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Introduction Examples

Some examples of spectral sequences

Given a fibration G ↪→ E → B such that H∗(G ) and H∗(B) are
known, the Serre spectral sequence was designed to compute H∗(E ).

Given a topological space X with known homology groups, we can
consider the Eilenberg-Moore spectral sequence to compute
H∗(Ω(X )).

The Adams spectral sequence appeared in the 60’s trying to
determine the homotopy groups of some topological spaces.

Other spectral sequences: Bockstein, Grothendieck, Hurewicz,
Kunneth, Quillen, van Kampen, ...
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Introduction Definitions

Spectral sequences

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) ∼= E r+1 for every r ≥ 1.
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Since E r+1
p,q ⊆ E r

p,q for each r ≥ 1, one can define the final groups of the
spectral sequence as E∞p,q =

⋂
r≥1 E r

p,q.
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Introduction Uses

Why are spectral sequences useful?

They usually converge to interesting things.

Definition

Let H∗ = {Hn}n∈N be a graded group. A spectral sequence (E r , d r )r≥1 is
said to converge to H∗ (denoted by E 1 ⇒ H∗) if there is a filtration F of

H∗ and for each (p, q) one has an isomorphism E∞p,q
∼= FpHp+q

Fp−1Hp+q

Examples:

The Serre spectral sequence converges to the homology groups of the
total space of a fibration.

The Eilenberg-Moore spectral sequence converges to the homology
groups of the loop space of a simplicial set.

The Adams spectral sequence converges to the homotopy groups of a
simplicial set.
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Introduction Uses

Why are spectral sequences useful?

Theorem (Serre spectral sequence)

Let G ↪→ E → B be a fibration with a simply connected base space B.
Then a first quadrant spectral sequence E = (E r , d r )r≥2 can be defined
with E 2

p,q = Hp(B,Hq(G )) and E 2 ⇒ H∗(E ).

Suppose Hi (G ) and Hi (B) are zero for odd i and free abelian for even i .
The entries E 2

p,q of the E 2 page are then zero unless p and q are even.
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Introduction Algorithmic problems

Algorithmic problems of spectral sequences

If we think of a spectral sequence as a black box, then the input
is a differential bigraded module, usually E 1

∗,∗, and, with each
turn of the handle, the machine computes a successive homology
according to a sequence of differentials. If some differential is
unknown, then some other (any other) principle is needed to
proceed. [...] In the nontrivial cases, it is often a deep geometric
idea that is caught up in the knowledge of a differential.

John McCleary, User’s guide to spectral sequences
(Publish or Perish, 1985)
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Introduction Algorithmic problems

Algorithmic problems of spectral sequences

The problem of differentials

Example: K (Z, 2) ↪→ X → S3, where H2i (K (Z, 2)) = Z and
H2i+1(K (Z, 2)) = 0 for all i .
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We obtain a short exact sequence:

0← Z6 ← H6(E )← Z2 ← 0

but now there are two possible extensions: the trivial one Z2 ⊕ Z6

and the twisted one Z12.
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Effective homology General idea

Effective homology

A method which provides algorithms for the computation of homology
groups of complicated spaces.
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Effective homology Definitions

Effective homology

Definition

A reduction ρ between two chain complexes C∗ and D∗ (denoted by
ρ : C∗⇒⇒D∗) is a triple ρ = (f , g , h)

C∗

h
�� f

++
D∗

g
kk

satisfying the following relations:

1) fg = IdD∗ ;

2) dCh + hdC = IdC∗ −gf ;

3) fh = 0; hg = 0; hh = 0.

If C∗⇒⇒D∗, then C∗ ∼= D∗ ⊕ A∗, with A∗ acyclic, which implies that
Hn(C∗) ∼= Hn(D∗) for all n.
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Effective homology Definitions

Effective homology

Definition

A (strong chain) equivalence ε between C∗ and D∗, ε : C∗⇐⇐⇒⇒D∗, is a
triple ε = (B∗, ρ, ρ

′) where B∗ is a chain complex, ρ : B∗⇒⇒C∗ and
ρ′ : B∗⇒⇒D∗.

B∗
s{ ppppp
ppppp

#+NNNNN
NNNNN

42
30

t| ppppp
ppppp

"*NNNNN
NNNNN

C∗ D∗
14
10

21
15

Definition

An object with effective homology is a quadruple (X ,C∗(X ),HC∗, ε) where
HC∗ is an effective chain complex and ε : C∗(X )⇐⇐⇒⇒HC∗.

This implies that Hn(X ) ∼= Hn(HC∗) for all n.
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Effective homology Kenzo

The Kenzo system

The Kenzo system uses the notion of object with effective homology to
compute homology groups of some complicated spaces.

If the complex is effective, then its homology groups can be
determined by means of elementary operations with integer matrices.

Otherwise, the program uses the effective homology.

Example:

X = Ω(Ω(Ω(P∞R/P3R) ∪4 D4) ∪2 D2)

H5(X ) = Z23
2 ⊕ Z8 ⊕ Z16

H6(X ) = Z52
2 ⊕ Z3

4 ⊕ Z3

H7(X ) = Z113
2 ⊕ Z4 ⊕ Z3

8 ⊕ Z16 ⊕ Z32 ⊕ Z
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Spectral sequences of filtered complexes Formal definition

Spectral sequences of filtered complexes

Theorem

Let F be a filtration of a chain complex C∗ = (Cn, dn)n∈N. There exists a
spectral sequence E = E (C∗,F ) = (E r , d r )r≥1, defined by

E r
p,q =

Z r
p,q ∪ Fp−1Cp+q

dp+q+1(Z r−1
p+r−1,q−r+2) ∪ Fp−1Cp+q

where Z r
p,q = {a ∈ FpCp+q| dp+q(a) ∈ Fp−rCp+q−1} ⊆ FpCp+q, and

d r
p,q : E r

p,q → E r
p−r ,q+r−1 is the morphism induced on these subquotients

by the differential map dp+q : Cp+q → Cp+q−1.

If F is bounded, then E 1 ⇒ H∗(C∗).

Saunders MacLane, Homology (Springer, 1963)
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Spectral sequences of filtered complexes Algorithm

Spectral sequences of filtered complexes

With the formal expresion for the groups E r
p,q and the differential maps

d r
p,q, they can only be determined in very simple situations.

However, the effective homology method allows us to determine, as a
by-product, this kind of spectral sequences, obtaining a real algorithm.

This algorithm has been implemented as a set of programs (about 2500
lines) enhancing the Kenzo system, that determine the groups E r

p,q and
also the differential maps d r

p,q for every level r .
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Spectral sequences of filtered complexes Algorithm

Algorithm computing spectral seq. of filtered complexes

These new methods work in a way that is similar to the mechanism of
Kenzo for computing homology groups:

Given an effective chain complex C∗ with a filtration FC , the different
components of the associated spectral sequence can be computed by
means of elementary methods with integer matrices.

If the filtered chain complex (C∗,FC ) is not effective, but with
effective homology C∗⇐⇐D∗⇒⇒HC∗, then appropriate filtrations of
D∗ and HC∗ can also produce the spectral sequence.
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Spectral sequences of filtered complexes Programs

Example of computation

Example: K (Z, 1) ↪→ K (Z, 1)×τ S2 → S2 (Hopf fibration)

τ : S2 → K (Z, 1) given by τ(s2) = [1]

X = K (Z, 1)×τ S2 = S3
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Spectral sequences of filtered complexes Programs

Example of computation

Example: K (Z, 1) ↪→ K (Z, 1)×τ S2 → S2 (Hopf fibration)

τ : S2 → K (Z, 1) given by τ(s2) = [1]

X = K (Z, 1)×τ S2 = S3

Z 0 Z 0 0

Z 0 Z 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

p

q r = 2

//

OO

×1YYYYYYYY
llYY
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Example of computation

Example: K (Z, 1) ↪→ K (Z, 1)×τ S2 → S2 (Hopf fibration)

τ : S2 → K (Z, 1) given by τ(s2) = [1]

X = K (Z, 1)×τ S2 = S3

Z 0 0 0 0

0 0 Z 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

p

q r =∞

//
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Spectral sequences of filtered complexes Programs

Example of computation

First of all, we construct the object X = K (Z, 1)×τ S2

>(setf s2 (sphere 2))

[K208 Simplicial-Set]

>(setf kz1 (k-z 1))

[K1 Abelian-Simplicial-Group]

> (setf tau (build-smmr

:sorc s2

:trgt kz1

:degr -1

:sintr #’(lambda (dmns gmsm) (absm 0 ’(1)))

:orgn ’(kz1-tw-s2)))

[K213 Fibration K208 -> K1]

> (setf X (fibration-total tau))

[K219 Simplicial-Set]
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Spectral sequences of filtered complexes Programs

Example of computation

Then the space X and its effective equivalent object are filtered

> (change-chcm-to-flcc X crpr-flin ’(crpr-flin))

[K219 Filtered-Simplicial-Set]

> (change-chcm-to-flcc (rbcc (efhm X)) tnpr-flin ’(tnpr-flin))

[K279 Filtered-Chain-Complex]

Computation of some groups:

> (spsq-group X 2 2 0)

Spectral sequence E^2_{2,0}

Component Z

> (spsq-group X 2 0 1)

Spectral sequence E^2_{0,1}

Component Z

The differential maps can also be obtained

> (spsq-dffr X 2 2 0 ’(1))

(1)
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Spectral sequences of filtered complexes Programs

Example of computation

For n = 1 the convergence level is 3.

>(spsq-cnvg X 1)

3

And finally, we can determine the filtration of the homology groups

> (hmlg-fltr X 3 1)

Filtration F_1 H_3

nil

> (hmlg-fltr X 3 2)

Filtration F_2 H_3

Component Z
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Spectral sequences of filtered complexes Programs

About our programs

The new Kenzo module for spectral sequences allows the computation of
spectral sequences associated with filtered complexes, including
bicomplexes and the classical Serre and Eilenberg-Moore spectral
sequences.

It has made it possible to determine some examples of spectral sequences
(Serre, Eilenberg-Moore) of infinite spaces which had not been determined
before.
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Some applications Homotopy of suspended classifying spaces

Applications: homotopy of suspended classifying spaces

The homotopy groups of suspended classifying spaces ΣK (G , 1) can be
computed by means of the Serre spectral sequence associated with some
fibrations involved in the Postnikov tower of these spaces, or directly using
the effective homology of these fibrations.

Our algorithms have made it possible to determine the homotopy groups
of spaces ΣK (G , 1) for different groups G , and our calculations have
found an error in the paper

On homotopy groups of the suspended classifying spaces
Roman Mikhailov and Jie Wu
Algebraic and Geometric Topology 10(2010), 565− 625

Mikhailov and Wu say that:
Theorem 5.4: Let A4 be the 4-th alternating group.
Then π4(ΣK(A4, 1)) = Z4

but we have obtained π4(ΣK (A4, 1)) = Z12
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Some applications Persistent homology

Applications: persistent homology

Persistent homology is related with spectral sequences: the persistent
homology classes of length r of a filtered chain complex correspond to the
images of the differential maps in the level E r of the spectral sequence
associated with the filtration.

We have enhanced our programs computing spectral sequences to
determine persistent homology of (infinite) filtered chain complexes.

This has allowed us to detect an error in the book
Computational Topology: An Introduction
Herbert Edelsbrunner and John Harer
American Mathematical Society
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Other spectral sequences Bousfield-Kan spectral sequence

Bousfield-Kan spectral sequence

We have tried to generalize our work to other spectral sequences which are
not associated with filtered complexes, and we have considered first the
Boufield-Kan spectral sequence, related with the computation of the
homotopy groups of a simplicial set.
The effective homology can also be used to determine the different
components of this spectral sequence, although there are many
complicated ingredients and the algorithms are not so easy.

We have already developed algorithms computing the first two levels
of the spectral sequence, based on the computation of the effective
homology of the free simplicial Abelian group of a simplicial set X ,
denoted RX .

The computation of the higher levels is more difficult. For this task
we have used discrete vector fields and we have introduced the notion
of effective homotopy, but the algorithm is not yet completed.
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