
Free presentation for central extensions

Ana Romero, Julio Rubio and Francis Sergeraert

Let 0→ A→ E → C → 1 be a central extension of two finitely generated
Abelian groups A and C. It is well-known there exists a set-theoretic map
γ : C × C → A which satisfies:

1. γ(g, 0) = 0 = γ(0, g)

2. γ(g + h, k) = γ(h, k)− γ(g, h) + γ(g, h+ k)

In addition, the initial extension is equivalent to another extension

0→ A→ A×γ C → C → 1

where the elements of A×γ C are pairs (a, c) with a ∈ A and c ∈ C, and the
group law is defined by

(a1, c1)(a2, c2) ≡ (a1 + a2 + γ(c1, c2), c1 + c2).

The set-theoretic map γ is called the 2-cocycle of the extension, since it
corresponds to a map γ : K(C, 1)2 → A in H2(C,A).

Let us suppose that the groups A and C are represented respectively by
means of the matrices α : A1 → A0 and β : C1 → C0 (which are supposed
to be in canonical form). This gives us the resolutions (exact sequences)

A1
α→ A0

α′
→ A and C1

β→ C0
β′
→ C. Since the elements in A ×γ C are pairs

(a, c) with a ∈ A and c ∈ C, we consider the groups A1 +C1 and A0 +C0 and

we are going to determine an exact sequence A1 +C1
ε→ A0 +C0

ε′→ A×γ C.

The map A1 + C1
ε→ A0 + C0 will be given by a block matrix

ε =

[
α F
0 β

]
(1)

We have the following diagram:
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A A×γ C C

A0 A0 + C0 C0

A1 A1 + C1 C1

i //

i //

i //

ρ
oo

ρ
oo

ρ
oo

j //

j //

j //

σ
oo

σ
oo

σ
oo

α′

��

α

��

α

��

β′

��

β

��

β

��

ε′?

��

F?

��

where the maps i and j correspond to the canonical inclusion and projection
respectively and σ and ρ and the natural section and retraction (which in
each row satisfy that ρi = Id, iρ+σj = Id and jσ = Id). It is now necessary
to define ε′ and F .

The map ε′ : A0+C0 → A×γC is defined over the generators of A0+C0 as
follows. Given ai a generator of A0, we define ε′(ai, 0) = iα′(ai) = (α′(ai), 0).
Let us remark that since the matrix α is in canonical form then α′(ai) = ai
and then ε′(ai, 0) = (ai, 0). Similarly, ε′ is defined over the generators of C0

as ε′(0, ci) = σβ′(ci) = (0, β′(ci)) = (0, ci).
Then, given any element (a, c) ∈ A0 + C0, we express it as a sum of gen-

erators of A0 + C0 and we compute ε′(a, c) by applying the group operation
in E ∼= A ×γ C (denoted +E or

∑
E) over the images of the corresponding

generators. Let us observe that given (a, 0) ∈ A0 + C0 with a =
∑

i ai and

ai generators of A0, then ε′(a, 0) = ε′(
∑

i ai, 0) =
∑E

i ε
′(ai, 0) =

∑E
i (ai, 0) =

(
∑

i ai, 0) = (a, 0). However, given (0, c) ∈ A0 + C0 with c =
∑

i ci and ci
generators of C0, then ε′(0, c) = ε′(0,

∑
i ci) = ε′(

∑
i(0, ci)) =

∑E
i ε

′(0, ci) 6=
(0,
∑

i ci) = (0, c) because in the previous sum the cocycle must be consid-

ered. One has ε′(0, c) =
∑E

i ε
′(0, ci) = (a, c) for some a ∈ A.

For the definition of F , we do the following steps. Given c′i a generator
of C1, we consider ε′(0, β(c′i)) which satisfies jε′(0, β(c′i)) = β′β(c′i) = 0, that
is, ε′(0, β(c′i)) ∈ Ker j = Im i. We take now ρε′(0, β(c′i)) ∈ A which can be
seen as an element a ∈ A0. We define F (c′i) = −a.

We can observe that both morphisms ε and ε′ are well constructed because
they have been defined over the generators. Moreover, the four squares in
the previous diagram are commutatives. Since each column in the diagram
is a chain complex and each row is a short exact sequence, we have a short

2



exact sequence of chain complexes. Finally, since α and β are injective, the
homology groups of the left and right chain complexes are null and then the

homology groups of the chain complex A1 +C1
ε→ A0 +C0

ε′→ A×γC are also
null. In this way, we obtain a resolution for the group E ∼= A ×γ C which
could be used to represent the group E by means of the matrix ε.

However, let us observe now that the maps ε′ and F cannot be directly
implemented since we do not know the groups A, C and E ∼= A ×γ C (and
then the bottom maps i, j, σ and ρ can not be implemented). This problem
can be solved because the calculation of F can be done without using the
those maps. Let c′i be a generator of C1, c

′
i = (0, . . . , 0, 1, 0, . . . , 0). Since β is

a matrix in canonical form, then β(c′i) = (0, . . . , 0, di, 0, . . . , 0) ∈ C0 for some
di > 1. Let us remark here that (0, . . . , 0, di, 0, . . . , 0) is not a generator of C0

and therefore its image by ε′ is not directly computed and we must express it

as (0, . . . , 0, di, 0, . . . , 0) = (0, . . . , 0, 1, 0, . . . , 0)+
di· · · +(0, . . . , 0, 1, 0, . . . , 0).

Therefore,

ε′(0, β(c′i)) =ε′(0, (0, . . . , 0, di, 0, . . . , 0)) = ε′(0, (0, . . . , 0, 1, 0, . . . , 0)) +E · · ·
+E ε′(0, (0, . . . , 0, 1, 0, . . . , 0)) = (γ((0, . . . , 0, 1, 0, . . . , 0),

(0, . . . , 0, 1, 0, . . . , 0)) + γ((0, . . . , 0, 2, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0))

+ γ((0, . . . , 0, di − 1, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0)), (0, . . . , 0, di, 0, . . . , 0))

and then F (c′i) is defined directly as

F (c′i) =− ρε′(0, (0, . . . , 0, di, 0, . . . , 0)) = −(γ((0, . . . , 0, 1, 0, . . . , 0),

(0, . . . , 0, 1, 0, . . . , 0)) + γ((0, . . . , 0, 2, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0))+

γ((0, . . . , 0, di − 1, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0)))

= −(γ(c′i, c
′
i) + γ(2 ∗ c′i, c′i) + · · ·+ γ((di − 1) ∗ c′i, c′i))

A similar proof of the formula of F (c′i) can be deduced directly from
Lemma 4.23 in the book Advanced Algebra by A.W. Knapp (Birkäuser,
2008). Considering MA = A1, PA = A0, MC = C1 and PC = C0 in the
diagram by Knapp, the map εB corresponds to ε′ in our diagram and is
defined in the same way. In order to compute MB = Ker εB in Knapp’s
proof, we must take into account that the group B (E in our case) is not
defined, but we know it is isomorphic to A×γ C. Moreover, it happens and
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element x ∈ A0 +C0 is in Ker ε′ if and only if x ∈ Ker[ρε′ : A0 +C0 → A] and
x ∈ Ker[jε′ : A0+C0 → C]. Then, it is easy to observe that Ker[jε′] = A0+C1

and Ker[ρε′ : A0 + C1 → A] = A1 + C1 with inclusion A1 + C1 ↪→ A0 + C0

given by the matrix ME defined before.
Following Knapp’s idea as explained in the previous paragraph, the ma-

trix M ′
E can be determined directly from the representation of the groups

A and C and the group structure (product operation) on the elements of
E without knowing the cocycle γ. This can be useful when working with
central extensions coming from the computation of the effective homotopy of
a fibration.

Finally let us observe that the block matrix ε is not necessarily in canon-
ical form and therefore it could not be used directly for our implementation
of groups. It is necessary to compute the canonical form of this matrix,
producing a new matrix ε2 : E1 → E0 which is valid for the definition.
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