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modules E1, E2,. . . , each provided with a differential dr = {dr
p,q} of bide-

gree (−r, r − 1) and with isomorphisms H(Er, dr) ∼= Er+1, r = 1, 2, . . .

“If we think of a spectral sequence as a black box, then the input is a differential bi-

graded module, usually E1
∗,∗ , and, with each turn of the handle, the machine computes

a successive homology according to a sequence of differentials. If some differential is

unknown, then some other (any other) principle is needed to proceed. [...] In the

nontrivial cases, it is often a deep geometric idea that is caught up in the knowledge

of a differential.”

John McCleary, User’s guide to spectral sequences (Publish or Perish, 1985)
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G is the fiber space, B the base space, and E = B ×τ G the total space.

Theorem (Serre spectral sequence). Let G ↪→ E → B be a

fibration with a base space B simply connected. Then a first quadrant

spectral sequence {Er
p,q, d

r
p,q}r≥2 is defined with E2

p,q = Hp(B, Hq(G))

and Er
p,q ⇒ Hp+q(E).

Using this spectral sequence, Serre computed many sphere homotopy groups.
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The Hurewicz theorem and the long exact sequence of homotopy imply

that π4(S
3) = π4(X4) = H4(X4) = Z2.
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• Then, a new fibration F3 ↪→ X5 → X4 is considered to determine

π5(S
3), where F3 = K(Z2, 3) is chosen because π4(X4) = Z2.

Again some extra information is needed to compute the differentials,

and we obtain π5(S
3) = π5(X4) = π5(X5) = H5(X5) = Z2.

• Similarly, Serre used a new fibration F4 ↪→ X6 → X5, with F4 =

K(Z2, 4), to compute π6(S
3).

Using his spectral sequence, he proved π6(S
3) has 12 elements, but

he was unable to choose between the two possible options Z12 and

Z2 + Z6.
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Definition. A reduction ρ between two chain complexes A and B (denoted by

ρ : A⇒⇒⇒B) is a triple ρ = (f, g, h)

A

h
�� f

++
B

g
kk

satisfying the following relations:

......fg = idB; gf + dAh + hdA = idA;

......fh = 0; hg = 0; hh = 0.

Remark. If A⇒⇒⇒B, then A = B ⊕ C, with C acyclic, which implies that

H∗(A) ∼= H∗(B).
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Uses the notion of object with effective homology to compute homology

groups of some complicated spaces.

If the complex is effective, then its homology groups can be determined by

means of elementary operations with differential matrices. Otherwise, the

program uses the effective homology.

Example: X6, total space of the fibration F4 ↪→ X6 → X5

H6(X6) = Z12
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Computing spectral sequences

For the spectral sequence associated with a filtered chain complex, there

exists a formal expression for the groups Er
p,q and the differential maps dr

p,q,

but they can only be determined in very simple situations.

However, the effective homology method allows us to determine, as a by-

product, this kind of spectral sequences, obtaining a real algorithm.

This algorithm has been implemented as a set of programs (about 2500

lines) enhancing the Kenzo system, that determine the groups Er
p,q and

also the differential maps dr
p,q for every level r.
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Computing spectral sequences

These new methods work in a way that is similar to the mechanism of

Kenzo for computing homology groups

• If the filtered complex is effective, then the spectral sequence can be

computed through elementary methods with integer matrices.

• Otherwise, the effective homology is needed to compute it by means

of an analogous spectral sequence deduced of an appropriate filtration

on the associated effective complex.
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Serre spectral sequence

A fibration G ↪→ E → B

If B and G are objects with effective homology

• Kenzo computes the homology groups of the total space, Hi(E)

• the new programs compute the Serre spectral sequence associated with

the fibration

Example: F4 ↪→ X6 → X5

Example: F3 ↪→ X5 → X4


