Effective Computation of Generalized Spectral Sequences

Andrea Guidolin¹ and Ana Romero²

¹Basque Center for Applied Mathematics (Spain) ²University of La Rioja (Spain)

ISSAC, New York, July 2018

4日 × 注 × 注 × 注 の Q C 2

Consider the chain complex

$$C_*: \cdots \leftarrow C_{n-1} \xleftarrow{d_n} C_n \xleftarrow{d_{n+1}} C_{n+1} \leftarrow \cdots$$

<□ > < 臣 > < 臣 > 臣 の < @

Consider the chain complex

$$C_*: \quad \cdots \leftarrow C_{n-1} \xleftarrow{d_n} C_n \xleftarrow{d_{n+1}} C_{n+1} \leftarrow \cdots$$

The *n*-homology group of C_* is defined as

$$H_n(C_*) := rac{\operatorname{\mathsf{Ker}} d_n}{\operatorname{\mathsf{Im}} d_{n+1}}$$

and its rank β_n is called *n*-th **Betti number**.

Consider the chain complex

$$C_*: \quad \cdots \leftarrow C_{n-1} \xleftarrow{d_n} C_n \xleftarrow{d_{n+1}} C_{n+1} \leftarrow \cdots$$

The *n*-homology group of C_* is defined as

$$H_n(C_*) := rac{\operatorname{\mathsf{Ker}} d_n}{\operatorname{\mathsf{Im}} d_{n+1}}$$

and its rank β_n is called *n*-th **Betti number**.

A filtration of the chain complex C_* is a sequence $(F_pC_*)_{p\in\mathbb{Z}}$

$$\ldots \subseteq F_{p-1}C_* \subseteq F_pC_* \subseteq \ldots \subseteq C_*$$

・ロト * 臣ト * 臣ト 臣 · の & で 3/

Given a \mathbb{Z} -filtration of a chain complex $C_* = (C_n, d_n)$, a **spectral** sequence (E_p^r, d_p^r) is defined as follows:

Given a \mathbb{Z} -filtration of a chain complex $C_* = (C_n, d_n)$, a **spectral** sequence (E_p^r, d_p^r) is defined as follows:

$$E_{p,q}^{r} \coloneqq \frac{F_{p}C_{p+q} \cap d^{-1}(F_{p-r}C_{p+q-1}) + F_{p-1}C_{p+q}}{d(F_{p+r-1}C_{p+q+1}) + F_{p-1}C_{p+q}} \quad \text{terms}$$

terms of the s.s.

▲□▶▲≧▶▲≧▶ ≧ の�?

Given a \mathbb{Z} -filtration of a chain complex $C_* = (C_n, d_n)$, a **spectral** sequence (E_p^r, d_p^r) is defined as follows:

$$E_{p,q}^{r} \coloneqq \frac{F_{p}C_{p+q} \cap d^{-1}(F_{p-r}C_{p+q-1}) + F_{p-1}C_{p+q}}{d(F_{p+r-1}C_{p+q+1}) + F_{p-1}C_{p+q}} \quad \text{ terms of the s.s.}$$

$$\cdots \leftarrow E_{p-r}^{r} \xleftarrow{d_{p}^{r}}{E_{p}^{r}} \xleftarrow{d_{p+r}^{r}}{E_{p+r}^{r}} \leftarrow \cdots \quad \text{differentials induced by } d$$

Given a \mathbb{Z} -filtration of a chain complex $C_* = (C_n, d_n)$, a **spectral** sequence (E_p^r, d_p^r) is defined as follows:

$$E_{p,q}^{r} \coloneqq \frac{F_{p}C_{p+q} \cap d^{-1}(F_{p-r}C_{p+q-1}) + F_{p-1}C_{p+q}}{d(F_{p+r-1}C_{p+q+1}) + F_{p-1}C_{p+q}} \quad \text{ terms of the s.s.}$$

$$\cdots \leftarrow E_{p-r}^{r} \xleftarrow{d_{p}^{r}}{E_{p}^{r}} \xleftarrow{d_{p+r}^{r}}{E_{p+r}^{r}} \leftarrow \cdots \quad \text{differentials induced by } d$$

It holds:

$$E_p^{r+1} \cong \operatorname{Ker} d_p^r / \operatorname{Im} d_{p+r}^r$$

<□ > < 臣 > < 臣 > 臣 の < @

Given a \mathbb{Z} -filtration of a chain complex $C_* = (C_n, d_n)$, a **spectral** sequence (E_p^r, d_p^r) is defined as follows:

$$E_{p,q}^{r} \coloneqq \frac{F_{p}C_{p+q} \cap d^{-1}(F_{p-r}C_{p+q-1}) + F_{p-1}C_{p+q}}{d(F_{p+r-1}C_{p+q+1}) + F_{p-1}C_{p+q}} \quad \text{ terms of the s.s.}$$

$$\cdots \leftarrow E_{p-r}^r \xleftarrow{d_p^r}{E_p^r} E_p^r \xleftarrow{d_{p+r}^r}{E_{p+r}^r} E_{p+r}^r \leftarrow \cdots \quad \text{differentials induced by } d$$

It holds:

$$E_p^{r+1}\cong\operatorname{\mathsf{Ker}} d_p^r/\operatorname{\mathsf{Im}} d_{p+r}^r$$

Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex has been recently generalized by B. Matschke for a filtration indexed over a *poset I*, i.e. a collection of sub-chain complexes $\{F_iC_*\}_{i\in I}$ with $F_iC_* \subseteq F_jC_*$ if $i \leq j$, as a set of groups, for all $z \leq s \leq p \leq b$ in I and for each degree n:

$$S_n[z, s, p, b] = \frac{F_p C_n \cap d_n^{-1}(F_z C_{n-1}) + F_s C_n}{d_{n+1}(F_b C_{n+1}) + F_s C_n}$$

Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex has been recently generalized by B. Matschke for a filtration indexed over a *poset I*, i.e. a collection of sub-chain complexes $\{F_iC_*\}_{i\in I}$ with $F_iC_* \subseteq F_jC_*$ if $i \leq j$, as a set of groups, for all $z \leq s \leq p \leq b$ in I and for each degree n:

$$S_n[z, s, p, b] = \frac{F_p C_n \cap d_n^{-1}(F_z C_{n-1}) + F_s C_n}{d_{n+1}(F_b C_{n+1}) + F_s C_n}$$

and differential maps $d_n: S_n[z_2, s_2, p_2, b_2] \rightarrow S_{n-1}[z_1, s_1, p_1, b_1].$

Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex has been recently generalized by B. Matschke for a filtration indexed over a *poset I*, i.e. a collection of sub-chain complexes $\{F_iC_*\}_{i\in I}$ with $F_iC_* \subseteq F_jC_*$ if $i \leq j$, as a set of groups, for all $z \leq s \leq p \leq b$ in I and for each degree n:

$$S_n[z, s, p, b] = \frac{F_p C_n \cap d_n^{-1}(F_z C_{n-1}) + F_s C_n}{d_{n+1}(F_b C_{n+1}) + F_s C_n}$$

and differential maps $d_n: S_n[z_2, s_2, p_2, b_2] \rightarrow S_{n-1}[z_1, s_1, p_1, b_1].$

Example: \mathbb{Z} -filtration $(F_p)_{p \in \mathbb{Z}}$, indices $z \leq s \leq p \leq b$ in \mathbb{Z} :

4/15

(日)<(注)</p>

The posets \mathbb{Z}^m and $D(\mathbb{Z}^m)$

Consider \mathbb{Z}^m , seen as the poset (\mathbb{Z}^m, \leq) with the coordinate-wise order relation: $P = (p_1, \ldots, p_m) \leq Q = (q_1, \ldots, q_m)$ if and only if $p_i \leq q_i$, for all $1 \leq i \leq m$.

The posets \mathbb{Z}^m and $D(\mathbb{Z}^m)$

Consider \mathbb{Z}^m , seen as the poset (\mathbb{Z}^m, \leq) with the coordinate-wise order relation: $P = (p_1, \ldots, p_m) \leq Q = (q_1, \ldots, q_m)$ if and only if $p_i \leq q_i$, for all $1 \leq i \leq m$.

A **downset** of \mathbb{Z}^m is a subset $p \subseteq \mathbb{Z}^m$ such that if $P \in p$ and $Q \leq P$ in \mathbb{Z}^m then $Q \in p$.

The posets \mathbb{Z}^m and $D(\mathbb{Z}^m)$

Consider \mathbb{Z}^m , seen as the poset (\mathbb{Z}^m, \leq) with the coordinate-wise order relation: $P = (p_1, \ldots, p_m) \leq Q = (q_1, \ldots, q_m)$ if and only if $p_i \leq q_i$, for all $1 \leq i \leq m$.

A **downset** of \mathbb{Z}^m is a subset $p \subseteq \mathbb{Z}^m$ such that if $P \in p$ and $Q \leq P$ in \mathbb{Z}^m then $Q \in p$.

We denote $D(\mathbb{Z}^m)$ the collection of all downsets of \mathbb{Z}^m , which is a poset with respect to the inclusion \subseteq .

Motivating example

4日 × 注 × 注 × 注 の Q (P)
6

Theorem (Serre, 1951)

Let $G \hookrightarrow E \to B$ be a **fibration** and suppose the base *B* is 1-reduced. There is a spectral sequence converging to $H_*(E)$ whose second page is given by $E_{p,q}^2 = H_p(B; H_q(G))$.

Theorem (Serre, 1951)

Let $G \hookrightarrow E \to B$ be a **fibration** and suppose the base *B* is 1-reduced. There is a spectral sequence converging to $H_*(E)$ whose second page is given by $E_{p,q}^2 = H_p(B; H_q(G))$.

Theorem (Matschke, 2013)

Consider a tower of fibrations

$$\begin{array}{cccc} E & \longrightarrow & N & \longrightarrow & B \\ \uparrow & & \uparrow & \\ G & & M & \end{array}$$

and suppose the base B is 1-reduced. There exists a $D(\mathbb{Z}^2)$ -spectral system converging to $H_*(E)$ whose second page is given by

$$S_n^*(P;2) = H_{p_2}(B; H_{p_1}(M; H_{n-p_1-p_2}(G))), \quad P = (p_1, p_2) \in \mathbb{Z}^2.$$

Multidimensional persistence and persistence of *I*-filtrations

Multidimensional filtrations (or \mathbb{Z}^m -filtrations) of simplicial complexes:

Multidimensional persistence and persistence of *I*-filtrations

Multidimensional filtrations (or \mathbb{Z}^m -filtrations) of simplicial complexes:

Associated invariant: rank invariant

$$eta_n^{P,Q} := \dim_{\mathbb{F}} \operatorname{Im}(H_n(K_P) o H_n(K_Q)), \qquad P, Q \in \mathbb{Z}^m, \quad P \leq Q.$$

◆□▶<星▶<星▶<星▶<2000 7/15</p>

Multidimensional persistence and persistence of *I*-filtrations

Multidimensional filtrations (or \mathbb{Z}^m -filtrations) of simplicial complexes:

Associated invariant: rank invariant

$$eta_n^{P,Q}:=\dim_{\mathbb{F}}\operatorname{Im}(H_n(K_P) o H_n(K_Q)), \qquad P,Q\in \mathbb{Z}^m, \quad P\leq Q.$$

Similarly, for an *I*-filtration $(F_i)_{i \in I}$, we define **rank invariant** the collection of integers

$$\beta_n(v,w) \coloneqq \dim_{\mathbb{F}} \operatorname{Im}(H_n(F_v) \to H_n(F_w)), \quad v, w \in I, \quad v \leq w.$$

We have developed a set of programs computing generalized spectral sequences implemented in the Computer Algebra System Kenzo.

We have developed a set of programs computing generalized spectral sequences implemented in the Computer Algebra System Kenzo.

If the *I*-filtered chain complex C_* is of finite type, the groups $S_n[z, s, p, b]$ can be determined by means of diagonalization operations on matrices.

We have developed a set of programs computing generalized spectral sequences implemented in the Computer Algebra System Kenzo.

If the *I*-filtered chain complex C_* is of finite type, the groups $S_n[z, s, p, b]$ can be determined by means of diagonalization operations on matrices.

The result is a *basis-divisors* description of the group, that is:

- a list of combinations $(c_1, \ldots, c_{\alpha+k})$
- a list of torsion coefficients $(b_1, \ldots, b_k, 0, \stackrel{\alpha}{\ldots}, 0)$.

▲□▶▲園▶▲園▶ 園 のQ @ 9/15

To compute the differential map

 $d:S_2\equiv S[z_2,s_2,p_2,b_2]
ightarrow S_1\equiv S[z_1,s_1,p_1,b_1]$ applied to an element

a = [x] given by a list of coordinates $(a_1, \ldots a_r)$:

To compute the differential map $d: S_2 \equiv S[z_2, s_2, p_2, b_2] \rightarrow S_1 \equiv S[z_1, s_1, p_1, b_1]$ applied to an element a = [x] given by a list of coordinates (a_1, \ldots, a_r) :

• We compute the basis-divisors representation of both groups S_1 and S_2 .

To compute the differential map $d: S_2 \equiv S[z_2, s_2, p_2, b_2] \rightarrow S_1 \equiv S[z_1, s_1, p_1, b_1]$ applied to an element a = [x] given by a list of coordinates (a_1, \ldots, a_r) :

- We compute the basis-divisors representation of both groups S_1 and S_2 .
- We build the *projection* of $x \in F_p \cap d^{-1}(F_z) + F_s$ over the factor $F_p \cap d^{-1}(F_z)$, denoted y.

To compute the differential map

 $d: S_2 \equiv S[z_2, s_2, p_2, b_2] \rightarrow S_1 \equiv S[z_1, s_1, p_1, b_1]$ applied to an element a = [x] given by a list of coordinates (a_1, \ldots, a_r) :

- We compute the basis-divisors representation of both groups S_1 and S_2 .
- We build the *projection* of $x \in F_p \cap d^{-1}(F_z) + F_s$ over the factor $F_p \cap d^{-1}(F_z)$, denoted y.
- We apply the differential map d to the element $y \in F_p \cap d^{-1}(F_z)$.

To compute the differential map

 $d: S_2 \equiv S[z_2, s_2, p_2, b_2] \rightarrow S_1 \equiv S[z_1, s_1, p_1, b_1]$ applied to an element a = [x] given by a list of coordinates (a_1, \ldots, a_r) :

- We compute the basis-divisors representation of both groups S_1 and S_2 .
- We build the *projection* of $x \in F_p \cap d^{-1}(F_z) + F_s$ over the factor $F_p \cap d^{-1}(F_z)$, denoted y.
- We apply the differential map d to the element $y \in F_p \cap d^{-1}(F_z)$.
- We compute the coefficients of d(y) with respect to the set of generators of S_1 .

To compute the differential map

 $d: S_2 \equiv S[z_2, s_2, p_2, b_2] \rightarrow S_1 \equiv S[z_1, s_1, p_1, b_1]$ applied to an element a = [x] given by a list of coordinates (a_1, \ldots, a_r) :

- We compute the basis-divisors representation of both groups S_1 and S_2 .
- We build the *projection* of $x \in F_p \cap d^{-1}(F_z) + F_s$ over the factor $F_p \cap d^{-1}(F_z)$, denoted y.
- We apply the differential map d to the element $y \in F_p \cap d^{-1}(F_z)$.
- We compute the coefficients of d(y) with respect to the set of generators of S_1 .
- We reduce them considering the corresponding divisors.

▲□▶▲≣▶▲≣▶ ≣ めみで

If a *I*-filtered chain complex C_* is not of finite type, we use the effective homology method and we consider a pair of *reductions* $C_* \iff \hat{C}_* \implies D_*$ from the initial chain complex C_* to another one D_* of finite type (also filtered over *I*).

If a *I*-filtered chain complex C_* is not of finite type, we use the effective homology method and we consider a pair of *reductions* $C_* \iff \hat{C}_* \implies D_*$ from the initial chain complex C_* to another one D_* of finite type (also filtered over *I*). The chain complex D_* is called *effective*.

If a *I*-filtered chain complex C_* is not of finite type, we use the effective homology method and we consider a pair of *reductions* $C_* \iff \hat{C}_* \implies D_*$ from the initial chain complex C_* to another one D_* of finite type (also filtered over *I*). The chain complex D_* is called *effective*.

Theorem

Let $\rho = (f, g, h) : C_* \Rightarrow D_*$ be a reduction between the I-filtered chain complexes (C_*, F) and (D_*, F') , and suppose that f and g are compatible with the filtrations. Then, given four indices $z \le s \le p \le b$ in I, the map f induces an isomorphism $f^{z,s,p,b} : S[z,s,p,b]_n \to S'[z,s,p,b]_n$ whenever the homotopy $h : (C_*, F) \to (C_{*+1}, F)$ satisfies the conditions

 $h(F_z) \subseteq F_s$ and $h(F_p) \subseteq F_b$.

・ロト・ヨト・ヨト ヨーのへで 11/

Our programs use discrete vector fields to *reduce* the number of generators of the chain complex.

Our programs use discrete vector fields to *reduce* the number of generators of the chain complex.

Theorem

Let $F = (F_i)_{i \in I}$ be an *I*-filtration of (C_*, β) , and let $V = \{(\sigma_j; \tau_j)\}_{j \in J}$ be an admissible discrete vector field on (C_*, β) such that, for all $j \in J$, the cells σ_j and τ_j appear together in the filtration. Then there exists a reduction $\rho =: C_* \Rightarrow C_*^c$, where C_*^c is the **critical** chain complex (generated by the cells which do not appear in the vector field), which is compatible with the filtrations.

Our programs use discrete vector fields to *reduce* the number of generators of the chain complex.

Theorem

Let $F = (F_i)_{i \in I}$ be an *I*-filtration of (C_*, β) , and let $V = \{(\sigma_j; \tau_j)\}_{j \in J}$ be an admissible discrete vector field on (C_*, β) such that, for all $j \in J$, the cells σ_j and τ_j appear together in the filtration. Then there exists a reduction $\rho =: C_* \Rightarrow C_*^c$, where C_*^c is the **critical** chain complex (generated by the cells which do not appear in the vector field), which is compatible with the filtrations.

Corollary

Under the same hypotheses, the generalized spectral sequences associated with the *I*-filtrations of C_* and C_*^c are isomorphic.

Example

<ロト<Eト<Eト 差 のQで 12/15

Example


```
> (gen-spsq-group K '(1 1) '(1 2) '(2 2) '(2 2) 1)
Generalized spectral sequence S[(1 1),(1 2),(2 2),(2 2)]_{1}
Component Z
> (gen-spsq-group K '(1 1) '(1 1) '(2 2) '(2 2) 1)
Generalized spectral sequence S[(1 1),(1 1),(2 2),(2 2)]_{1}
Component Z
Component Z
```

Discrete vector fields: example

Filtration over \mathbb{Z}^2 of a **digital image**:

Discrete vector fields: example

Filtration over \mathbb{Z}^2 of a **digital image**:

Associated simplicial complex: 203 vertices, 408 edges and 208 triangles.

Discrete vector fields: example

Filtration over \mathbb{Z}^2 of a **digital image**:

Associated simplicial complex: 203 vertices, 408 edges and 208 triangles. Reduced chain complex: 21 vertices, 23 edges and 5 triangles.

Generalized Serre spectral sequence: example

First stages of the Postnikov tower for computing the homotopy groups of the sphere S^3 , given by the following tower of fibrations:

Generalized Serre spectral sequence: example

First stages of the Postnikov tower for computing the homotopy groups of the sphere S^3 , given by the following tower of fibrations:

> (gen-spsq-group K '((1 -2)) '((1 -1)) '((0 0)) '((0 1) (1 0)) 6) Generalized spectral sequence S[((1 -2)),((1 -1)),((0 0)),((0 1) (1 0))]_{6} Component Z/2Z > (gen-spsq-group K '((-1 -1)) '((-1 -1)) '((12 12)) '((12 12)) 6) Generalized spectral sequence S[((-1 -1)),((-1 -1)),((12 12)), ((12 12))]_{6} Component Z/6Z Thank you!

