))))))
dif1
> (defun dif2 (degr1 degr2 gnrt)

(if (and (= degr1 1) (= degr2 1) (eql gnrt ’c1)) (list (cons 1 ’b))))
dif2
> (setf bc (build-bicm :cmpr ’s-cmpr :bcbasis #’bcbasis :dffr1 #’dif1 :dffr2 #’dif2

:orgn ’(Bicomplex1)))
[K23 Chain-Complex]

We observe that the result is a chain complex. We can ask for its basis, for instance
in dimension 1 we obtain a list with the three generators, a1, a2, and b, each of them
identified with the corresponding bidegree:

> (basis bc 1)
(<BcGnrt [0 1] a1> <BcGnrt [0 1] a2> <BcGnrt [1 0] b>)

Then, we turn bc into a filtered complex.

> (change-bicm-to-flcc bc)
[K23 Filtered-Chain-Complex]

Once we have a filtered chain complex, the new module for spectral sequences of
filtered complexes can be used to compute the different components of the spectral
sequence associated with the bicomplex bc. First of all, let us determine some groups:

> (spsq-group bc 1 0 1)
Spectral sequence E^1_{0,1}
Component Z
Component Z
> (spsq-group bc 1 1 0)
Spectral sequence E^1_{1,0}
nil
> (spsq-group bc 3 0 1)
Spectral sequence E^3_{0,1}
Component Z/2Z
Component Z/4Z
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The corresponding generators can also be determined:

> (spsq-basis-dvs bc 1 0 1)
((
----------------------------------------------------------------------{CMBN 1}
<1 * <BcGnrt [0 1] a1>>
------------------------------------------------------------------------------

----------------------------------------------------------------------{CMBN 1}
<1 * <BcGnrt [0 1] a2>>
------------------------------------------------------------------------------
) (0 0))
> (spsq-basis-dvs bc 1 1 1)
((
----------------------------------------------------------------------{CMBN 2}
<1 * <BcGnrt [1 1] c2>>
------------------------------------------------------------------------------
) (0))
> (spsq-basis-dvs bc 3 0 1)
((
----------------------------------------------------------------------{CMBN 1}
<1 * <BcGnrt [0 1] a2>>
------------------------------------------------------------------------------

----------------------------------------------------------------------{CMBN 1}
<-1 * <BcGnrt [0 1] a1>>
------------------------------------------------------------------------------
) (2 4))

In the first case, E1
0,1, we obtain a list of two combinations, 1 ∗ a1 and 1 ∗ a2. The

list of divisors is (0 0) because the group is free, isomorphic to Z2. The second group,
E1

1,1
∼= Z, has only one generator, the combination 1 ∗ c2, and the corresponding divisor

is again 0. For E3
0,1 we have the same generators as for E1

0,1, 1 ∗ a1 and 1 ∗ a2, but now
both of them are torsion elements. The combination 1 ∗ a1 has finite order equal to 4,
while 1 ∗ a2 has order 2.

The differential maps drp,q : Er
p,q → Er

p−r,q+r−1 can be computed using the function
spsq-dffr. The last argument must be a list including the coordinates of the element
we want to apply the differential to, with regard to the generators of the group. In the
case of d1

1,1 : E1
1,1
∼= Z → E1

0,1
∼= Z2 we must give a list with one element. For instance,

the differential map applied to the generator 1 ∗ c2 of E1
1,1 is determined by

> (spsq-dffr bc 1 1 1 ’(1))
(0 2)

The result is the list (0 2), which corresponds to the second generator of the group E1
0,1

multiplied by 2, that is, the combination 2 ∗ a2.

Similarly, we can determine the differential map d2
2,0 : E2

2,0
∼= Z2 → E2

0,1
∼= Z2⊕Z. In

this case, to apply the function spsq-dffr, we must specify a list with two coefficients:
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the list (1 0) corresponds to the first generator, 1 ∗ d1, and the list (0 1) to the second
one, 1 ∗ d2.

> (spsq-dffr bc 2 2 0 ’(1 0))
(0 -4)
> (spsq-dffr bc 2 2 0 ’(0 1))
(0 0)

It is also possible to compute the convergence level of the spectral sequence for each
degree n. For degrees 1 and 2 the convergence is reached at stage 3; for n = 3 all the
groups E1

p,q are already null so that the convergence level is 1.

> (spsq-cnvg bc 1)
3
> (spsq-cnvg bc 2)
3
> (spsq-cnvg bc 3)
1

Finally, we can determine the filtration of the homology groups. For example, for
degree n = 2, we obtain F0H2 = F1H2 = 0 and F2H2

∼= Z ∼= H2.

> (hmlg-fltr bc 2 0)
Filtration F_0 H_2
nil
> (hmlg-fltr bc 2 1)
Filtration F_1 H_2
nil
> (hmlg-fltr bc 2 2)
Filtration F_2 H_2
Component Z

This is a very simple example of bicomplex where all the components of the spectral
sequence can be determined by hand. In the following section we consider the Bar
construction of the algebra A∗ = C∗(K(Z, 2)). It is not an effective chain complex and
therefore the spectral sequence cannot directly be computed.

2.5.2.2 The Bar construction

The Eilenberg-MacLane space K(Z, 2) is a simplicial Abelian group so that the associ-
ated chain complex C∗(K(Z, 2)) can be seen as an algebra. Hence, we can consider the
chain complex B∗ = Bar(C∗(K(Z, 2)))∗, whose homology groups are in fact isomorphic
to the homology groups of W(K(Z, 2)) = K(Z, 3).

Taking into account that C∗(K(Z, 2)) is not an effective chain complex, neither is B∗.
Nevertheless, Kenzo allows us to construct this space in a simple way with the following
statements:
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> (setf kz2 (k-z 2))
[K29 Abelian-Simplicial-Group]
> (setf bkz2 (bar kz2))
[K46 Chain-Complex]

The simplicial Abelian group kz2 is not effective but its effective homology is available
by means of the function efhm.

> (setf kz2-efhm (efhm kz2))
[K166 Homotopy-Equivalence K29 <= K156 => K152]

The associated effective complex, K152, is the right bottom chain complex of the
equivalence kz2-efhm.

> (setf kz2-efcc (rbcc kz2-efhm))
[K152 Chain-Complex]

The effective homology of bkz2 can then be obtained applying the function bar to
the effective homology of kz2.

> (setf (slot-value bkz2 ’efhm) (bar kz2-efhm))
[K203 Homotopy-Equivalence K46 <= K186 => K200]

What is the effective chain complex K200?

> (orgn (k 200))
(add [K174 Chain-Complex] [K198 Morphism (degree -1): K174 -> K174])

It has been obtained by “adding” a perturbation (the morphism K198) to the chain
complex K174, that is to say, applying the Basic Perturbation Lemma. Now, we can
inspect what K174 is.

> (orgn (k 174))
(vrtc-bar [K152 Chain-Complex])

It is the vertical Bar of the chain complex K152, in other words, a chain complex
generated in each degree n by the bars [g1|g2| . . . |gk] with

∑k
j=1(deg(gj) + 1) = n, but

where only the vertical (tensorial) differential map dt has been considered. Finally, we
recall that K152 is the effective chain complex of our space kz2, and therefore we observe
that Kenzo computes the effective homology of bkz2 as explained in Section 2.4.3.2.

The effective homology of kz2 allows us to determine its homology groups. For
instance, in dimensions 7, 8, 9, and 10 we obtain the following groups:
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> (homology bkz2 7 11)
Homology in dimension 7 :
Component Z/3Z
---done---
Homology in dimension 8 :
Component Z/2Z
---done---
Homology in dimension 9 :
Component Z/2Z
---done---
Homology in dimension 10 :
Component Z/3Z
---done---

Furthermore, this effective homology is also necessary for the computation of the
associated spectral sequence. First of all, we must define filtrations on both chain com-
plexes bkz2 and bkz2-efcc, making use of the function abar-flin.

> (change-chcm-to-flcc bkz2 abar-flin ’(abar-flin))
[K46 Filtered-Chain-Complex]
> (change-chcm-to-flcc (k 200) abar-flin ’(abar-flin))
[K200 Filtered-Chain-Complex]

And once we have defined the filtrations, we can start the computation of the spectral
sequence. In this case we do not explain the details of the calculations.

Some groups:

> (spsq-group bkz2 1 1 6)
Spectral sequence E^1_{1,6}
Component Z
> (spsq-group bkz2 1 2 6)
Spectral sequence E^1_{2,6}
Component Z
Component Z
> (spsq-group bkz2 2 1 6)
Spectral sequence E^2_{1,6}
Component Z/3Z

Some differential maps:

> (spsq-dffr bkz2 1 2 6 ’(1 0))
(3)
> (spsq-dffr bkz2 1 2 6 ’(0 1))
(3)
> (spsq-dffr bkz2 1 3 6 ’(1))
(-2 2)
> (spsq-dffr bkz2 1 2 8 ’(1 0 0))
(4)
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> (spsq-dffr bkz2 1 2 8 ’(0 1 0))
(6)
> (spsq-dffr bkz2 1 2 8 ’(0 0 1))
(4)

Convergence levels:

> (spsq-cnvg bkz2 7)
2
> (spsq-cnvg bkz2 8)
2
> (spsq-cnvg bkz2 9)
2

Filtration of the homology group H8
∼= Z2:

> (hmlg-fltr bkz2 8 0)
Filtration F_0 H_8
nil
> (hmlg-fltr bkz2 8 1)
Filtration F_1 H_8
nil
> (hmlg-fltr bkz2 8 2)
Filtration F_2 H_8
Component Z/2Z





Chapter 3

Effective homology and spectral
sequences of filtered complexes:
applications

In this chapter we consider two classical examples of spectral sequences: the Serre and
Eilenberg-Moore spectral sequences. Both of them were built by means of filtered com-
plexes and have been used to compute homology groups of some complicated spaces.
Nevertheless, in many cases these spectral sequences are not algorithms and cannot be
completely determined.

On the other hand, the Serre and Eilenberg-Moore spectral sequences can be replaced
by real algorithms based on the effective homology technique, allowing one to compute
the homology groups of the associated complexes. In this chapter we will show that this
effective homology can also be used to compute the spectral sequences themselves. If
the spaces involved in the constructions are objects with effective homology, then the
algorithms presented in Chapter 2 can be applied to determine all the components of
the associated Serre and Eilenberg-Moore spectral sequences.

The chapter is divided into two parts. The first one is devoted to the Serre spec-
tral sequence; the work explained there has been presented in [RRS06] and [Rom06b].
The second part deals with the Eilenberg-Moore spectral sequence; this material was
announced in [RRS06] but has not been published yet.

3.1 Serre spectral sequence

3.1.1 Introduction

One of the first examples of spectral sequence is due to Jean-Pierre Serre [Ser51], using
previous work by Jean Leray [Ler46] [Ler50] and Jean-Louis Koszul [Kos47]. In order to

67
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introduce this famous spectral sequence, in this section we give a brief overview of some
of the initial examples considered by Serre. Some technical details are skipped.

The Serre spectral sequence involves fibrations G ↪→ E → B, where G is the fiber
space, B is the base space, and E is the total space that can be seen as a twisted Cartesian
product of B and G. The associated spectral sequence is given in the following theorem.

Theorem 3.1 (Serre spectral sequence). [Ser51] Let G ↪→ E → B be a fibration
where the base space B is a 1-reduced simplicial set. Then there exists a first quadrant
spectral sequence (Er, dr)r≥1 with

E2
p,q = Hp(B;Hq(G))

which converges to the graded homology group H∗(E), that is to say, there exists a
filtration FH of H∗(E) such that

E∞p,q
∼=

FHpHp+q(E)

FHp−1Hp+q(E)

It is frequently thought this spectral sequence is a process making it possible to
compute the groups H∗(E) when the groups H∗(B) and H∗(G) are known, but this is
false in general. The definition of the spectral sequence allows one to construct the
groups at level r = 2, but the differential maps drp,q are unknown and in many cases we
do not have the necessary information to compute them. And even if we know all the
differentials drp,q and we can reach the final groups E∞p,q, we must deal with an extension
problem not always solvable to determine the homology groups H∗(E).

This means that the Serre spectral sequence is not an algorithm that enables us
to compute the homology groups of the total space of the fibration, but in fact it is a
(rich and interesting) set of relations between the homology groups H∗(G), H∗(E), and
H∗(B). In addition, one must bear in mind that in many cases this spectral sequence
cannot be determined. To illustrate this non-constructive nature, we include here one
of the initial examples of Serre, considering the beginning of his calculations.

The computation of sphere homotopy groups is known as a difficult problem in
Algebraic Topology. It is not hard to prove that πn(S

k) = 0 for n < k and πk(S
k) ∼= Z,

but the computation of the higher groups πn(S
k) for n > k becomes more complicated.

Making use of his famous spectral sequence, Serre computed many homotopy groups at
the beginning of the fifties. For instance, how can one use the Serre spectral sequence
to determine the homotopy groups of S3? First of all, as explained before, πn(S

3) = 0
for n < 3 and π3(S

3) ∼= Z. In order to compute π4(S
3), we consider a fibration

G2 ↪→ X4 → S3

where G2 = K(Z, 2) is an Eilenberg-MacLane space, induced by the universal fibration
K(Z, 2) ↪→ E(Z, 3) → K(Z, 3) (see [May67] for details). The beginning of the spectral
sequence (the groups E2

p,q) is determined by means of the well-known homology groups
of S3 and G2; the result is shown in the next figure.
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Z 0 0 Z

0 0 0 0

Z 0 0 Z

0 0 0 0

Z 0 0 Z

p

q r = 2

//

OO

One can easily observe that all the arrows d2
p,q : E2

p,q → E2
p−2,q+1 are necessarily null

and therefore the groups E3
p,q are equal to the corresponding E2

p,q. But problems arise
when trying to determine the differentials d3

p,q. The arrow d3
3,0 : E3

3,0
∼= Z→ E3

0,2
∼= Z

must be an isomorphism, but to know the arrows d3
3,2q some other (extra) information

than which is given by the spectral sequence itself is necessary. In this particular case,
a specific tool (the multiplicative structure of the cohomology) gives the solution, the
arrow d3

3,2q : E3
3,2q
∼= Z → E3

0,2q+2
∼= Z is the multiplication by q + 1. Thus, it can be

deduced that all the groups E3
3,2q die and the only non-null final groups are E∞0,0

∼= Z
and E∞0,2q

∼= Zq for q ≥ 2.

On account of the isomorphisms E∞p,q
∼= FHpHp+q(X4)/FHp−1Hp+q(X4), in this case

the Serre spectral sequence entirely gives the homology groups of the total space X4:
H0(X4) ∼= Z, H2n(X4) ∼= Zn for n ≥ 2, and the other Hn(X4) are null. Furthermore,
the Hurewicz Theorem 1.50 and the long exact sequence of homotopy (see [Whi78] or
[May67] for details) imply that π4(S

3) ∼= π4(X4) ∼= H4(X4) ∼= Z2.

Then, a new fibration

G3 ↪→ X5 → X4

should be considered to determine π5(S
3), where G3 = K(Z2, 3) is chosen because

π4(X4) ∼= Z2. In this case Serre was also able to obtain all the necessary ingredients
to compute the maps drp,q which play an important role in the beginning of the associ-
ated spectral sequence. The main tool (extra information) is again the multiplicative
structure in cohomology and more generally the module structure with respect to the
Steenrod algebra A2 [Ste62]. The final groups E∞p,q (with p + q ≤ 8) of this spectral
sequence are shown in the following figure.
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Z 0 0 0 0 0 Z3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 Z2

0 0 0 0 0

Z2 0 0 0

Z2 0 0

Z2 0

p

q r =∞

//

OO

For p + q = 5, one can observe that there is only one non-null group, E∞0,5
∼= Z2,

and therefore H5(X5) ∼= Z2. Again the Hurewicz theorem and the long homotopy exact
sequence imply π5(S

3) ∼= π5(X4) ∼= π5(X5) ∼= H5(X5) ∼= Z2; it was the first important
result obtained by Serre.

Let us stress that the filtration of H6(X5) has two stages, which give the short exact
sequence

0→ Z2 → H6(X5)→ Z3 → 0

The group H6(X5) is then an extension of Z3 by Z2, and fortunately there is a unique
solution: H6(X5) ∼= Z6.

In order to compute π6(S
3), we consider a new fibration

G4 ↪→ X6 → X5

with G4 = K(Z2, 4). In this case there are three non-null groups E∞p,q for p + q ≤ 6:
E∞0,0
∼= Z, E∞0,6 ∼= Z2, and E∞6,0

∼= Z6. In degree 6 we obtain a short exact sequence

0→ Z2 → H6(X6)→ Z6 → 0

but now there are two possible extensions (the trivial one Z2 ⊕ Z6 and the twisted one
Z12), and the Serre spectral sequence does not give any information that allows one to
make the correct choice. In this way, Serre proved π6(S

3) has 12 elements, but he was
unable to choose between the two possible options Z12 and Z2 ⊕ Z6. Two years later,
Barratt and Paechter [BP52] proved that the group π6(S

3) has an element of order 4,
and consequently π6(S

3) ∼= Z12 is the correct answer.

These examples illustrate the fact that the computation of the Serre spectral sequence
is not an easy task and in some situations some other information is needed to overcome
the ambiguities in the spectral sequence itself. In other cases, this computation is in fact
not possible, since some differential maps drp,q cannot be determined by any other means
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(we do not have the necessary extra information). Therefore, as mentioned before, the
Serre spectral sequence is not an algorithm that allows us to compute H∗(E) in terms
of H∗(B) and H∗(G).

On the other hand, if the base and fiber spaces are objects with effective homology,
then it is possible to determine the effective homology of the total space E. We obtain
in this way a real algorithm allowing us to compute the looked-for homology groups
H∗(E), replacing the Serre spectral sequence technique. In particular, some interesting
homology groups related to complex Postnikov towers have been determined using this
method (see, for instance, [RS05b] or [RS06]). In the next section we explain how the
effective homology of the total space of a fibration is obtained.

3.1.2 Effective homology of a twisted product

One of the typical examples of application of the effective homology method is the com-
putation of the homology groups of a twisted Cartesian product G×τ B, which provides
a constructive version of the Serre spectral sequence. Details of this construction can
be found in [RS06].

First of all, we must point out that from now on in this section, all the chain com-
plexes canonically associated with simplicial sets are normalized, that is to say, only the
non-degenerate n-simplices are considered to be generators of the group of n-chains.

Given a fibration G ↪→ E → B (defined by a twisting operator τ : B → G) where
the fiber G and the base B are objects with effective homology and B is a 1-reduced
simplicial set (which means B0 = B1 = {?}), we want to obtain the effective homology
of the total space E = G×τ B.

Let us suppose there exist two homotopy equivalences

DG∗
s{s{ ooooo
ooooo

#+ #+NNNNN
NNNNN

DB∗
s{s{ ooooo
ooooo

#+ #+NNNNN
NNNNN

C∗(G) HG∗ C∗(B) HB∗

with HG∗ and HB∗ effective chain complexes. How can we obtain a new equivalence
between C∗(G×τ B) and an effective chain complex?

The starting point is the Eilenberg-Zilber reduction, which relates the Cartesian
product of two simplicial sets and the tensor product of the associated chain complexes.

Theorem 3.2 (Eilenberg-Zilber reduction). [EZ53] Given two simplicial sets G and
B, there exists a reduction

ρ = (f, g, h) : C∗(G×B)⇒⇒C∗(G)⊗ C∗(B)
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with the maps f , g, and h defined as:

f(xn, yn) =
n∑
i=0

∂i+1 . . . ∂nxn ⊗ ∂0 . . . ∂i−1yn

g(xp ⊗ yq) =
∑

(α,β)∈{(p,q)-shuffles}

(−1)sg(α,β)(ηβq . . . ηβ1xp, ηαp . . . ηα1yq)

h(xn, yn) =
∑

(−1)n−p−q+sg(α,β)(ηβq+n−p−q . . . ηβ1+n−p−qηn−p−q−1∂n−q+1 . . . ∂nxn,

ηαp+1+n−p−q . . . ηα1+n−p−q∂n−p−q . . . ∂n−q−1yn)

where a (p, q)-shuffle (α, β) = (α1, . . . , αp, β1, . . . , βq) is a permutation of the set
{0, 1, . . . , p + q − 1} such that αi < αi+1 and βj < βj+1, sg(α, β) =

∑p
i=1(αi − i − 1),

and the third sum (which defines the homotopy operator h) is taken over all the indices
0 ≤ q ≤ n− 1, 0 ≤ p ≤ n− q − 1 and (α, β) ∈ {(p+ 1, q)-shuffles}.

The maps f , g, and h are known respectively as the Alexander-Whitney,
Eilenberg-MacLane, and Shih operators .

In our case, we have a twisted product E = G ×τ B. We must take account of
the torsion τ , that does not change the underlying graded group of the chain complex
C∗(G×B), only the differential map is modified by a perturbation

δ(f, b) = (∂0f · τ(b), ∂0b)− (∂0f, ∂0b)

This is a typical situation where the Basic Perturbation Lemma (Theorem 1.70) could
be applied. In order to guarantee the necessary local nilpotency condition, we consider
in both chain complexes C∗(G×B) and C∗(G)⊗ C∗(B) the canonical filtrations of the
Cartesian product of two simplicial sets and of the tensor product of two chain complexes
respectively, defined as follows.

Definition 3.3. Let X and Y be two simplicial sets, and C∗ = C∗(X × Y ) the chain
complex associated with the Cartesian product X × Y . We define the filtration F× of
C∗ through the degeneracy degree with respect to the second space: a generator (xn, yn)
of Cn = Cn(X × Y ) has a filtration degree less than or equal to p if ∃ȳp ∈ Yp such that
yn = ηin−p . . . ηi1 ȳp.

Definition 3.4. Given two chain complexes C∗ and D∗, we define the filtration F⊗ of
the tensor product C∗ ⊗D∗ through the dimension of the second component:

F⊗p(C∗ ⊗D∗)n =
⊕
h≤p

Cn−h ⊗Dh

It is not difficult to prove that F⊗ and F× are filtrations of the corresponding chain
complexes. In addition, it is clear that both of them are canonically bounded.

In our particular case, F× is a filtration of C∗(G × B) and F⊗ is a filtration of
the bottom chain complex C∗(G) ⊗ C∗(B). Furthermore, one can prove that the three
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operators f , g, and h involved in the Eilenberg-Zilber reduction are compatible with these
filtrations and the perturbation δ decreases the filtration degree of C∗(G × B) by one
unit. Since the filtration F× is bounded, it can easily be deduced that the composition
h ◦ δ is locally nilpotent, so that the hypotheses of the BPL are satisfied. In this way, a
new reduction ρ1 = (f1, g1, h1) : C∗(G ×τ B)⇒⇒C∗(G) ⊗t C∗(B) is obtained, where the
symbol ⊗t represents a twisted (perturbed) tensor product, induced by τ . This result
is known as the “twisted” Eilenberg-Zilber theorem, due to Edgard Brown [Bro59], and
put under its modern form by Shih Weishu [Shi62] and Ronnie Brown [Bro67].

Theorem 3.5 (Twisted Eilenberg-Zilber Theorem). [Bro59] Given two simplicial
sets G and B and a twisting operator τ : B → G, it is possible to construct a reduction

ρ = (f, g, h) : C∗(G×τ B)⇒⇒C∗(G)⊗t C∗(B)

where C∗(G) ⊗t C∗(B) is a chain complex with the same underlying graded module as
the tensor product C∗(G) ⊗ C∗(B), but the differential is modified to take account of
the twisting operator τ .

On the other hand, making use of the tensor product of two reductions (Proposi-
tion 1.61) and of the effective homologies of G and B, we obtain a new equivalence

DG∗ ⊗DB∗
rzrz llllllll
llllllll

$, $,
PPPPPPPP

PPPPPPPP

C∗(G)⊗ C∗(B) HG∗ ⊗HB∗

and it is clear that the right chain complex HG∗ ⊗ HB∗ is effective. We remark also
that the canonical filtration F⊗ of tensor products can also be considered on the chain
complexes DG∗ ⊗DB∗ and HG∗ ⊗HB∗.

Let us consider now the necessary perturbation δ̄ of C∗(G)⊗C∗(B) to set the twisted
product C∗(G) ⊗t C∗(B) (this perturbation δ̄ has been obtained when applying the
BPL to the Eilenberg-Zilber reduction). As far as the base space B is 1-reduced, it
can be proved (see [RS06]) that δ̄ decreases the filtration degree of C∗(G) ⊗ C∗(B)
at least by 2 units. On the other hand, both homotopy operators of the reductions
DG∗ ⊗DB∗⇒⇒C∗(G) ⊗ C∗(B) and DG∗ ⊗DB∗⇒⇒HG∗ ⊗HB∗ increase the filtration
degree at most by one unit. These facts will play an important role in the computation
of the effective homology of the twisted tensor product C∗(G)⊗t C∗(B).

First, we must apply the Trivial Perturbation Lemma to the left reduction
DG∗ ⊗DB∗⇒⇒C∗(G)⊗ C∗(B), with the perturbation δ̄ of C∗(G) ⊗ C∗(B). We ob-
tain in this way a reduction ρ2 = (f2, g2, h2) : DG∗ ⊗t DB∗⇒⇒C∗(G) ⊗t C∗(B) where
DG∗ ⊗t DB∗ is a twisted tensor product defined by a perturbation δ̄′ of DG∗ ⊗ DB∗,
which also decreases the filtration degree at least by 2 units.

Then, we consider the right reduction DG∗ ⊗DB∗⇒⇒HG∗ ⊗HB∗ and the pertur-
bation δ̄′ of DG∗ ⊗ DB∗. The hypotheses of the Basic Perturbation Lemma are again
satisfied and therefore a reduction ρ3 = (f3, g3, h3) : DG∗ ⊗t DB∗⇒⇒HG∗ ⊗t HB∗ is
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obtained, where HG∗ ⊗t HB∗ is also a perturbed tensor product, which in this case is
an effective chain complex.

Therefore one has the following equivalence:

DG∗ ⊗t DB∗
ρ2

qyqy llllllll
llllllll ρ3

$, $,QQQQQQQQ

QQQQQQQQ

C∗(G)⊗t C∗(B) HG∗ ⊗t HB∗

We consider again the reduction ρ1 : C∗(G ×τ B)⇒⇒C∗(G) ⊗t C∗(B) (given by the
twisted Eilenberg-Zilber theorem), and then the composition of the two equivalences

C∗(G×τ B)
Id

s{s{ nnnnnnn
nnnnnnn ρ1

$, $,QQQQQQQQ

QQQQQQQQ
DG∗ ⊗t DB∗

ρ2

rzrz lllllllll
lllllllll

ρ3

$, $,
QQQQQQQQQ

QQQQQQQQQ

C∗(G×τ B) C∗(G)⊗t C∗(B) HG∗ ⊗t HB∗

gives us the effective homology of the twisted Cartesian product E = G×τ B.

This effective homology provides us in particular an algorithm to compute the ho-
mology groups of the total space of a fibration G ↪→ E → B, replacing in this way the
Serre spectral sequence technique. But the spectral sequence itself can also give useful
information about the construction, so that its computation is also interesting even if
the homology groups of E = G ×τ B are already known. As we will see in the next
section, using the theoretical results and the algorithms presented in Chapter 2, we have
developed a new algorithm that makes it possible to compute the Serre spectral sequence
associated with a fibration whenever the base and fiber spaces are objects with effective
homology.

3.1.3 An algorithm computing the Serre spectral sequence

Let us consider a fibration
G ↪→ E → B

where the base space B is 1-reduced. The associated Serre spectral sequence gives

E2
p,q = Hp(B;Hq(G))

In many cases, this property is not sufficient to compute all the components of the
spectral sequence, since the differential maps drp,q are unknown and we do not always
have the necessary extra information to compute them.

Nevertheless, this spectral sequence was in fact defined by Serre as the spectral
sequence of the filtered chain complex (C∗(E), F×), where E = G ×τ B and F× is the
canonical filtration of the chain complex associated with a Cartesian product, introduced
in Definition 3.3. Since the perturbation δ induced by the twisting operator τ decreases
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the filtration degree of C∗(G × B) by one unit, the filtration F× is also a filtration of
the perturbed chain complex C∗(G×τ B). It is worth noting that in general the filtered
chain complex (C∗(G×τ B), F×) is not effective, and consequently its spectral sequence
cannot directly be determined. The effective homology will be necessary.

Let us suppose that G and B are objects with effective homology, with equivalences

DG∗ρG
1

s{s{ ooooo
ooooo ρG

2

#+ #+NNNNN
NNNNN

DB∗ρB
1

s{s{ ooooo
ooooo ρB

2

#+ #+NNNNN
NNNNN

C∗(G) HG∗ C∗(B) HB∗

We recall from Section 3.1.2 that the effective homology of the twisted product
E = G×τ B is obtained as the composition of two equivalences:

C∗(G×τ B)
Id

s{s{ nnnnnnn
nnnnnnn ρ1

$, $,QQQQQQQQ

QQQQQQQQ
DG∗ ⊗t DB∗

ρ2

rzrz lllllllll
lllllllll

ρ3

$, $,
QQQQQQQQQ

QQQQQQQQQ

C∗(G×τ B) C∗(G)⊗t C∗(B) HG∗ ⊗t HB∗

Making use of the theoretical results obtained in Chapter 2, we are going to prove that
these equivalences allow us to deduce isomorphisms on the spectral sequences associated
with the different spaces.

We consider first the reduction ρ1 = (f1, g1, h1) : C∗(G ×τ B)⇒⇒C∗(G) ⊗t C∗(B),
which was determined by application of the BPL to the Eilenberg-Zilber reduction
ρ = (f, g, h) : C∗(G×B)⇒⇒C∗(G)⊗ C∗(B). The chain complex C∗(G×τ B) is obtained
from C∗(G×B) and a perturbation δ, and C∗(G)⊗tC∗(B) is equal to the chain complex
C∗(G)⊗ C∗(B) replacing the old differential d by a perturbed differential d+ δ̄. Let us
recall the formulas of the different components of the reduction ρ1, given by the Basic
Perturbation Lemma:

δ̄ = f ◦ δ ◦ φ ◦ g = f ◦ ψ ◦ δ ◦ g,
f1 = f ◦ ψ = f ◦ (Id−δ ◦ φ ◦ h),
g1 = φ ◦ g,
h1 = φ ◦ h = h ◦ ψ

where the operators φ and ψ are defined by

φ =
∞∑
i=0

(−1)i(h ◦ δ)i

ψ =
∞∑
i=0

(−1)i(δ ◦ h)i = Id−δ ◦ φ ◦ h

As mentioned in Section 3.1.2, the three components f , g, and h of the
Eilenberg-Zilber reduction are known to be compatible with the filtrations F× of
C∗(G × B) and F⊗ of C∗(G) ⊗ C∗(B). Moreover, the perturbation δ decreases the
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filtration degree by one unit. In this way, the compositions h ◦ δ and δ ◦h, and therefore
the series φ and ψ, decrease the filtration degree too. In particular, the new perturba-
tion δ̄ of C∗(G) ⊗ C∗(B) is a filtered complex morphism, implying that F⊗ can also be
considered as a filtration of the twisted (perturbed) tensor product C∗(G)⊗t C∗(B). In
addition, we have already said that the perturbation δ̄ decreases the filtration index at
least by two units.

Consequently, we observe in the formulas given by the BPL that the three com-
ponents of the reduction ρ1 = (f1, g1, h1) are also compatible with the filtrations of
C∗(G ×τ B) and C∗(G) ⊗t C∗(B). In particular, h has order ≤ 0, and applying our
Theorem 2.14, we obtain an isomorphism between the associated spectral sequences for
every level r > 0:

E(C∗(G×τ B), F×)rp,q
∼= E(C∗(G)⊗t C∗(B), F⊗)rp,q for all r ≥ 1

Let us now turn to the right equivalence

DG∗ ⊗t DB∗
ρ2

qyqy llllllll
llllllll ρ3

$, $,QQQQQQQQ

QQQQQQQQ

C∗(G)⊗t C∗(B) HG∗ ⊗t HB∗

The reductions ρ2 and ρ3 were determined applying the Trivial Perturbation Lemma
(Theorem 1.69) and the BPL to two reductions ρ′2 : DG∗ ⊗ DB∗⇒⇒C∗(G) ⊗ C∗(B)
and ρ′3 : DG∗ ⊗ DB∗⇒⇒HG∗ ⊗ HB∗ respectively. Besides, ρ′2 is obtained as
the tensor product (given by Proposition 1.61) of the reductions ρG1 : DG∗⇒⇒C∗(G)
and ρB1 : DB∗⇒⇒C∗(B). Analogously, ρ′3 is the tensor product of the reductions
ρG2 : DG∗⇒⇒HG∗ and ρB2 : DB∗⇒⇒HB∗. Let us prove in general that the tensor product
of two reductions has a good behavior with respect to the canonical filtration F⊗.

Lemma 3.6. Let ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ be two reduc-
tions, and ρ′′ = (f ′′, g′′, h′′) : C∗ ⊗C ′∗⇒⇒D∗ ⊗D′∗ the tensor product of the reductions ρ
and ρ′, defined by

f ′′ = f ⊗ f ′

g′′ = g ⊗ g′

h′′ = h⊗ IdC′∗ +(g ◦ f)⊗ h′

Then the maps f ′′ and g′′ are compatible with the filtrations F⊗ defined on C∗⊗C ′∗ and
D∗ ⊗D′∗, and the homotopy operator h′′ has order ≤ 1.

Proof. Let c ⊗ c′ be a generator of F⊗p(C∗ ⊗ C ′∗)n. Then c′ ∈ C ′h with h ≤ p, c ∈ Cm
with m = n− h. One has f ′′(c⊗ c′) = f(c)⊗ f ′(c′) and f ′(c′) ∈ D′h with h ≤ p, so that

f ′′(c⊗ c′) ∈ F⊗p(D∗ ⊗D′∗)n

Similarly, if d⊗ d′ is a generator of F⊗p(D∗ ⊗D′∗), then

g′′(d⊗ d′) = g(d)⊗ g′(d′) ∈ F⊗p(C∗ ⊗ C ′∗)
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Therefore f ′′ and g′′ are morphisms of filtered chain complexes.

Finally, given c ⊗ c′ ∈ F⊗p(C∗ ⊗ C ′∗)n with c′ ∈ C ′h, h ≤ p, and c ∈ Cm with
m = n − h, then h′′(c ⊗ c′) = h(c) ⊗ c′ + g ◦ f(c) ⊗ h′(c′). One has c′ ∈ C ′h with h ≤ p
and therefore h(c) ⊗ c′ ∈ F⊗p(C∗ ⊗ C ′∗)n+1. On the other hand h′(c′) ∈ C ′h+1, so that
g ◦ f(c)⊗ h′(c′) ∈ F⊗p+1(C∗ ⊗ C ′∗)n+1. In this way

h′′(c⊗ c′) = h(c)⊗ c′ + g ◦ f(c)⊗ h′(c′) ∈ F⊗p+1(C∗ ⊗ C ′∗)n+1

which implies that h′′ has order ≤ 1.

We come back now to our particular case. We consider first the left reduction
ρ′2 = (f ′2, g

′
2, h
′
2) : DG∗ ⊗DB∗⇒⇒C∗(G)⊗ C∗(B), which is given by the tensor product

of the reductions ρG1 : DG∗⇒⇒C∗(G) and ρB1 : DB∗⇒⇒C∗(B). Making use of the previ-
ous lemma, one has that f ′2 and g′2 are filtered complex morphisms, and h′2 has order ≤ 1.
When applying the TPL with the perturbation δ̄ of C∗(G)⊗t C∗(B) (that decreases the
filtration index by 2 units), we obtain a perturbation δ̄′ = g′2 ◦ δ̄ ◦ f ′2 of DG∗ ⊗ DB∗
which also decreases the filtration index by 2. Furthermore, the perturbed reduction
ρ2 = (f2, g2, h2) : DG∗ ⊗t DB∗⇒⇒C∗(G) ⊗t C∗(B) is given by f2 = f ′2, g2 = g′2, and
h2 = h′2, so that f2 and g2 are also filtered chain complex morphisms and h2 has or-
der ≤ 1. In this way the hypotheses of Theorem 2.14 are satisfied again and one has
isomorphisms on the corresponding spectral sequences, in this case for r ≥ 2:

E(C∗(G)⊗t C∗(B), F⊗)rp,q
∼= E(DG∗ ⊗t DB∗, F⊗)rp,q for r ≥ 2

Similar arguments as before on the third reduction ρ3 : DG∗⊗tDB∗⇒⇒HG∗⊗tHB∗
produce isomorphisms:

E(DG∗ ⊗t DB∗, F⊗)rp,q
∼= E(HG∗ ⊗t HB∗, F⊗)rp,q for r ≥ 2

and composing with the previous results one has

E(C∗(G×τ B), F×)rp,q
∼= E(HG∗ ⊗t HB∗, F⊗)rp,q for all r ≥ 2

The inverse isomorphisms between these groups are the maps induced by the compo-
sitions f3◦g2◦f1 : C∗(G×τB)→ HG∗⊗tHB∗ and g1◦f2◦g3 : HG∗⊗tHB∗ → C∗(G×τB).

We note now that the filtered chain complex (HG∗ ⊗t HB∗, F⊗) is effective, so that
the associated spectral sequence can easily be computed using the algorithms presented
in Section 2.3.1. Thanks to our isomorphism, we can also determine the Serre spectral
sequence of the fibration G ↪→ E → B (which is the spectral sequence associated
with the filtered chain complex (C∗(G×τ B), F×)) by means of the spectral sequence of
(HG∗ ⊗t HB∗, F⊗). We obtain in this way the following algorithm.
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Algorithm 6.
Input:

• a fibration G ↪→ E → B defined by a twisting operator τ : B → G, with B a
1-reduced simplicial set,

• equivalences C∗(G)⇐⇐DG∗⇒⇒HG∗ and C∗(B)⇐⇐DB∗⇒⇒HB∗, where HG∗ and
HB∗ are effective chain complexes.

Output: all the components of the Serre spectral sequence associated with the fibration,
that is to say:

• the groups Er
p,q for each p, q ∈ Z and r ≥ 2, with a basis-divisors description,

• the differential maps drp,q for every p, q ∈ Z and r ≥ 2,

• the convergence level for each degree n ∈ N,

• the filtration of the homology groups H∗(E) = H∗(G×τ B), in other words, the
groups FHpHn(E) for each degree n ∈ N and filtration index p ∈ Z.

3.1.4 Implementation and examples

As explained in Section 2.5, we have developed a set of programs in Common Lisp
allowing us to compute spectral sequences of filtered complexes with effective homology,
even if the complexes are not of finite type. In particular, this new module for the Kenzo
system can be used for the computation of the Serre spectral sequence associated with
a fibration when the effective homologies of the base and the fiber spaces are known.

In this section we present two examples of calculation of the Serre spectral sequence.
First, a twisted product K(Z, 1)×τ S2 is considered. In this case, the spectral sequence
is well-known and can be obtained without using a computer; we propose it as a didactic
example for a better understanding of the new programs. The second example corre-
sponds to one of the first stages of a Postnikov tower. We will not give so many details
as in the preceding one and it is perhaps not so easy to understand, but it has a higher
interest because its spectral sequence seems difficult to be studied by the theoretical
methods documented in the literature.

3.1.4.1 K(Z, 1)×τ S2

We consider the twisted Cartesian product K(Z, 1) ×τ S2 for a twisting operator
τ : S2 → K(Z, 1) with τ(s2) = [1]. We use here the standard simplicial description
of the 2-sphere, with a unique non-degenerate simplex s2 in dimension 2. A principal
fibration is then defined by a unique 1-simplex of the fiber space K(Z, 1), which has the
same homotopy type as the 1-sphere S1. The result in this case is the Hopf fibration,
the total space K(Z, 1)×τ S2 being a simplicial model for the 3-sphere S3. If we define
τ(s2) = [2] (with the same base and fiber spaces), the total space is then the real projec-
tif space P 3R. Let us remark that, since K(Z, 1) is not effective, the space K(Z, 1)×τ S2
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is not effective either, and therefore the effective homology is necessary to determine its
spectral sequence.

The Kenzo program has a file that allows us to work with twisted Cartesian products.
For example, the twisted product K(Z, 1) ×τ S2 is built in Kenzo by means of the
following statements.

>(setf s2 (sphere 2))
[K208 Simplicial-Set]
>(setf kz1 (k-z 1))
[K1 Abelian-Simplicial-Group]
> (setf tau (build-smmr

:sorc s2
:trgt kz1
:degr -1
:sintr #’(lambda (dmns gmsm) (absm 0 ’(1)))
:orgn ’(kz1-tw-s2)))

[K213 Fibration K208 -> K1]
> (setf kz1-twcp-s2 (fibration-total tau))
[K219 Simplicial-Set]

The object tau implements the twisting operator τ : S2 → K(Z, 1) as a morphism
of degree −1 that sends the unique non-degenerate simplex s2 of dimension 2 to the
1-simplex (1) of the simplicial set kz1 (if we changed the list ’(1), that represents this
1-simplex, by the list ’(2), we would obtain the Hopf fibration of the real projectif space
P 3R). The function fibration-total builds the total space of the fibration defined by
the twisting operator tau (this operator contains as source and target spaces the base
and the fiber spaces of the fibration respectively), which is a twisted product of the base
and the fiber.

Since the effective complex ofK(Z, 1) is C∗(S
1), the effective complex ofK(Z, 1)×τS2

will be C∗(S
1)⊗C∗(S2), with an appropriate perturbation of the differential map. We can

inspect it by applying the function rbcc (right bottom chain complex) to the effective
homology of the space kz1-twcp-s2.

> (setf s1-twtp-s2 (rbcc (efhm kz1-twcp-s2)))
[K279 Chain-Complex]

What is this chain complex K279?

> (orgn s1-twtp-s2)
(add [K259 Chain-Complex] [K277 Morphism (degree -1): K259 -> K259])

This origin means that the complex s1-twtp-s2 has been obtained by application
of the BPL, “adding” a perturbation (the morphism K277, of degree −1 ) to the initial
chain complex K259. We want to know now what K259 is:
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> (orgn (k 259))
(tnsr-prdc [K208 Simplicial-Set] [K16 Chain-Complex])

As expected, we have a tensor product of two chain complexes, which are the (nor-
malized) chain complexes associated with the simplicial sets K208 and K16. And finally,
what about these simplicial sets?

> (orgn (k 208))
(sphere 2)
> (orgn (k 16))
(circle)

In this way we can state that K208 = S2 and K16 = S1, and therefore the effective
complex of kz1-twcp-s2 = K(Z, 1)×τ S2 is C∗(S

1)⊗C∗(S2) with a perturbation of the
differential.

In order to compute the Serre spectral sequence of this twisted product, it is necessary
to change it into a filtered complex. The filtration of this chain complex is the canonical
filtration of (twisted) Cartesian products, F× given by: a generator (gn, bn) of Cn(G×τB)
has a filtration degree less than or equal to p if ∃b̄p ∈ Bp such that bn = ηin−p . . . ηi1 b̄p.
Such a filtration can be implemented by means of the following function crpr-flin.

>(setf crpr-flin
#’(lambda (degr crpr)

(declare
(type fixnum degr)
(type crpr crpr))
(let* ((b (cadr crpr))

(dgop (car b)))
(declare
(type iabsm b)
(type fixnum dgop))
(the fixnum
(- degr (length (dgop-int-ext dgop)))))))

#<Interpreted Function (unnamed) @ #x20e5e53a>
> (change-chcm-to-flcc kz1-twcp-s2 crpr-flin ‘(crpr-flin))
[K219 Filtered-Simplicial-Set]

A filtration is also needed on the effective chain complex, C∗(S
1)⊗t C∗(S2). In this

case F⊗ is the canonical filtration of tensor products:

F⊗p(C∗(G)⊗t C∗(B))n =
⊕
h≤p

Cn−h(G)⊗ Ch(B)



3.1 Serre spectral sequence 81

The implementation in Common Lisp is done in the following way.

>(setf tnpr-flin
#’(lambda (degr tnpr)
(declare
(type fixnum degr)
(type tnpr tnpr))

(the fixnum
(degr1 tnpr))))

#<Interpreted Function (unnamed) @ #x20cfd50a>
> (change-chcm-to-flcc s1-twtp-s2 tnpr-flin ‘(tnpr-flin))
[K279 Filtered-Chain-Complex]

Once the filtrations have been defined, the new programs can be used to compute
the spectral sequence of the twisted product K(Z, 1) ×τ S2. In this specific case it is
isomorphic in every level r ≥ 1 to that of the effective complex C∗(S

1)⊗tC∗(S2), provided
that both homotopies in the equivalence have order ≤ 0 because the base space S2 has
trivial effective homology. For instance, the groups E2

2,0 and E2
0,1 are equal to Z.

> (spsq-group kz1-twcp-s2 2 2 0)
Spectral sequence E^2_{2,0}
Component Z
> (spsq-group kz1-twcp-s2 2 0 1)
Spectral sequence E^2_{0,1}
Component Z

These groups can be recognized as the elements of the Serre spectral sequence of the
Hopf fibration.

It is also possible to find the basis-divisors representation of the groups Er
p,q. We

recall that this representation shows a list of combinations which generate the group, as
well as the Betti number and the torsion coefficients (which are the coefficients of the
elements of the denominator with regard to the list of combinations). For the groups
E2

2,0 and E2
0,1 that have been computed above, we obtain the following basis-divisors

descriptions.

>(spsq-basis-dvs kz1-twcp-s2 2 2 0)
((
----------------------------------------------------------------------{CMBN 2}
<-1 * <CrPr - s2 1-0 nil>>
------------------------------------------------------------------------------
)

(0))
> (spsq-basis-dvs kz1-twcp-s2 2 0 1)
((
----------------------------------------------------------------------{CMBN 1}
<-1 * <CrPr 0 * - (1)>>
------------------------------------------------------------------------------
)

(0))
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In both cases, the “basis” (list of combinations) has a unique element and the list of
divisors is the list (0), which means that both groups are isomorphic to Z. For E2

2,0, the
generator is the element −1 ∗ (η1η0[ ], s2) ∈ C2(K(Z, 1) ×τ S2), which is not a torsion
element. Let us remark that Kenzo uses the inverse order for the elements of twisted
products: the first component corresponds to the base space, and the second one to the
fiber. In a similar way, the unique generator of E2

0,1 is −1 ∗ ([1], η0?), which again is not
a torsion element.

The differential map on a group Er
p,q can be computed making use of the function

spsq-dffr. The last argument must be a list that represents the coordinates of the
element we want to apply the differential to. In the following example, the differential
d2

2,0 is applied to the generator of the group E2
2,0
∼= Z (that, as we have seen, is the

following combination of degree 2: −1∗(η1η0[ ], s2)), and therefore the list of coordinates
must be (1).

> (spsq-dffr kz1-twcp-s2 2 2 0 ’(1))
(1)

The obtained list (1) shows that the result of applying d2
2,0 to the generator of the

group E2
2,0
∼= Z is the combination 1 ∗ g2

0,1, where g2
0,1 is the generator of E2

0,1
∼= Z

(that is, the combination of degree 1: −1 ∗ ([1], η0?)). This last result means that the
differential map d2

2,0 : E2
2,0 → E2

0,1 maps (η1η0[ ], s2) to ([1], η0?). Since the next stage in
the spectral sequence E3 is isomorphic to the bigraded homology group of E2 (in other
words, E3

p,q
∼= Hp,q(E

2) = Ker d2
p,q/ Im d2

p+2,q−1), it is clear that the groups E3
0,1 and E3

2,0

must be null.

> (spsq-group kz1-twcp-s2 3 0 1)
Spectral sequence E^3_{0,1}
nil
> (spsq-group kz1-twcp-s2 3 2 0)
Spectral sequence E^3_{2,0}
nil

Our programs also allow us to obtain, for each degree n, the level r at which the
convergence of the spectral sequence has been reached, that is, the smallest r such that
E∞p,q = Er

p,q for all p, q with p+q = n. For instance, for n = 0 and n = 1 the convergence
levels are 1 and 3 respectively.

>(spsq-cnvg kz1-twcp-s2 0)
1
>(spsq-cnvg kz1-twcp-s2 1)
3

Thus, we can obtain the groups E∞p,q with p + q = 0 or p + q = 1 by computing the
corresponding groups E1

0,0, E
3
0,1, and E3

1,0.
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> (spsq-group kz1-twcp-s2 1 0 0)
Spectral sequence E^1_{0,0}
Component Z
> (spsq-group kz1-twcp-s2 3 0 1)
Spectral sequence E^3_{0,1}
nil
> (spsq-group kz1-twcp-s2 3 1 0)
Spectral sequence E^3_{1,0}
nil

To finish with this example, we can also determine the filtration of the homology
groups H∗(G×τ B) induced by the filtration F× of the chain complex C∗(G×τ B). For
instance, for H3(G ×τ B) ≡ H3

∼= Z we obtain F0H3 = F1H3 = 0 ⊂ F2H3 = F3H3 =
H3
∼= Z.

> (hmlg-fltr kz1-twcp-s2 3 0)
Filtration F_0 H_3
nil
> (hmlg-fltr kz1-twcp-s2 3 1)
Filtration F_1 H_3
nil
> (hmlg-fltr kz1-twcp-s2 3 2)
Filtration F_2 H_3
Component Z
> (hmlg-fltr kz1-twcp-s2 3 3)
Filtration F_3 H_3
Component Z

3.1.4.2 Postnikov tower

We have already mentioned that the fibration K(Z, 1) ↪→ K(Z, 1)×τ S2 → S2 is ele-
mentary and the computation of the associated spectral sequence can be done without
any special difficulty. In this section we introduce a more complicated example, whose
spectral sequence cannot be determined by hand. Our programs compute the groups
Er
p,q in a short time for p + q ≤ 6. For degree p + q ≥ 7, several hours of computation

were necessary.

We consider the spaceX3 of a Postnikov tower [May67] with πi = Z2 at each stage and
the “simplest” non-trivial Postnikov invariant. The theoretical details of the construction
of this space are not included here, they can be found in [RS05b]. This complex can be
built by Kenzo by means of the following statements:

> (setf X2 (k-z2 2))
[K133 Abelian-Simplicial-Group]
> (setf k3 (chml-clss X2 4))
[K245 Cohomology-Class on K150 of degree 4]
> (setf tau3 (z2-whitehead X2 k3))
[K260 Fibration K133 -> K246]
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> (setf X3 (fibration-total tau3))
[K266 Kan-Simplicial-Set]

The space X3 is a twisted Cartesian product X3 = K(Z2, 3) ×k3 K(Z2, 2), total
space of a fibration K(Z2, 3) ↪→ X3 → K(Z2, 2). The twisting operator k3 is called a
k-invariant of the Postnikov tower. The object K266 is already of finite type, but its
effective homology gives us an associated effective chain complex which is much smaller.
For instance, X3 has 1, 043, 600 generators in dimension 5 and the small chain complex
effX3 has only 6.

> (setf effX3 (rbcc (efhm X3)))
[K641 Chain-Complex]

In order to compute the Serre spectral sequence of our fibration, we must define
filtrations on X3 and effX3 as done in Section 3.1.4.1.

> (change-chcm-to-flcc X3 crpr-flin ‘(crpr-flin))
[K443 Filtered-Kan-Simplicial-Set]
> (change-chcm-to-flcc effX3 tnpr-flin ‘(tnpr-flin))
[K641 Filtered-Chain-Complex]

As far as several examples of use of our new programs have already been explained, in
this case we do not consider necessary to give many details about the calculations. In the
following lines we include the computation of a few elements of the spectral sequence,
and at the end of the section we will show all the obtained results by means of two
diagrams.

Some groups Er
p,q at the stage r = 2 are:

> (spsq-group X3 2 4 0)
Spectral sequence E^2_{4,0}
Component Z/4Z
> (spsq-group X3 2 6 0)
Spectral sequence E^2_{6,0}
Component Z/2Z
> (spsq-group X3 2 5 3)
Spectral sequence E^2_{5,3}
Component Z/2Z
Component Z/2Z

For p+ q = 4 or 5, the spectral sequence converges at the level r = 5.

> (spsq-cnvg X3 4)
5
> (spsq-cnvg X3 5)
5
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This means that there are some differential maps d4 which are not null. To be precise,
the programs compute d4

4,0 and d4
6,0 that map the unique generators of E4

4,0
∼= Z4 and

E4
6,0
∼= Z2 to the unique generators of E4

0,3 and E4
2,3 (both isomorphic to Z2) respectively.

> (spsq-dffr X3 4 4 0 ’(1))
(1)
> (spsq-dffr X3 4 6 0 ’(1))
(1)

Finally, we can compute the filtration of the graded homology group. For degree
n = 6 one has H6(X3) ∼= Z2

2 and the filtration is given by:

> (dotimes (i 7)
(hmlg-fltr X3 6 i))

Filtration F_0 H_6
Component Z/2Z
Filtration F_1 H_6
Component Z/2Z
Filtration F_2 H_6
Component Z/2Z
Filtration F_3 H_6
Component Z/2Z
Component Z/2Z
Filtration F_4 H_6
Component Z/2Z
Component Z/2Z
Filtration F_5 H_6
Component Z/2Z
Component Z/2Z
Filtration F_6 H_6
Component Z/2Z
Component Z/2Z
nil

To finish the study of this example, we show two figures which include all the results
that our programs have determined. The two diagrams correspond to the critical levels
r = 4 and r = 5 of the spectral sequence (only the groups Er

p,q with p+q < 8 are drawn).
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Z 0 Z2 0 Z4 Z2 Z2 Z2

0 0 0 0 0 0 0

0 0 0 0 0 0

Z2 0 Z2 Z2 Z2

0 0 0 0

Z2 0 Z2

Z2 0

Z2 r = 4

p

q

//

OO

×1HHHHHHHHHH

ccHHHHHHHHHH
∼=HHHHHHHHHH

ccHHHHHHHHHH

0HHHHHHHHHH

ccHHHHHHHHHH

0HHHHHHHHHH

ccHHHHHHHHHH

Z 0 Z2 0 Z2 Z2 0 Z2

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 Z2 0

0 0 0 0

Z2 0 Z2

Z2 0

Z2 r = 5

p

q

//

OO

The groups E4
p,q are the same as the corresponding E2

p,q and E3
p,q, which means that

the first non-null differential maps appear at stage r = 4. For p + q ≤ 6, the spectral
sequence converges at level r = 5, that is to say, E5

p,q = E∞p,q. For p + q = 7, the
convergence is reached at the stage r = 9; the groups E5

0,7
∼= Z2 and E5

2,5
∼= Z2 die at

levels 9 and 7 respectively.

In this case, from the final groups of the spectral sequence we can deduce the homol-
ogy groups H0(X3) ∼= Z, H1(X3) ∼= H3(X3) = 0, and H2(X3) ∼= H4(X3) ∼= H7(X3) ∼= Z2.
However, for H5(X3) and H6(X3) we find an extension problem with two possible solu-
tions. The effective homology method, on the contrary, solves this problem and gives
the correct answers H5(X3) ∼= Z4 and H6(X3) ∼= Z2 ⊕ Z2.

3.2 Eilenberg-Moore spectral sequence

3.2.1 Introduction

Let G ↪→ E → B be a fibration, where the total space E can be seen as a twisted
product of the fiber and the base spaces, E = G×τ B. In the first part of this chapter
we have introduced the Serre spectral sequence that, from knowledge of the homology
groups of G and B, converges to the homology groups of the total space E. We can
also consider the inverse problems: given the homology groups of E and B, how can we
compute the homology groups of the fiber, H∗(G)? Or similarly, supposing that H∗(E)
and H∗(G) are known, is it possible to determine H∗(B)?

The Eilenberg-Moore spectral sequence was introduced in [EM65b], trying to give a
solution to these questions. In fact there are two Eilenberg-Moore spectral sequences,
corresponding to each one of the two different problems exposed before. In this section
we will explain the Cotor spectral sequence, which expresses the homology of the fiber
space G as a “Cotor” operation between the homologies of the base space and the total
space. The symmetric Tor spectral sequence describes the homology of the base space
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as a “Tor” involving the homologies of the total space, the fiber space and the structural
group. The algebraic functors TorH∗(B)(−,−) and TorC∗(B)(−,−) were introduced by
John C. Moore in [Moo59] and generalize the derived functor TorR(−,−) of the tensor
product of the category of differential graded modules over a differential graded algebra.
Dualizing these notions, we obtain the Cotor construction that appears in the definition
of the Eilenberg-Moore spectral sequence. For details, see [EM65b].

Theorem 3.7 (Eilenberg-Moore spectral sequence). [EM65b] Let G ↪→ E → B
be a fibration with B a 1-reduced simplicial set. There exists a second quadrant spectral
sequence (Er, dr)r≥1 such that

E2
p,q = CotorH∗(B)(H∗(E),Z)

that converges to the graded group H∗(G).

As in the case of the Serre spectral sequence, one could think that this spectral
sequence is an algorithm that allows us to compute the homology groups of the fiber
space G when H∗(B) and H∗(E) are known, but this is false. And as we will see, the
effective homology method will again give a solution to this problem.

The Eilenberg-Moore spectral sequence is built in fact as the spectral sequence of a
second quadrant bicomplex. In order to explain this construction, the following defini-
tions are necessary.

Definition 3.8. A Z-coalgebra A is a Z-module with two morphisms, an associative
coproduct ∆ : A→ A⊗A and a counit ε : A→ Z, such that the following diagrams are
commutative:

A
∆

vvnnnnnnnnnnnnnn
∆

((PPPPPPPPPPPPPP A
∼=

xxpppppppppppp

∆
��

∼=

&&NNNNNNNNNNNN

A⊗ A
∆⊗IdA

// A⊗ A⊗ A A⊗ A
IdA⊗∆
oo Z⊗ A A⊗ A

ε⊗IdA

oo
IdA⊗ε

// A⊗ Z

Definition 3.9. A differential (graded) coalgebra is a chain complex A∗ = (An, dn)n∈N
together with a Z-module morphism ε : A0 → Z (the counit, which induces a chain
complex morphism ε : A∗ → Z where Z denotes the chain complex C∗(Z, 0) with only
one non-null group C0(Z, 0) = Z) and a chain complex morphism ∆ : A∗ → A∗ ⊗ A∗
(the coproduct), satisfying the commutativity properties of a coalgebra.

In particular, the chain complex associated with a simplicial set can be seen as a
differential coalgebra as follows.

Definition 3.10. Let K be a simplicial set. The canonical coalgebra structure of
the chain complex C∗(K) is defined by means of the Alexander-Whitney coproduct
∆ : C∗(K)→ C∗(K)⊗ C∗(K) given by

∆(xn) =
n∑
i=0

∂i+1 . . . ∂nxn ⊗ ∂0 . . . ∂i−1xn, for xn ∈ Kn

and the counit ε : C0(K)→ Z defined as ε(x0) = 1 if x0 ∈ K0.
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Definition 3.11. Let A∗ be a differential coalgebra, a differential right comodule is a
chain complex M∗ provided with an external coproduct ∆M : M∗ →M∗ ⊗A∗ such that
(IdM∗ ⊗ε) ◦∆M = IdM∗ and (IdM∗ ⊗∆) ◦∆M = (∆M ⊗ IdA∗) ◦∆M .
An analogous definition is given for a differential left comodule.

From now on in this section, our differential coalgebras A∗ are assumed to be
1-reduced, that is to say, the component A0 is isomorphic to Z by means of the counit
ε : A0 → Z, and the component A1 is null. We denote 1 ≡ ε−1(1) ∈ A0.

Given a 1-reduced differential coalgebra A∗, we define a new chain complex
Ā∗ = (Ān, d̄n)n∈N with

Ān =

{
0 if n = 0
An if n > 0

and differential map d̄n = dn for all n ∈ N.

One can also define a new chain complex morphism ∆̄ : Ā∗ → Ā∗ ⊗ Ā∗ given by
∆̄(a) = ∆(a)− 1⊗a−a⊗ 1. Furthermore, if M∗ is a differential right comodule, then it
is possible to construct a morphism ∆̄M : M∗ →M∗ ⊗ Ā∗ where ∆̄M(x) = ∆M(x)−x⊗1
(and similarly for a differential left comodule). The “coproducts” ∆̄ and ∆̄M are also
associative.

We denote by Ā∗
⊗p

the iterated tensor product Ā∗⊗
p
· · · ⊗Ā∗.

Definition 3.12. Let A∗ be a differential coalgebra, M∗ a differential right comodule,
and N∗ a differential left comodule. The chain complex CobarA∗(M∗, N∗) is defined by

CobarA∗(M∗, N∗)n =
⊕
p≥0

(M∗ ⊗ Ā∗
⊗p ⊗N∗)n+p

with differential map given by two components: the tensorial differential dt is deduced
from the differential maps of M∗, A∗, and N∗, and the cosimplicial differential dc is
defined by means of the various coproducts. More specifically:

dt(x⊗ a1 ⊗ · · · ⊗ ap ⊗ y) =(−1)pdM(x)⊗ a1 ⊗ · · · ⊗ ap ⊗ y
+ (−1)p+|x|x⊗ dA(a1)⊗ · · · ⊗ ap ⊗ y
+ . . .

+ (−1)p+|x|·|a1|···|ap−1|x⊗ a1 ⊗ · · · ⊗ dA(ap)⊗ y
+ (−1)p+|x|·|a1|···|ap|x⊗ a1 ⊗ · · · ⊗ ap ⊗ dN(y)

dc(x⊗ a1 ⊗ · · · ⊗ ap ⊗ y) =∆̄M(x)⊗ a1 ⊗ · · · ⊗ ap ⊗ y
− x⊗ ∆̄(a1)⊗ · · · ⊗ ap ⊗ y
± . . .
+ (−1)px⊗ a1 ⊗ · · · ⊗ ∆̄(ap)⊗ y
+ (−1)p+1x⊗ a1 ⊗ · · · ⊗ ap ⊗ ∆̄N(y)

where |x| and |aj| denote the degrees of x ∈M∗ and aj ∈ A∗.
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The number n is the total degree, and in this case the complementary degree is
given by q = n + p. We denote Cp,q ≡ (M∗ ⊗ Ā∗

⊗p ⊗ N∗)q and we observe that
if z = x⊗ a1 ⊗ · · · ⊗ ap ⊗ y ∈ Cp,q, then dt(z) ∈ Cp,q−1 and dc(z) ∈ Cp+1,q. If we
change the sign of the index p (in other words, we consider p with negative sign), then
CobarA∗(M∗, N∗) can be seen as a second quadrant bicomplex with horizontal differential
d′ = dc and vertical differential map d′′ = dt.

The chain complex CobarA∗(M∗, N∗) is a generalization of the Cobar construction
introduced by J. Frank Adams in [Ada56]. This particular case is obtained when
M∗ = N∗ = Z, a chain complex with a unique non-null group in degree 0. The group of
n-chains of CobarA∗(Z,Z) ≡ Cobar(A∗) is then given by

Cobar(A∗)n =
⊕
p≥0

(Āi1 ⊗ · · · ⊗ Āip)n+p

with i1, . . . , ip ≥ 0 and i1 + · · · + ip − p = n. Let us remark that Ā0 = Ā1 = 0, which
implies that Āi1 ⊗ · · · ⊗ Āip = 0 if i1 + · · ·+ ip = q < 2p. We can represent this second
quadrant bicomplex (in the first quadrant) as follows:

Z 0 0 0

0 0 0 0

0 Ā2 0 0

0 Ā3 0 0

0 Ā4 (Ā∗ ⊗ Ā∗)4 0

0 Ā5 (Ā∗ ⊗ Ā∗)5 0

0 Ā6 (Ā∗ ⊗ Ā∗)6 (Ā∗ ⊗ Ā∗ ⊗ Ā∗)6

p

q

//

OO

dc

//

dc

//

dc

//
dc

//

dt ��

dt ��

dt ��

dt ��

dt ��

dt ��

It is worth emphasizing that the second quadrant bicomplex Cobar(A∗) is tapered,
that is to say, Cp,q = 0 if q < 2p, and in particular it is bounded. This property is also
satisfied in the general case CobarA∗(M∗, N∗) whenever A∗ is a 1-reduced coalgebra, and
will be relevant when computing its effective homology.

On the other hand, one can see that the chain complex CobarA∗(M∗, N∗) is canon-
ically isomorphic to the bicomplex used by Eilenberg and Moore in [EM65b] in or-
der to define the Cotor functor and the corresponding spectral sequence. In particu-
lar, this implies that the Eilenberg-Moore spectral sequence associated with a fibration
G ↪→ E → B (with 1-reduced base space B), which is known to converge to the ho-
mology groups of the fiber space G, can be computed as the spectral sequence of the
bicomplex
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CobarC∗(B)(C∗(E),Z)

Nevertheless, this filtered complex can be very complicated and the computation of
the associated spectral sequence cannot always be done in a direct way. The effective
homology will help us to complete the calculations.

3.2.2 Effective homology of the fiber space of a fibration

As in the computation of the effective homology of a twisted product explained in Sec-
tion 3.1.2, all the chain complexes associated with simplicial sets which appear in this
section are supposed to be normalized. Let us notice that if B is a 1-reduced simplicial
set (that is to say, B0 = B1 = {?}), then the normalized chain complex CN

∗ (B) ≡ C∗(B)
is a 1-reduced differential coalgebra.

Let G ↪→ E → B be a fibration where the base space B is 1-reduced. The simplicial
sets B and E = G ×τ B are supposed to be objects with effective homology, in other
words, two equivalences

DB∗
s{s{ ooooo
ooooo

#+ #+NNNNN
NNNNN

DE∗
s{s{ ooooo
ooooo

#+ #+NNNNN
NNNNN

C∗(B) HB∗ C∗(E) HE∗

are given, where HB∗ and HE∗ are effective chain complexes. In the following lines
we give an overview of the construction of the effective homology of the fiber space G.
Details are explained in [Rub91] or [RS06].

On the one hand, and thanks to the effective homologies of the simplicial sets B
and E = G×τ B, it is not difficult to build the effective homology of the chain complex
CobarC∗(B)(C∗(G)⊗t C∗(B),Z), where ⊗t denotes the twisted tensor product obtained
by applying the twisted Eilenberg-Zilber theorem. It is in fact a particular application of
the computation of the effective homology of a bicomplex explained in Section 2.4.1; in
this case one has a second quadrant bicomplex but, provided that C∗(B) is a 1-reduced
coalgebra, the bicomplex is tapered (and therefore bounded), which guarantees the local
nilpotency condition necessary for the application of the Basic Perturbation Lemma.

The effective homology of the columns is given simply by some iterated tensor prod-
ucts of the effective homologies of the chain complexes C∗(B) and C∗(G)⊗t C∗(B) (the
last one is obtained as the composition of the given effective homology of E = G ×τ B
and the twisted Eilenberg-Zilber reduction C∗(G ×τ B)⇒⇒C∗(G) ⊗t C∗(B)). In a first
step, we cancel the horizontal differential of CobarC∗(B)(C∗(G) ⊗t C∗(B),Z), which is
nothing but replacing the C∗(B)-coproduct by ∆0(x) = 1 ⊗ x + x ⊗ 1. Then the hori-
zontal differential is reinstalled as a perturbation, and applying the Trivial Perturbation
Lemma on the left reduction and the Basic Perturbation Lemma on the right one we
obtain an equivalence
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C̃obar
DB∗

(DE∗,Z)

qyqy jjjjjjjjjjj

jjjjjjjjjjj
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CobarC∗(B)(C∗(E),Z) C̃obar
HB∗

(HE∗,Z)

where the C̃obar’s are second quadrant multicomplexes that are somehow similar to
the corresponding Cobar constructions, but now new differentials appear (the notion of
A∞-structure was designed by James Stasheff to handle such a situation [Sta63]). Since

HB∗ and HE∗ are effective chain complexes, the right chain complex C̃obar
HB∗

(HE∗,Z)
is effective too, and therefore this equivalence determines the effective homology of
CobarC∗(B)(C∗(E),Z).

On the other hand, although we are not going to give details about this fact (see
[RS06] if necessary), it is possible to construct a reduction

CobarC∗(B)(C∗(G)⊗t C∗(B),Z)⇒⇒C∗(G)

And finally, the composition of the two equivalences

CobarC∗(B)(C∗(G)⊗t C∗(B),Z)

t|t| qqqqqqqqq

qqqqqqqqq
Id
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UUUUUUUUUUUUUU C̃obar
DB∗

(DE∗,Z)
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"* "*
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C∗(G) CobarC∗(B)(C∗(G)⊗t C∗(B),Z) C̃obar
HB∗

(HE∗,Z)

provides us the looked-for effective homology of the fiber space G.

In this way, the effective homology method gives an algorithm for the computation of
the homology groups of the fiber space G of our fibration G ↪→ E → B whenever B and
E are objects with effective homology (and B is 1-reduced). As for the Serre spectral
sequence, this effective homology can also be used to determine all the components of
the associated Eilenberg-Moore spectral sequence, as we explain in the following section.

3.2.3 An algorithm computing the Eilenberg-Moore spectral
sequence

Given a fibration G ↪→ E → B with a 1-reduced base space B, the associated
Eilenberg-Moore spectral sequence can be defined as the spectral sequence of the second
quadrant bicomplex

CobarC∗(B)(C∗(E),Z)

Thanks to the reduction C∗(G×τ B) = C∗(E)⇒⇒C∗(G)⊗t C∗(B) (given by the
twisted Eilenberg-Zilber theorem), it can be seen that this spectral sequence is iso-
morphic to that of the new bicomplex

CobarC∗(B)(C∗(G)⊗t C∗(B),Z)
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The effective homology of this chain complex has been determined in Section 3.2.2 as
part of the effective homology of the fiber space G, following the general method for the
computation of the effective homology of a bicomplex introduced in Section 2.4.1. We
remark again that our bicomplex is tapered and therefore the local nilpotency condition
which is necessary for the application of the BPL is satisfied.

In a similar way, our general Algorithm 5 for the computation of the spectral sequence
associated with a bicomplex can also be applied in this particular case. As explained
in Section 2.4.2, the spectral sequence of a bounded bicomplex is isomorphic at every
level r ≥ 1 to the spectral sequence of the associated effective multicomplex, which in

our case is C̃obar
HB∗

(HE∗,Z). In this way, it is possible to determine the groups and
differential maps for every stage r ≥ 1, the convergence level, and the filtration induced
on the homology groups of CobarC∗(B)(C∗(E),Z), which are in fact isomorphic to H∗(G).
This produces a new algorithm that allows us to determine the Eilenberg-Moore spectral
sequence associated with a fibration G ↪→ E → B when the base and total spaces are
objects with effective homology.

Algorithm 7.
Input:

• a fibration G ↪→ E → B defined by a twisting operator τ : B → G, with B a
1-reduced simplicial set,

• equivalences C∗(B)⇐⇐DB∗⇒⇒HB∗ and C∗(E)⇐⇐DE∗⇒⇒HE∗, where HB∗ and
HE∗ are effective chain complexes.

Output: all the components of the associated Eilenberg-Moore spectral sequence:

• the groups Er
p,q for every p, q ∈ Z and r ≥ 1, with their basis-divisors representa-

tion,

• the differential maps drp,q for all p, q ∈ Z and r ≥ 1,

• the convergence level for each degree n ∈ N,

• the filtration of the homology groups H∗(G), that is to say, the groups FHpHn(G)
for each degree n ∈ N and filtration index p ∈ Z.

3.2.4 Loop spaces

We consider a particular case of fibration G ↪→ E → B where G is the “inverse” of B,
in other words, the total space E is contractible. For a fibration of topological spaces,
the inverse of B is given by the loop space Ω(B), which is the space of all the continuous
maps f : I = [0, 1] → B such that f(0) = f(1) = ?. The path space P (B) is the space
of all the continuous maps f : I = [0, 1] → B such that f(0) = ?. Then, a canonical
fibration Ω(B) ↪→ P (B) → B is defined, and it can be seen that the total space P (B)
is contractible.
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The analogous construction in simplicial topology was introduced by Daniel Kan
[Kan58] and works as follows.

Definition 3.13. Let X be a reduced simplicial set. Define Gn(X) as the free group
generated by the set Xn+1 − η0Xn. A map τ : Xn+1 → Gn(X) is given by

τ(xn+1) = xn+1 if xn+1 /∈ η0Xn

τ(xn+1) = en if xn+1 ∈ η0Xn

where en is the null element of Gn(X). If xn+1 ∈ Xn+1− η0Xn, let us denote by τ(xn+1)
the corresponding generator of Gn(X). Face and degeneracy operators are defined on
the generators of Gn(X) as follows:

∂0τ(xn+1) = τ(∂1xn+1) · τ(∂0xn+1)
−1

∂iτ(xn+1) = τ(∂i+1xn+1) if 1 ≤ i ≤ n

ηiτ(xn+1) = τ(ηi+1xn+1) if 0 ≤ i ≤ n

These definitions can be extended to group morphisms ∂i : Gn(X) → Gn−1(X) and
ηi : Gn(X)→ Gn+1(X), for 0 ≤ i ≤ n, so that G(X) = {Gn(X), ∂i, ηi}n≥0 is a simplicial
group.

The map τ : X → G(X) is clearly a twisting operator, which defines a fibration
G(X) ↪→ G(X) ×τ X → X. Furthermore, it can be proved (see [May67]) that the
twisted product G(X)×τ X is contractible, so that G(X) can be seen as the inverse of
X. Since G(X) is a combinatorial model for the loop space construction, in the sequel
we will denote it by G(X) ≡ Ω(X).

The problem now is: given a simplicial set X (whose homology groups are known),
is it possible to compute the homology groups of its loop space, H∗(Ω(X))? More
generally, can we determine the homology groups of the iterated loop space Ωk(X) for
k ≥ 1? This question is known as the Adams’ problem, and it has been solved only for
some particular cases. In 1956, Frank Adams (see [Ada56] and [AH56]) constructed an
algorithm computing H∗(Ω(X)), based on his famous Cobar construction (previously
mentioned in the introduction of this section), valid when X is a simplicial set of finite
type. Nevertheless, it was not possible to extend it to the second loop space Ω2(X).
Eighteen years later, Hans Baues [Bau80] gave a solution for the case k = 2, but again
it was not valid for the third loop space Ω3(X). For X arbitrary and k ≥ 2, the problem
has not yet been solved by traditional methods. On the contrary, the effective homology
method gives a solution to the Adams’ problem.

Let X be a 1-reduced simplicial set with effective homology. The effective homology
of the loop space Ω(X) is computed as a particular case of the process explained in
Section 3.2.2 for the computation of the fiber space of a fibration. In this case, one has
a fibration Ω(X) ↪→ Ω(X)×τ X → X where the base space X is given with its effective
homology and the total space E = Ω(X) ×τ X is contractible, such that a reduction
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C∗(Ω(X) ×τ X)⇒⇒Z can be built. The associated effective chain complex of Ω(X) is

then the second quadrant multicomplex C̃obar
HX∗

(Z,Z).

In this way, the effective homology method gives an algorithm for the computation of
the homology groups of Ω(X): if X is a 1-reduced simplicial set with effective homology,
then it is possible to compute the effective homology of Ω(X) and in particular we can
compute the groups H∗(Ω(X)). Furthermore, if X is k-reduced, the process may be
iterated k times, producing an effective homology version of Ωm(X), for m ≤ k. This
provides a solution to the Adams’ problem.

On the other hand, our Algorithm 7 allows us to compute the Eilenberg-Moore
spectral sequence associated with the fibration Ω(X) ↪→ Ω(X) ×τ X → X, which is
known to converge to the homology groups H∗(Ω(X)). In particular, we know that this
spectral sequence is isomorphic to the spectral sequence associated with the effective

multicomplex C̃obar
HX∗

(Z,Z). In the following section, two examples of calculations
are included.

3.2.5 Implementation and examples

The new module for the Kenzo system presented in Section 2.5, which allows compu-
tations of spectral sequences associated with filtered complexes, makes it possible to
determine the Eilenberg-Moore spectral sequence between a simplicial set X and its
loop space Ω(X) when X is an object with effective homology. In particular, our pro-
grams have determined the different elements of the spectral sequences of some spaces
that, up to now, have not appeared in the literature.

In this section we focus our attention on the study of the Eilenberg-Moore spectral
sequence of the spaces X = Ω(S3) and Y = Ω(S3) ∪2 D

3. The first space and its
loop space have been extensively considered by theoretical methods and a lot of results
about them are known. However, for our second example, the attachment of the 3-disk
increases the difficulty of the computation of the Eilenberg-Moore spectral sequence
between Ω(S3) ∪2 D

3 and its loop space which, up to our knowledge, had not been
determined before.

3.2.5.1 Ω(S3)

Let us consider the simplicial set X = Ω(S3). It is built by Kenzo my means of the
following statements:

> (setf s3 (sphere 3))
[K660 Simplicial-Set]
> (setf X (loop-space s3))
[K665 Simplicial-Group]
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The loop space of X is located through the symbol OX, and it is a simplicial group.

> (setf OX (loop-space X))
[K677 Simplicial-Group]

We can see that this simplicial group is not effective: if we ask for its basis in
dimension 4, we obtain an error.

> (basis OX 4)
Error: The object [K677 Simplicial-Group] is locally-effective.

Now we consider the effective complex of Ω(X), in this case C̃obar
C∗(S3)

(Z,Z), which
is the right chain complex of the equivalence providing its effective homology.

> (setf effOX (rbcc (efhm OX)))
[K906 Chain-Complex]

Obviously this complex is effective, and therefore we can obtain its basis, which in
dimension 4 is a list of 3 elements.

> (basis effOX 4)
(<<AlLp[1 <<AlLp[2 s3]>>][3 <<AlLp[2 s3][2 s3]>>]>> <<AlLp[3 <<AlLp[2 s3][2 s3]>>]
[1 <<AlLp[2 s3]>>]>> <<AlLp[1 <<AlLp[2 s3]>>][1 <<AlLp[2 s3]>>][1 <<AlLp[2 s3]>>]
[1 <<AlLp[2 s3]>>]>>)

And after these first instructions, we are going to compute the Eilenberg-Moore
spectral sequence associated with the simplicial set X and its loop space Ω(X), which,
as we know, is the spectral sequence of the effective complex of Ω(X).

Previously, we must define a filtration on this effective complex, which is the natural
filtration of the Cobar construction (given by the column number). It is implemented by

means of the function cobar-flin. Let us emphasize that C̃obar
C∗(S3)

(Z,Z) is a second
quadrant multicomplex, and therefore the first index p has negative sign.

> (change-chcm-to-flcc effOX cobar-flin ‘(cobar-flin))
[K906 Filtered-Chain-Complex]

Once the filtration has been defined, we can compute the spectral sequence. We can
obtain some groups, for instance E1

−2,6
∼= Z2, E1

−2,8
∼= Z3, and E1

−3,10
∼= Z6.
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> (spsq-group effOX 1 -2 6)
Spectral sequence E^1_{-2,6}
Component Z
Component Z
> (spsq-group effOX 1 -2 8)
Spectral sequence E^1_{-2,8}
Component Z
Component Z
Component Z
> (spsq-group effOX 1 -3 10)
Spectral sequence E^1_{-3,10}
Component Z
Component Z
Component Z
Component Z
Component Z
Component Z

It is also possible to compute the differential maps, specifying in a list the coefficients
of the element we want to apply the differential to, with respect to the generators of the
group. For example, d1

−2,8 : E1
−2,8
∼= Z3 → E1

−3,8
∼= Z3 applied to the three generators of

the group E1
−2,8:

> (spsq-dffr effOX 1 -2 8 ’(1 0 0))
(3 3 0)
> (spsq-dffr effOX 1 -2 8 ’(0 1 0))
(-2 0 2)
> (spsq-dffr effOX 1 -2 8 ’(0 0 1))
(0 -3 -3)

In this case the convergence level is r = 1 for n = 0 and 1, and r = 2 for every
2 ≤ n ≤ 8.

> (dotimes (n 9)
(format t "~1%Convergence level for n=~D: ~D" n (spsq-cnvg effOX n)))

Convergence level for n=0: 1
Convergence level for n=1: 1
Convergence level for n=2: 2
Convergence level for n=3: 2
Convergence level for n=4: 2
Convergence level for n=5: 2
Convergence level for n=6: 2
Convergence level for n=7: 2
Convergence level for n=8: 2
nil

And finally, the filtration of the homology groups. For instance, the homology group
in dimension 5 is H5(Ω(X)) ∼= Z2 ⊕ Z3

∼= Z6. We observe the different groups for each
filtration index.
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> (homology effOX 5)
Homology in dimension 5 :
Component Z/3Z
Component Z/2Z
---done---
> (dotimes (i 7)

(hmlg-fltr effOX 5 (- i)))
Filtration F_0 H_5
Component Z/6Z
Filtration F_-1 H_5
Component Z/6Z
Filtration F_-2 H_5
Component Z/6Z
Filtration F_-3 H_5
Component Z/6Z
Filtration F_-4 H_5
Component Z/2Z
Filtration F_-5 H_5
Component Z/2Z
Filtration F_-6 H_5
nil

In the following figures we include the critical stages r = 1 and r = 2, for degrees
p + q ≤ 8. The groups E2

p,q are in fact the final groups E∞p,q. Although it is a second
quadrant spectral sequence, we represent it in the first quadrant.

Z
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0 Z

0 0

0 Z Z

0 0 0

0 Z Z2 Z

0 0 0 0

0 Z Z3 Z3 Z

0 0 0 0

Z4 Z6 Z4 Z

0 0 0

Z10 Z5 Z

0 0

Z6 Z

0

Z

p

q

r = 1

//

OO

//

// //

// // //

// // //

// //

//

Z

0

0 Z

0 0

0 0 Z2

0 0 0

0 0 Z3 Z2

0 0 0 0

0 0 Z2 Z3 Z2

0 0 0 0

Z5 Z2 0 Z2

0 0 0

Z6 0 Z2

0 0

0 Z2

0

Z2

p

q

r = 2

r =∞

//

OO
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3.2.5.2 Ω(S3) ∪2 D
3

The second example considered in this section is the simplicial set Y = Ω(S3) ∪2 D
3,

obtained from Ω(S3) by attaching a 3-disk by a map γ : S2 → Ω(S3) of degree 2. The
Eilenberg-Moore spectral sequence associated with its loop space Ω(Y ) can be computed
as follows.

We begin by constructing the spaces Y , Ω(Y ), and the associated filtered (effective)
chain complex which defines the spectral sequence.

> (setf Y
(disk-pasting X 3 ’new
(list (loop3 0 ’s3 1)
(absm 3 +null-loop+)
(loop3 0 ’s3 1)
(absm 3 +null-loop+))))

[K925 Simplicial-Set]
> (setf OY (loop-space Y))
[K930 Simplicial-Group]
> (setf effOY (rbcc (efhm OY)))
[K1071 Chain-Complex]
> (change-chcm-to-flcc effOY cobar-flin ‘(cobar-flin))
[K1071 Filtered-Chain-Complex]

Some groups Er
p,q:

> (spsq-group effOY 1 -2 8)
Spectral sequence E^1_{-2,8}
Component Z/2Z
Component Z/2Z
Component Z
> (spsq-group effOY 1 -3 8)
Spectral sequence E^1_{-3,8}
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z

Differential map d1
−2,8 : E1

−2,8 = Z2
2 ⊕ Z→ E1

−3,8 = Z4
2:

> (spsq-dffr effOY 1 -2 8 ’(1 0 0))
(1 0 1 0)
> (spsq-dffr effOY 1 -2 8 ’(0 1 0))
(0 0 1 1)
> (spsq-dffr effOY 1 -2 8 ’(0 0 1))
(0 0 0 0)
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The convergence level for n ≤ 8 is again 1 or 2:

> (dotimes (n 5)
(format t "~1%Convergence level for n=~D: ~D" n (spsq-cnvg effOY n)))

Convergence level for n=0: 1
Convergence level for n=1: 1
Convergence level for n=2: 1
Convergence level for n=3: 1
Convergence level for n=4: 2
Convergence level for n=5: 2
Convergence level for n=6: 2
Convergence level for n=7: 2
Convergence level for n=8: 2
nil

Filtration of the homology group H4(Ω(Y )) = Z4
2.

> (homology OY 4)
Homology in dimension 4 :
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z
---done---
> (hmlg-fltr effOY 4 -4)
Filtration F_-4 H_4
Component Z/2Z
> (hmlg-fltr effOY 4 -3)
Filtration F_-3 H_4
Component Z/2Z
Component Z/2Z
Component Z/2Z
> (hmlg-fltr effOY 4 -2)
Filtration F_-2 H_4
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z

The groups Er
p,q for r = 1 and r = 2 (which is in fact the level r = ∞) for degree

p+q ≤ 8 are represented in the following figures. All the non-null arrows d1
p,q are drawn.
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Chapter 4

Effective homology of free simplicial
Abelian groups

In the previous chapters of this memoir we have only dealt with spectral sequences which
are defined by means of filtered chain complexes and which converge to the homology
groups of some associated spaces. This kind of spectral sequences includes some classical
examples, namely those of Serre, Eilenberg-Moore, or bicomplexes. On the other hand,
we can also find in the literature other spectral sequences that do not appear naturally
associated with filtered complexes and can be useful for the computation of homotopy
groups, which is one of the most challenging problems in the field of Algebraic Topology.
This is the case of the Bousfield-Kan spectral sequence, that appeared first in [BK72a]
trying to generalize the Adams’ spectral sequence [Ada60] (which can be used for the
computation of the homotopy groups of a simplicial set X).

As we will see in Chapter 5, one of the main ingredients in the Bousfield-Kan spec-
tral sequence is the constructor associating to a simplicial set X the Z-free simplicial
Abelian group RX generated by X; more specifically, in the computation of this spectral
sequence, the effective homology of the iterated groups RkX is required (the ordinary
homology of RkX can easily be determined using Cartan’s algorithm [Car55]).

This chapter is devoted to a version with effective homology of the constructor R.
If a 1-reduced simplicial set X with effective homology is given, this version of the
constructor R computes a version with effective homology of the result RX. An iterative
application of this constructor computes therefore a version with effective homology
of RkX for k a positive integer.

If the simplicial set X is contractible, a different specific algorithm can also be con-
structed allowing one to compute the effective homology of RX. We have not introduced
it in this memoir, but it can be found in [Rom06a].

101
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4.1 Previous definitions and results

We include here some information which is necessary for the construction of the effective
homology of RX.

4.1.1 The Dold-Kan correspondence

In this section, the functors N∗ and Γ are presented, providing an equivalence between
the categories of chain complexes and simplicial Abelian groups. Most of these definitions
and results can be found in [May67] and [GJ99].

We begin by introducing the normalization functor N∗ from the category A of sim-
plicial Abelian groups to the category C of chain complexes.

Definition 4.1. The functor N∗ : A → C is defined as follows.

1. Let G be a simplicial Abelian group, then N∗(G) = (Nn(G), dn)n∈N is the chain
complex given by:

• the group of n-chains is

Nn(G) = Gn ∩Ker ∂0 ∩ . . . ∩Ker ∂n−1,

• the differential map dn : Nn(G)→ Nn−1(G) is defined as dn = (−1)n∂n.

2. Given two simplicial Abelian groups G and F and a simplicial Abelian group
morphism f : G → F , the chain complex morphism N∗(f) : N∗(G) → N∗(F )
(which will be denoted by fN) is defined as follows. Given x ∈ Nn(G) ⊆ Gn, then

N∗(f)(x) = f(x)

We recall that, if G is a simplicial Abelian group, G∗ denotes G regarded as a chain
complex: the group of n-chains is Gn, with differential map dn =

∑n
i=0(−1)i∂i. Then it

is not difficult to see that N∗(G) is a chain subcomplex of G∗. On the other hand, let
us notice that given a simplicial Abelian group morphism f : G → F and x ∈ Nn(G),
then f(x) ∈ Nn(F ) since ∂if(x) = f(∂ix) = 0 for all 0 ≤ i < n, so that N∗(f) is
well-defined. Similarly one can observe that N∗(f) is in fact a chain complex morphism.

The inclusion inc : N∗(G) ↪→ G∗ (which is a chain complex morphism) induces a
morphism on the corresponding homology groups,

H∗(inc) : H∗(N∗(G)) −→ H∗(G∗)

Theorem 4.2. [May67] Let G be a simplicial Abelian group. Then

Hn(inc) : Hn(N∗(G)) −→ Hn(G∗)

is an isomorphism for each n ∈ N.
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Proof. We define a decreasing filtration of the chain complex G∗ = (Gn, dn)n∈N by

x ∈ F pGn if x ∈ Gn and ∂ix = 0 for 0 ≤ i < min(n, p)

Then F p+1G∗ = (F p+1Gn, dn)n∈N is a chain subcomplex of F pG∗ = (F pGn, dn)n∈N;
let ip : F p+1G∗ ↪→ F pG∗ denote the inclusion (which is a chain complex morphism). One
can also observe that F pGn = Gn if p ≤ 0 and F pGn = Nn(G) if p ≥ n.

An epimorphism of chain complexes fp : F pG∗ → F p+1G∗ can be built in the follow-
ing way. If x ∈ F pGn, then fp(x) is given by

fp(x) =

{
x if n ≤ p
x− ηp∂px if n > p

A simple calculation proves that fp is a chain complex morphism and it is clear that
fp ◦ ip is the identity map of F p+1G∗.

Then, we define a chain homotopy hp : F pG∗ → F pG∗+1. Let x ∈ F pGn,

hp(x) =

{
0 if n < p
(−1)pηpx if n ≥ p

We see that hp(x) ∈ F pGn+1, and a little more calculating shows that

d ◦ hp(x) + hp ◦ d(x) = x− (ip ◦ fp)(x)

in all degrees n, and both sides of the equation are 0 in degrees n < p.

One can observe that the maps fp, ip, and hp satisfy the important properties of a
reduction (Definition 1.58). In other words, the hypotheses of Remark 1.59 hold, and
therefore a reduction ρp = (fp, ip, h′p) : F pG∗⇒⇒F p+1G∗ can be built.

A reduction ρ = (f, i, h) : G∗⇒⇒N∗(G) is obtained then as the composition of the
reductions ρp. The chain complex morphisms i : N∗(G) ↪→ G∗ and f : G∗ → N∗(G) are
given in degree n by the compositions

i0 ◦ · · · ◦ in−1 : F nGn = Nn(G) −→ F 0Gn = Gn

fn−1 ◦ · · · ◦ f 0 : F 0Gn = Gn −→ F nGn = Nn(G)

and the homotopy operator h : G∗ → G∗+1 is defined in degree n by

i0 · · · in−1 ◦ h′n ◦ fn−1 · · · f 0 + i0 · · · in−2 ◦ h′n−1 ◦ fn−2 · · · f 0 + · · ·+ i0 ◦ h′1 ◦ f 0 + h′0

From the reduction ρ = (f, i, h) : G∗⇒⇒N∗(G) it follows in particular that the
inclusion i : N∗(G) ↪→ G∗ induces an isomorphism on the homology groups,

Hn(i) = Hn(inc) : Hn(N∗(G)) ∼= Hn(G∗) for n ≥ 0
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Corollary 4.3. Let G be a simplicial Abelian group, then one can construct a reduction

ρ : G∗⇒⇒N∗(G)

Definition 4.4. Let G be a simplicial Abelian group. For each degree n, we define
Dn(G) as the subgroup of Gn generated by all the degenerate simplices:

D0(G) = 0

Dn(G) = η0(Dn−1(G)) + η1(Dn−1(G)) + · · ·+ ηn−1(Dn−1(G))

On account of the simplicial identities, the graded group D∗(G) = (Dn(G))n∈N is closed
under the differential d =

∑
(−1)i∂i, which means that D∗(G) = (Dn(G), dn)n∈N is a

chain subcomplex of G∗.

Corollary 4.5. [May67] Given a simplicial Abelian group G,

G∗ = N∗(G)⊕D∗(G)

Proof. Provided that f ◦ i is the identity map of N∗(G), one has G∗ = N∗(G) ⊕ Ker f .
Moreover, it is not difficult to prove that Ker f = D∗(G), and in this way we obtain the
searched equation.

After this corollary, we find it convenient to include here the following remarks.

Remark 4.6. Given x ∈ G∗, its unique decomposition as a direct sum x = y + z, with
y ∈ N∗(G) and z ∈ D∗(G), is the following:

y = i ◦ f(x) = f(x) ∈ N∗(G)

z = x− y = x− f(x) ∈ D∗(G)

Remark 4.7. Let G be a simplicial Abelian group. Making use of the equation
G∗ = N∗(G)⊕D∗(G), we can identify N∗(G) with the quotient G∗/D∗(G) which will
be denoted by GN

∗ . The isomorphisms between both chain complexes are

ϕ : N∗(G) −→ GN
∗ , ϕ(x) = [x]

ψ : GN
∗ −→ N∗(G), ψ([x]) = f(x)

Once we have introduced the functor N∗ : A → C and its main properties, we include
now the definition of the functor Γ : C → A. We will see later that Γ ◦ N∗ and N∗ ◦ Γ
are the identity functors of the categories A and C respectively.

Definition 4.8. The functor Γ from the category C of chain complexes to the category
A of simplicial Abelian groups is defined as follows.

1. Let C∗ = (Cn, dn)n∈N be a chain complex, the simplicial Abelian group Γ(C∗) is
built in the following way.
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• The set of n-simplices is

Γn(C∗) = Cn ⊕

n−1⊕
r=0

⊕
0≤j1<···<jn−r<n

σjn−r . . . σj1Cr


where σjn−r . . . σj1Cr is the Abelian group whose elements are symbols
σjn−r . . . σj1x with x ∈ Cr, and the group addition is defined by

σjn−r . . . σj1x+ σjn−r . . . σj1y = σjn−r . . . σj1(x+ y)

• We define the faces ∂i : Γn(C∗)→ Γn−1(C∗) as

i. given x ∈ Cn, then

∂i(x) =

{
0 if i < n
dn(x) if i = n

ii. if x = σjk . . . σj1y with y ∈ Cr, k = n− r, and 0 ≤ j1 < · · · < jk < n,

∂i(x) = ∂i(σjk . . . σj1y) =


σhk−1

. . . σh1y
σhk

. . . σh1dr(y)
0

when ∂iηjk . . . ηj1 is expressed in the canonical form of Property 1.29 of
simplicial sets as

ηhk−1
. . . ηh1

ηhk
. . . ηh1∂r

ηhk
. . . ηh1∂j, with j < r

respectively.

• The degeneracy operators ηi : Γn(C∗)→ Γn+1(C∗) are given by

i. if x ∈ Cn,
ηi(x) = σix

ii. if x = σjk . . . σj1y with y ∈ Cr, k = n− r, and 0 ≤ j1 < · · · < jk < n,

ηi(x) = ηi(σjk . . . σj1y) = σhk+1
. . . σh1y

when ηiηjk . . . ηj1 is expressed in canonical form as ηhk+1
. . . ηh1 .

2. Given two chain complexes C∗ = (Cn, dCn)n∈N and D∗ = (Dn, dDn)n∈N and a chain
complex morphism f : C∗ → D∗, the corresponding simplicial Abelian group
morphism Γ(f) : Γ(C∗)→ Γ(D∗) will be denoted by fΓ and is defined as follows.

i. If x ∈ Cn, then

Γ(f)(x) = f(x) ∈ Dn ⊆ Γn(D∗)



106 Chapter 4 Effective homology of free simplicial Abelian groups

ii. If x = σjk . . . σj1y with y ∈ Cr, k = n− r, and 0 ≤ j1 < · · · < jk < n, then

Γ(f)(x) = Γ(f)(σjk . . . σj1y) = σjk . . . σj1f(y) ∈ Γn(D∗)

We include now two useful remarks about the functor Γ.

Remark 4.9. Let x ∈ Γn(C∗) such that x = σjk . . . σj1y with y ∈ Cr, k = n − r, and
0 ≤ j1 < · · · < jk < n. Given i such that 0 ≤ i ≤ n, it can be proved that ∂iηjk . . . ηj1
is expressed in canonical form as ηhk

. . . ηh1∂r if and only if i = n and jk < n− 1. This
implies that the only case for which ∂i(x) is defined as σhk

. . . σh1dr(y) is the case i = n
and jk < n− 1.

Remark 4.10. The functor Γ has a good behavior with respect to the direct sum
of two chain complexes. Let C∗ and D∗ be chain complexes, there exists a canonical
isomorphism

Γ(C∗ ⊕D∗) ∼= Γ(C∗)⊕ Γ(D∗) ∼= Γ(C∗)× Γ(D∗)

This result can be iterated and it is also valid for infinite direct sums, in other words,
given {Ck

∗}k a family of chain complexes, then

Γ(
⊕
k

Ck
∗ )
∼=
⊕
k

Γ(Ck
∗ )

Finally, one can see that the functors N∗ and Γ form an equivalence between the
categories C and A, which is called the Dold-Kan correspondence. The three following
theorems explain concretely the relation between these two functors.

Theorem 4.11. [May67] The functors N∗ : A → C and Γ : C → A form an equivalence
of categories, that is to say, Γ ◦N∗ ≡ IdA and N∗ ◦ Γ ≡ IdC.

The proof of this theorem can be found in [GJ99]. We include here the explicit
definition of the isomorphisms giving the first relation Γ ◦N∗ ≡ IdA, which will be used
later. Let G ∈ A be a simplicial Abelian group, we want to prove Γ(N∗(G)) ∼= G.

First, a morphism λ : Γ(N∗(G))→ G is defined by

i. given x ∈ Nn(G) ⊆ Gn, we consider

λ(x) = (−1)b
n+1

2
cx ∈ Gn

ii. if x = σjk . . . σj1y with y ∈ Nr(G), k = n− r, and 0 ≤ j1 < · · · < jk < n, then

λ(x) = λ(σjk . . . σj1y) = ηjk . . . ηj1λ(y) ∈ Gr+k = Gn

In order to define the inverse map, γ : G → Γ(N∗(G)), we make use of the relation
G∗ = N∗(G)⊕D∗(G) of Corollary 4.5. As seen in Remark 4.6, every x ∈ Gn can be split
in a unique way as sum of two components, x = y+ z where y ∈ Nn(G) and z ∈ Dn(G).
Then the definition of γ(x) can be done in a recursive way as follows.
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• If n = 0 (that is, x ∈ G0 = N0(G)), we define

γ(x) = x ∈ N0(G) = Γ0(N∗(G))

• Given n > 0, let us suppose that γ(x) has been defined for every x̃ ∈ Gn−1.

• Let x ∈ Gn, x = y+ z with y ∈ Nn(G) and z ∈ Dn(G). Since z ∈ Dn(G), z can be
expressed as a sum of degenerate elements of Gn, z =

∑n−1
i=0 ηixi with xi ∈ Gn−1.

Then we define

γ(x) = (−1)b
n+1

2
cy +

n−1∑
i=0

ηiγ(xi)

Let us notice that y ∈ Nn(G) ⊆ Γn(N∗(G)) and γ(xi) ∈ Γn−1(N∗(G)), which
implies that γ(x) ∈ Γn(N∗(G)).

One can easily observe that λ and γ are morphisms of simplicial Abelian groups and
the equations γ ◦ λ = IdΓ(N∗(G)) and λ ◦ γ = IdG hold.

Theorem 4.12. [May67] Let G and F be simplicial Abelian groups and f, g : G → F
simplicial group morphisms between them. Let h : G → F be a simplicial homotopy
h : f ' g, then there exists a chain homotopy

s : N∗(G) −→ N∗+1(F ), s : N∗(f) ' N∗(g)

Proof. Given the simplicial homotopy h : f ' g (which consists of maps hi : Gn → Fn+1

for 0 ≤ i ≤ n), we begin by considering the chain complexes G∗ = (Gn, dGn)n∈N and
F∗ = (Fn, dFn)n∈N, where the differential maps dG and dF are given by the alternate sum∑

(−1)i∂i. Then we define

s′ : Gn −→ Fn+1 given by s′ =
n∑
i=0

(−1)ihi

It is not difficult to prove that s′ is a chain homotopy, s′ : f ′ ' g′, where
f ′, g′ : G∗ → F∗ are the chain complex morphisms induced by the simplicial maps f
and g. Furthermore, we observe that s′(D∗(G)) ⊆ D∗+1(F ) so that it makes sense
to consider s′ : GN

∗ → FN
∗+1, recalling that GN

∗ = G∗/D∗(G) and FN
∗ = F∗/D∗(F )

respectively. One immediately deduces that s′ is a chain homotopy between the cor-
responding maps f ′, g′ : GN

∗ → FN
∗ . Finally, making use of Remark 4.7, we have iso-

morphisms GN
∗
∼= N∗(G) and FN

∗
∼= N∗(F ), which provides us the chain homotopy

s : N∗(f) ' N∗(g).

Theorem 4.13. [May67] Let C∗ and D∗ be chain complexes and f, g : C∗ → D∗ chain
complex morphisms between them. Let s : C∗ → D∗+1 be a chain homotopy s : f ' g,
then there exists a simplicial homotopy

h : Γ(C∗) −→ Γ(D∗), h : Γ(f) ' Γ(g)
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Proof. We define hi : Γn(C∗)→ Γn+1(D∗) as follows.

i. If x ∈ Cn, then

hn(x) = σn(f(x))− σn(s ◦ dn(x))− s(x)
hn−1(x) = σn−1(f(x))− σn(s ◦ dn(x))
hi(x) = σi(f(x)) if i < n− 1

ii. If x = σjk . . . σj1y with y ∈ Cr, k = n− r, and 0 ≤ j1 < · · · < jk < n, then hi(x) is
built inductively:

hi(x) = hi(σjk . . . σj1y) = ηjkhi−1(σjk−1
. . . σj1y) if jk ≤ i− 1

hi(x) = hi(σjk . . . σj1y) = ηjk+1hi(σjk−1
. . . σj1y) if jk > i− 1

It is easy to prove, by means of a simple calculation, that h is a simplicial homotopy
h : Γ(f) ' Γ(g).

4.1.2 Some remarks about Eilenberg-MacLane spaces

In Section 1.2.3 we have introduced the definition and some basic properties of
Eilenberg-MacLane spaces, which have also been used in other parts of this memoir
as examples of our computations. These particular simplicial Abelian groups will ap-
pear again in Section 4.3.2 as an ingredient in the computation of the effective homology
of RX. We find it convenient to present here some useful remarks.

4.1.2.1 Effective homology of Eilenberg-MacLane spaces

We recall that an Eilenberg-MacLane space of type (π, n) is a simplicial group K such
that πn(K) = π and πi(K) = 0 if i 6= n. The simplicial group K is called a K(π, n) if it
is an Eilenberg-MacLane space of type (π, n) and it is minimal.

The ordinary homology groups of a K(π, n) can easily be determined making use of
Cartan’s algorithm [Car55], but the computation of an effective version of these groups
is known to be a difficult problem, especially regarding the algorithmic complexity. This
effective version is necessary, for instance, in the construction of the Postnikov tower
[May67], and will also be needed in our work dealing with the Bousfield-Kan spectral
sequence.

For π = Z, the effective homology of K(Z, n) can be computed for every n ≥ 1, in
the following way. Let us recall that we can recursively build K(Z, n) by means of the
classifying space constructor: K(Z, 0) is given by K(Z, 0)m = Z for all m ≥ 0, with face
and degeneracy operators equal to the identity map; for n ≥ 1, K(Z, n) =Wn

(K(Z, 0)).



4.1 Previous definitions and results 109

In the case n = 1, K(Z, 1) = W(K(Z, 0)) has the homotopy type of the sphere S1,
and a reduction C∗(K(Z, 1))⇒⇒C∗(S

1) can be built. This provides the effective homol-
ogy of the simplicial Abelian group K(Z, 1). On the other hand, given G a simplicial
group with effective homology, there exists a general algorithm which computes the ef-
fective homology of the classifying space W(G). This algorithm is similar to the one
computing the effective homology of the loop space of a simplicial set, based this time
on the Bar construction. For details, see [Rea93].

In this way, for every n ≥ 1 it is possible to construct recursively the effective

homology of K(Z, n) =Wn
(K(Z, 0)) =Wn−1

(K(Z, 1)), in other words, we can build an
equivalence

DKn
∗

rzrz mmmmmmm
mmmmmmm

"* "*MMMMMM
MMMMMM

C∗(K(Z, n)) HKn
∗

where HKn
∗ is an effective chain complex. This construction is also implemented in the

Kenzo system.

4.1.2.2 Another model for Eilenberg-MacLane spaces

As mentioned before, there exist different models for the spaces K(π, n)’s, although
in fact all of them are isomorphic. Up to now in this memoir, we have considered the
classifying space model. However, in this chapter we find it more convenient to introduce
the following one.

Definition 4.14. Given an Abelian group π and a non-negative integer n, we define
C∗(π, n) = (Cm(π, n), dm)m∈N as the chain complex given by

Cm(π, n) =

{
π if m = n
0 if m 6= n

with all the differential maps dm equal to zero.

One can immediately observe that Hn(C∗(π, n)) = π and Hm(C∗(π, n)) = 0 if m 6= n.
If we apply to C∗(π, n) the functor Γ introduced in Section 4.1.1, we obtain the simplicial
Abelian group Γ(C∗(π, n)). On account of Proposition 1.52 and Theorem 4.11, one has

πm(Γ(C∗(π, n)) = Hm(N∗(Γ(C∗(π, n)))) ∼= Hm(C∗(π, n)) =

{
π if m = n
0 if m 6= n

which implies that Γ(C∗(π, n)) is an Eilenberg-MacLane space of type (π, n). Further-
more it can be proved that this simplicial Abelian group is minimal, and therefore it is
a K(π, n), isomorphic to the model previously considered.
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4.2 The free simplicial Abelian group RX

As said in the introduction of this chapter, the simplicial Abelian group RX plays an
essential role in the Bousfield-Kan spectral sequence, which will be studied in Chapter 5.
In this section we include the definition and some relevant information about RX which
has mostly been extracted from [BK72b].

Definition 4.15. Let X be a simplicial set with a base point ? ∈ X0 and R a commu-
tative ring (with unit). Then RX is defined as the simplicial R-module

RX =
R[X]

R[?]

where R[X] denotes the simplicial R-module freely generated by the simplices of X,
and R[?] is the simplicial submodule generated by the base point ? and its degeneracies
(which are also represented by ?).

More concretely, for each degree n the set of n-simplices is

RXn = R[Xn − {?}]

that is, the free R-module generated by the set Xn − {?}. The face and degeneracy
operators ∂i : RXn → RXn−1 and ηi : RXn → RXn+1 are defined for a genera-
tor of RXn, x ∈ Xn − {?}, as the classes in the quotient R[X]/R[?] of the elements
∂ix ∈ Xn−1 ⊂ RXn−1 and ηix ∈ Xn+1 ⊂ RXn+1 respectively. The base point of RX is
the null combination and will also be denoted by ?.

If we apply the constructor R to the simplicial set RX, we obtain a new simplicial
Abelian group

R2X = R(RX) =
R[R[X]/R[?]]

R[R[?]]

and in a recursive way we can define

RkX = R(Rk−1X) for all k ∈ N

The constructor R defines a functor R : S → A from the category S of simplicial sets
to the category A of simplicial Abelian groups. Furthermore, there exist an S-morphism
Φ : X → RX and an A-morphism Ψ : R2X → RX, given by Φ(x) = 1 ∗ x for all x ∈ X
and Ψ(1 ∗ y) = y for all y ∈ RX, which induce natural transformations Φ : Id→ R and
Ψ : R2 → R. It is easy to see that {R,Φ,Ψ} is a triple on the category S in the sense
of [EM65a].

The most important property which RX satisfies is the following one:

Property 4.16. Given X a pointed simplicial set and R a commutative ring, there
exists a canonical isomorphism

π∗(RX, ?) ∼= H̃∗(X;R)
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where H̃∗(X;R) denotes the reduced homology groups of X with coefficients in R, in

other words, the homology groups of the chain complex C̃∗(X;R) = (R[X]/R[?])∗.

Proof. Provided that RX is a simplicial Abelian group, and making use of Proposi-
tion 1.52, one has π∗(RX, ?) = H∗(N∗(RX)). Furthermore, from Theorem 4.2 we know
that H∗(N∗(RX)) ∼= H∗(RX∗), where RX∗ is RX regarded as a chain complex. It only

remains to observe that RX∗ is in fact the chain complex C̃∗(X;R) = (R[X]/R[?])∗, and

therefore we obtain π∗(RX, ?) ∼= H∗(RX∗) = H̃∗(X;R).

On the other hand, the simplicial map Φ : X → RX induces a morphism
π∗(Φ) : π∗(X, ?)→ π∗(RX, ?) between the corresponding homotopy groups and it can
be seen that the composition

π∗(X, ?)
π∗(Φ)−→ π∗(RX, ?) ∼= H̃∗(X;R)

is in fact the Hurewicz homomorphism.

From now on in this work we will consider integer coefficients, in other words, we
choose the case R = Z. Therefore RX is the free simplicial Abelian group generated
by X, where the base point and all its degeneracies are put equal to zero.

As we have seen, the homotopy groups of RX are closely connected with the ho-
mology groups of X. In particular, if X is a simplicial set with effective homology,
then it is possible to compute π∗(RX, ?) ∼= H̃∗(X; Z) = H̃∗(X), but the computation
of the effective homology groups H∗(RX) is much more complicated. As mentioned in
the introduction of this chapter, the effective homology method can be used to solve
this problem: given a (1-reduced) simplicial set X with effective homology, we have
developed an algorithm that constructs the effective homology of the simplicial Abelian
group RX, which will be necessary for the computation of the Bousfield-Kan spectral
sequence associated with X.

4.3 Effective homology of RX

Unless otherwise stated, in this section all the chain complexes associated with simplicial
sets are normalized. In particular, C̃∗(X) will denote the reduced normalized chain

complex C̃N
∗ (X) associated with a simplicial set X.

Let X be a 1-reduced pointed simplicial set with effective homology, such that an
equivalence is given:

DX∗

t|t| pppppp
pppppp

"* "*MMMMMM

MMMMMM

C∗(X) HX∗

where HX∗ is an effective chain complex. Our goal in this section is the computation of
the effective homology of the free simplicial Abelian group RX. This effective homology
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will be obtained as the composition of two equivalences, µL (the left equivalence) and
µR (the right one), which are built in Sections 4.3.1 and 4.3.2 respectively.

4.3.1 Left equivalence

The main ingredients for the left equivalence in the effective homology of RX are the
functors Γ and N∗ introduced in Section 4.1.1.

We begin by applying the functor N∗ to RX. Making use of Remark 4.7, the chain
complex N∗(RX) satisfies

N∗(RX) ∼= RXN
∗ =

RX∗
D∗(RX)

where RX∗ = (RXn, dn)n∈N is the chain complex whose group of n-chains is
RXn = Z[Xn]/Z[?], with differential map dn =

∑n
i=0(−1)i∂i, and D∗(RX) is the sub-

complex of RX∗ generated by the degenerate simplices of RX.

We observe that the chain complex RX∗ is in fact C∗(X)/C∗(?) = C̃∗(X) (in this
case C∗(X) is the non-normalized chain complex), and in the same way RXN

∗ is equal

to C̃N
∗ (X), from now on denoted by C̃∗(X). This implies

N∗(RX) ∼= C̃∗(X)

The isomorphisms are those of Remark 4.7:

ϕ : N∗(RX) −→ C̃∗(X) = RXN
∗ , ϕ(x) = [x]

ψ : C̃∗(X) = RXN
∗ −→ N∗(RX), ψ([x]) = f(x)

where the function f : RX∗ → N∗(RX) was defined in the proof of Theorem 4.2.

If we apply now the functor Γ to the relation N∗(RX) ∼= C̃∗(X), we obtain

Γ(N∗(RX)) ∼= Γ(C̃∗(X))

and composing with the isomorphisms λ : Γ(N∗(RX))→ RX and γ : RX → Γ(N∗(RX))
introduced in Theorem 4.11, one has the isomorphism

RX ∼= Γ(C̃∗(X))

which is given by the compositions

RX
γ−→ Γ(N∗(RX))

Γ(ϕ)−→ Γ(C̃∗(X))

Γ(C̃∗(X))
Γ(ψ)−→ Γ(N∗(RX))

λ−→ RX
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Proposition 4.17. Given a simplicial set X, there exists an explicit isomorphism

RX ∼= Γ(C̃∗(X))

On the other hand, one can see that, given a reduction ρ between two chain complexes
C∗ and D∗, it is possible to construct a new reduction, that we call Γ(ρ), between the
chain complexes associated with Γ(C∗) and Γ(D∗).

Proposition 4.18. Let C∗ and D∗ be chain complexes and ρ = (f, g, h) : C∗⇒⇒D∗ a
reduction between them. Then a new reduction

Γ(ρ) : C∗(Γ(C∗))⇒⇒C∗(Γ(D∗))

can be determined.

Proof. On the one hand, if we apply the functor Γ to the components f and g of the re-
duction, we obtain two simplicial Abelian group morphisms Γ(f) ≡ fΓ : Γ(C∗)→ Γ(D∗)
and Γ(g) ≡ gΓ : Γ(D∗)→ Γ(C∗), and as far as f ◦ g = IdD∗ , one has

fΓ ◦ gΓ = Γ(f) ◦ Γ(g) = Γ(f ◦ g) = Γ(IdD∗) = IdΓ(D∗)

On the other hand, what happens with the component h in the reduction? Since the
map h : C∗ → C∗+1 is a chain homotopy h : IdC∗ ' g ◦ f , as seen in Theorem 4.13 we
can construct a simplicial homotopy, that we will denote by hΓ,

hΓ : Γ(IdC∗) = IdΓ(C∗) ' Γ(g ◦ f) = gΓ ◦ fΓ

We can consider now the (normalized) chain complexes associated with Γ(C∗)
and Γ(D∗), which are respectively C∗(Γ(C∗)) and C∗(Γ(D∗)). The simplicial maps
fΓ : Γ(C∗) → Γ(D∗) and gΓ : Γ(D∗) → Γ(C∗) induce chain complex morphisms
f̄Γ : C∗(Γ(C∗)) → C∗(Γ(D∗)) and ḡΓ : C∗(Γ(D∗)) → C∗(Γ(C∗)). To simplify the no-
tation, we call them f̄ and ḡ. Since fΓ ◦ gΓ = IdΓ(D∗), one has f̄ ◦ ḡ = IdC∗(Γ(D∗)).

Then, as seen in Remark 1.40, using the simplicial homotopy hΓ : IdΓ(C∗) ' gΓ ◦ fΓ,
we can construct a chain homotopy h̄Γ ≡ h̄ : C∗(Γ(C∗)) → C∗+1(Γ(C∗)) given by the
alternate sum of the components hΓ

i , such that h̄ : IdC∗(Γ(C∗)) ' ḡ ◦ f̄ .

In this way, we obtain the chain complex morphisms f̄ : C∗(Γ(C∗))→ C∗(Γ(D∗)) and
ḡ : C∗(Γ(D∗))→ C∗(Γ(C∗)), and the homotopy operator h̄ : C∗(Γ(C∗)) → C∗+1(Γ(C∗))
which satisfy the equations

1) f̄ ◦ ḡ = IdC∗(Γ(D∗));

2) dC∗(Γ(C∗)) ◦ h̄+ h̄ ◦ dC∗(Γ(C∗)) = IdC∗(Γ(C∗))−ḡ ◦ f̄ ;
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These are the important equations in the definition of reduction; as seen in Re-
mark 1.59, it is possible to define a chain homotopy h̄′ on C∗(Γ(C∗)) such that
ρ′ = (f̄ , ḡ, h̄′) is a reduction ρ′ : C∗(Γ(C∗))⇒⇒C∗(Γ(D∗)). In fact, this step is not
necessary because it can be proved that, for any generators x ∈ Γn(C∗) and y ∈ Γn(D∗),
the compositions f̄ ◦ h̄(x), h̄◦ ḡ(y), and h̄◦ h̄(x) are combinations of degenerate simplices
of Γn+1(D∗), Γn+1(C∗), and Γn+2(C∗) respectively. Since we are working with normalized
chain complexes, one has directly the equations f̄ ◦ h̄ = 0, h̄ ◦ ḡ = 0, and h̄ ◦ h̄ = 0, and
we have obtained the searched reduction Γ(ρ) = (f̄ , ḡ, h̄) : C∗(Γ(C∗))⇒⇒C∗(Γ(D∗)).

Algorithm 8.
Input: a reduction ρ : C∗⇒⇒D∗ between two chain complexes C∗ and D∗.
Output: a reduction Γ(ρ) : C∗(Γ(C∗))⇒⇒C∗(Γ(D∗)).

Let us consider again our 1-reduced pointed simplicial set X with effective homology

DX∗

t|t| pppppp
pppppp

"* "*MMMMMM

MMMMMM

C∗(X) HX∗

Using this equivalence, it is not difficult to construct a new equivalence

D̃X∗

t|t| rrrrrr
rrrrrr

!) !)KKK
KKK

KKK
KKK

C̃∗(X) H̃X∗

where C̃∗(X) is the reduced (normalized) chain complex C̃∗(X) = CN
∗ (X)/C∗[?], D̃X∗

and H̃X∗ are easily deduced from DX∗ and HX∗ respectively, and H̃X∗ is also an
effective chain complex. This new equivalence provides us the effective homology of the
chain complex C̃∗(X).

Provided that X is 1-reduced, C∗(X) satisfies C0(X) = Z[?] ∼= Z and C1(X) = 0.

Then we can chooseHX∗ such thatHX0
∼= Z andHX1 = 0, and then H̃X0 = H̃X1 = 0.

The next step consists in applying the functor Γ to both reductions (using our Propo-
sition 4.18), so that one has the following equivalence:

C∗(Γ(D̃X∗))

qyqy kkkkkkkk
kkkkkkkk

%- %-SSSSSSS
SSSSSSS

C∗(Γ(C̃∗(X))) C∗(Γ(H̃X∗))

In this way we have obtained the next result.
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Proposition 4.19. Let X be a 1-reduced pointed simplicial set with effective homology
C∗(X)⇐⇐DX∗⇒⇒HX∗. Then an equivalence

C∗(Γ(C̃∗(X)))⇐⇐C∗(Γ(D̃X∗))⇒⇒C∗(Γ(H̃X∗))

can be determined, where D̃X∗ and H̃X∗ are chain complexes deduced from DX∗ and
HX∗ respectively, and H̃X∗ is effective and satisfies H̃X0 = H̃X1 = 0.

Finally, composing the results of Propositions 4.17 and 4.19, we obtain an equivalence

C∗(Γ(D̃X∗))

rzrz mmmmmmmm
mmmmmmmm

%- %-SSSSSSS
SSSSSSS

C∗(RX) C∗(Γ(H̃X∗))

which will be the left equivalence µL in the effective homology of the simplicial Abelian
group RX.

Algorithm 9.
Input:

• a 1-reduced pointed simplicial set X,

• an equivalence C∗(X)⇐⇐DX∗⇒⇒HX∗, where HX∗ is an effective chain complex.

Output: an equivalence µL : C∗(RX)⇐⇐C∗(Γ(D̃X∗))⇒⇒C∗(Γ(H̃X∗)), where D̃X∗ and

H̃X∗ are chain complexes obtained respectively from DX∗ and HX∗, H̃X∗ is effective
and H̃X0 = H̃X1 = 0.

In order to determine the effective homology of RX, a second (right) equivalence

µR : C∗(Γ(H̃X∗))⇐⇐⇒⇒HR∗ is necessary, HR∗ being an effective chain complex. In
other words, we need to compute the effective homology of the simplicial Abelian group
Γ(H̃X∗); this will be the goal of the following section.

4.3.2 Right equivalence

Given a simplicial set X with effective homology C∗(X)⇐⇐⇒⇒HX∗, in the pre-
vious section we have developed an algorithm for computing an equivalence
µL : C∗(RX)⇐⇐⇒⇒C∗(Γ(H̃X∗)), where H̃X∗ is an effective chain complex obtained from

HX∗ such that H̃X0 = H̃X1 = 0. The next step now is to determine the effective
homology of Γ(H̃X∗). More generally, this section is devoted to the computation of the
effective homology of the simplicial Abelian group Γ(E∗) for a general effective chain
complex E∗ which is null in degrees 0 and 1.

Let E∗ be an effective chain complex such that E0 = E1 = 0. As shown in Theo-
rem 1.19, E∗ can be seen as a direct sum of elementary complexes, that is to say,

E∗ =
⊕
k

Ck
∗
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where each Ck
∗ is elementary. As far as E0 = E1 = 0, each Ck

∗ is also null in degrees 0
and 1.

We recall from Definition 1.18 that a chain complex C∗ = (Cn, dn)n∈N is called
elementary if there exists m ∈ N (in our case, m ≥ 2) such that Cn = 0 for n 6= m,m+1,
Cm ∼= Z, and dm+1 : Cm+1 → Cm is monomorphic (which implies that Cm+1

∼= Z
or Cm+1 = 0). If Cm+1 = 0, then C∗ is the chain complex C∗(Z,m) introduced in
Definition 4.14. In the case Cm+1

∼= Z, C∗ can be seen as the chain complex

0←− 0←− · · · ←− 0←− Z dm+1←− Z←− 0←− 0←− · · ·

where the differential map dm+1 : Z→ Z is the multiplication by some t ∈ Z.

It is worth emphasizing that for each degree n ∈ N, En is a finite type group and
therefore only a finite number of Ck

n’s are relevant. In other words, for each n ∈ N there
exist pn ≥ 0 and kn1 , . . . , k

n
pn

such that

En =

pn⊕
i=1

C
kn

i
n

As far as the functor Γ has a good behavior with respect to the direct sum of chain
complexes (as explained in Remark 4.10), when applying it to the chain complex E∗ we
obtain

Γ(E∗) = Γ(
⊕
k

Ck
∗ )
∼=
⊕
k

Γ(Ck
∗ )

In general the infinite direct sum of a family of simplicial Abelian groups does not
coincide with the corresponding Cartesian product, but one must bear in mind that in
this case we have special properties. Since each group En is a sum of a finite number of

components C
kn

i
n , the set of n-simplices Γn(E∗) can be expressed as

Γn(E∗) ∼=
⊕

2≤j≤n

 ⊕
1≤i≤pj

Γn(C
kj

i
∗ )

 ∼= ∏
2≤j≤n

 ∏
1≤i≤pj

Γn(C
kj

i
∗ )


Provided that the face and degeneracy operators of direct sums and Cartesian prod-

ucts are also the same, one has

Γ(E∗) ∼=
⊕
k

Γ(Ck
∗ )
∼=
∏
k

Γ(Ck
∗ )

The effective homology of this Cartesian product can be computed when the effective
homologies of the different components Γ(Ck

∗ ) are known, by simple iteration of the
method explained in Section 3.1.2 (for the computation of the effective homology of a
Cartesian product of two simplicial sets). This method cannot always be generalized to
an infinite Cartesian product, but in this case the result holds since the product is finite
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in each degree. In this way, in order to compute the effective homology of Γ(E∗), we
need to determine the effective homology of Γ(C∗), for C∗ an elementary chain complex.
Two different cases have to be considered.

First of all, let C∗ = C∗(Z,m) for some m ≥ 2. Then

Γ(C∗) = Γ(C∗(Z,m))

and this is in fact one of the possible models for the Eilenberg-MacLane space K(Z,m),
as seen in Section 4.1.2. In the same section we have also explained that the space
K(Z,m) is known to be an object with effective homology for every m ≥ 1, and therefore
we can suppose that an equivalence C∗(K(Z,m))⇐⇐⇒⇒HKm

∗ is available, HKm
∗ being

an effective chain complex.

In the second case to be considered, the elementary chain complex C∗ is of the form

0←− 0←− · · · ←− 0←− Z dm+1←− Z←− 0←− 0←− · · ·

where the only non-null differential map dm+1 : Z→ Z is given by dm+1(1) = t ∈ Z.

One can easily observe that this chain complex can be expressed as the Cone of the
morphism

f : C∗(Z,m+ 1) −→ C∗(Z,m+ 1)

defined by f(1) = dm+1(1) = t.

Now, what happens when we apply the functor Γ to the Cone of a morphism? We
will study this problem as a particular case of a more general situation, the application
of this functor to a short exact sequence.

Definition 4.20. A short exact sequence of chain complexes is a sequence of chain
complex morphisms

0 A∗ B∗ C∗ 0// i // j // //

which is exact. In this case this means that the morphism i is injective, the morphism
j is surjective, and Im i = Ker j.

When applying the functor Γ we obtain

0 Γ(A∗) Γ(B∗) Γ(C∗) 0// Γ(i) // Γ(j) // //

where Γ(i) and Γ(j) are simplicial Abelian group morphisms. Since j : B∗ → C∗ is
surjective, it is known (see [GJ99, p. 155]) that Γ(j) is a fibration with fiber

(Γ(j))−1(0) = Ker(Γ(j)) = Im(Γ(i)) ∼= Γ(A∗)

In our context, we need the short exact sequences to be effective.

Definition 4.21. An effective short exact sequence of chain complexes is a diagram

0 A∗ B∗ C∗ 0//
i // j //
r

oo
s

oo //

where i and j are chain complex morphisms and r (the retraction) and s (the section)
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are graded group morphisms (which in general are not compatible with the differential
maps) satisfying

1) r ◦ i = IdA∗ ;

2) i ◦ r + s ◦ j = IdB∗ ;

3) j ◦ s = IdC∗ .

One can easily observe that these three equations imply in particular that i is injec-
tive, j is surjective, and Im i = Ker j, so that the morphisms i and j define a short exact
sequence of chain complexes. As a result, Γ(j) : Γ(B∗)→ Γ(C∗) is a fibration with fiber
space isomorphic to Γ(A∗).

On the other hand, let us note that the graded group morphisms r : B∗ → A∗ and
s : C∗ → B∗ induce maps Γn(r) : Γn(B∗) → Γn(A∗) and Γn(s) : Γn(C∗) → Γn(B∗) for
each n ∈ N, which are group morphisms and are compatible with all the degeneracies ηi
(for 0 ≤ i ≤ n) and with the faces ∂i for 0 ≤ i < n, although they are not necessarily
compatible with the last face ∂n (the only one where the differential maps of the chain
complexes A∗, B∗, and C∗ appear, as explained in Remark 4.9). Furthermore, it is clear
that the following equations hold:

1) Γ(r) ◦ Γ(i) = IdΓ(A∗);

2) Γ(i) ◦ Γ(r) + Γ(s) ◦ Γ(j) = IdΓ(B∗);

3) Γ(j) ◦ Γ(s) = IdΓ(C∗).

These identities allow us to see that Γ(B∗) can be expressed as a symmetric twisted
Cartesian product with fiber space Γ(A∗) and base space Γ(C∗).

Definition 4.22. Let G be a simplicial group, B a simplicial set, and τ = {τn : Bn →
Gn−1}n≥1 (that we call in this case the symmetric twisting operator) satisfying

∂n−1τ(b) = τ(∂n−1b) · τ(∂nb)−1

∂iτ(b) = τ(∂ib), if 0 ≤ i < n− 1

ηiτ(b) = τ(ηib), for all 0 ≤ i ≤ n− 1

τ(ηnb) = en

where b is an n-simplex of B and en is the null element of the group Gn.

We define the symmetric twisted (Cartesian) product (with fiber space G and base
space B) as the simplicial set, denoted again by E(τ) or G×τ B, which is given by

E(τ)n = Gn ×Bn

∂i(g, b) = (∂ig, ∂ib), if 0 ≤ i < n

∂n(g, b) = (∂ng · τ(b), ∂nb)
ηi(g, b) = (ηig, ηib), for all 0 ≤ i ≤ n

for (g, b) ∈ Gn ×Bn.
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In fact, this was the initial definition of twisted product given by Daniel Kan [Kan58],
and is the one used by the Kenzo system. It is not difficult to see that both definitions
are closely connected and in particular a similar method to the one introduced in Sec-
tion 3.1.2 allows us to determine the effective homology of a symmetric twisted product
when the effective homologies of the base and the fiber spaces are known and B is 1-
reduced. From now on in this section, we will work with this new definition of twisted
product.

Proposition 4.23. Given an effective short exact sequence

0 A∗ B∗ C∗ 0//
i // j //
r

oo
s

oo //

there exists an explicit isomorphism between the simplicial Abelian group Γ(B∗) and a
twisted product Γ(A∗)×τ Γ(C∗).

Proof. To simplify the notation, we denote also by i, j, r, and s the corresponding maps
induced on the simplicial Abelian groups Γ(A∗), Γ(B∗), and Γ(C∗).

We define a map
τn : Γn(C∗) −→ Γn−1(A∗)

given by τn = r ◦ ∂n ◦ s− r ◦ s ◦ ∂n, which is clearly a group morphism. It is not hard to
prove that it satisfies the conditions of a (symmetric) twisting operator, and therefore
it defines a (symmetric) twisted Cartesian product Γ(A∗)×τ Γ(C∗).

Then, the equations r ◦ i = IdΓ(A∗), i ◦ r + s ◦ j = IdΓ(B∗), and j ◦ s = IdΓ(C∗) allow
us to construct the maps

φn : Γn(A∗)× Γn(C∗) −→ Γn(B∗)

ψn : Γn(B∗) −→ Γn(A∗)× Γn(C∗)

given by φn(a, c) = i(a) + s(c) and ψn(b) = (r(b), j(b)). It is clear that they are group
morphisms and ψn ◦ φn = IdΓn(A∗)×Γn(C∗) and φn ◦ ψn = IdΓn(B∗). Furthermore, one
can prove that φ and ψ are compatible with the faces and degeneracies of Γ(B∗) and
Γ(A∗)×τ Γ(C∗), so that we obtain the searched isomorphism

Γ(B∗) ∼= Γ(A∗)×τ Γ(C∗)

Let us suppose now that Γ(A∗) and Γ(C∗) are objects with effective homology, and
Γ(C∗) is 1-reduced. Thanks to this proposition, it is possible to compute the effective
homology of Γ(B∗), following the ideas of Section 3.1.2 for the computation of the
effective homology of a twisted product.

On the other hand, one can see that given a chain complex morphism f : A∗ → B∗
there exists an effective short exact sequence

0 Desusp∗(B∗) Cone(f)∗ A∗ 0//
i // j //
r

oo
s

oo //
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where the chain complex Desusp∗(B∗) is the Desuspension chain complex of B∗, given
by Desuspn(B∗) = Bn+1. The maps i and s are defined in each degree n by the canonical
inclusions of An and Bn+1 in Cone(f)n = An⊕Bn+1, while r and j are the corresponding
projections. One can observe that i and j are chain complex morphisms, but r and s
are not compatible with the differential maps unless the morphism f being null.

Coming back now to our particular situation, let us recall that we have an elementary
chain complex C∗ of the form

0←− 0←− · · · ←− 0←− Z dm+1←− Z←− 0←− 0←− · · ·

which can be expressed as the Cone of the morphism

f : C∗(Z,m+ 1) −→ C∗(Z,m+ 1)

given by f(1) = dm+1(1) = t.

The following short exact sequence is then obtained

0 Desusp∗(C∗(Z,m+ 1)) Cone(f)∗ C∗(Z,m+ 1) 0//
i // j //
r

oo
s

oo //

and in this case the chain complex Desusp∗(C∗(Z,m+ 1)) is equal to C∗(Z,m).

If we apply the functor Γ, using Proposition 4.23, we have a fibration

Γ(C∗(Z,m)) ↪→ Γ(Cone(f)∗)→ Γ(C∗(Z,m+ 1))

where the total space Γ(Cone(f)∗) ∼= Γ(C∗) can be expressed as a (symmetric) twisted
product Γ(C∗(Z,m)) ×τ Γ(C∗(Z,m + 1)). Recalling now that Γ(C∗(Z,m)) = K(Z,m)
and Γ(C∗(Z,m+ 1)) = K(Z,m+ 1), one has

Γ(C∗) ∼= K(Z,m)×τ K(Z,m+ 1)

Provided that K(Z,m) and K(Z,m + 1) are objects with effective homology (and
K(Z,m+1) is 1-reduced since m ≥ 2), the effective homology of Γ(C∗) can be computed,
and in this way the effective homology of Γ(C∗) has been determined for the two different
types of elementary chain complexes C∗.

Proposition 4.24. Given an elementary chain complex C∗ such that C0 = C1 = 0, it
is possible to construct an equivalence C∗(Γ(C∗))⇐⇐DΓC∗⇒⇒HΓC∗, where HΓC∗ is an
effective chain complex.

Let us now turn to the general case, where E∗ is an effective chain complex such that
E0 = E1 = 0. We recall that E∗ can be expressed as

E∗ =
⊕
k

Ck
∗
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where each Ck
∗ is elementary, and

Γ(E∗) = Γ(
⊕
k

Ck
∗ )
∼=
∏
k

Γ(Ck
∗ )

We have proved that the simplicial Abelian groups Γ(Ck
∗ ) are objects with effective

homology, such that there exist equivalences C∗(Γ(Ck
∗ ))⇐⇐DΓCk

∗ ⇒⇒HΓCk
∗ for each k.

If we iterate the process explained in Section 3.1.2 for the computation of the effective
homology of the Cartesian product of two simplicial sets, we obtain an equivalence

C∗(
∏
k

Γ(Ck
∗ ))⇐⇐⇒⇒

⊗
k

HΓCk
∗

As far as for each degree n the group Γn(E∗) is a finite product of components

Γn(E∗) ∼=
∏

2≤j≤n

 ∏
1≤i≤pj

Γn(C
kj

i
∗ )


the right chain complex HΓE∗ =

⊗
kHΓCk

∗ satisfies the same property and since each
Γ(Cki

∗ ) is effective HΓE∗ is effective too. In this way, we have obtained the effective
homology of the simplicial Abelian group Γ(E∗).

Algorithm 10.
Input: an effective chain complex E∗ such that E0 = E1 = 0.
Output: an equivalence C∗(Γ(E∗))⇐⇐DΓE∗⇒⇒HΓE∗, where HΓE∗ is an effective chain
complex.

Finally, this algorithm can be applied in particular to the effective chain complex
H̃X∗ deduced from HX∗ in Section 4.3.1 (which satisfies H̃X0 = H̃X1 = 0), ob-
taining in this way the looked-for right equivalence for the effective homology of RX,
µR : C∗(Γ(H̃X∗))⇐⇐⇒⇒HR∗.

4.3.3 Final result

Once we have developed algorithms for the left and right equivalences, the last step
for the construction of the effective homology of RX consists simply in assembling the
puzzle.

Let X be a pointed simplicial set with effective homology given by

DX∗

t|t| pppppp
pppppp

"* "*MMMMMM

MMMMMM

C∗(X) HX∗
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We begin by making use of Algorithm 9 to obtain the left equivalence µL:

C∗(Γ(D̃X∗))

rzrz mmmmmmmm
mmmmmmmm

%- %-SSSSSSS
SSSSSSS

C∗(RX) C∗(Γ(H̃X∗))

where H̃X∗ is an effective chain complex deduced from HX∗ which is null in degrees 0
and 1.

Then, we apply Algorithm 10 to the effective chain complex H̃X∗, which leads to an
equivalence µR:

D̃R∗

rzrz nnnnnnn
nnnnnnn

!) !)KKKKKK

KKKKKK

C∗(Γ(H̃X∗)) HR∗

with HR∗ an effective chain complex.

Finally, in order to determine the effective homology of RX, it only remains to
compose both equivalences µL and µR.

Algorithm 11.
Input:

• a 1-reduced pointed simplicial set X,

• an equivalence C∗(X)⇐⇐DX∗⇒⇒HX∗, where HX∗ is an effective chain complex.

Output: an equivalence C∗(RX)⇐⇐DR∗⇒⇒HR∗, where HR∗ is effective.

The effective homology of RX allows us in particular to compute the homology
groups H∗(RX), which play an important role in the construction of the Bousfield-Kan
spectral sequence, as we will see in Chapter 5.

4.4 Implementation

For the implementation of the algorithms explained in this chapter, we try to develop new
programs (in Common Lisp) enhancing the Kenzo system, in a similar way to the module
for the computation of spectral sequences associated with filtered complexes presented
in Section 2.5.1. For the moment, the implementation of the effective homology of RX
has not been finished, although we have already written several functions which are
necessary for the final construction.
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4.4.1 The simplicial Abelian group RX

First of all, a set of programs implementing the definition of RX has been developed.
The main function is the following one:

zx smst
The returned value is an object of type Abelian-Simplicial-Group, which is
the free simplicial Abelian group RX generated by the simplicial set X = smst.

As an example, the case X = S2 is considered.

> (setf zs2 (zx (sphere 2)))
[K1090 Abelian-Simplicial-Group]
> (orgn zs2)
(free-abelian-simplicial-group sphere 2)

An n-simplex of RX is a combination of n-simplices of X = S2. For instance, the
combination s = 5 ∗ η1η0s2− 2 ∗ η3η1s2 + 3 ∗ η3η2s2 is a 4-simplex.

> (setf s (cmbn 4 5 (absm 3 ’s2) -2 (absm 10 ’s2) 3 (absm 12 ’s2)))
----------------------------------------------------------------------{CMBN 4}
<5 * <AbSm 1-0 s2>>
<-2 * <AbSm 3-1 s2>>
<3 * <AbSm 3-2 s2>>
------------------------------------------------------------------------------

Its faces can be computed as follows.

> (dotimes (i 5)
(format t "~2%d_~D s" i)
(print (face zs2 i 4 s)))

d_0 s
<AbSm 0
----------------------------------------------------------------------{CMBN 2}
<5 * <AbSm - s2>>
------------------------------------------------------------------------------
>

d_1 s
<AbSm -
----------------------------------------------------------------------{CMBN 3}
<5 * <AbSm 0 s2>>
<-2 * <AbSm 2 s2>>
------------------------------------------------------------------------------
>
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d_2 s
<AbSm -
----------------------------------------------------------------------{CMBN 3}
<5 * <AbSm 0 s2>>
<1 * <AbSm 2 s2>>
------------------------------------------------------------------------------
>

d_3 s
<AbSm -
----------------------------------------------------------------------{CMBN 3}
<-2 * <AbSm 1 s2>>
<3 * <AbSm 2 s2>>
------------------------------------------------------------------------------
>

d_4 s
<AbSm -
----------------------------------------------------------------------{CMBN 3}
<-2 * <AbSm 1 s2>>
<3 * <AbSm 2 s2>>
------------------------------------------------------------------------------
>
nil

We observe that ∂0s is a degenerate simplex, the element η0(5 ∗ s2). The other four
faces are the non-degenerate simplices ∂1s = 5 ∗ η0s2− 2 ∗ η2s2, ∂2s = 5 ∗ η0s2 + η2s2,
∂3s = −2 ∗ η1s2 + 3 ∗ η2s2, and ∂4s = −2 ∗ η1s2 + 3 ∗ η2s2.

When we compute the boundary, ∂0s is not considered because it is degenerate. In
addition, ∂3s = ∂4s which implies they are canceled each other out. In this way, we
obtain d(s) = −1 ∗ ∂1s+ ∂2s = −1 ∗ (5 ∗ η0s2− 2 ∗ η2s2) + (5 ∗ η0s2+ η2s2) ∈ CN

3 (RX).

> (dffr zs2 4 s)

----------------------------------------------------------------------{CMBN 3}
<-1 *
----------------------------------------------------------------------{CMBN 3}
<5 * <AbSm 0 s2>>
<-2 * <AbSm 2 s2>>
------------------------------------------------------------------------------
>
<1 *
----------------------------------------------------------------------{CMBN 3}
<5 * <AbSm 0 s2>>
<1 * <AbSm 2 s2>>
------------------------------------------------------------------------------
>
------------------------------------------------------------------------------

We can iterate the construction and build R(RX) = R2S2, which is again a simplicial
Abelian group.
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> (setf zzs2 (zx zs2))
[K1102 Abelian-Simplicial-Group]
> (orgn zzs2)
(free-abelian-simplicial-group free-abelian-simplicial-group sphere 2)

In this case the simplices are more complicated, for instance the combination
ds = −1 ∗ (5 ∗ η0s2− 2 ∗ η2s2) + (5 ∗ η0s2 + η2s2) is a 3-simplex of R2X. It is the
boundary of s = 5 ∗ η1η0s2 − 2 ∗ η3η1s2 + 3 ∗ η3η2s2 ∈ RX ⊆ R2X and therefore
when we apply the differential map we obtain the null combination.

> (setf ds (cmbn 3 -1 (absm 0 (cmbn 3 5 (absm 1 ’s2) -2 (absm 4 ’s2)))
1 (absm 0 (cmbn 3 5 (absm 1 ’s2) 1 (absm 4 ’s2)))))

----------------------------------------------------------------------{CMBN 3}
<-1 * <AbSm -
----------------------------------------------------------------------{CMBN 3}
<5 * <AbSm 0 s2>>
<-2 * <AbSm 2 s2>>
------------------------------------------------------------------------------
>>
<1 * <AbSm -
----------------------------------------------------------------------{CMBN 3}
<5 * <AbSm 0 s2>>
<1 * <AbSm 2 s2>>
------------------------------------------------------------------------------
>>
------------------------------------------------------------------------------

> (dffr zzs2 3 ds)

----------------------------------------------------------------------{CMBN 2}
------------------------------------------------------------------------------

4.4.2 Effective homology of RX

As mentioned before, the implementation of the construction of the effective homology of
RX is not finished. In our particular example X = S2, both RX and R2X are simplicial
Abelian groups which have an infinite number of simplices in each dimension, they are
not effective. Moreover, the slots efhm are empty because Kenzo is not yet taught how
to obtain the effective homology of these objects.

> (efhm zs2)
Error: I don’t know how to determine the effective homology of:
[K1090 Abelian-Simplicial-Group] (Origin: (free-abelian-simplicial-group sphere 2)).
> (efhm zzs2)
Error: I don’t know how to determine the effective homology of:
[K1102 Abelian-Simplicial-Group]
(Origin: (free-abelian-simplicial-group free-abelian-simplicial-group sphere 2)).
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These slots should be set when our Algorithm 11 (which allows us to construct
the effective homology of RX when X is a simplicial set with effective homology) will
be completely implemented. Once the effective homologies of RS2 and R2S2 will be
available, Kenzo will be able to compute their homology groups.

As a first step toward the implementation of Algorithm 11 we have written the
functions corresponding to Algorithm 8. Given a reduction ρ : C∗⇒⇒D∗, it is possible
to build a reduction Γ(ρ) : C∗(Γ(C∗))⇒⇒C∗(Γ(D∗)) by means of the following method:

gamma rdct
The returned value is an object of type Reduction, obtained by applying the
functor Γ to the reduction rdct, following our Algorithm 8.

For instance, let us consider the Eilenberg-MacLane space K(Z, 1). We have already
said that there exists a reduction C∗(K(Z, 1))⇒⇒C∗(S

1), which is the right reduction in
the effective homology of K(Z, 1).

> (setf kz1 (k-z 1))
[K1 Abelian-Simplicial-Group]
> (efhm kz1)
[K22 Homotopy-Equivalence K1 <= K1 => K16]
> (setf rho (rrdct (efhm kz1)))
[K21 Reduction K1 => K16]
> (orgn (k 16))
(circle)

If we apply the function gamma to the reduction rho : K1⇒⇒ K16, we obtain a new
reduction Γ(K1)⇒⇒Γ(K16).

> (gamma rho)
[K1141 Reduction K1114 => K1126]
> (orgn (k 1114))
(gamma [K1 Abelian-Simplicial-Group])
> (orgn (k 1126))
(gamma [K16 Chain-Complex])

As mentioned before, it is only one necessary step in the implementation of the
effective homology of RX, and several functions involved in the construction are not
yet written. Concretely, the maps giving the isomorphism RX ∼= Γ(C̃∗(X)) of Propo-
sition 4.17 must be written in Common Lisp, and it is also necessary to implement
Algorithm 10 which gives us the effective homology of Γ(E∗) for E∗ an effective chain
complex.



Chapter 5

Effective homology and
Bousfield-Kan spectral sequence

The Bousfield-Kan spectral sequence first appeared in [BK72a], designed to present the
Adams spectral sequence [Ada60] in a different way, in the framework of combinatorial
topology, to make easier the study of its algebraic properties. The Adams spectral
sequence and its satellite spectral sequences are the main tools to compute homotopy
groups, in particular stable and unstable sphere homotopy groups. The Adams spectral
sequence and the others did allow topologists to compute many homotopy groups, but
no constructive version of this spectral sequence is yet available; in other words no
routine translation work allows a programmer to implement this spectral sequence on
a theoretical or concrete machine to produce an algorithm computing homotopy groups
(such an algorithm should compute all the homotopy groups of spaces, the only final
unavoidable restriction being time and space complexity). Note the current situation
does not prevent topologists from using specific programs and computers for auxiliary
partial computations, see for example [Tan85] or [Rav86].

Another point must be noted about the present work: usually the research work
around this spectral sequence is mainly devoted to the particular situation of spheres;
also the stable situation, significantly easier, is firstly considered. On the contrary the
challenge here consists in studying systematically the general case: the unstable spectral
sequence for arbitrary simply connected spaces.

As said in the introduction of the previous chapter, the Bousfield-Kan spectral se-
quence is not directly defined by means of filtered complexes, and therefore our al-
gorithms of Chapter 2 cannot be applied to compute it. In this chapter, we try to
develop a new algorithm, based again on the effective homology technique, allowing one
to compute the Bousfield-Kan spectral sequence associated with a simplicial set X. As
announced before, we make use intensively of our construction of the effective homology
of the simplicial Abelian group RX, explained in Chapter 4. This constructive version of
the Bousfield-Kan spectral sequence is not finished yet; we present here the general ideas
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that we hope will allow its construction. Furthermore, we present (complete) algorithms
which construct the first two levels of the spectral sequence.

This chapter is divided into two different parts. The first one is focused on cosim-
plicial objects, which play an essential role in the construction of the Bousfield-Kan
spectral sequence, including some new results and algorithms we have developed. The
second part (Section 5.2) contains the definition of the spectral sequence, a proof of its
convergence, algorithms computing the E1

p,q and E2
p,q terms, and the sketch of a new

algorithm for its complete computation.

5.1 Some algorithms for cosimplicial structures

Cosimplicial structures are one of the main ingredients in the construction of the
Bousfield-Kan spectral sequence. We include in this section some definitions, results,
and algorithms dealing with them.

5.1.1 Cosimplicial objects

The notion of cosimplicial object is dual to that of simplicial object (see Definition 1.27),
although much less work about them has appeared in the literature. Basic definitions
and results about cosimplicial objects can be found, for instance, in [GJ99] or [BK72b].

Definition 5.1. Given a category D, the category cD of cosimplicial objects over D is
defined as follows.

• An object X ∈ cD consists of

– for every integer n ≥ 0, an object Xn ∈ D;

– for every pair of integers (i, n) such that 0 ≤ i ≤ n, coface and codegeneracy
operators ∂i : Xn−1 → Xn and ηi : Xn+1 → Xn (both of them morphisms in
the category D) satisfying the cosimplicial identities :

∂j∂i = ∂i∂j−1 if i < j

ηjηi = ηi−1ηj if i > j

ηj∂i = ∂iηj−1 if i < j

ηj∂i = Id if i = j, j + 1

ηj∂i = ∂i−1ηj if i > j + 1

• A cosimplicial map f : X → Y in cD comprises maps fn : Xn → Y n (which are
morphisms in D) which commute with coface and codegeneracy operators.

Definition 5.2. An augmentation of a cosimplicial object X ∈ cD consists of an object
X−1 ∈ D and a morphism ∂0 : X−1 → X0 such that ∂1∂0 = ∂0∂0 : X−1 → X1.
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5.1.2 Cosimplicial Abelian groups

As a first particular case of cosimplicial object, we consider D the category of Abelian
groups.

Definition 5.3. A cosimplicial Abelian group is a cosimplicial object over the category
of Abelian groups.

A functor associates to every cosimplicial Abelian group G a cochain com-
plex G∗ = (Gn, δn)n∈N: the group of n-cochains is Gn, and the coboundary map
δn : Gn−1 → Gn is given by δn =

∑n
i=0(−1)i∂i. Moreover, it is possible to construct

the cosimplicial normalization, which is dual to the normalized chain complex associ-
ated with a simplicial Abelian group, explained in Section 4.1.1.

Definition 5.4. Let G be a cosimplicial Abelian group, then the cochain complex
N∗(G) = (Nn(G), δn)n∈N is defined by

Nn(G) = Gn ∩Ker η0 ∩ . . . ∩Ker ηn−1

with coboundary map δn : Nn−1(G)→ Nn(G) given by the alternate sum

δn =
n∑
i=0

(−1)i∂i

It turns out that N∗(G) is a cochain subcomplex of G∗, and therefore the inclusion
inc : N∗(G) ↪→ G∗ induces a morphism on the cohomology groups,

H∗(inc) : H∗(N∗(G)) −→ H∗(G∗)

As in the simplicial case, it can be proved that Hn(inc) is an isomorphism for all n.
We include here the proof of this result, which up to our knowledge cannot be found in
the literature. The general scheme is similar to the one of Theorem 4.2, but here some
more calculating is necessary.

Theorem 5.5. Let G be a cosimplicial Abelian group. Then

Hn(inc) : Hn(N∗(G)) −→ Hn(G∗)

is an isomorphism for each codimension n.

Proof. We begin by defining the following decreasing filtration of the cochain complex
G∗ = (Gn, δn)n∈N:

x ∈ F pGn if x ∈ Gn and ηix = 0 for all 0 ≤ i < min(n, p)

It is clear that F p+1G∗ ⊆ F pG∗ and moreover given x ∈ F pGn then one has
δn+1(x) =

∑n+1
i=0 (−1)i∂ix ∈ F pGn+1, so that F p+1G∗ is a cochain subcomplex of F pG∗.
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The inclusion ip : F p+1G∗ ↪→ F pG∗ is a cochain complex morphism. Furthermore, we
observe that F pGn = Gn if p ≤ 0 and F pGn = Nn(G) if p ≥ n.

Then we construct an epimorphism of cochain complexes fp : F pG∗ → F p+1G∗ as
follows. Given x ∈ F pGn, fp(x) is defined as

fp(x) =

{
x if n ≤ p
x−

∑p
i=0(−1)i+p∂iηpx if n > p

It is not difficult to prove that the map fp is well-defined (that is to say, if x ∈ F pGn

then fp(x) ∈ F p+1Gn) and it is a cochain complex morphism. Furthermore, it is clear
that fp ◦ ip is the identity map of the cochain complex F p+1G∗.

The next step consists in defining a cochain homotopy hp : F pG∗ → F pG∗−1. Given
an element x ∈ F pGn,

hp(x) =

{
0 if n ≤ p
(−1)pηpx if n > p

We observe hp(x) ∈ F pGn−1 and one can also prove that

δ ◦ hp(x) + hp ◦ δ(x) = x− (ip ◦ fp)(x)

Following Remark 1.59 (which is also valid for cochain complexes), the maps fp, ip,
and hp allow us to construct a reduction ρp = (fp, ip, h′p) : F pG∗⇒⇒F p+1G∗. These
reductions can be composed in order to determine a reduction of cochain complexes

ρ = (f, g, h) : G∗⇒⇒N∗(G)

The cochain complex morphisms i = inc : N∗(G) ↪→ G∗ and f : G∗ → N∗(G) are
given in dimension n by the compositions

i0 ◦ · · · ◦ in−1 : F nGn = Nn(G) −→ F 0Gn = Gn

fn−1 ◦ · · · ◦ f 0 : F 0Gn = Gn −→ F nGn = Nn(G)

and the homotopy operator h : G∗ → G∗−1 is defined in dodimension n as

i0 · · · in−1 ◦ h′n ◦ fn−1 · · · f 0 + i0 · · · in−2 ◦ h′n−1 ◦ fn−2 · · · f 0 + · · ·+ i0 ◦ h′1 ◦ f 0 + h′0

This implies in particular that the inclusion i = inc : N∗(G) ↪→ G∗ induces an
isomorphism on the cohomology groups

Hn(i) = Hn(inc) : Hn(N∗(G)) ∼= Hn(G∗) for all n ≥ 0

Algorithm 12.
Input: a cosimplicial Abelian group G.
Output: a reduction of cochain complexes ρ : G∗⇒⇒N∗(G).
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Let us denote by Dn(G) the subgroup of Gn of all the elements x ∈ Gn of the form
x =

∑n−1
i=0 ∂

iyi, with yi ∈ Gn−1 for all i. It is not hard to prove that, given x ∈ Dn(G),
then δn+1(x) ∈ Dn+1(G), and thereforeD∗(G) = (Dn(G), δn)n∈N is a cochain subcomplex
of G∗.

Corollary 5.6. Let G be a cosimplicial Abelian group. Then

G∗ = N∗(G)⊕D∗(G)

which implies that N∗(G) is isomorphic to the quotient G∗/D∗(G).

Proof. As in the simplicial case, from the identity f ◦ i = IdN∗(G) it follows that
G∗ = N∗(G)⊕Ker f . Moreover, a little calculation shows that Ker f = D∗(G).

On the other hand, it is known that the functor N∗ is an equivalence between the
category of cosimplicial Abelian groups and the category of (positive) cochain complexes.

5.1.3 Cosimplicial simplicial Abelian groups

Let us consider now a more complicated case of cosimplicial object, choosing D the
category of simplicial Abelian groups. As we explain in this section, we can combine
both simplicial and cosimplicial normalizations to construct a reduction from the initial
space over the double normalization.

5.1.3.1 Definitions and fundamental results

Definition 5.7. A cosimplicial simplicial Abelian group is a cosimplicial object over the
category A of simplicial Abelian groups.

A cosimplicial simplicial Abelian group G is therefore a bigraded family G = {Gpq}p,q∈N
of Abelian groups, together with face, coface, degeneracy and codegeneracy operators
∂i : Gpq → G

p
q−1, ∂

j : Gp−1
q → Gpq , ηi : Gpq → G

p
q+1, and ηj : Gp+1

q → Gpq , for 0 ≤ i ≤ q and
0 ≤ j ≤ p, all of them group morphisms. The face and degeneracy operators ∂i and ηi
must satisfy the simplicial identities, while for ∂j and ηj the cosimplicial identities hold.
Furthermore, ∂i and ηi commute with both coface and codegeneracy maps ∂j and ηj.

The degree q is the simplicial degree, and p is the cosimplicial degree. The total degree
is in this case n = q − p. The following graphical representation of G can be helpful.
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Each column Gp = {Gpq}q∈N (with the maps ∂i : Gpq → G
p
q−1 and ηi : Gpq → G

p
q+1) is

a simplicial Abelian group, and therefore we can consider the associated chain complex
Gp∗ = (Gpq , dpq)q∈N, where the differential dpq : Gpq → G

p
q−1 is given by dpq =

∑q
i=0(−1)i∂i.

Similarly, the rows Gq = {Gpq}p∈N are cosimplicial Abelian groups and can be seen
as cochain complexes G∗q = (Gpq , δpq )p∈N with coboundary maps δpq : Gp−1

q → Gpq de-
fined as δpq =

∑p
j=0(−1)j∂j. This allows us to consider the second quadrant bicomplex

G∗,∗ = {Gpq}p,q∈N, with horizontal differential maps d′p,q = δp+1
q =

∑p+1
j=0(−1)j∂j and ver-

tical arrows d′′p,q = (−1)pdpq = (−1)p
∑q

i=0(−1)i∂i. The factor (−1)p in the vertical map
is necessary to guarantee the equation d′ ◦ d′′ + d′′ ◦ d′ = 0 is satisfied.
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On the other hand, it is also possible to construct the double normalization. First
of all, we can apply to each column the simplicial normalization functor N∗ (with the
necessary sign in each column), obtaining in this way a cosimplicial object over the
category of chain complexes. If we consider then the cosimplicial normalization N∗,
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a second quadrant bicomplex N∗(N∗(G)) is obtained. Conversely, we can first apply
cosimplicial and then simplicial normalization, obtaining the bicomplex N∗(N

∗(G)). We
observe that the order does not change the result, N∗(N∗(G)) = N∗(N

∗(G)).

Definition 5.8. Let G be a cosimplicial simplicial Abelian group, the double normaliza-
tion N∗N∗(G) is the second quadrant bicomplex N∗N∗(G) ≡ N∗(N∗(G)) = N∗(N

∗(G)).
In other words,

NpNq(G) = Gpq ∩Ker ∂0 ∩ . . . ∩Ker ∂q−1 ∩Ker η0 ∩ . . . ∩Ker ηp−1

with horizontal and vertical differential morphisms d′p,q = δp+1
q =

∑p+1
j=0(−1)j∂j and

d′′p,q = (−1)pdpq = (−1)p+q∂q.
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��

One can easily observe that the associated total complex T∗(N
∗N∗(G)) is a chain

subcomplex of T∗(G∗,∗). Furthermore, in the next theorem we prove that there exists a
reduction between them.

Theorem 5.9. Given a cosimplicial simplicial Abelian group G, one can build a chain
complex reduction

ρ : T∗(G∗,∗)⇒⇒T∗(N
∗N∗(G))

Proof. Let us consider an intermediate bicomplex, N∗(G∗), where only the simplicial
normalization is taken:

Nq(Gp) = Gpq ∩Ker ∂0 ∩ . . . ∩Ker ∂q−1

∼= Gpq/(Im η0 + · · ·+ Im ηq−1)

with horizontal and vertical differential maps given by d′p,q = δp+1
q =

∑p+1
j=0(−1)j∂j and

d′′p,q = (−1)pdpq = (−1)p+q∂q.
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It follows that the total complex T∗(N∗(G∗)) is a chain subcomplex of T∗(G∗,∗). In
addition, each column Gp of G is a simplicial Abelian group, and therefore (thanks to
Corollary 4.3) one has reductions

ρp = (fp, ip, hp) : Gp∗⇒⇒N∗(Gp)

where ip : N∗(Gp) ↪→ Gp∗ is the chain complex inclusion.

A reduction ρ′ = (f ′, i′, h′) : T∗(G∗,∗)⇒⇒T∗(N∗(G∗)) is then constructed, where
i′ : T∗(N∗(G∗)) ↪→ T∗(G∗,∗) is the inclusion, and f ′ and h′ are defined, for x ∈ Gpq , as

f ′(x) = fp(x) ∈ Nq(Gp)
h′(x) = (−1)php(x) ∈ Gpq+1

Provided that the morphisms fp and hp are defined by means of the face and degen-
eracy operators, in the same way for every column Gp (the definition is included in the
proof of Theorem 4.2), one can easily observe that

δp+1 ◦ fp = fp+1 ◦ δp+1; δp+1 ◦ hp = hp+1 ◦ δp+1

Then, on account of the equations satisfied by each reduction ρp = (fp, ip, hp), it is
not hard to verify that ρ′ = (f ′, i′, h′) : T∗(G∗,∗)⇒⇒T∗(N∗(G∗)) is in fact a reduction.

In order to build a second reduction ρ′′ = (f ′′, i′′, h′′) : T∗(N∗(G∗))⇒⇒T∗(N
∗N∗(G)),

let us observe that each row q of the bicomplex N∗(G∗), Nq(G∗), can be seen as the
cochain complex associated with the cosimplicial Abelian group Nq(G) = {Nq(Gp)}p∈N,
while each row q of N∗N∗(G), N∗(Nq(G)), is its cosimplicial normalization. Therefore
(making use of Algorithm 12), we can build reductions

ρq = (fq, iq, hq) : Nq(G∗)⇒⇒N∗(Nq(G))

where iq is the inclusion iq : N∗(Nq(G)) ↪→ Nq(G∗). Then we consider the maps
f ′′ : T∗(N∗(G∗))→ T∗(N

∗N∗(G)) and h′′ : T∗(N∗(G∗))→ T∗+1(N∗(G∗)) given by

f ′′(y) = fq(y) ∈ NpNq(G)
h′′(y) = hq(y) ∈ Nq(Gp+1)
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if y ∈ NpNq(G), and i′′ = inc : T∗(N
∗N∗(G)) ↪→ T∗(N∗(G∗)). Then one can easily prove

that ρ′′ = (f ′′, i′′, h′′) : T∗(N∗(G∗))⇒⇒T∗(N
∗N∗(G)) is a reduction.

Finally, the composition of the reductions ρ′ : T∗(G∗,∗)⇒⇒T∗(N∗(G∗)) and
ρ′′ : T∗(N∗(G∗))⇒⇒T∗(N

∗N∗(G)) provides us the searched reduction

ρ : T∗(G∗,∗)⇒⇒T∗(N
∗N∗(G))

Algorithm 13.
Input: a cosimplicial simplicial Abelian group G.
Output: a reduction ρ : T∗(G∗,∗)⇒⇒T∗(N

∗N∗(G)).

The following corollaries are immediate consequences of our Theorem 5.9.

Corollary 5.10. Let G be a cosimplicial simplicial Abelian group. Then the inclusion
inc : T∗(N

∗N∗(G)) ↪→ T∗(G∗,∗) induces an isomorphism between the graded homology
groups of both bicomplexes:

Hn(inc) : Hn(N
∗N∗(G)) ∼= Hn(G∗,∗) for all n ∈ N

Corollary 5.11. Given G a cosimplicial simplicial Abelian group, then

G∗,∗ = N∗N∗(G)⊕D∗D∗(G)

where D∗D∗(G) is the sub(bi)complex of G∗,∗ given by

DpDq(G) = {x ∈ Gpq , x =

q−1∑
i=0

ηiyi +

p−1∑
j=0

∂jzj, with yi ∈ Gpq−1, zj ∈ Gp−1
q }

As a result, the double normalization N∗N∗(G) is isomorphic to the quotient
G∗,∗/D∗D∗(G).

5.1.3.2 Homotopy spectral sequence of a cosimplicial simplicial Abelian
group

Let G be a cosimplicial simplicial Abelian group. The double normalization N∗N∗(G)
is a second quadrant bicomplex and therefore we can consider the associated (second
quadrant) spectral sequence which converges to the homology groups H∗(N

∗N∗(G)). In
this way, we have a particular case of spectral sequence associated with a filtered chain
complex, studied in Chapter 2.

This spectral sequence can also be built in a more explicit way by means of addi-
tive relations, as explained in [BK73a]. Let us consider, for each column Gp (which
is a simplicial Abelian group), the homotopy groups πq(Gp). The codegeneracy maps
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ηj : Gpq → Gp−1
q induce maps πq(η

j) ≡ ηj : πq(Gp)→ πq(Gp−1) for 0 ≤ j ≤ p− 1. Then it
makes sense to define, for each pair (p, q), the normalized homotopy group

π′q(Gp) = πq(Gp) ∩Ker η0 ∩ . . . ∩Ker ηp−1 ⊆ πq(Gp)

This group is in fact canonically isomorphic to the q-homotopy group of the simplicial
Abelian group Np(G), given by

Np(G)q = Gpq ∩Ker η0 ∩ . . . ∩Ker ηp−1

with the same face and degeneracy operators as Gp (which are well-defined since they
are compatible with the codegeneracies ηj).

For each r ≥ 1, we define the following relations (which are not always defined
multivalued functions, see [Whi78] for details):

dr : π′q(Gp) ⇀ π′q+r−1(Gp+r)

Given b ∈ π′q(Gp) and c ∈ π′q+r−1(Gp+r), we put dr(b) = c whenever there exist

elements bi ∈ Np+iNq+i(G) for 0 ≤ i < r such that b0 ∈ b, δp+rq+r−1(br−1) ∈ c and

δp+iq+i−1(bi−1) = (−1)p+i+1dp+iq+i(bi) for 0 < i < r. That is to say, dr(b) = c whenever one
can get from b to c by a diagram chasing of the form:

br−1
� δ //

_

(−1)p+rd

��

δ(br−1) ∈ c

b2
� δ //

_

(−1)p+3d
��

· · ·

b1
� δ //

_

(−1)p+2d
��

δ(b1)

b0 ∈ b � δ // δ(b0)

It is not difficult to see that these relations have the following properties.

(1) Naturality : let b ∈ π′q(Gp) and c ∈ π′q+r−1(Gp+r) such that dr(b) = c, f : G → F a
cosimplicial map, and f∗ the induced map on the corresponding homotopy groups.
Then dr(f∗(b)) = f∗(c).

(2) Additivity : if b, b′ ∈ π′q(Gp) and c, c′ ∈ π′q+r−1(Gp+r) satisfy dr(b) = c and dr(b′) = c′,
then dr(b− b′) = c− c′.

(3) For r = 1, d1 : π′q(Gp)→ π′q(Gp+1) is the function induced by the coboundary map,

δp+1
q =

∑p+1
j=0(−1)j∂j.
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(4) If r > 1, the domain of definition of dr is the kernel of dr−1, that is to say, given
b ∈ π′q(Gp) then dr(b) = c for some c ∈ π′q+r−1(Gp+r) if and only if dr−1(b) = 0.

(5) For r > 1, the indeterminacy of dr is the image of dr−1, in other words, if b ∈ π′q(Gp)
then dr(0) = b if and only if dr−1(a) = b for some a ∈ π′q−r+2(Gp−r+1).

(6) The relations dr are “differentials”, that is, if b ∈ π′q(Gp) and c ∈ π′q+r−1(Gp+r) are
such that dr(b) = c, then dr(c) = 0.

These properties produce a second quadrant spectral sequence E = (Er, dr)r≥1 with

E1
p,q = π′q(Gp)

Er
p,q =

π′q(Gp) ∩Ker dr−1

π′q(Gp) ∩ Im dr−1
, r > 1

where the differential maps dr : Er
p,q → Er

p+r,q+r−1 are the morphisms induced by the
relations dr on the corresponding quotients.

If G is augmented (that is, there exist a simplicial Abelian group G−1 and a morphism
∂0 : G−1 → G0 such that ∂1∂0 = ∂0∂0 : G−1 → G1), then one can define a natural
filtration of the graded group π∗(G−1)

· · · ⊆ F p+1πq(G−1) ⊆ F pπq(G−1) ⊆ · · · ⊆ F 0πq(G−1) = πq(G−1) for each q ∈ N

together with isomorphisms

E∞p,q
∼=

F pπq(G−1)

F p+1πq(G−1)

which implies that the spectral sequence converges to the homotopy groups of the sim-
plicial Abelian group G−1, E1 ⇒ π∗(G−1).

Let us remark that if each group Gpq of the cosimplicial simplicial Abelian group G
is finitely generated, then the corresponding spectral sequence is easily computable by
means of elementary operations with integer matrices (even if the total space T∗(G∗,∗) is
not effective). Similarly, if each column Gp∗ has effective homology, then one can compute
the groups Er

p,q (which only depend on the columns p−r+1, . . . , p+r−1 of the associated
bicomplex) and the differential maps drp,q for every p, q, r ∈ N, although it is not always
possible to determine the final groups E∞p,q.

Algorithm 14.
Input:

• a cosimplicial simplicial Abelian group G,
• reductions ρp = (fp, gp, hp) : Gp∗⇒⇒HGp∗ for each column p ≥ 0, where
HGp∗ = (HGpq , dpq)q∈N is an effective chain complex.

Output:

• the groups Er
p,q for each p, q ∈ Z and r ≥ 1, with a basis-divisors description,

• the differential maps drp,q for every p, q ∈ Z and r ≥ 1.



138 Chapter 5 Effective homology and Bousfield-Kan spectral sequence

5.1.4 Cosimplicial simplicial sets

A cosimplicial simplicial Abelian group is a particular case of cosimplicial object over
the category of simplicial sets.

5.1.4.1 Definitions and examples

Definition 5.12. A cosimplicial simplicial set, also called a cosimplicial space, is a
cosimplicial object over the category S of simplicial sets.

In other words, a cosimplicial space X consists of a bigraded family X = {X p
q }p,q∈N

with face, coface, degeneracy and codegeneracy maps ∂i : X p
q → X

p
q−1, ∂

j : X p−1
q → X p

q ,
ηi : X p

q → X
p
q+1, and ηj : X p+1

q → X p
q , for 0 ≤ i ≤ q and 0 ≤ j ≤ p, satisfying the same

properties as seen for cosimplicial simplicial Abelian groups. A cosimplicial space X can
be represented by a diagram as follows:

X 0
0 X 1

0 X 2
0 X 3

0

X 0
1 X 1

1 X 2
1 X 3

1

X 0
2 X 1

2 X 2
2 X 3

2

X 0
3 X 1

3 X 2
3 X 3

3

· · ·

· · ·

· · ·

· · ·

...
...

...
...

∂0,∂1
//

∂0,∂1
//

∂0,∂1
//

∂0,∂1
//

∂0,∂1,∂2
//

∂0,∂1,∂2
//

∂0,∂1,∂2
//

∂0,∂1,∂2
//

∂0,∂1,∂2,∂3
//

∂0,∂1,∂2,∂3
//

∂0,∂1,∂2,∂3
//

∂0,∂1,∂2,∂3
//

η0
oo

η0
oo

η0
oo

η0
oo

η0,η1
oo

η0,η1
oo

η0,η1
oo

η0,η1
oo

η0,η1,η2
oo

η0,η1,η2
oo

η0,η1,η2
oo

η0,η1,η2
oo

∂0,∂1

��

∂0,∂1

��

∂0,∂1

��

∂0,∂1

��

∂0,∂1,∂2

��

∂0,∂1,∂2

��

∂0,∂1,∂2

��

∂0,∂1,∂2

��

∂0,∂1,∂2,∂3

��

∂0,∂1,∂2,∂3

��

∂0,∂1,∂2,∂3

��

∂0,∂1,∂2,∂3

��

η0

OO

η0

OO

η0

OO

η0

OO

η0,η1

OO

η0,η1

OO

η0,η1

OO

η0,η1

OO

η0,η1,η2

OO

η0,η1,η2

OO

η0,η1,η2

OO

η0,η1,η2

OO

An initial example of cosimplicial space is the cosimplicial standard simplex ∆.

Definition 5.13. The cosimplicial standard simplex ∆ consists in codimension n of the
standard n-simplex ∆[n] (which is a simplicial set), and the coface and codegeneracy
maps are the standard maps ∂j : ∆[n− 1]→ ∆[n] and ηj : ∆[n+ 1]→ ∆[n] introduced
in Section 1.2.1.

Another important example of cosimplicial simplicial set is the cosimplicial resolution
of a simplicial set. This cosimplicial space will be intensively used in the second part
of this chapter, because it is the initial point for the definition of the Bousfield-Kan
spectral sequence.
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Definition 5.14. Let X be a pointed simplicial set and R a ring, the cosimplicial
resolution of X with respect to R is the augmented cosimplicial space RX given by

• for each cosimplicial degree p, the column RXp is the simplicial R-module Rp+1X
obtained by applying p+ 1 times the functor R (Definition 4.15) to the simplicial
set X (with the corresponding face and degeneracy maps);

• the coface and codegeneracy operators are defined as

∂j : RXp−1 = RpX −→ RXp = Rp+1X, ∂j = RjΦRp−j

ηj : RXp+1 = Rp+2X −→ RXp = Rp+1X, ηj = RjΨRp−j

where the maps Φ : X → RX and Ψ : R2X → RX are given by Φ(x) = 1 ∗ x for
all x ∈ X and Ψ(1 ∗ y) = y for all y ∈ RX, as defined in Section 4.2;

• the augmentation is given by the map Φ : X → RX.

We will usually work with R = Z. In this case, it is worth emphasizing that each
column RXp = Rp+1X is a simplicial Abelian group, which implies that for each q ≥ 0
the set RXp

q is an Abelian group, and the face operators ∂i : RXp
q → RX

p
q−1 and the

degeneracies ηi : RXp
q → RX

p
q+1 are group morphisms. On the other hand, one can

observe that the codegeneracy maps ηj : RXp+1
q → RXp

q are also morphisms of groups
for all j ≥ 0, but ∂j : RXp−1

q → RXp
q is a group morphism only if j ≥ 1. For j = 0,

∂0 : RXp−1
q → RXp

q is not a morphism of groups. For this reason, the cosimplicial space
RX is said to be grouplike.

The fact of ∂0 not being a group morphism prevents the construction of the bicom-
plexes RX∗,∗ and N∗N∗(RX), and in this way it is not possible to define an associated
spectral sequence as the spectral sequence of N∗N∗(RX), as done in the case of cosim-
plicial simplicial Abelian groups. Nevertheless, it can be seen that there also exists
a spectral sequence associated with any cosimplicial space, which generalizes the one
introduced in Section 5.1.3.2.

5.1.4.2 Homotopy spectral sequence of a cosimplicial space

Let X = {X p
q }p,q∈N be a cosimplicial space. Although it is not possible (in general) to

construct directly a spectral sequence by means of an associated bicomplex (as done for
cosimplicial simplicial Abelian groups), Bousfield and Kan proved in [BK73a] that there
also exists a unique spectral sequence generalizing the previous one.

First of all, let us remark that the codegeneracy operators ηj : X p
q → X p−1

q induce
maps πq(η

j) ≡ ηj : πq(X p) → πq(X p−1) for 0 ≤ j ≤ p − 1, which are morphisms of
groups. Therefore, it makes sense to define the normalized homotopy groups

π′q(X p) = πq(X p) ∩Ker η0 ∩ . . . ∩Ker ηp−1 ⊆ πq(X p)
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Theorem 5.15. [BK73a] Let X be a cosimplicial space with base point. Then there
are unique relations

dr : π′q(X p) ⇀ π′q+r−1(X p+r), r ≥ 1 and q > p ≥ 0

which satisfy properties (1) through (6) of Section 5.1.3.2, and if X is a cosimplicial
simplicial Abelian group coincide with the relations defined there.

These relations, which are built by means of universal examples (see [BK73a]), involve
the loop space and classifying space functors; they are rather sophisticated, so that
their constructive construction, certainly possible, is postponed to future work. These
relations produce the Bousfield-Kan spectral sequence for a cosimplicial space.

Theorem 5.16. [BK73a] Let X be a cosimplicial space with base point. Then there
exists a second quadrant spectral sequence E = (Er, dr)r≥1 with

E1
p,q = π′q(X p)

This spectral sequence is called the (homotopy) spectral sequence of the cosimplicial
space X . If X is augmented, and under some favorable conditions, it converges to the
homotopy groups π∗(X−1). Furthermore, if X is a cosimplicial simplicial Abelian group,
it coincides with the spectral sequence defined in Section 5.1.3.2.

We will explain in the next sections how the current tools provided by effective ho-
mology allow us to obtain easily the groups E1

p,q and E2
p,q of the Bousfield-Kan spectral

sequence when every column of the cosimplicial space is provided with effective ho-
mology. As explained before, the effective construction of the additive relations which
are necessary to obtain the Er

p,q for r ≥ 3 seems an interesting challenge. It must be
mentioned that our spectral sequence is also associated with a tower of fibrations com-
ing from the realization process for the studied cosimplicial space; applying analogous
methods of effective homotopy to these fibrations could also produce the same spectral
sequence in a more intrinsic environment, see Section 5.2.3.3.

An important example of homotopy spectral sequence of a cosimplicial space is the
one associated with the cosimplicial resolution RX of a 1-reduced simplicial set X with
base point ? ∈ X0. This will lead to the Bousfield-Kan spectral sequence of a simplicial
set X, which if X is 1-reduced converges to the homotopy groups π∗(X, ?). The second
part of this chapter is focused on the study of this spectral sequence.

5.2 Construction of the Bousfield-Kan spectral se-

quence

The Bousfield-Kan spectral sequence was introduced in [BK72a], followed by the
book [BK72b], which is the most complete reference about this rich mathematical ob-
ject. One year later, Bousfield and Kan also published the papers [BK73a] and [BK73b],
including some interesting properties about their famous spectral sequence.
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Theorem 5.17 (Bousfield-Kan spectral sequence). [BK72a] Let X be a simplicial
set with base point ? ∈ X0, and R a ring. There exists a second quadrant spectral
sequence E = (Er, dr)r≥1, whose E1 term is given by

E1
p,q = π′q(RXp) = πq(R

p+1X) ∩Ker η0 ∩ . . . ∩Ker ηp−1

which in the case R = Z and under suitable hypotheses (for instance, if X is 1-reduced)
converges to the homotopy groups π∗(X, ?).

In order to obtain this spectral sequence, Bousfield and Kan considered different con-
structions, the cosimplicial resolution of X introduced in Definition 5.14 playing always
an essential role. The initial definition (that of [BK72a]) makes use of derived func-
tors. In [BK72b], the spectral sequence is defined by means of the homotopy spectral
sequence of a tower of fibrations. Finally, in [BK73a] we find the homotopy spectral
sequence of the cosimplicial space RX as defined in Section 5.1.4.2, by means of addi-
tive relations and universal examples. In [BK72b] and [BK73b] it was proved that the
different constructions lead to the same spectral sequence.

In the next section, the first stage E1 of the Bousfield-Kan spectral sequence associ-
ated with a simplicial set X (given by Theorem 5.17) is studied, allowing us to deduce
some interesting properties of the spectral sequence. In Section 5.2.2, we present two
algorithms which compute the levels E1 and E2 when X is a simplicial set with effective
homology. Finally, Section 5.2.3 includes the sketch of a new algorithm (which is yet
not finished), based again on the effective homology technique, computing in this case
the whole Bousfield-Kan spectral sequence. However, we must remark that this general
algorithm would not be always sufficient to determine the “limit” groups π∗(X), because
of the possible extension problems.

5.2.1 Study of the first level of the spectral sequence

The initial page E1 of the Bousfield-Kan spectral sequence is done with the homotopy
groups of the columns of the cosimplicial space RX, which are normalized in the hori-
zontal sense:

E1
p,q = π′q(RXp) = πq(R

p+1X) ∩Ker η0 ∩ . . . ∩Ker ηp−1

Theorem 5.18. Let X be a 1-reduced pointed simplicial set, and E = (Er, dr)r≥1 the
associated Bousfield-Kan spectral sequence. Then E1 satisfies

E1
p,q = 0 if q < 2p+ 2

This theorem implies in particular that the bigraded module E1 = {E1
p,q}p,q∈Z is

tapered, which ensures the convergence of the spectral sequence under comfortable con-
ditions. This property is probably already known, but we have not been able to find
a reference. The proof that we propose here is completely elementary (it only depends
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on the Hurewicz theorem), but is relatively difficult. However, it has the advantage of
describing in a detailed way the structure of the level E1, having this description itself its
own interest. We begin by explaining the general organization of this proof, the details
are then a sequence of elementary lemmas.

Following the indexation (p, q) of a page Er of the spectral sequence, we denote

πp,q ≡ πq(R
p+1X)

which is the vertical homotopy group in the position (p, q) before the horizontal normal-
ization. In particular π0,q = πq(RX) ∼= Hq(X) for q ≥ 1 is an initial group; we are going
to show that these groups Hq(X) are sufficient to produce the page E1 of the spectral
sequence, following a recursive process which must be well understood. We are going to
give a description of πp,q of the following form

πp,q ∼=
⊕

G∈Genq

(πG)nG(p)

where

• Genq is the set of genealogies of degree q, a notion which will be defined later;

• πG is the Abelian group canonically associated with a genealogy G;

• nG is the enumeration function describing for each p how many components πG
take part of the description of πp,q.

In other words, each group πp,q has an structure depending just on the ordinate q,
since it is a sum of components πG for G ∈ Genq a genealogy of degree q; the unique
factor which depends on p is the number of components, described by the enumeration
function nG.

The first “stage” in the normalization process replaces πp,q by

π1
p,q ≡ πp,q ∩Ker ηp−1, p ≥ 1

The usual considerations for the decompositions in direct sums involved in the cosim-
plicial identity ηp−1∂p = Id give

π1
p,q
∼=

⊕
G∈Genq

(πG)nG(p)−nG(p−1) for p ≥ 1

That is to say, a “stage” of normalization replaces the exponent nG of πG in the
expression of πp,q by its discrete derivative.

We are going to show also that an enumeration function nG, for G a genealogy of
degree q, is in fact a polynomial of degree < q/2, a bound which only depends on the
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ordinate q. This degree is then decreased by one unit at each stage of normalization,
and a sufficient number of such stages cancels the exponent. The number of stages of
normalization which one must apply to πp,q in order to obtain E1

p,q = π′q(R
p+1X) ≡ π′p,q

is exactly p; since the possible degree for nG is bounded by q/2, it follows that π′p,q = 0
for q < 2p+ 2.

A genealogy G ∈ Genq is the description of a recursive process which reproduces
indefinitely the number nG(p) (which in general increases with p) of components πG in
πp,q, the ordinate q being fixed. Each column Rp+1X of our cosimplicial space RX can
be written:

Rp+1X ∼=
∏
q≥2

K(πp,q, q)

The next column can be described in an analogous way, although now a little more
complex:

Rp+2X ∼=
∏
q′≥2

K(Hq′(R
p+1X), q′) ∼=

∏
q′≥2

K(Hq′(
∏
q≥2

K(πp,q, q)), q
′) ∼=

∏
q≥2

K(πp+1,q, q)

This expression allows us to describe the collection {πp+1,q}q≥2 with the help of the
previous collection {πp,q}q≥2 by means of homology groups of Eilenberg-MacLane spaces.
To this aim one must apply the Künneth formula; each Eilenberg-MacLane space is going
to produce (new genealogies of) homology groups which are going to combine among
them following Künneth. The relation Hq(K(π, q)) = π implies the repetition in each
πp+1,q of every occurrences of πG in πp,q; since each occurrence of πG in πp+1,q is going
to repeat itself, the process of generation between the columns p and p + 1 is going to
be repeated again between the columns p + 1 and p + 2, etc. In this process one must
control the history of each component πG in πp,q by going back until the starting point,
the column 0 which is simply RX. This history of πG is described in the genealogy G
and it allows us to control the degree of the polynomial nG(p). We are going to show
that in fact the process of normalization kills all these repetitions, except on the left of
the line q = 2p + 2 where the situation remains more complicated; in particular this is
the only part of the page where there are new appearances.

Once we have given the general ideas, we start now with the detailed proof of The-
orem 5.18, which makes use of several lemmas.

First of all, for p = 0 one has

E1
0,q = π′0,q = π0,q = πq(RX)

And provided that X is 1-reduced, RX = Z[X]/Z[?] is also 1-reduced and it follows
that π0(RX) ∼= π1(RX) = 0. Therefore

E1
0,q = 0 for 0 ≤ q < 2
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Then, what happens for p = 1?

Lemma 5.19. Let X be a 1-reduced pointed simplicial set and RX its cosimplicial
resolution. Then

π′1,q = π′q(RX1) = 0 for 0 ≤ q < 4

Proof. We consider the columns 0 and 1 of the cosimplicial space RX:

RX R2X
∂0,∂1

//

η0
oo

and the induced maps on the homotopy groups

πq(RX) πq(R
2X)

∂0,∂1
//

η0
oo

As far as R2X is also 1-reduced, one has π0(R
2X) ∼= π1(R

2X) = 0. As a result

π′1,q = π′q(R
2X) = πq(R

2X) ∩Ker η0 = 0 for q = 0, 1

On the other hand, the cosimplicial identity η0∂0 = IdRX induces η0∂0 = Idπq(RX)

for each q ≥ 0. Moreover, the coface ∂0 : RX → R2X is given by ∂0 = ΦR, so that,
as stated in Section 4.2, the induced map on the homotopy groups is the Hurewicz
homomorphism

πq(RX) −→ πq(R
2X) ∼= H̃q(RX)

Then, the Hurewicz Theorem 1.50 implies that, for dimensions q = 2 and 3, the
map ∂0 : π2(RX) → π2(R

2X) is an isomorphism, and ∂0 : π3(RX) → π3(R
2X) is an

epimorphism. As far as η0∂0 = Idπq(RX) for all q, ∂0 is always injective and therefore in
dimension 3 it is also an isomorphism. Making use again of the equation η0∂0 = Idπq(RX),
one has that η0 : π2(R

2X) → π2(RX) and η0 : π3(R
2X) → π3(RX) are isomorphisms,

so that
π′1,q = π′q(R

2X) = πq(R
2X) ∩Ker η0 = 0 if q = 2, 3

In this way, we have proved π′1,q = π′q(RX1) = 0 if 0 ≤ q < 4.

For p > 1, our proof becomes more complicated, and several previous ideas and
definitions are necessary. It is clear that the result is true when q = 0 or 1 (since Rp+1X
is 1-reduced for all p ≥ 0) and therefore in the sequel we will consider q ≥ 2.

We begin by recalling that the cosimplicial space RX is grouplike: each column
RXp = Rp+1X is a simplicial Abelian group (and therefore the face and degeneracy
operators ∂i : Rp+1Xq → Rp+1Xq−1 and ηi : Rp+1Xq → Rp+1Xq+1, 0 ≤ i ≤ q, are group
morphisms), the codegeneracy maps ηj : RXp+1

q = Rp+2Xq → RXp
q = Rp+1Xq are also

group morphisms for all 0 ≤ j ≤ p, and ∂j : RXp−1
q = RpXq → RXp

q = Rp+1Xq is a
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group morphism if 1 ≤ j ≤ p. In other words, there is a unique operator which is not
compatible with the group addition, which is the first coface

∂0 : RXp−1
q = RpXq −→ RXp

q = Rp+1Xq for each p, q ∈ N

The fact of ηj being a group morphism for all j (and compatible with the face and
degeneracy operators) allows us to define the simplicial Abelian group Np(RX), whose
set of q-simplices is given by

Np(RX)q = Rp+1Xq ∩Ker η0 ∩ . . . ∩Ker ηp−1

Taking into account that the codegeneracy maps ηj commute with ∂i and ηi, it is not
hard to prove that the homotopy groups of Np(RX) are in fact the normalized homotopy
groups π′q(RXp) ≡ π′p,q (which, as seen before, define the level E1 of the Bousfield-Kan
spectral sequence of the simplicial set X), that is to say,

πq(N
p(RX)) = πq(R

p+1X ∩Ker η0 ∩ . . . ∩Ker ηp−1)
∼= πq(R

p+1X) ∩Ker η0 ∩ . . . ∩Ker ηp−1 ≡ π′p,q

where the maps ηj ≡ πq(η
j) : πp,q = πq(R

p+1X)→ πp−1,q = πq(R
pX) are induced by the

codegeneracy operators ηj : RXp = Rp+1X → RXp−1 = RpX.

If we consider only the last codegeneracy and coface operators

RpX Rp+1X
∂p

//

ηp−1
oo

then the kernel Rp+1X ∩Ker ηp−1 is also a simplicial Abelian group and the cosimplicial
identity ηp−1∂p = IdRpX gives a decomposition

Rp+1X ∼= (Rp+1X ∩Ker ηp−1)⊕ (RpX)

which is preserved in the homotopy groups:

πq(R
p+1X) ∼= πq(R

p+1X ∩Ker ηp−1)⊕ πq(RpX) for all q

Equivalently, if we denote π1
p,q ≡ πq(R

p+1X∩Ker ηp−1) ∼= πq(R
p+1X)∩Ker ηp−1, then

we have

πp,q ∼= π1
p,q ⊕ πp−1,q for all q

In view of the cosimplicial identities, given an element x ∈ Rp+1X ∩ Ker ηp−1, one
has ηp−2ηjx = ηjηp−1x = 0 for 0 ≤ j ≤ p− 2, which implies that ηjx ∈ RpX ∩Ker ηp−2.
Therefore it is possible to define the simplicial group morphisms

ηj : Rp+1X ∩Ker ηp−1 −→ RpX ∩Ker ηp−2, 0 ≤ j ≤ p− 2
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Similarly, if x ∈ Rp+1X ∩ Ker ηp−1, then ηp∂jx = ∂jηp−1x = 0 for 0 ≤ j ≤ p− 1, so
that it makes sense to define

∂j : Rp+1X ∩Ker ηp−1 −→ Rp+2X ∩Ker ηp, 0 ≤ j ≤ p− 1

which is a simplicial group morphism if j ≥ 1. Let us recall that ∂0 is not a morphism
of groups.

Furthermore, since ηp∂p = ηp∂p+1 = IdRp+1X , we can also define

∂̃p = ∂p − ∂p+1 : Rp+1X ∩Ker ηp−1 −→ Rp+2X ∩Ker ηp

It is worth emphasizing that ∂p and ∂p+1 are group morphisms (note that p > 0),
so that the last definition makes sense and ∂̃p is again a morphism of simplicial Abelian
groups.

In this way, we have built

ηj : Rp+1X ∩Ker ηp−1 −→ RpX ∩Ker ηp−2 0 ≤ j ≤ p− 2

∂j, ∂̃p : Rp+1X ∩Ker ηp−1 −→ Rp+2X ∩Ker ηp 0 ≤ j < p

and it is not hard to prove that they satisfy the cosimplicial identities of Definition 5.1.
This gives rise to a new cosimplicial space, that we call N 1(RX), which in codimension p
is the simplicial Abelian group

N 1(RX)p = RXp+1 ∩Ker ηp = Rp+2X ∩Ker ηp

In particular, for the columns p− 2 and p− 1, one has the operators

N 1(RX)p−2 = RpX ∩Ker ηp−2 N 1(RX)p−1 = Rp+1X ∩Ker ηp−1
∂̃p−1

//

ηp−2
oo

which satisfy ηp−2∂̃p−1 = IdRpX∩Ker ηp−2 . The decomposition

Rp+1X ∩Ker ηp−1 ∼= (Rp+1X ∩Ker ηp−2 ∩Ker ηp−1)⊕ (RpX ∩Ker ηp−2)

is then deduced, and for the homotopy groups one has

πq(R
p+1X∩Ker ηp−1) ∼= πq(R

p+1X∩Ker ηp−2∩Ker ηp−1)⊕πq(RpX∩Ker ηp−2) for all q

In other words, if we denote π2
p,q ≡ πq(R

p+1X ∩Ker ηp−2 ∩Ker ηp−1) ∼= πq(R
p+1X)∩

Ker ηp−2 ∩Ker ηp−1, then

π1
p,q
∼= π2

p,q ⊕ π1
p−1,q for all q

Taking into account that N 1(RX) is also grouplike, one can iterate the process,
obtaining in a recursive way (grouplike) cosimplicial spaces

N s(RX) = N 1(N s−1(RX)), for s ≥ 2
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whose p-column N s(RX)p is the simplicial Abelian group

N s(RX)p = Rp+s+1X ∩Ker ηp ∩ . . . ∩Ker ηp+s−1

For the columns p − s − 1 and p − s, the last codegeneracy and coface operators
ηp−s−1 and ∂̃p−s = ∂p−s − ∂p−s+1 + · · ·+ (−1)s∂p

RpX ∩Ker ηp−s−1 ∩ . . . ∩Ker ηp−2 Rp+1X ∩Ker ηp−s ∩ . . . ∩Ker ηp−1
∂̃p−s

//

ηp−s−1
oo

provide, as in the previous case, the following decomposition:

πq(R
p+1X ∩Ker ηp−s ∩ . . . ∩Ker ηp−1) ∼= πq(R

p+1X ∩Ker ηp−s−1 ∩ . . . ∩Ker ηp−1)

⊕ πq(RpX ∩Ker ηp−s−1 ∩ . . . ∩Ker ηp−2)

that is to say,
πsp,q
∼= πs+1

p,q ⊕ πsp−1,q for all q

where πsp,q ≡ πq(R
p+1X ∩Ker ηp−s ∩ . . . ∩Ker ηp−1).

We include these results in the next lemma, which will be used later.

Lemma 5.20. Given a simplicial set X, and non-negative integers p, q ∈ N and
0 ≤ s ≤ p− 1, there exists an isomorphism

πq(R
p+1X ∩Ker ηp−s ∩ . . . ∩Ker ηp−1) ∼= πq(R

p+1X ∩Ker ηp−s−1 ∩ . . . ∩Ker ηp−1)

⊕ πq(RpX ∩Ker ηp−s−1 ∩ . . . ∩Ker ηp−2)

We recall now that we are interested in the normalized groups

π′p,q = πq(R
p+1X)∩Ker η0 ∩ . . .∩Ker ηp−1 ∼= πq(R

p+1X ∩Ker η0 ∩ . . .∩Ker ηp−1) = πpp,q

In order to determine these groups, we are going to describe πp,q = πq(R
p+1X) as a

direct sum of different components. First of all, we remark that the homotopy groups of
Rp+1X are isomorphic to the (reduced) homology groups of the previous column RpX,
in other words

πp,q ∼= H̃q(R
pX) ∼= Hq(R

pX), q ≥ 2

Furthermore, RpX is a simplicial Abelian group and therefore, as stated in Theo-
rem 1.56, it is isomorphic to a product of Eilenberg-MacLane spaces of the form

RpX ∼=
∏
n≥0

K(πn(R
pX), n) =

∏
n≥2

K(πp−1,n, n)

If we apply (in a recursive way) the Eilenberg-Zilber Theorem 3.2, we obtain an
isomorphism

πp,q ∼= Hq(R
pX) ∼= Hq

(⊗
n≥2

C∗(K(πp−1,n, n))

)

Then, we can make use of the Künneth formula, which relates the homology groups
of the tensor product of two chain complexes with the homologies of the components.
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Theorem 5.21 (Künneth formula). [Dol72] Let C∗ and D∗ be (free) chain complexes.
Then there exists a natural exact sequence

0 −→ (H∗(C∗)⊗H∗(D∗))n −→ Hn(C∗ ⊗D∗) −→ (H∗(C∗) ∗H∗(D∗))n−1 −→ 0

where ∗ denotes the torsion product of two groups (see [Dol72] for details). This exact
sequence provides an isomorphism

Hn(C∗ ⊗D∗) ∼=

( ⊕
m+r=n

(Hm(C∗)⊗Hr(D∗))

)
⊕

( ⊕
m+r=n−1

(Hm(C∗) ∗Hr(D∗))

)

In our case, this formula gives a decomposition of the group πp,q ∼= Hq(R
pX) in terms

of Hi(K(πp−1,n, n)) ∼= Hi(K(Hn(R
p−1X), n)). Taking into account that given a group π

and a positive integer m one has Hm(K(π,m)) = π and Hm+1(K(π,m)) = 0 (a property
of Eilenberg-MacLane spaces which can easily be proved making use of the Hurewicz
Theorem 1.50), for instance for q = 6 we obtain

πp,6 ∼= H6(R
pX) ∼= πp−1,6 ⊕H6(K(πp−1,2, 2))⊕H6(K(πp−1,3, 3))⊕H6(K(πp−1,4, 4))

⊕ (πp−1,2 ⊗ πp−1,4)⊕ (πp−1,2 ∗ πp−1,3)

Iterating the process for the groups

πp−1,n
∼= Hn(R

p−1X) ∼= Hn

(∏
m≥2

K(πp−2,m,m)

)

we obtain an expression for the group πp,q ∼= Hq(R
pX) based on the initial groups

π0,n
∼= Hn(X) ≡ Hn. As an example, we show in the following lines the decomposition

of the groups π1,6
∼= H6(R

2X) and π2,7
∼= H7(R

3X).

H6(R
2X) ∼= H6(K(H2, 2)×K(H3, 3)×K(H4, 4)×K(H4(K(H2, 2)), 4)

×K(H5, 5)×K(H5(K(H2, 2)), 5)×K(H5(K(H3, 3)), 5)

×K(H2 ⊗H3, 5)×K(H6, 6))
∼= [H6(K(H6, 6))]⊕ [H6(K(H2, 2))]2 ⊕ [H6(K(H3, 3))]2 ⊕ [H6(K(H4, 4))]2

⊕ [H6(K(H4(K(H2, 2)), 4))]⊕ [H2(K(H2, 2))⊗H4(K(H4, 4))]2

⊕ [H2(K(H2, 2))⊗H4(K(H4(K(H2, 2)), 4))]⊕ [H2(K(H2, 2)) ∗H3(K(H3, 3))]2

∼= H6 ⊕ [H6(K(H2, 2))]2 ⊕ [H6(K(H3, 3))]2 ⊕ [H6(K(H4, 4))]2

⊕ [H6(K(H4(K(H2, 2)), 4))]⊕ [H2 ⊗H4]
2 ⊕ [H2 ⊗H4(K(H2, 2))]⊕ [H2 ∗H3]

2
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H7(R
3X) ∼= H7(K(H2, 2)×K(H3, 3)×K(H4, 4)×K([H4(K(H2, 2))]2, 4)

×K(H5, 5)×K([H5(K(H2, 2))]2, 5)×K([H5(K(H3, 3))]2, 5)

×K([H2 ⊗H3]
2, 5)×K(H6, 6)× · · · )

∼= H7 ⊕ [H7(K(H2, 2))]3 ⊕ [H7(K(H3, 3))]3 ⊕ [H7(K(H4, 4))]3

⊕ [H7(K(H4(K(H2, 2)), 4))]3 ⊕ [H7(K(H5, 5))]3 ⊕ [H7(K(H5(K(H2, 2)), 5))]3

⊕ [H7(K(H5(K(H3, 3)), 5))]3 ⊕ [H7(K(H2 ⊗H3, 5))]3 ⊕ [H4(K(H2, 2))⊗H3]
3

⊕ [H3 ⊗H4]
3 ⊕ [H3 ⊗H4(K(H2, 2))]3 ⊕ [H2 ⊗H5(K(H3, 3))]3

⊕ [H2 ⊗H5]
3 ⊕ [H2 ⊗H5(K(H2, 2))]3 ⊕ [H2 ⊗H5(K(H3, 3))]3

⊕ [H2 ⊗ (H2 ⊗H3)]
3 ⊕ [H2 ∗H4]

3 ⊕ [H2 ∗H4(K(H2, 2))]3

For higher p and q this decomposition becomes more complicated, but one can ob-
serve that all the groups πp,q ∼= Hq(R

pX) are isomorphic to a direct sum of differ-
ent components (which may occur several times) obtained recursively from the initial
groups Hn ≡ Hn(X).

We can formalize this construction defining the notion of genealogy. The set of
genealogies Gen is a totally ordered graded set defined as the disjoint union of a family
of totally ordered graded sets {GGn}n∈N, which are built in a recursive way. The starting
point is

GG0 = {Hi}i≥2

where each Hi is a symbol. The degree of Hi is i, and the ordering in GG0 is defined by
Hi < Hj if i < j.

Let us suppose now that we have built GGi for i < n. We consider the set GGGn−1

given by the disjoint union

GGGn−1 =
∐
i<n

GGi

which becomes totally ordered simply by making use of the ordering of each GGi and
considering that if i < j then each element of GGi is less than every element of GGj.

We define then GGn as the set of expressions G of the form

G = [(d1 G1)c1(d2 G2)c2 · · · ck−1(dk Gk)]

where

• k is a positive integer (k ≥ 1);

• Gj ∈ GGGn−1 for all 1 ≤ j ≤ k;

• Gj−1 ≤ Gj for 1 < j ≤ k;

• Gk ∈ GGn−1;
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• if each Gj has degree d̃j, then dj ≥ d̃j and dj 6= d̃j + 1. Moreover, if k = 1, then
dj 6= d̃j;

• each cj is a connector (a symbol) in the set {⊗, ∗}.

The degree of G is defined as

d = d1 + · · ·+ dk + n∗

where n∗ is the number of connectors ∗ which appear in G.

The ordering of GGn is the lexicographical ordering obtained by considering in a
successive way, for instance,

k,G1, . . . , Gk, d1, . . . , dk, c1, . . . , ck−1

Once we have built recursively GGn for all n ∈ N, we define the set of genealogies

Gen =
∐
n∈N

GGn =
⋃
n∈N

GGGn

It is worth remarking that given q ≥ 2 it is possible to construct (in a recursive way,
starting with the base symbols Hi) the set Genq of genealogies of degree q, which is a
finite set. For instance, for q = 4 one has two genealogiesG1

4 = H4 andG2
4 = [(4H2)]. For

degree 5 we obtain G1
5 = H5, G

2
5 = [(5 H2)], G

3
5 = [(5 H3)], and G4

5 = [(2 H2)⊗ (3 H3)].
For q = 6, 7, and 8 there exist 8, 19, and 45 genealogies respectively.

Let us suppose now that each symbol Hi represents the group

Hi ≡ Hi(X) ∼= πi(RX), i ≥ 2

Then one can associate to every genealogy G ∈ Genq of degree q ≥ 2 an
Eilenberg-MacLane space K(G) built as follows:

• if G = Hq, then K(G) = K(Hq(X), q);

• if G = [(d1 G1)c1(d2 G2)c2 · · · ck−1(dk Gk)], then

K(G) = K(Hd1(K(G1))c1(· · · ck−1Hdk
(K(Gk)) · · · ), q)

where each cj represents a tensor product ⊗ or a torsion product ∗. We define then the
group πG associated with G by

πG = Hq(K(G))

which is given in fact by

• if G = Hq, then πG = Hq = Hq(X);
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• if G = [(d1 G1)c1(d2 G2)c2 · · · ck−1(dk Gk)], then

πG = Hd1(K(G1))c1(· · · ck−1Hdk
(K(Gk)) · · · )

We consider again the groups

πp,q = πq(R
p+1X) ∼= Hq(R

pX), q ≥ 2

On account of the isomorphisms

Hq(R
pX) ∼= Hq

(∏
n≥2

K(πp−1,n, n)

)
∼= Hq

(⊗
n≥2

C∗(K(πp−1,n, n))

)
and applying the Künneth formula in a recursive way, one obtains that πp,q is a direct
sum of different components

πp,q ∼= (C1)
m1 ⊕ · · · ⊕ (Cr)

mr

where each component Ci (which appears mi times) is directly related to some genealogy
of degree q, Gi ∈ Genq, such that Ci = πGi

.

In other words, πp,q can be described as

πp,q ∼=
⊕

G∈Genq

(πG)nG(p)

where the function nG counts the number of times the group πG appears as a component
of πp,q ∼= Hq(R

p+1X).

We note that different genealogies can lead to isomorphic groups, for instance

G = [(4 H2)⊗ (7 [(4 H2)⊗ (3 H3)])] ∈ GG2

G′ = [(4 [(4 H2)])⊗ (7 [(4 H2)⊗ (3 H3)])] ∈ GG2

πG ∼= πG′ ∼= H4(K(H2, 2))⊗H4(K(H2, 2))⊗H3

Since the isomorphisms between the groups associated with different genealogies are
not always easy to deal with, we will consider that πG and πG′ are different components.

To simplify the notation, we identify each genealogy G with the associated group πG.
The problem is: how can we count the number of times a genealogy G ∈ Genq occurs
in the group Hq(R

pX) ∼= πq(R
p+1X) = πp,q? In other words, how can we determine the

exponent nG(p) for each genealogy G?

Given a genealogy G ∈ Genq of degree q ≥ 2, the enumeration function

nG : N −→ N
p 7−→ nG(p)

which calculates how many times G ≡ πG appears as a component of the group πp,q ∼=
Hq(R

pX) can be built recursively as follows.
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• If G = Hq, then it is not difficult to observe that

nG(p) = 1 for all p ≥ 0

• If G = [(d1 G1)c1(d2 G2)c2 · · · ck−1(dk Gk)], then G can be present in πp,q in two
different ways:

– if G takes part of Hq(R
p−1X) ∼= πp−1,q, this provides directly an appearance

of G in πp,q ∼= Hq(R
pX), corresponding to a factor Hq(K(G)) obtained when

applying the Künneth formula. In other words, G appears in πp,q so many
times as G takes part already of πp−1,q, that is, nG(p− 1) times;

– G also occurs in πp,q ∼= Hq(R
pX) so many times as G can be obtained

in terms of the genealogies G1, . . . , Gk which take part of the groups
Hi(R

p−1X) ∼= πp−1,i with 2 ≤ i ≤ q − 2. In this case we regroup the fac-
tors in groups of equal genealogies:

G1,1, . . . , G1,k1 , G2,1, . . . , G2,k2 , . . . , Gr,1, . . . , Gr,kr

such that k1 + · · ·+ kr = k, Gj,1 = · · · = Gj,kj
≡ G′j for each 1 ≤ j ≤ r. Then

one can observe that the number of times the genealogy G is obtained in this
way is given by

Bin(nG′1(p− 1), k1) · · ·Bin(nG′r(p− 1), kr)

where for each p ≥ 1

Bin(nG′j(p− 1), kj) =

{ nG′
j
(p−1)···(nG′

j
(p−1)−kj+1)

kj !
if nG′j(p− 1) ≥ kj

0 if nG′j(p− 1) < kj

One has therefore

nG(p) = nG(p− 1) + Bin(nG′1(p− 1), k1) · · ·Bin(nG′r(p− 1), kr)

This means that the function nG(p) is obtained by discrete integration of the function

Bin(nG′1(p− 1), k1) · · ·Bin(nG′r(p− 1), kr)

Lemma 5.22. Given a genealogy G ∈ Genq with q ≥ 2, the number of times G appears
in the group πp,q ∼= Hq(R

pX) for each p ≥ 0, nG(p), is given by a polynomial in the
variable p of degree < q/2.

Proof. We apply induction on the degree q.

If q = 2 or 3, then it is not hard to observe that Hq(R
pX) ∼= Hq(X) ≡ Hq for all

p ≥ 0. It is clear then that the unique genealogy which takes part of πp,q is G = Hq, and

nHq(p) = 1 for all p ≥ 0
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Therefore if q = 2 or q = 3 then nG(p) is a polynomial of degree 0 < q/2 for every
genealogy G ∈ Genq.

Let us consider now q > 3, and let us suppose that for any genealogy G̃ ∈ Genq̃
such that q̃ < q the function n

eG(p) is a polynomial in p of degree < q̃/2. Let G be a
genealogy of degree q.

• If G = Hq, then
nG(p) = 1 for all p ≥ 0

so that we have a polynomial of degree 0 < q/2.

• If G = [(d1 G1)c1(d2 G2)c2 · · · ck−1(dk Gk)], we must distinguish two cases:

– if k = 1, then G = [(d1 G1)], with d1 = q and G1 a genealogy of degree
d̃1 ≤ d1 − 2 = q − 2. One has therefore

nG(p) = nG(p− 1) + nG1(p− 1)

where nG1(p− 1) is a polynomial in p of degree t < d̃1/2. In this way nG(p)
is the discrete primitive of a polynomial of degree t, so that it must be a
polynomial of degree t+ 1, with

t+ 1 <
d̃1

2
+ 1 ≤ q − 2

2
+ 1 =

q

2

– if k ≥ 2, then

nG(p) = nG(p− 1) + Bin(nG′1(p− 1), k1) · · ·Bin(nG′r(p− 1), kr)

where the family of genealogies G1, . . . , Gk has been regrouped as

G1,1, . . . , G1,k1 , G2,1, . . . , G2,k2 , . . . , Gr,1, . . . , Gr,kr

with k1 + · · ·+ kr = k, and Gj,1 = · · · = Gj,kj
≡ G′j for all 1 ≤ j ≤ r.

If kj > nG′j(p− 1) for some 1 ≤ j ≤ r, then

Bin(nG′1(p− 1), k1) · · ·Bin(nG′r(p− 1), kr) = 0

and the result holds. We suppose therefore kj ≤ nG′j(p− 1) for all j.

If each G′j has degree d′j, making use of the induction hypothesis, nG′j(p− 1)

is a polynomial in p of degree tj < d′j/2, which implies that

Bin(nG′j(p− 1), kj) =
nG′j(p− 1) · · · (nG′j(p− 1)− kj + 1)

kj!

is a polynomial in p of degree kj · tj ≤ kj · (d′j/2 − 1) = kj · d′j/2 − kj. As a
result, the polynomial

Bin(nG′1(p− 1), k1) · · ·Bin(nG′r(p− 1), kr)
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has degree

t = k1 · t1 + · · ·+ kr · tr ≤ k1 ·
d′1
2

+ · · ·+ kr ·
d′r
2
− k1 − · · · − kr

=
k1 · d′1 + · · ·+ kr · d′r

2
− k ≤ q

2
− k ≤ q

2
− 2

Since nG(p) is the primitive of Bin(nG′1(p− 1), k1) · · ·Bin(nG′r(p− 1), kr),
nG(p) must be a polynomial in p of degree

t+ 1 ≤ q

2
− 2 + 1 =

q

2
− 1 <

q

2

We have seen therefore that for each pair (p, q) with p ≥ 0 and q ≥ 2, the group
πp,q = πq(R

p+1X) ∼= Hq(R
pX) can be expressed as a direct sum of (groups associated

with) genealogies of degree q, each of them appearing several times:

πp,q ∼=
⊕

G∈Genq

(πG)nG(p)

where nG(p) is a polynomial in the variable p of degree < q/2.

On the other hand, for the previous column, the group πp−1,q
∼= Hq(R

p−1X) will be
given by

πp−1,q
∼=

⊕
G∈Genq

(πG)nG(p−1)

with nG(p− 1) ≤ nG(p) for each genealogy G ∈ Genq.

We must focus again on the normalized homotopy groups

π′p,q = π′q(R
p+1X) ∼= πq(R

p+1X ∩Ker η0 ∩ . . . ∩Ker ηp−1)

We begin by considering only the last codegeneracy map ηp−1 and the isomorphism

πq(R
p+1X) ∼= πq(R

p+1X ∩Ker ηp−1)⊕ πq(RpX)

which implies that the group π1
p,q = πq(R

p+1X ∩Ker ηp−1) can be described as

π1
p,q
∼=

⊕
G∈Genq

(πG)nG(p)−nG(p−1)

where the exponent nG(p) − nG(p − 1) is the discrete derivative of nG(p), denoted by
n1
G(p), which is also a polynomial in the variable p.

We consider now the group π2
p,q = πq(R

p+1X ∩Ker ηp−2 ∩Ker ηp−1) and the isomor-
phism

π1
p,q
∼= π2

p,q ⊕ π1
p−1,q
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It follows that
π2
p,q
∼=

⊕
G∈Genq

(πG)n
2
G(p)

where n2
G(p) ≡ n1

G(p)− n1
G(p− 1) is the discrete derivative of n1

G(p).

Then, iterating the process, for the group πsp,q = πq(R
p+1X∩Ker ηp−s∩ . . .∩Ker ηp−1)

we have the isomorphism (see Lemma 5.20)

πs−1
p,q
∼= πsp,q ⊕ πs−1

p−1,q

which implies that πsp,q is given by a direct sum of genealogies G ∈ Genq, where now
each G appears

nsG(p) ≡ ns−1
G (p)− ns−1

G (p− 1) times

Finally, for s = p, the group π′p,q
∼= πq(R

p+1X ∩ Ker η0 ∩ . . . ∩ Ker ηp−1) will be also
isomorphic to a direct sum of the form

π′p,q
∼=

⊕
G∈Genq

(πG)n
p
G(p)

where for each genealogy G, npG(p) is constructed recursively from np−1
G (p) as

npG(p) ≡ np−1
G (p)− np−1

G (p− 1)

Let us remark that if the initial function nG(p) is a polynomial of degree t > 0 then
the discrete derivative n1

G(p) has degree t − 1; if nG(p) has degree 0 (it is a constant),
then n1

G(p) = 0. In this way, the degree of npG(p) when t − p if t ≥ p, and npG(p) = 0
if t < p.

Let us suppose now that q < 2p + 2. Then, making use of Lemma 5.22, for each
genealogy G of degree q one has that nG(p) is a polynomial of degree t < q/2, and
therefore

t ≤ q

2
− 1 <

2p+ 2

2
− 1 = p+ 1− 1 = p

It follows then that npG(p) = 0 for every genealogy G of degree q, and therefore

π′p,q = 0 if q < 2p+ 2

We have completed in this way the proof of Theorem 5.18: given a 1-reduced pointed
simplicial set X then the associated Bousfield-Kan spectral sequence E = (Er, dr)r≥1

satisfies
E1
p,q = 0 if q < 2p+ 2

This important property implies in particular that the bigraded module
E1 = {E1

p,q}p,q∈Z is tapered, which guarantees the convergence of the spectral sequence:
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given p, q ∈ Z then drp,q = 0 whenever r > q − 2p − 3, and if r > p then drp−r,q−r+1 = 0,
which implies that E∞p,q = Er

p,q for r > max{p, q − 2p− 3}.

The convergence of the Bousfield-Kan spectral sequence is in fact already known,
and was proved by other means, for instance in [BK72a] and [BK73a]. Our proof is
more elementary but it could be useful. Furthermore, this reasoning will be used in the
next section to compute the first level of the spectral sequence in the case X = S2.

5.2.2 Algorithms computing E1 and E2

Let X be a 1-reduced pointed simplicial set. As said in the introduction of the second
part of this chapter, the associated Bousfield-Kan spectral sequence (which converges
to the homotopy groups π∗(X)) can be constructed by different means. We begin by
considering the one of [BK73a], where this spectral sequence is built as the homotopy
spectral sequence of the cosimplicial space RX, making use of additive relations and
universal examples as mentioned in Section 5.1.4.2.

The first level of this spectral sequence is therefore given by the normalized homotopy
groups:

E1
p,q = π′q(RXp) = πq(R

p+1X)∩Ker η0∩. . .∩Ker ηp−1 ∼= πq(R
p+1X∩Ker η0∩. . .∩Ker ηp−1)

and the first differential map d1 : E1
p,q → E1

p+1,q is the morphism induced by the alternate

sum δp+1
q =

∑p+1
j=0(−1)j∂j.

As seen in the previous section, the group π′q(RXp) = π′q(R
p+1X) ≡ π′p,q is given by

a direct sum of (groups associated with) genealogies

π′p,q
∼=

⊕
G∈Genq

(πG)n
p
G(p)

We have already mentioned that it is possible to construct all the genealogies G of
a given degree q, and one can also determine the corresponding enumeration functions
nG(p), and then npG(p). Furthermore, if the initial groups H∗(X) are known (and they
are finitely generated), then the Betti number and the torsion coefficients of each ge-
nealogy G (which is constructed by means of tensor and torsion products of finitely
generated groups) can also be determined, and in this way we can compute the normal-
ized groups π′q(R

p+1X) = E1
p,q for every p, q ∈ N.

Nevertheless, in order to compute the groups E2
p,q
∼= Ker d1

p,q/ Im d1
p−1,q the previous

information is not sufficient; an effective version of the groups E1
p,q, with the correspond-

ing generators, is necessary to determine the subgroups Ker d1
p,q and Im d1

p−1,q. At this
point, the effective homology method appears again.

We recall now the isomorphism π∗(RX) ∼= H̃∗(X), satisfied by any simplicial set X,

which implies π∗(R
p+1X) ∼= H̃∗(R

pX) for every p > 1. Hence one has

E1
p,q = πq(R

p+1X) ∩Ker η0 ∩ . . . ∩Ker ηp−1 ∼= H̃q(R
pX) ∩Ker η0 ∩ . . . ∩Ker ηp−1
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If X is a 1-reduced simplicial set with effective homology, then our Algorithm 11
(the fundamental result of Chapter 4) provides us the effective homology of the sim-
plicial Abelian group RX. Iterating the process (taking into account that RX is also
1-reduced), it is possible to obtain the effective homology of RpX for every p ≥ 1. In this
way, if X is an object with effective homology, then RpX is also an object with effective
homology, and this implies the groups H̃q(R

pX) ∼= πq(R
p+1X) (with the corresponding

generators) are computable.

The codegeneracy maps ηj are well-defined on these homotopy groups:

πq(η
j) ≡ ηj : πq(R

p+1X) −→ πq(R
pX) 0 ≤ j ≤ p− 1

and as far as πq(R
p+1X) and πq(R

pX) are groups of finite type, these maps can be
expressed as finite integer matrices. Therefore, the kernels ker ηj can be computed by
means of elementary operations for each 0 ≤ j ≤ p−1, and in this way one can determine
the normalized groups π′p,q = E1

p,q (with a basis-divisors description).

The differential map d1
p,q : E1

p,q → E1
p+1,q is induced by δp+1

q =
∑p+1

j=0(−1)j∂j. Then,

for a class [x] ∈ E1
p,q (given by means of the coefficients with respect to the generators

of the group) it is possible to compute the image d1
p,q([x]) = [δp+1

q (x)] ∈ E1
p+1,q. This

implies that, if X is an object with effective homology, the first level of the Bousfield-Kan
spectral sequence is computable.

Algorithm 15.
Input:

• a 1-reduced pointed simplicial set X,

• an equivalence C∗(X)⇐⇐DX∗⇒⇒HX∗, where HX∗ is an effective chain complex.

Output:

• the groups E1
p,q = π′q(R

p+1X) for each p, q ∈ Z, represented by means of their
basis-divisors description,

• the differential maps d1
p,q for all p, q ∈ Z.

Let us remark now that the differential maps d1
p,q : E1

p,q → E1
p+1,q can also be ex-

pressed as finite integer matrices. Therefore it is possible to determine their kernel and
their image, and using the Smith Normal Form technique we can easily compute the
quotient groups

E2
p,q =

Ker d1
p,q

Im d1
p−1,q

We obtain therefore the following algorithm which determines the groups of the
second level of the Bousfield-Kan spectral sequence. However, in this case the differential
maps cannot be computed.
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Algorithm 16.
Input:

• a 1-reduced pointed simplicial set X,

• an equivalence C∗(X)⇐⇐DX∗⇒⇒HX∗, where the chain complexHX∗ is effective.

Output: the groups E2
p,q for every p, q ∈ Z, with a basis-divisors representation.

We have seen in this way that the effective homology method makes it possible
to compute the first two stages of the Bousfield-Kan spectral sequence of a pointed
simplicial set X (when it is an object with effective homology). In this construction, our
Algorithm 11 plays an essential role, providing us the effective homology of the simplicial
Abelian groups RpX for every p ≥ 1, which in particular allow us to determine the
effective version of the groups H̃∗(R

pX) ∼= π∗(R
p+1X).

For instance, let us consider the case where the simplicial set X is the 2-sphere S2,
which is obviously an object with (trivial) effective homology. The first non-normalized

homotopy groups of the columns RXp, πq(R
p+1S2) ∼= H̃q(R

pS2), are given by the fol-
lowing figure.

p

q

0 0 0 0 0

0 0 0 0 0

Z Z Z Z Z

0 0 0 0 0

0 Z Z2 Z3 Z4

0 0 0 0 0

0 Z Z3 ⊕ Z2 Z6 ⊕ Z3
2 Z10 ⊕ Z6

2

0 0 0 0 0

0 Z Z5 ⊕ Z2
2 ⊕ Z3 Z14 ⊕ Z9

2 ⊕ Z3
3 Z30 ⊕ Z24

2 ⊕ Z6
3

//

OO

A little calculation with the genealogies of order ≤ 8 and the corresponding enumer-
ation functions makes it possible to compute the normalized groups π′q(R

p+1S2), which
satisfy π′q(R

p+1S2) = 0 whenever q < 2p+ 2.
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p

q

0 0 0 0 0

0 0 0 0 0

Z 0 0 0 0

0 0 0 0 0

0 Z 0 0 0

0 0 0 0 0

0 Z Z⊕ Z2 0 0

0 0 0 0 0

0 Z Z3 ⊕ Z2
2 ⊕ Z3 Z2 ⊕ Z3

2 0

//

OO

We must remark that, since our Algorithm 11 for the computation of the effective
homology of RX is not yet implemented, we cannot obtain the generators of the groups
πq(R

p+1S2), which are necessary to determine the effective version of the normalized
homotopy groups π′q(R

p+1S2) = πq(R
p+1S2)∩Ker η0∩ . . .∩Ker ηp−1. Once Algorithm 11

will be written in Common Lisp, we will be able to obtain the generators of the groups
πq(R

p+1S2) ∼= H̃q(R
pS2), and in this way the codegeneracy maps

πq(η
j) ≡ ηj : πq(R

p+1S2) −→ πq(R
pS2) 0 ≤ j ≤ p− 1

will be given by finite integer matrices, so that E1
p,q = π′q(R

p+1S2) will be determined by
means of a basis-divisors description.

Then, applying the coboundary map δp+1
q =

∑p+1
j=0(−1)j∂j to the generators of the

groups π′q(R
p+1S2), we will obtain the matrix representation of the differential maps

d1 : E1
p,q → E1

p+1,q, and computing their kernel and their image we will obtain the
second level E2

p,q of the Bousfield-Kan spectral sequence.

In view of the groups π′q(R
p+1S2) (and taking into account that

π′q(R
p+1S2) = E1

p,q = 0 if q < 2p + 2), for q ≤ 8 there exist only three possibly
non-null differential maps at level r = 1, namely d1

1,6, d
1
1,8 and d1

2,8. All the differentials
d2 are equal to zero, and for r = 3, only d3

1,8 : E3
1,8 → E3

4,10 could be non-null. This
implies all the groups E2

p,q for q ≤ 8 will be already the final groups E∞p,q, except possibly
E2

1,8. In this way, our Algorithm 16 makes it possible to compute many final groups E∞p,q
of the Bousfield-Kan spectral sequence associated with the 2-sphere S2. To be precise,
one has the following diagram, where the groups denoted by ? would be computable by
means of Algorithms 15 and 16.
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p

q

0 0 0 0 0

0 0 0 0 0

Z 0 0 0 0

0 0 0 0 0

0 Z 0 0 0

0 0 0 0 0

0 ? ? 0 0

0 0 0 0 0

0 ?? ? ? 0
r =∞

//

OO

Then, knowing that this spectral sequence converges to the homotopy groups π∗(S
2)

and that in this case we do not find extension problems, these groups would allow us
to determine the homotopy groups πn(S

2) for n ≤ 5. In particular, one has directly the
well-known results π2(S

2) = π3(S
2) = Z. For the the groups π4(S

2) and π5(S
2), one can

claim π4(S
2) ⊆ Z⊕ Z2 and π5(S

2) ⊆ Z⊕ Z2 ⊕ Z3
2 = Z3 ⊕ Z3

2, but to compute them an
implementation of Algorithms 11, 15 and 16 would be necessary.

When trying to compute π6(S
2), we need the group E∞1,8, but as we have said, it

cannot be determined by means of Algorithms 15 and 16 because the differential map
d3

1,8 : E3
1,8 → E3

4,10 could be non-null.

In order to compute the differentials dr with r ≥ 2, the definition of the spectral
sequence of a cosimplicial space does not seem to be sufficient. For this reason, in
the following section we consider an equivalent definition of the Bousfield-Kan spectral
sequence by means of towers of fibrations, which would be used to sketch a new algorithm
computing the higher levels.

5.2.3 Toward an algorithm computing the Bousfield-Kan spec-
tral sequence

As mentioned before, the construction of the Bousfield-Kan spectral sequence of a simpli-
cial set X as the homotopy spectral sequence of the cosimplicial space RX (introduced
in [BK73a]) does not provide us the necessary information to obtain an algorithm com-
puting every level of the spectral sequence. In this section, we deal with a different
version of the Bousfield-Kan spectral sequence, the one explained in [BK72b], which is
isomorphic to the previous construction. Before focusing on our particular situation, we
include some general definitions and results about the homotopy spectral sequence of a
tower of fibrations.
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5.2.3.1 Homotopy spectral sequence of a tower of fibrations

Let (Yn, fn)n≥0 be a tower of fibrations, that is to say, a family of pointed simplicial sets
{Yn}n≥0 with fibrations

· · · fn+1−→ Yn
fn−→ Yn−1

fn−1−→ · · · f1−→ Y0
f0−→ Y−1 = ?

where ? denotes the simplicial set with only one simplex ? in each dimension.

Its inverse limit is a simplicial set

lim
←−

Yn = Y

with projections pn : Y → Yn such that fn ◦ pn = pn−1, satisfying the corresponding
universal property for inverse limits.

Let Fn be the fiber of fn : Yn → Yn−1 for each n ≥ 0. The long exact sequence of
homotopy [May67] provides us the following diagram:

πq−p+1(Yp−2) πq−p(Yp−1) πq−p−1(Fp)

πq−p+1(Yp−1) πq−p(Fp) πq−p(Yp)

πq−p+1(Yp) πq−p(Yp+1) πq−p−1(Fp+2)

f

��

f

��

f

��

f

��

f

��

f

��

f

��

f

��

∂ // i //

∂ //

∂ //

where ∂ : π∗(Yn−1) → π∗−1(Fn) is the connecting morphism and i : π∗(Fn) → π∗(Yn) is

induced by the inclusion inc : Fn ↪→ Yn. We denote by f r the composition f◦ r· · · ◦f .
The picture leads to the following spectral sequence.

Theorem 5.23. [BK72b] Given a tower of fibrations (Yn, fn)n≥0, there exists a second
quadrant spectral sequence E = (Er, dr)r≥1 given by

Er
p,q =

i−1(Im f r−1)

∂(Ker f r−1)
for q ≥ p

Er
p,q = 0 otherwise

(if q = p, then Er
p,q is the set of orbits of the action of Ker f r−1) which under some good

conditions (see [BK72b] for details) converges to the homotopy groups of the inverse
limit Y .
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It is clear that, if the homotopy groups π∗(Yn) and π∗(Fn) are finitely generated
groups and they are explicitly known (with the corresponding generators) for all n, then
the groups Er

p,q are computable because the involved maps f , i and ∂ can be expressed
as finite integer matrices. In this way, as we want to develop an algorithm computing
the spectral sequence associated with a tower of fibrations, we will try to construct first
algorithms which determine the homotopy groups of the simplicial sets Yn and of the
fiber spaces Fn.

A particular example of tower of fibration comes associated with a cosimplicial space,
as we explain in the following section.

5.2.3.2 Another definition for the homotopy spectral sequence of a cosim-
plicial space

Given a cosimplicial space X , in Section 5.1.4.2 we have mentioned the construction
of the associated homotopy spectral sequence, based on additive relations and univer-
sal examples. The same spectral sequence can also be built making use of towers of
fibrations.

We begin by introducing some necessary definitions.

Definition 5.24. Let X be a cosimplicial space and K a simplicial set. The cosimplicial
space K × X is given in codimension n by the simplicial set K × X n. The coface and
codegeneracy operators are defined as the maps

IdK ×∂j : K ×X n−1 −→ K ×X n for 0 ≤ j ≤ n

IdK ×ηj : K ×X n+1 −→ K ×X n for 0 ≤ j ≤ n

Definition 5.25. Let X and Y be cosimplicial spaces, the function space hom(X ,Y) is
the simplicial set whose n-simplices are the cosimplicial morphisms

∆[n]×X −→ Y

with faces ∂i and degeneracies ηi given by the compositions

∆[n− 1]×X ∂i×IdX−→ ∆[n]×X −→ Y

∆[n+ 1]×X ηi×IdX−→ ∆[n]×X −→ Y

where ∆[n] is the standard n-simplex, and ∂i : ∆[n−1]→ ∆[n] and ηi : ∆[n+1]→ ∆[n]
are the standard maps introduced in Section 1.2.1.

Definition 5.26. Let X be a cosimplicial space, the total space TotX is the simplicial
set defined as the function space

TotX = hom(∆,X )
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The total space of a cosimplicial space X can be seen as an inverse limit

TotX = lim
←−

TotnX

where TotnX is the simplicial set

TotnX = hom(∆[n],X ) for n ≥ −1

and ∆[n] ⊂ ∆ is the simplicial n-skeleton of the cosimplicial space ∆, in other words,
∆[n] consists in codimension m of the n-skeleton of the simplicial set ∆[m]. The map
fn : TotnX → Totn−1X is induced by the inclusion ∆[n−1] ⊂ ∆[n]. Furthermore, one
can observe that Tot−1X = ? and Tot0X ∼= X 0.

If X is augmented (that is, a simplicial set X−1 and a simplicial morphism
∂0 : X−1 → X 0 are given such that ∂1∂0 = ∂0∂0 : X−1 → X 1), then ∂0 induces mor-
phisms

pn : X−1 −→ TotnX
which are compatible with the maps fn : TotnX → Totn−1X .

Whenever the cosimplicial space X is fibrant (see [BK72b] for details), it can be
proved that (TotnX , fn)n≥0 is a tower of fibrations, and therefore we can consider the
associated homotopy spectral sequence E = (Er, dr)r≥1 which under favorable condi-
tions [BK72b] converges to π∗(TotX ).

This new definition of the homotopy spectral sequence of a cosimplicial space coin-
cides with the one explained in Section 5.1.4.2.

Let us consider now a pointed simplicial set X, and the associated augmented cosim-
plicial space RX. Provided that it can be seen that every grouplike cosimplicial space is
fibrant and RX is grouplike, the homotopy spectral sequence of RX can also be defined
as the spectral sequence of the tower of fibrations(

TotnRX = hom(∆[n],RX), fn
)
n≥0

In this case, as stated in [BK72b, p. 282], the fiber space Fn of the fibration
fn : TotnRX = hom(∆[n],RX)→ Totn−1RX = hom(∆[n−1],RX) is the function space
Fn = hom(Sn, Nn(RX)), which can be represented as the iterated loop space

Fn = Ωn(Nn(RX)) = Ωn(Rn+1X ∩Ker η0 ∩ . . . ∩Ker ηn−1)

One immediately observes that the first level of the spectral sequence is, as already
known,

E1
p,q = πq−p(Fp) = πq−p(Ω

p(Np(RX))) ∼= πq(N
p(RX)) ∼= π′q(RXp)

This is therefore a different way of constructing the Bousfield-Kan spectral sequence
associated with the simplicial set X, introduced in Theorem 5.17. This new construction
will be considered in the following section to explain some ideas to develop an algorithm
computing every level of the Bousfield-Kan spectral sequence, using one more time the
effective homology method.
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5.2.3.3 Sketch of the algorithm

In Section 5.2.2 we have shown that the effective homology method can be used to
compute E1 and E2 (and the differential map d1) in the Bousfield-Kan spectral sequence
associated with a pointed simplicial set X (with effective homology), obtaining in this
way Algorithms 15 and 16.

The computation of the higher levels of the spectral sequence is more difficult, and
we have not yet developed a complete algorithm allowing one to determine the groups
Er
p,q for r > 2. However, we think that using the definition of the Bousfield-Kan spectral

sequence by means of towers of fibrations it will be possible to construct the looked-for
algorithm, following the sketch that we explain in this section. Several details must yet
be verified but we hope our new algorithm could be finished in a not too far future.

Given X a 1-reduced simplicial set with effective homology, let us recall that the
associated Bousfield-Kan spectral sequence can be defined as the spectral sequence of
the tower of fibrations

· · · fn+1−→ TotnRX
fn−→ Totn−1RX

fn−1−→ · · · f1−→ Tot0RX ∼= RX
f0−→ Tot−1RX = ?

where TotnRX = hom(∆[n],RX), and fn : TotnRX → Totn−1RX is induced by the
inclusion ∆[n−1] ⊂ ∆[n]. The fibers can be expressed as

Fn = Ωn(Nn(RX)) = Ωn(Rn+1X ∩Ker η0 ∩ . . . ∩Ker ηn−1)

In this way, the first fibration is

F1 = Ω(N1(RX)) ↪→ Tot1RX → RX

The base space RX satisfies

π∗(RX) ∼= H̃∗(X) = H∗(C̃∗(X))

where C̃∗(X) = C∗(X)/C∗(?). Since X is an object with effective homology, the homo-
topy groups of RX are computable, thanks to the previous isomorphism, in an explicit
way (with the corresponding generators); we can say that RX has effective homotopy.

On the other hand, for the fiber F1 = Ω(N1(RX)) = Ω(R2X ∩Ker η0) one has

π∗(F1) = π∗(Ω(R2X ∩Ker η0)) ∼= π∗+1(R
2X ∩Ker η0) ∼= π∗+1(R

2X) ∩Ker η0

= H∗+1(N∗(R
2X)) ∩Ker η0 ∼= H∗+1(C̃

N
∗ (RX)) ∩Ker η0 ∼= H∗+1(C̃

N
∗ (RX) ∩Ker η0)

= H∗(Desusp∗(C̃∗(RX) ∩Ker η0))

where the chain complex morphism

η0 : C̃N
∗ (RX) = (R2X)N∗

∼= N∗(R
2X)→ C̃N

∗ (X) = (RX)N∗
∼= N∗(RX)
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is induced by the codegeneracy map η0 : RX1 = R2X → RX0 = RX, and Desusp∗ is
the Desuspension constructor which, from a chain complex C∗ = (Cn, dn)n∈N, returns a
new chain complex Desusp∗(C∗) = D∗ = (Dn, dDn)n∈N given by

Dn = Cn+1

dDn = dn+1 : Dn = Cn+1 −→ Dn−1 = Cn

It could be a good idea to detail some of the isomorphisms appearing in the previous
formula. First of all, the relation π∗+1(R

2X ∩Ker η0) ∼= π∗+1(R
2X) ∩Ker η0 is given by

the morphisms

[x] ∈ π∗+1(R
2X ∩Ker η0) 7−→ [x] ∈ π∗+1(R

2X) ∩Ker η0

[x] ∈ π∗+1(R
2X) ∩Ker η0 7−→ [x− ∂0η0x] ∈ π∗+1(R

2X ∩Ker η0)

The same maps give the isomorphism

H∗+1(C̃
N
∗ (RX)) ∩Ker η0 ∼= H∗+1(C̃

N
∗ (RX) ∩Ker η0)

Taking into account that X is a simplicial set with effective homology, and making
use again of our Algorithm 11 presented in Chapter 4, one has that RX is also an object
with effective homology. Furthermore, thanks to the short exact sequence

0 −→ C̃N
∗ (RX) ∩Ker η0 inc−→ C̃N

∗ (RX)
η0

−→ C̃N
∗ (X) −→ 0

it is not difficult to prove that so is the chain complex Desusp∗(C̃∗(RX)∩Ker η0), which
makes the fiber F1 an object with effective homotopy. A similar reasoning would allow
us to affirm that each fiber Fn = Ωn(Nn(RX)) has also effective homotopy.

In this way, we have a fibration F1 = Ω(N1(RX)) ↪→ Tot1RX → RX where the
fiber and base spaces are objects with effective homotopy. A similar method to the one
for the effective homology should exist allowing one to compute the effective homotopy of
the total space Tot1RX. Iterating the process, we would obtain the effective homotopy
of every space TotnRX.

Once we would have computed the effective homotopy of Fn and TotnRX for all n,
which would provide us the homotopy groups π∗(Fn) and π∗(TotnRX) (that are finite
type groups) with the corresponding generators, it would be possible to compute the
groups Er

p,q of the spectral sequence, which as seen in Section 5.2.3.1 are given by the
formula

Er
p,q =

i−1(Im f r−1)

∂(Ker f r−1)
for q ≥ p
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Also the differential maps dr : Er
p,q → Er

p+r,q+r−1 could be determined, so that we
would obtain the following algorithm.

“Possible” Algorithm 17.
Input:

• a 1-reduced pointed simplicial set X,

• an equivalence C∗(X)⇐⇐DX∗⇒⇒HX∗, where HX∗ is an effective chain complex.

Output:

• the groups Er
p,q for every r ≥ 1 and p, q ∈ Z of the Bousfield-Kan spectral sequence

associated with X, with a basis-divisors description,

• the differential maps drp,q for all p, q ∈ Z and r ≥ 1.

Let us emphasize that, in order to finish this algorithm, the following facts have to
be verified.

• The fiber Fn = hom(Sn, Nn(RX)) can be expressed as the iterated loop space
Ωn(Nn(RX)), but we need an explicit isomorphism with the Kan construction for
loop spaces, that of Definition 3.13.

• The fibrations Fn ↪→ TotnRX → Totn−1RX are given by the projection
fn : TotnRX → Totn−1RX. We need to construct the twisting operator
τ : Totn−1RX → Fn, which will probably be induced by the first coface
∂0 : RXn−1 → RXn.

• Finally, it is necessary to construct an effective homotopy version of a fibration.
In other words, given a fibration

G ↪→ E → B

where B and G are objects with effective homotopy, an algorithm should determine
the effective homotopy of the total space E.

Taking into account that the spectral sequence is convergent (as proved in Sec-
tion 5.2.1), Algorithm 17 would allow us to determine also the final groups E∞p,q (which
will be equal to some Er

p,q for r sufficiently large). But we must remark that the com-
putation of all the groups {Er

p,q}1≤r≤∞, the level r = ∞ included, would not allow us
in general to determine the “limit” groups πp+q, because extension problems could be
found.



Conclusions an further work

This work has been guided by the goal of relating effective homology and spectral se-
quences, two different techniques in Algebraic Topology for the computation of homology
(and homotopy) groups.

On the one hand, spectral sequences have been a classical method used to approxi-
mate homology groups of some complicated spaces (see, for instance, [McC85]), but in
many cases the available data do not allow the user to determine the higher differentials.

On the other hand, the effective homology method (introduced in [Ser87] and [Ser94])
provides real algorithms for the computation of the looked-for homology groups, replac-
ing in this way the spectral sequence technique. This method has been implemented in
the Kenzo system [DRSS99] and can be used, for instance, to compute homology groups
of total spaces of fibrations, of iterated loop spaces, of classifying spaces, etc.

In this memoir we have shown that we can also make use of the effective homology
technique to determine the different components of spectral sequences, focusing our
attention on two particular situations. We have begun by studying spectral sequences
associated with filtered complexes, which include many classical examples of spectral
sequences, as those of Serre and Eilenberg-Moore. Afterward, the Bousfield-Kan spectral
sequence, which is related with the computation of homotopy groups of spaces, has been
considered.

The first part of this work (Chapters 2 and 3) is devoted to spectral sequences
associated with filtered complexes [Mac63], constructing several algorithms which make
it possible to compute spectral sequences of filtered complexes with effective homology.
These algorithms (which have been fully implemented in Common Lisp as a new module
for the Kenzo system) determine the groups Er

p,q and the differential maps drp,q for every
stage r, the convergence level of the spectral sequence for each dimension n, and the
filtration of the homology groups induced by the filtration of the chain complex.

A first example of application of our results are spectral sequences associated with
bicomplexes. What is more interesting is that they also allow us to compute Serre [Ser51]
and Eilenberg-Moore [EM65b] spectral sequences, as explained in Chapter 3, when the
spaces involved in the constructions are objects with effective homology. Both situations
have been illustrated by means of several examples implemented in Common Lisp.
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Chapters 4 and 5 of this memoir are focused on the Bousfield-Kan spectral sequence
associated with a simplicial set X, introduced in [BK72a] and [BK72b]. Making use
again of the effective homology technique, we have tried to determine an algorithm
computing the different parts of this spectral sequence. As a first necessary step, we
have developed an algorithm which, given a 1-reduced simplicial set X with effective
homology, computes the effective homology of the simplicial Abelian group RX. This
construction has been described in Chapter 4, and is a relevant result for the computation
of the first two levels of the Bousfield-Kan spectral sequence. It also plays an essential
role to determine the higher stages, although, as explained in Chapter 5, for levels r > 2
the algorithm has not been fully constructed.

While the work dealing with spectral sequences of filtered complexes can be thought
as finished, two different directions to continue the work presented in the second part of
this memoir appear. First of all, it is necessary to finish the implementation of our algo-
rithms for the computation of the effective homology of RX and of the first two stages
of the Bousfield-Kan spectral sequence. In addition, the theoretical algorithm for the
computation of the higher levels must be completed, and then, of course, implemented
in Common Lisp.

For the first task, as mentioned in Section 4.4, some functions have been already
written. To be precise, we have implemented Algorithm 8 (page 114), which allows us
to apply the functor Γ introduced in Section 4.1.1 to a reduction. In order to finish
the implementation of the effective homology of RX, we must also write in Common
Lisp the functions giving the isomorphism RX ∼= Γ(C̃∗(X)) of Proposition 4.17 and the
construction of the effective homology of Γ(E∗) for E∗ an effective chain complex. Once
the effective homology of RX will be programmed, the implementation of Algorithms 15
and 16 which provide the levels 1 and 2 of the Bousfield-Kan spectral sequence does not
seem a hard work.

On the other hand, we have already included in Section 5.2.3.3 the steps needed to
complete an algorithm for the computation of every level of the Bousfield-Kan spectral
sequence, whose implementation will probably be more difficult because new complicated
structures such as function spaces appear there. As mentioned before, the construction of
this new algorithm includes the study of the idea of effective homotopy, related with the
notion of solution for the homotopy problem. According to the terminology introduced in
[RS06, pp. 34-35] (in this case for the homology problem), given a Kan simplicial set X
with base point ? ∈ X0, a solution for the homotopy problem of X is a set S = {σi}1≤i≤5

of five algorithms :

1. σ1 : X → {⊥,>} (⊥ = false, > = true) is a predicate deciding for every n ∈ N and
every n-simplex x ∈ Xn whether x is an n-sphere or not, that is to say, whether
∂ix = ? for all 0 ≤ i ≤ n or ∂ix 6= ? for some i.

2. σ2 : N→ {Abelian groups} associates to every integer n ≥ 0 a group σ2(n) which
must be isomorphic to πn(X, ?). The image σ2(n) will represent the isomorphism
class of πn(X) in an effective way to be defined.
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3. For each n ∈ N, σ3,n : σ2(n)→ Sn(X) associates to every n-homotopy class h coded
as an element h ∈ σ2(n) a sphere σ3,n(h) ∈ Sn(X) representing this homotopy class.

4. For each n ∈ N, σ4,n : Sn(X)→ σ2(n) associates to every n-sphere x ∈ Sn(X) the
homotopy class of x coded as an element of σ2(n).

5. For every n ∈ N, σ5,n : Kerσ4,n → Xn+1 associates to every n-sphere x ∈ Sn(X)
whose homotopy class is known to be null by means of the previous algorithm (in
other words, x is known to be homotopic to ? ∈ Xn) an element y ∈ Xn+1 such
that ∂iy = ? for 0 ≤ i ≤ n and ∂n+1y = x.

It is well-known the general problem of finding representants for elements of homo-
topy groups in a simplicial framework is surprisingly difficult, see for example [Ber95].
This is valid for arbitrary simplicial sets, not satisfying the Kan condition. On the
other hand, when the Kan condition is satisfied, a sphere simplex can certainly be used
as representant, only one simplex; usually the difficulty is transferred to the algebraic
definition of this sphere, but our job is Algebraic Topology... The analogous situation
when computing homology groups of iterated loop spaces through effective homology
methods, using intensively the Kan model for iterated loop spaces, shows this challenge
about effective homotopy is reasonable.

As it is the rule for every spectral sequence, determining the whole set {Er
p,q}1≤r≤∞,

the level r = ∞ included, is not yet enough in general to determine the “limit”
groups πp+q, because of the possible extension problems. But again the methods of
effective homotopy will obviously allow us to determine the homotopy groups of the
cofiltration stages, in other words the elements of the fibration tower, which are under-
lying in the Bousfield-Kan spectral sequence. And the tapered property carefully studied
in Chapter 5 shows this will be enough.

We must also remark that the Bousfield-Kan spectral sequence is a generalization of
the Adams one [Ada60]. Therefore, our further work also includes the analysis of the
exact relation between both spectral sequences, and in particular, we would like to study
the role of the Steenrod operations [MT68] in the Bousfield-Kan spectral sequence. Again
the rich algebraic structure underlying the E1-page of this spectral sequence, through the
innumerable copies of Eilenberg-Maclane spaces, is the natural framework to introduce
an effective version of the unavoidable Steenrod operations. It is likely the appropriate
intermediate tool is the nice E∞-operad exhibited in [BF04]: it can be understood as a
complete Z-version of the Steenrod operations, and it is a reduction of the Barratt-Eccles
E∞-operad made of Eilenberg-MacLane spaces.
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l’Institut des Hautes Études Scientifiques, 13, 1962.

[Sta63] J. D. Stasheff. Homotopy associativity of H-spaces, I, II. Transactions of the
American Mathematical Society, 108, pp. 275–292 and 293–312, 1963.

[Ste62] N. E. Steenrod. Cohomology operations, volume 50 of Annals of Mathematics
Studies. Princeton University Press, 1962.

[Tan85] M. C. Tangora. Computing the homology of the lambda algebra, volume 337
of Memoirs of the Americal Mathematical Society. 1985.

[Tod62] H. Toda. Compositional methods in homotopy groups of spheres. Princeton
University Press, 1962.

[Wei94] C. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge
studies in advanced mathematics. Cambridge University Press, 1994.

[Whi78] G. W. Whitehead. Elements of Homotopy Theory, volume 61 of Graduate
texts in Mathematics. Springer-Verlag, 1978.
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durante nuestras estancias en Grenoble. Y a Beatriz Pérez, de la Universidad de Zara-
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Introducción

La Topoloǵıa Algebraica trata de utilizar métodos “algebraicos” para atacar problemas
topológicos; en los casos más sencillos, consiste en asociar a un espacio topológico in-
variantes algebraicos que describan sus propiedades esenciales. Por ejemplo, podemos
definir grupos especiales asociados a un espacio topológico de modo que se respete la
relación de homeomorfismo de espacios. Esto nos permite estudiar algunas propiedades
interesantes de espacios topológicos por medio de resultados sobre grupos, que son a
menudo más fáciles de probar. De manera más general, existen varios functores que
asignan a algunos espacios topológicos objetos algebraicos. En muchas ocasiones, si uno
de estos functores se aplica a un espacio topológico de “tipo finito”, entonces el resultado
es también un objeto algebraico de tipo finito. Pero en general no existen algoritmos que
sean capaces de calcular estos objetos algebraicos de tipo finito correspondientes a los
distintos functores de la Topoloǵıa Algebraica.

Dos ejemplos importantes de invariantes algebraicos son los grupos de homotoṕıa
y los grupos de homoloǵıa (y de cohomoloǵıa). El cálculo de los grupos de homoloǵıa
usuales (con coeficientes en Z) de complejos simpliciales finitos es sencillo: un complejo
simplicial determina un complejo de cadenas de tipo finito y sus grupos de homoloǵıa se
deducen de operaciones elementales con los operadores diferenciales (como se explica, por
ejemplo, en [KMM04]), con lo que no es dif́ıcil construir este algoritmo. Más complicado
es el problema del cálculo de los grupos de homotoṕıa de un complejo simplicial finito X,
que se denotan por πn(X).

La definición de grupo de homotoṕıa fue dada por Hurewicz en [Hur35] y [Hur36]
como una generalización de la noción de grupo fundamental, que se debe originalmen-
te a Poincaré en [Poi95], un trabajo que puede ser considerado el origen de la Topo-
loǵıa Algebraica. En un primer momento sólo se pudieron calcular algunos grupos del
espacio no trivial más sencillo, la 2-esfera S2; en concreto, Heinz Hopf [Hop35] cal-
culó π2(S

2) = Z y π3(S
2) = Z. El grupo π4(S

2) = Z2 fue determinado por Hans Freu-
denthal en 1937 [Fre37], pero después no se obtuvieron nuevos resultados sobre grupos de
homotoṕıa de espacios hasta 1950. Los siguientes grupos πn(S

2) los calculó Jean Pierre
Serre para 5 ≤ n ≤ 9 [Ser51]. En realidad para n = 6 Serre probó únicamente que π6(S

2)
tiene 12 elementos, pero no fue capaz de elegir entre las dos soluciones posibles Z12 y
Z2 ⊕ Z6; es el primer ejemplo de la historia en el que un topólogo se encontró con un
problema de extensión serio. Dos años más tarde, Barratt y Paechter [BP52] probaron
que existe un elemento de orden 4 en π6(S

2), con lo que finalmente π6(S
2) = Z12. Otras
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2 Introducción

referencias sobre el cálculo de grupos de homotoṕıa de esferas son, por ejemplo, [Tod62],
[Mah67] y [Rav86].

Serre también obtuvo un resultado general de finitud [Ser53] que afirma que, si X es
un espacio simplemente conexo tal que los grupos de homoloǵıa Hn(X; Z) son de tipo
finito, entonces los grupos de homotoṕıa πn(X) son también grupos Abelianos de tipo
finito. En 1957, Edgar Brown publicó en [Bro57] un algoritmo teórico para el cálculo
de estos grupos, basado en la torre de Postnikov y utilizando aproximaciones finitas de
conjuntos simpliciales infinitos, transformando de este modo los resultados de finitud de
Serre en un resultado de calculabilidad. Sin embargo, el propio Edgar Brown señaló en
su art́ıculo que este algoritmo carece de uso práctico, incluso en el ordenador más poten-
te que se pueda imaginar, como consecuencia de la complejidad hiper-exponencial del
algoritmo.

El método de la homoloǵıa efectiva apareció en los 80 tratando de proporcionar
algoritmos reales para el cálculo de grupos de homoloǵıa y de homotoṕıa. Esta técnica fue
introducida por Francis Sergeraert en [Ser87] y [Ser94], y su estado actual queda descrito
en [RS97] y [RS06]. El método está basado en la noción de objeto con homoloǵıa efectiva,
que conecta un espacio con su homoloǵıa por medio de equivalencias de cadenas, y que
está fuertemente relacionado con la teoŕıa de perturbación homológica, cuyas referencias
fundamentales son los trabajos clásicos de Shi Weishu [Shi62] y Ronnie Brown [Bro67],
y los de Victor Gugenheim, Larry Lambe y Jim Stasheff [GL89] [GLS91].

El método de la homoloǵıa efectiva ha sido implementado mediante el sistema Ken-
zo [DRSS99] (cuya versión anterior se llama EAT [RSS97]), un programa en Common
Lisp que ha hecho posible calcular algunos grupos de homoloǵıa complicados que no
hab́ıan sido determinados anteriormente. Kenzo puede calcular, entre otros, grupos de
homoloǵıa de espacios totales de fibrados, espacios de lazos iterados, espacios clasifican-
tes, etc. Otras referencias útiles sobre el método de la homoloǵıa efectiva y el sistema
Kenzo son [RS88], [Rub91], [RS02] y [RS05a].

Las sucesiones espectrales son otra herramienta en Topoloǵıa Algebraica que ha sido
utilizada de manera tradicional para calcular grupos de homoloǵıa y homotoṕıa de es-
pacios (véase, por ejemplo, [McC85] o [Hat04]). Un ejemplo clásico de sucesión espectral
es la de Serre [Ser51], que proporciona información sobre los grupos de homoloǵıa del
espacio total de un fibrado a partir de los grupos de homoloǵıa de la base y la fibra.
La sucesión espectral de Eilenberg-Moore [EM65b] da información sobre los grupos de
homoloǵıa de la base (resp. la fibra) cuando se conocen los grupos de homoloǵıa del
espacio total y de la fibra (resp. base). Para el cálculo de grupos de homotoṕıa podemos
considerar las sucesiones espectrales de Adams [Ada60] o de Bousfield-Kan [BK72a].

Pero las sucesiones espectrales clásicas presentan un problema muy importante: no
soy algoritmos. Una sucesión espectral es una familia de “páginas” (Er

p,q, d
r)r≥1 de módu-

los bigraduados con diferencial, donde cada página se obtiene como el módulo de homo-
loǵıa de la anterior. Incluimos aqúı una cita (en inglés) de John McCleary en su famoso
libro [McC85], que explica este problema:



Introducción 3

It is worth repeating the caveat about differentials mentioned in Chapter 1: knowledge
of Er

∗,∗ and dr determines Er+1
∗,∗ but not dr+1. If we think of a spectral sequence as

a black box, then the input is a differential bigraded module, usually E1
∗,∗, and, with

each turn of the handle, the machine computes a successive homology according to
a sequence of differentials. If some differential is unknown, then some other (any
other) principle is needed to proceed. From Chapter 1, the reader is acquainted with
several algebraic tricks that allow further calculation. In the nontrivial cases, it is
often a deep geometric idea that is caught up in the knowledge of a differential.

En la mayoŕıa de los casos se trata en realidad de un problema de calculabilidad: las
diferenciales superiores de la sucesión espectral están definidas matemáticamente, pero
su definición no es constructiva. En otras palabras, las diferenciales no son calculables
con la información de la que se dispone habitualmente.

Otro problema distinto de las sucesiones espectrales es el problema de extensión
en el ĺımite. Una sucesión espectral nos proporciona una filtración de los grupos (de
homoloǵıa u homotoṕıa) buscados, pero en algunos casos hay varias soluciones posibles.
Éste es el problema que Jean Pierre Serre se encontró cuando trató de calcular π6(S

2),
un problema que se puede resolver por medio de la técnica de la homoloǵıa efectiva.

El objetivo de este trabajo ha sido relacionar las sucesiones espectrales y la homo-
loǵıa efectiva, mostrando que el método de la homoloǵıa efectiva puede ser utilizado
para producir algoritmos que calculen las diversas componentes de algunas sucesiones
espectrales, incluyendo las diferenciales superiores.

La organización de la memoria es la siguiente. El primer caṕıtulo incluye algunas
definiciones y resultados preliminares que serán usados en el resto del trabajo. En la
primera sección introducimos los complejos de cadenas y las sucesiones espectrales, dos
nociones fundamentales en Álgebra Homológica. La segunda sección está dedicada a
la topoloǵıa simplicial, centrándonos en conjuntos simpliciales, grupos de homotoṕıa, y
espacios de Eilenberg-MacLane. Finalmente, en la tercera sección, explicamos el método
de la homoloǵıa efectiva y el sistema Kenzo.

Después de este primer caṕıtulo, la memoria se divide en dos partes diferentes. Los
caṕıtulos 2 y 3 están dedicados a la sucesiones espectrales asociadas a complejos filtrados,
que bajo condiciones favorables convergen a sus grupos de homoloǵıa. Por otro lado, los
caṕıtulos 4 y 5 se centran en la sucesión espectral de Bousfield-Kan, relacionada con el
cálculo de grupos de homotoṕıa.

El caṕıtulo 2 contiene varios algoritmos para el cálculo de las diversas componentes
de sucesiones espectrales de complejos filtrados con homoloǵıa efectiva: los grupos Er

p,q,
las diferenciales drp,q para cada nivel r, aśı como el nivel r en el que se alcanza la con-
vergencia para cada grado n y la filtración de los grupos de homoloǵıa inducida por la
filtración del complejo de cadenas. Nuestros resultados pueden ser aplicados, por ejem-
plo, para el cálculo de sucesiones espectrales asociadas a bicomplejos. Estos algoritmos
han sido implementados como un nuevo módulo para el sistema Kenzo, que también
queda explicado en este caṕıtulo por medio de algunos ejemplos elementales.
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Los resultados presentados en el caṕıtulo 2 permiten también calcular dos de los
ejemplos clásicos de sucesiones espectrales, las de Serre y Eilenberg-Moore, a las que se
dedica el caṕıtulo 3. Si los espacios que intervienen en los fibrados correspondientes son
objetos con homoloǵıa efectiva, podemos determinar las distintas componentes de las su-
cesiones espectrales asociadas por medio de nuestros resultados. De este modo hacemos
constructivas estas sucesiones espectrales que hasta ahora no eran algoritmos. Ambas si-
tuaciones han sido ilustradas mediante varios ejemplos implementados en Common Lisp.

Otras sucesiones espectrales que tienen también un gran interés no vienen defi-
nidas por medio de ningún complejo filtrado. Es el caso de la sucesión espectral de
Bousfield-Kan, que apareció por primera vez en [BK72a] tratando de generalizar la su-
cesión espectral de Adams [Ada60]. Aunque existe una definición formal de la sucesión
espectral de Adams, no es sencillo calcularla, como se explica en la introducción de
[Tan85]. En primer lugar, hay que determinar la cohomoloǵıa del álgebra de Steenrod
[Ste62]; después debemos encontrar las diferenciales superiores; finalmente, pueden apa-
recer problemas de extensión en el ĺımite. En este caso, nuestros algoritmos para el
cálculo de sucesiones espectrales de complejos filtrados no se pueden utilizar, pero el
método de la homoloǵıa efectiva puede ser útil para desarrollar una versión constructiva
de la sucesión espectral de Bousfield-Kan.

Como un primer paso hacia esta versión efectiva de la sucesión espectral de
Bousfield-Kan, el resultado principal del caṕıtulo 4 es un algoritmo que calcula la homo-
loǵıa efectiva del grupo Abeliano simplicial libre RX generado por un conjunto simplicial
1-reducido X. La homoloǵıa “ordinaria” de RX puede ser deducida de una manera sen-
cilla del trabajo de Cartan [Car55] sobre los espacios de Eilenberg-MacLane, pero esta
información no es suficiente para nuestro objetivo: es necesaria la homoloǵıa efectiva.
Nuestro algoritmo utiliza varias construcciones de Topoloǵıa Algebraica como la corres-
pondencia de Dold-Kan entre las categoŕıas de complejos de cadenas y grupos Abelianos
simpliciales, fibrados o espacios de Eilenberg-MacLane. Algunas partes de este algoritmo
han sido implementadas como un conjunto de programas en Common Lisp que también
serán explicados en este caṕıtulo.

El caṕıtulo 5 está dedicado a la sucesión espectral de Bousfield-Kan asociada a un
conjunto simplicial X, tratando de construir un algoritmo (basado en la técnica de la
homoloǵıa efectiva) que calcule todas sus componentes. La primera parte de este caṕıtu-
lo contiene varios algoritmos para tratar con estructuras cosimpliciales, que son uno de
los ingredientes principales de esta sucesión espectral; la segunda está centrada en la
construcción de la sucesión espectral de Bousfield-Kan. Comenzamos esta sección con
una prueba de la convergencia, basada en cálculos elementales de Álgebra Homológica.
A continuación utilizamos los resultados del caṕıtulo 4 para calcular los dos primeros ni-
veles. Para el cálculo del resto de “páginas”, incluimos el esquema de un nuevo algoritmo
que todav́ıa no está terminado.

La memoria termina con un caṕıtulo que contiene conclusiones y trabajo futuro, y
finalmente incluimos la bibliograf́ıa.



Resumen de los caṕıtulos

Presentamos a continuación un breve resumen de cada uno de los caṕıtulos de esta
memoria.

1 Preliminares

En el primer caṕıtulo de la memoria incluimos las definiciones, notaciones y resultados
básicos que serán utilizados en el resto del trabajo. Este caṕıtulo está dividido en tres
secciones. La primera está dedicada a dos nociones fundamentales en Álgebra Homológi-
ca: complejos de cadenas y sucesiones espectrales. La segunda sección contiene algunas
definiciones y resultados de topoloǵıa simplicial. Finalmente, presentamos las ideas fun-
damentales del método de la homoloǵıa efectiva y del sistema Kenzo [DRSS99]. Las
referencias fundamentales para cada una de las secciones son respectivamente [Mac63],
[May67] y [RS97].

2 Homoloǵıa efectiva y sucesiones espectrales de

complejos filtrados: algoritmos y programas

El caṕıtulo 2 se centra en las sucesiones espectrales asociadas a complejos filtrados
[McC85], para las que existe una expresión formal que define los grupos Er

p,q y las dife-
renciales drp,q, pero que en muchas ocasiones no se pueden calcular. Mostramos aqúı que
el método de la homoloǵıa efectiva permite calcular este tipo de sucesiones espectrales
cuando el complejo de cadenas inicial es un objeto con homoloǵıa efectiva, obteniendo
de este modo algoritmos reales.

Después de presentar algunas definiciones y resultados previos sobre filtraciones y
sucesiones espectrales, en la sección 2.2 incluimos algunos resultados teóricos que rela-
cionan los métodos de homoloǵıa efectiva y sucesiones espectrales. Estos resultados son
utilizados a continuación para desarrollar un algoritmo para calcular sucesiones espec-
trales de complejos filtrados con homoloǵıa efectiva, que se explica en la sección 2.3. La
sección 2.4 se centra en los bicomplejos, un caso particular de complejo de cadenas que
tiene asociada una filtración canónica y por tanto una sucesión espectral, que puede ser
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calculada mediante nuestros resultados. Todos estos algoritmos han sido implementados
en Common Lisp como un nuevo módulo para Kenzo, que presentamos en la última
sección del caṕıtulo por medio de algunos ejemplos elementales.

3 Homoloǵıa efectiva y sucesiones espectrales de

complejos filtrados: aplicaciones

El tercer caṕıtulo de la memoria está dedicado a dos ejemplos clásicos de suce-
siones espectrales, la sucesión espectral de Serre [Ser51] y la sucesión espectral de
Eilenberg-Moore [EM65b]. Las dos fueron construidas por medio de complejos filtrados y
han sido utilizadas para calcular grupos de homoloǵıa de algunos espacios complicados,
pero en muchos casos estas sucesiones espectrales no son algoritmos y no pueden ser
determinadas completamente. Los resultados y algoritmos del caṕıtulo anterior nos per-
miten sin embargo obtener todas las componentes de estas sucesiones espectrales cuando
los espacios que forman parte de los fibrados son objetos con homoloǵıa efectiva.

El caṕıtulo está dividido en dos partes, la primera a la sucesión espectral de Serre
y la segunda a la sucesión espectral de Eilenberg-Moore. La estructura de ambas es
similar, con una breve introducción, el cálculo de la homoloǵıa efectiva de los espacios
correspondientes, los algoritmos obtenidos y finalmente algunos ejemplos que han sido
implementados en Common Lisp.

4 Homoloǵıa efectiva de grupos Abelianos simplicia-

les libres

Dejamos de lado aqúı los complejos filtrados para centrarnos en la sucesión espectral de
Boufield-Kan, que trata de calcular los grupos de homotoṕıa de un conjunto simplicial.
Uno de los ingredientes principales de esta sucesión espectral es el constructor que aso-
cia a cada conjunto simplicial X el grupo Abeliano simplicial libre generado por X. De
manera más espećıfica, en el cálculo de la sucesión espectral de Bousfield-Kan se nece-
sita la homoloǵıa efectiva de los grupos RkX (la homoloǵıa ordinaria de RkX se puede
calcular fácilmente). El caṕıtulo 4 de la memoria está dedicado al desarrollo de una ver-
sión con homoloǵıa efectiva del constructor R. Dado un conjunto simplicial 1-reducido
X con homoloǵıa efectiva, esta versión del constructor R calcula una versión con ho-
moloǵıa efectiva del resultado RX; aplicando iterativamente este constructor obtenemos
una versión con homoloǵıa efectiva de RkX para k un entero positivo.

El caṕıtulo comienza con varias definiciones y resultados previos que son necesarios
para los desarrollos presentados, y a continuación se incluye la definición y algunas
propiedades básicas de la construcción R. La tercera sección es la más amplia y contiene
nuestro resultado principal, el cálculo de la homoloǵıa efectiva de RX, que se obtiene
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como composición de dos equivalencias. Por último, incluimos algunas consideraciones
sobre la implementación de nuestros algoritmos, que todav́ıa no ha sido completada.

5 Homoloǵıa efectiva y sucesión espectral de

Bousfield-Kan

En el último caṕıtulo de la memoria tratamos de utilizar los resultados del caṕıtulo
anterior para construir un algoritmo que calcule la sucesión espectral de Bousfield-Kan
asociada a un conjunto simplicial X. Esta versión constructiva de la sucesión espectral
de Bousfield-Kan no está todav́ıa terminada; presentamos aqúı las ideas generales que
esperamos nos permitan su construcción en un plazo no muy largo. Además, incluimos
algoritmos (completos) que permiten determinar los dos primeros niveles de la sucesión
espectral.

Este caṕıtulo está dividido en dos partes diferentes. La primera está centrada en
los objetos cosimpliciales, que desempeñan un papel esencial en la construcción de la
sucesión espectral de Bousfield-Kan, incluyendo algunos resultados y algoritmos que
hemos desarrollado. La segunda parte contiene la definición de la sucesión espectral,
una prueba de su convergencia, el algoritmo que calcula los términos E1

p,q y E2
p,q y el

esquema de un nuevo algoritmo para su cálculo completo.





Conclusiones y trabajo futuro

Este trabajo ha sido realizado con el objetivo de relacionar homoloǵıa efectiva y sucesio-
nes espectrales, dos técnicas diferentes en Topoloǵıa Algebraica para el cálculo de grupos
de homoloǵıa (y de homotoṕıa).

Por un lado, las sucesiones espectrales son un método clásico utilizado para aproxi-
mar grupos de homoloǵıa de algunos espacios complicados (véase, por ejemplo, [McC85]),
pero en muchos casos los datos disponibles no permiten al usuario determinar las dife-
renciales superiores.

Por otro lado, el método de la homoloǵıa efectiva (introducido en [Ser87] y [Ser94])
proporciona algoritmos reales para el cálculo de los grupos de homoloǵıa buscados, re-
emplazando de este modo la técnica de las sucesiones espectrales. Este método ha sido
implementado en el sistema Kenzo [DRSS99] y puede ser utilizado, por ejemplo, pa-
ra calcular grupos de homoloǵıa de espacios totales de fibrados, de espacios de lazos
iterados, de espacios clasificantes, etc.

En esta memoria hemos mostrado que también podemos utilizar la homoloǵıa efectiva
para determinar las distintas componentes de algunas sucesiones espectrales, centrándo-
nos en dos situaciones particulares. Hemos comenzado estudiando las sucesiones espec-
trales asociadas a complejos filtrados, que incluyen varios ejemplos clásicos de sucesiones
espectrales, como las de Serre y Eilenberg-Moore. A continuación se ha considerado la
sucesión espectral de Bousfield-Kan, que está relacionada con el cálculo de grupos de
homotoṕıa de espacios.

La primera parte de este trabajo (los caṕıtulos 2 y 3) está dedicada a las sucesiones
espectrales asociadas a complejos filtrados [Mac63], construyendo varios algoritmos que
permiten el cálculo de sucesiones espectrales de complejos filtrados con homoloǵıa efec-
tiva. Estos algoritmos (que han sido implementados en su totalidad en Common Lisp
como un nuevo módulo para el sistema Kenzo) determinan los grupos Er

p,q y las diferen-
ciales drp,q para todos los niveles r ≥ 1, aśı como el nivel de convergencia de la sucesión
espectral para cada dimensión n y la filtración de los grupos de homoloǵıa inducida por
la filtración del complejo de cadenas inicial.

Un primer ejemplo de uso de nuestros resultados son las sucesiones espectrales aso-
ciadas a bicomplejos. Pero sin duda las aplicaciones más interesantes vienen dadas por el
cálculo de las sucesiones espectrales de Serre [Ser51] y Eilenberg-Moore [EM65b] cuando

9



10 Conclusiones y trabajo futuro

los espacios que aparecen en las construcciones son objetos con homoloǵıa efectiva, como
se explica en el caṕıtulo 3. Ambas situaciones han sido ilustradas por medio de varios
ejemplos implementados en Common Lisp.

Los caṕıtulos 4 y 5 de esta memoria están centrados en la sucesión espectral de
Bousfield-Kan asociada a un conjunto simplicial X, introducida en [BK72a] y [BK72b].
Utilizando de nuevo la técnica de la homoloǵıa efectiva, hemos tratado de determinar un
algoritmo que, dado un conjunto simplicial 1-reducido X con homoloǵıa efectiva, calcule
la homoloǵıa efectiva del grupo Abeliano simplicialRX. Esta construcción queda descrita
en el caṕıtulo 4, y es un resultado relevante para el cálculo de los dos primeros niveles de
la sucesión espectral de Bousfield-Kan. También desempeña un papel fundamental para
determinar los niveles superiores aunque, como se explica en el caṕıtulo 5, para r > 2 el
algoritmo no ha sido construido completamente.

Mientras que el trabajo sobre las sucesiones espectrales de complejos filtrados puede
considerarse terminado, aparecen dos nuevas ĺıneas de investigación con las que con-
tinuar el trabajo presentado en la segunda parte de la memoria. En primer lugar, es
necesario terminar la implementación de nuestros algoritmos para el cálculo de la homo-
loǵıa efectiva de RX y los dos primeros niveles de la sucesión espectral de Bousfield-Kan.
Además, debemos completar el algoritmo teórico para el cálculo de los niveles superiores,
y después implementarlo.

Para la primera tarea, como se explica en la sección 4.4, ya hemos escrito algunas
funciones. Concretamente, hemos implementado el algoritmo 8 (página 114), que nos
permite aplicar el functor Γ introducido en la sección 4.1.1 a una reducción. Para finalizar
la implementación de la homoloǵıa efectiva de RX, tenemos que escribir también en
Common Lisp las funciones correspondientes al isomorfismo RX ∼= Γ(C̃∗(X)) de la
proposición 4.17 y la construcción de la homoloǵıa efectiva de Γ(E∗) para un complejo
de cadenas efectivo E∗. Una vez que hayamos programado la homoloǵıa efectiva de RX,
la implementación de los algoritmos 15 y 16 que nos dan los niveles 1 y 2 de la sucesión
espectral de Bousfield-Kan no parece una tarea demasiado complicada.

Por otro lado, ya hemos incluido en la sección 5.2.3.3 los pasos necesarios para com-
pletar el algoritmo para el cálculo de los niveles superiores de la sucesión espectral de
Bousfield-Kan, cuya implementación será probablemente más dif́ıcil porque aparecen
nuevas estructuras complicadas como los espacios de funciones. Como ya hemos men-
cionado anteriormente, la construcción de este nuevo algoritmo incluye el estudio de la
idea de homotoṕıa efectiva, relacionada con la noción de solución para el problema ho-
motópico. Siguiendo la terminoloǵıa introducida en [RS06, pp. 34-35] (en este caso para
el problema homológico), dado un conjunto simplicial de Kan X con punto base ? ∈ X0,
una solución para el problema homotópico de X es un conjunto S = {σi}1≤i≤5 de cinco
algoritmos :

1. σ1 : X → {⊥,>} (⊥ = falso, > = verdadero) es un predicado que indica, para
cada n ∈ N y cada n-śımplice x ∈ Xn, si x es o no una n-esfera, es decir, si ∂ix = ?
para todo 0 ≤ i ≤ n o bien ∂ix 6= ? para algún i.
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2. σ2 : N→ {grupos Abelianos} asocia a cada entero n ≥ 0 un grupo σ2(n) que debe
ser isomorfo a πn(X, ?). La imagen σ2(n) representará la clase de isomorfismo de
πn(X) de un modo efectivo como se define a continuación.

3. Para cada n ∈ N, σ3,n : σ2(n) → Sn(X) asocia a cada n-clase de homotoṕıa h

codificada como un elemento h ∈ σ2(n) una esfera σ3,n(h) ∈ Sn(X) representando
esta clase de homotoṕıa.

4. Para cada n ∈ N, σ4,n : Sn(X)→ σ2(n) asocia a cada n-esfera x ∈ Sn(X) la clase
de homotoṕıa de x codificada como un elemento de σ2(n).

5. Para cada n ∈ N, σ5,n : Kerσ4,n → Xn+1 asocia a cada n-esfera x ∈ Sn(X) cuya
clase de homotoṕıa se sabe que es nula gracias al algoritmo anterior (en otras
palabras, se sabe que x es homótopo a ? ∈ Xn) un elemento y ∈ Xn+1 tal que
∂iy = ? para 0 ≤ i ≤ n y ∂n+1y = x.

Es bien conocido que el problema general de encontrar representantes para elementos
de grupos de homotoṕıa en un marco simplicial es sorprendentemente dif́ıcil, véase por
ejemplo [Ber95]. Esto es válido para conjuntos simpliciales arbitrarios, que no satisfagan
la condición de Kan. Por el contrario, cuando se satisface la condición de Kan, una
esfera puede ser usada como representante, simplemente un śımplice; normalmente la
dificultad se traslada a la definición algebraica de esta esfera, pero nuestro trabajo es
precisamente la Topoloǵıa Algebraica... La situación análoga en el cálculo de grupos de
homoloǵıa de espacios de lazos iterados a través de los métodos de la homoloǵıa efectiva,
usando intensivamente el modelo de Kan para los espacios de lazos iterados, muestra
que este reto sobre la homotoṕıa efectiva es razonable.

Siguiendo la regla de cualquier sucesión espectral, determinar la totalidad del conjun-
to {Er

p,q}1≤r≤∞, incluyendo el nivel r = ∞, no es suficiente en general para determinar
los grupos “ĺımite” πp+q, debido a los problemas de extensión que puedan existir. Pero
de nuevo los métodos de la homotoṕıa efectiva nos permitirán determinar los grupos de
homotoṕıa de los distintos pasos de cofiltración, en otras palabras, los elementos de la
torre de fibrados, que se encuentran subyacentes en la sucesión espectral de Bousfield-
Kan. Y la propiedad de que E1 es afilado, que hemos estudiando cuidadosamente en el
caṕıtulo 5, muestra que esto será suficiente.

Tenemos que remarcar también que la sucesión espectral de Bousfield-Kan es una ge-
neralización de la de Adams [Ada60]. Por lo tanto, nuestro trabajo futuro también incluye
el análisis de la relación exacta entre ambas sucesiones espectrales, y en particular, nos
gustaŕıa estudiar el papel de las operaciones de Steenrod [MT68] en la sucesión espectral
de Bousfield-Kan. De nuevo la rica estructura subyacente en la página E1 de esta suce-
sión espectral, a través de las innumerables copias de espacios de Eilenberg-MacLane, es
el marco natural para introducir una versión efectiva de las inevitables operaciones de
Steenrod. Parece que la herramienta intermedia apropiada es la E∞-operada expuesta
en [BF04]: puede ser entendida como una versión completa de las operaciones de Steen-
rod, y es una reducción de la E∞-operada de Barratt-Eccles construida con espacios de
Eilenberg-MacLane.
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En este trabajo se trata de aplicar el método de la homoloǵıa efectiva para el cálculo
de los grupos de homoloǵıa del grupo Abeliano simplicial RX, que son necesarios
para el cálculo de la sucesión espectral de Bousfield-Kan. Como un primer paso,
se considera el caso en el que X es aćıclico.

• A. Romero. From homological perturbation to spectral sequences: a case
study. In Global Integrability of Field Theories, Proceedings of GIFT
2006, pp. 289–309. Universitätsverlag Karlsruhe, 2006.

En este art́ıculo se presenta un programa para calcular sucesiones espectrales. El
algoritmo teórico correspondiente está basado en las técnicas de homoloǵıa efectiva
y de perturbación homológica. Se ilustran las ideas fundamentales de este algoritmo
mediante un ejemplo relacionado con la famosa sucesión espectral de Serre.

• A. Romero, J. Rubio, y F. Sergeraert. Computing spectral sequences.
Journal of Symbolic Computation, 41(10), pp. 1059–1079, 2006.

John McCleary insiste en su interesante libro titulado “User’s guide to spectral
sequences” en el hecho de que la herramienta “sucesión espectral” no es en general
un algoritmo que permita al usuario calcular los grupos de homoloǵıa buscados.
Este art́ıculo explica cómo la noción de “objeto con homoloǵıa efectiva” permite
por el contrario obtener recursivamente todas las componentes de las sucesiones
espectrales de Serre y de Eilenberg-Moore, cuando los datos iniciales son objetos
con homoloǵıa efectiva. En particular se resuelve el problema del cálculo de las
diferenciales superiores, y también el problema de extensión en el ĺımite. Además,
estos métodos han sido implementados concretamente como una extensión del
programa Kenzo. Se incluyen también dos ejemplos t́ıpicos de cálculo de sucesiones
espectrales.
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