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Chain complexes, homology, filtrations

Consider the chain complex
dn dn+1
Co: = C1 2 Cr+— Cpyp -+~

The n-homology group of C, is defined as

Ker d,
Im dn+1

H,(C)) :=

and its rank (3, is called n-th Betti number.

A filtration of the chain complex C; is a sequence (F,C,)pecz

...CF1CG CFCC...CGC
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Spectral sequence of a filtered chain complex

Given a Z-filtration of a chain complex C. = (C,, d,), a spectral
sequence (£, d;) is defined as follows:

_ FpCp+q N d_l(prGCJrqfl) + prlcerq

E] terms of the s.s.
- d(Fotr-1Cprq+1) + Fo1Coiq
dr r - - .
e E) T Ep T ot <L E],, < -+ differentials induced by d
It holds:
E;tt = Kerd)/Imd],,
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Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex has been recently
generalized by B. Matschke for a filtration indexed over a poset /, i.e. a
collection of sub-chain complexes {F;C,}ic; with F;C, C F;C, if i < j, as
a set of groups, for all z<s < p < bin | and for each degree n:
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Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex has been recently
generalized by B. Matschke for a filtration indexed over a poset /, i.e. a
collection of sub-chain complexes {F;C,}ic; with F;C, C F;C, if i < j, as
a set of groups, for all z<s < p < bin | and for each degree n:

Fan N dn_l(FzC,,_l) + FC,
dnt1(FpCog1) + Fs Gy

and differential maps d, : Sy[22, s2, p2, bo] — Sn—1[z1, 51, P1, b1]-

Sn[2757 P, b] =

Example: Z-filtration (Fp)pez, indices z < s < p < bin Z:

p—r p—1p p+r—1

7

z s P b
Slz,5,p,0] | [ ] |
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The posets Z™ and D(Z™)

Consider Z™, seen as the poset (Z™, <) with the coordinate-wise order

relation: P = (p1,...,pm) < @ =(q1,-..,qm) if and only if p; <
gi, forall 1 < i< m.

A downset of Z™ is a subset p C Z™ such that if P € pand Q < P in
Z™ then Q € p.

We denote D(Z™) the collection of all downsets of Z™, which is a poset
with respect to the inclusion C.
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Motivating example

Theorem (Serre, 1951)

Let G — E — B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H.(E) whose second page is
given by E2 . = Hp(B; Hq(G)).

Theorem (Matschke, 2013)

Consider a tower of fibrations

E > N > B
T T
G M

and suppose the base B is 1-reduced. There exists a D(Z?)-spectral
system converging to H,(E) whose second page is given by

5n(Pi2) = Hp,(B; Hp (M; Hopy—p,(G))), P = (p1,p2) € z2.
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Multidimensional persistence and persistence of

[-filtrations

Multidimensional filtrations (or Z™-filtrations) of simplicial complexes:

Kyt — Koyt — -+ —— Kypnr
] )
| | |
Ky — Koy —— -+ —— Kn»

] | ]

Ky — Ky —— -+ —— Ky

Associated invariant: rank invariant
BPQ = dimp Im(Ha(Kp) — Ha(Kq)), P,Qe€Z™ P<Q.

Similarly, for an /-filtration (F;);c;, we define rank invariant the collection
of integers

Bn(v, w) = dimg Im(H,(F,) — Hn(Fw)), viwel, v<w.
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Algorithms

We have developed a set of programs computing generalized spectral
sequences implemented in the Computer Algebra System Kenzo.

If the /-filtered chain complex C, is of finite type, the groups Sy(z, s, p, b]
can be determined by means of diagonalization operations on matrices.

The result is a basis-divisors description of the group, that is:
e a list of combinations (cy,. .., Catk)

e a list of torsion coefficients (by, ..., bk, 0,.¢.,0).
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Algorithms

To compute the differential map
d: S, = S|z, s, p2, bo] — S1 = S[z1, 51, p1, b1] applied to an element
a = [x] given by a list of coordinates (ai,...a,):

@ We compute the basis-divisors representation of both groups S; and
S.

We build the projection of x € F, N d~1(F,) + Fs over the factor
Fp N d~1(F;), denoted y.

We apply the differential map d to the element y € F, N d=Y(F,).

We compute the coefficients of d(y) with respect to the set of
generators of Sj.

@ We reduce them considering the corresponding divisors.
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If a /-filtered chain complex C, is not of finite type, we use the effective
homology method and we consider a pair of reductions C, <= C* =D,
from the initial chain complex C, to another one D, of finite type (also
filtered over /). The chain complex D, is called effective.

Theorem

Let p = (f,g,h): C. = D, be a reduction between the |-filtered chain
complexes (Cy, F) and (Dy, F'), and suppose that f and g are compatible
with the filtrations. Then, given four indices z < s < p < b in I, the map
f induces an isomorphism f>5P* : S[z s, p, b], — S'|z,s, p, b], whenever
the homotopy h : (C,, F) — (Ciy1, F) satisfies the conditions

h(F,)CFs and  h(F,) C Fp.
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Theorem
Let F = (Fi)ies be an I-filtration of (C,, ), and let V = {(0j; 7j)}jes be
an admissible discrete vector field on (C,, 3) such that, for all j € J, the
cells oj and 7; appear together in the filtration. Then there exists a
reduction p =: C, = CS, where Cf is the critical chain complex
(generated by the cells which do not appear in the vector field), which is
compatible with the filtrations.




Discrete vector fields for algorithmic efficiency

Our programs use discrete vector fields to reduce the number of generators
of the chain complex.

Theorem
Let F = (Fi)ies be an I-filtration of (C,, ), and let V = {(0j; 7j)}jes be
an admissible discrete vector field on (C,, 3) such that, for all j € J, the
cells oj and 7; appear together in the filtration. Then there exists a
reduction p =: C, = CS, where Cf is the critical chain complex
(generated by the cells which do not appear in the vector field), which is
compatible with the filtrations.

Under the same hypotheses, the generalized spectral sequences associated
with the /-filtrations of C, and C¢ are isomorphic.
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Filtration over Z? of a digital image:
STCIETCIHTCIHTE
S

SR AT
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Discrete vector fields: example

Ei@
R

Associated simplicial complex: 203 vertices, 408 edges and 208 triangles.
Reduced chain complex: 21 vertices, 23 edges and 5 triangles.
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Generalized Serre spectral sequence: example

First stages of the Postnikov tower for computing the homotopy groups of
the sphere S3, given by the following tower of fibrations:

E s N s B=S§3
G = K(Z2,3) M = K(Z,2)

> (gen-spsq-group K ’((1 -2)) *((1 -1)) >((0 0)) ’((0 1) (1 0)) 6)
Generalized spectral sequence S[((1 -2)),((1 -1)),((0 0)),((0 1)

(1 0)>1_{e}

Component Z/2Z

> (gen-spsq-group K ’((-1 -1)) *((-1 -1)) ’((12 12)) ’((12 12)) 6)
Generalized spectral sequence S[((-1 -1)),((-1 -1)),((12 12)),

(12 12))]_{6}

Component Z/6Z
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