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Definition. A Spectral Sequence E = {Er, dr} is a family of Z-bigraded

modules E1, E2,. . . , each provided with a differential dr = {dr
p,q} of bide-

gree (−r, r − 1) and with isomorphisms H(Er, dr) ∼= Er+1, r = 1, 2, . . .

They are not algorithms!

• Spectral sequences associated with filtered chain complexes: using the

effective homology method, an algorithm computing the whole set of

their components has been developed.

• Generalization: spectral sequences which are not associated with fil-

tered complexes. In particular, the Bousfield-Kan spectral sequence.
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h
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satisfying the following relations:

......fg = idB; gf + dAh + hdA = idA;

......fh = 0; hg = 0; hh = 0.

Remark. If A⇒⇒⇒B, then A = B ⊕ C, with C acyclic, which implies

that H∗(A) ∼= H∗(B).

Definition. Roughly speaking, an object with effective homology is

a triple (X, EC, ρ) where EC is an effective chain complex and ρ is a

reduction ρ : C(X)⇒⇒⇒EC.
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X an acyclic simplicial set

Hi(X) = 0 for all i > 0

In this case, the effective homology of X is given by a reduction

C(X)⇒⇒⇒Z

defined by a contraction homotopy

h : C∗(X) → C∗+1(X)

such that dh + hd = id
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X an acyclic pointed simplicial set (⇒ Hi(X) = 0 for all i > 0) with

effective homology, h : C∗(X) → C∗+1(X) such that dh + hd = id.

The Hurewicz Theorem and the relation πi(RX) ∼= Hi(X) imply RX is

also acyclic (⇒ Hi(RX) = 0 for all i > 0).

We want to find the effective homology of RX, that is, a contraction

homotopy

h̄ : C∗(RX) → C∗+1(RX)

such that d̄h̄ + h̄d̄ = id
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An algorithm determining the contraction homotopy

h̄ : C∗(RX) → C∗+1(RX)

• First, a simplicial homotopy hi : RXq → RXq+1, 0 ≤ i ≤ q, is built.

It is defined recursively using the following ideas:

– πi(RX) ∼= Hi(X) = 0 ∀i > 0

– the Kan property holds since RX is a simplicial group

• Then, the chain homotopy h̄ : Cn(RX) → Cn+1(RX) is given by

h̄(x) =

n∑
i=0

(−1)ihi(x) if x ∈ Xn
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Effective homology of RX: the general case

X a simplicial set with effective homology such that C(X) = E ⊕ A,

where E is an effective chain complex and A is acyclic.

A general algorithm computing the effective homology of RX has been

developed. Several ideas are used:

• the Dold-Kan correspondence between the categories of chain com-

plexes and simplicial Abelian groups

• Eilenberg-MacLane spaces

• the Eilenberg-Zilber theorem

• the Basic Perturbation Lemma. . .
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Further work

• Implementation in Common Lisp (similar to the set of programs com-

puting spectral sequences associated with filtered complexes).

• Algorithm computing the Bousfield-Kan spectral sequence associated

with a simplicial set X. The homology groups Hi(RX) are only one

ingredient! Other elements:

– cosimplicial spaces

– additive relations. . .


