A new algorithm for computing the twisting operator of the Whitehead tower method in the not 1-reduced case

J. Cuevas-Rozo, J. Divasón, M. Marco-Buzunáriz and A. Romero

March 15, 2021

The Whitehead tower method [Whi52] for computing homotopy groups is defined theoretically for simply connected simplicial sets. In that case, the homotopy groups of X can be determined by means of a tower of fibrations

$$G_{n+3} \equiv K(H_{n+2}(X_{n+2}), n+1) \longrightarrow X_{n+3}$$

$$G_{n+2} \equiv K(H_{n+1}(X_{n+1}), n) \longrightarrow X_{n+2}$$

$$G_{n+1} \equiv K(H_n(X), n-1) \longrightarrow X_{n+1}$$

$$\downarrow$$

$$X$$

such that each X_k in the tower satisfies $\pi_k(X_k) \cong H_k(X_k) \cong \pi_k(X)$, for $k \ge n+1$.

However, the implementation in the Kenzo system [DRSS99] is only valid for simplicial sets X which are 1-reduced, that is, which have only one vertex (0-simplex) and no non-degenerate 1-simplex. Each fibration $K(H_k(X_k), k - 1) \rightarrow X_{k+1} \rightarrow X_k$ in the tower is defined in that case by means of a simplicial morphism of degree -1, called *twisting operator* [May67], $\tau_k : X_K \rightarrow K(H_k(X_k), k-1)$. This simplicial morphism is described by a well-known existing isomorphism between $H_k(X_k)$ and $K(H_k(X_k), k-1)_{k-1}$ (the set of the (k-1)-simplices of $K(H_k(X_k), k-1)$). In order to construct this twisting operator, Kenzo uses the *Smith Normal Form* (SNF) [New72] of the differential matrix of degree k+1 of the simplicial set X_k , denoted D_{k+1}^k , and the fact that the space X is 1-reduced.

Now, we have also considered the situation where the initial simplicial set X is not 1-reduced but only simply connected (that is, such that $H_1(X) = 0$ but there exist non-degenerate simplices of dimension 1). In that situation, the twisting operator $\tau_k : X_K \to K(H_k(X_k), k-1)$ corresponding to the existing isomorphism between $H_k(X_k)$ and $K(H_k(X_k), k-1)_{k-1}$ cannot be as easily determined as in the 1-reduced case. However, Kenzo's algorithm can be modified by considering the two differential matrices of X_k of degrees k and k+1, denoted D_k^k and D_{k+1}^k respectively, and following the same steps used for computing homology groups.

These steps lead to the following new Algorithm 1:

\mathbf{A}	lgorithm	1:	Whitehead	twisting	operator
--------------	----------	----	-----------	----------	----------

Input: An integer $n \ge 2$ and an (n-1)-connected simplicial set X. **Output:** A twisting operator $\tau: X \to K(H_n(X), n-1)$ defining the Whitehead fibration.

- 4 Compute the SNF D of the matrix D_k^k and the matrices P, P^{-1} , Q and

- 4 Compute the SNT D of the matrix D_k and the matrices 1, 1⁻¹, Q and Q⁻¹ corresponding to the changes of bases.
 5 Multiply the matrix D^k_{k+1} by Q⁻¹, denoted D^{'k}_{k+1}.
 6 Select a submatrix of D^{'k}_{k+1} representing the image of D^k_{k+1}, denoted I^k_{k+1}.
 7 Compute the SNF D' of I^k_{k+1} and the matrices P', P'⁻¹, Q' and Q'⁻¹ of the change of bases. The columns of P'⁻¹ are the generators of H_n(X).
- **s** For each *n*-simplex x in X, define $\tau(x)$ by computing the coordinates of x with respect to the columns of P'^{-1}
- **9** For each *i*-simplex x in X with $i \neq n$, define $\tau(x)$ as the degeneration of the base point.
- 10 return τ

Our implementation in Kenzo of Algorithm 1 is slightly modified taking into account that, when $H_n(X)$ is a sum of \mathbb{Z} or $\mathbb{Z}/m\mathbb{Z}$, the fibration $G_{k+1} \equiv$ $K(H_k(X_k), k-1) \longrightarrow X_{k+1} \longrightarrow X_k$ in the tower is simulated by several fibrations. Combining the implementation of Algorithm 1 with some of the functions for computing the Whitehead fibrations of 1-reduced simplicial sets which were already available in Kenzo and the effective homology technique, we have developed and implemented the following new Algorithm 2.

Both algorithms do terminate in a finite number of steps and are correct since are implementations of the well-known Whitehead tower method [Whi52].

References

- [DRSS99] X. Dousson, J. Rubio, F. Sergeraert, and Y. Siret. The Kenzo program. Institut Fourier, Grenoble, 1999. http://www-fourier. ujf-grenoble.fr/~sergerar/Kenzo/.
 - [May67] J. P. May. Simplicial objects in Algebraic Topology. Van Nostrand Mathematical Studies. University of Chicago Press, 1967.

Algorithm 2: Homotopy group

Input: An integer $n \ge 2$ and a simply connected simplicial set X.				
Output: The homotopy group $\pi_n(X)$.				
4 Compute the first non null homology group $h \equiv H_i(X)$. if $n < i$ then				
return Trivial group				
else if $n = i$ then				
return h				
else				
7 Compute the Whitehead twisting operator τ from X and i using				
Algorithm 1.				
8 Compute X_{i+1} as the total space of the fibration given by τ .				
9 return $\pi_n(X_{i+1})$				

[New72] Morris Newman. Integral matrices. Academic Press, 1972.

[Whi52] G. Whitehead. Fiber spaces and the Eilenberg homology groups. Proceedings of the National Academy of Science of the United States of America, 38(5):426–430, 1952.