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Chain complexes, homology, filtrations

Consider the chain complex

C∗ : · · · ←− Cn−1
dn←− Cn

dn+1←−− Cn+1 ←− · · ·

The n-homology group of C∗ is defined as

Hn(C∗) :=
Ker dn

Im dn+1

and its rank βn is called n-th Betti number.

A filtration of the chain complex C∗ is a sequence (FpC∗)p∈Z

. . . ⊆ Fp−1C∗ ⊆ FpC∗ ⊆ . . . ⊆ C∗
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Spectral sequence of a filtered chain complex

Given a Z-filtration of a chain complex C∗ = (Cn, dn), a spectral
sequence (E r

p , d
r
p) is defined as follows:

E r
p,q :=

FpCp+q ∩ d−1(Fp−rCp+q−1) + Fp−1Cp+q

d(Fp+r−1Cp+q+1) + Fp−1Cp+q
terms of the s.s.

· · · ←− E r
p−r

d r
p←− E r

p

d r
p+r←−− E r

p+r ←− · · · differentials induced by d

It holds:
E r+1
p
∼= Ker d r

p/ Im d r
p+r

• • • • •
• • • • •
• • • • •
• • • • •

p

q r=1

//

OO

d1
4,1

oo
d1
3,1

oo
d1
2,1

oo
d1
1,1

oo d1
4,2

oo
d1
3,2

oo
d1
2,2

oo
d1
1,2

oo

• • • • •
• • • • •
• • • • •
• • • • •

p

q r=2

//

OO

d2
3,2

gg

d2
4,1

gg
d2
2,2

gg

d2
3,1

gg

• • • • •
• • • • •
• • • • •
• • • • •

p

q r=3

//

OO

d3
3,0

dd d3
4,1

dd
d3
3,1

dd
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Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex has been recently
generalized by B. Matschke for a filtration indexed over a poset I , i.e. a
collection of sub-chain complexes {FiC∗}i∈I with FiC∗ ⊆ FjC∗ if i ≤ j , as
a set of groups, for all z ≤ s ≤ p ≤ b in I and for each degree n:

Sn[z , s, p, b] =
FpCn ∩ d−1n (FzCn−1) + FsCn

dn+1(FbCn+1) + FsCn

and differential maps dn : Sn[z2, s2, p2, b2]→ Sn−1[z1, s1, p1, b1].

Example: Z-filtration (Fp)p∈Z, indices z ≤ s ≤ p ≤ b in Z:

p− r p− 1 p p+ r − 1

Er
p

z s p b

S[z, s, p, b]
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The posets Zm and D(Zm)

Consider Zm, seen as the poset (Zm,≤) with the coordinate-wise order
relation: P = (p1, . . . , pm) ≤ Q = (q1, . . . , qm) if and only if pi ≤
qi , for all 1 ≤ i ≤ m.

A downset of Zm is a subset p ⊆ Zm such that if P ∈ p and Q ≤ P in
Zm then Q ∈ p.

We denote D(Zm) the collection of all downsets of Zm, which is a poset
with respect to the inclusion ⊆.
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Motivating example

Theorem (Serre, 1951)

Let G ↪−→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Theorem (Matschke, 2013)

Consider a tower of fibrations

E N B

G M

and suppose the base B is 1-reduced. There exists a D(Z2)-spectral
system converging to H∗(E ) whose second page is given by

S∗n (P; 2) = Hp2(B;Hp1(M;Hn−p1−p2(G ))), P = (p1, p2) ∈ Z2.



6/15

Motivating example

Theorem (Serre, 1951)

Let G ↪−→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Theorem (Matschke, 2013)

Consider a tower of fibrations

E N B

G M

and suppose the base B is 1-reduced. There exists a D(Z2)-spectral
system converging to H∗(E ) whose second page is given by

S∗n (P; 2) = Hp2(B;Hp1(M;Hn−p1−p2(G ))), P = (p1, p2) ∈ Z2.



6/15

Motivating example

Theorem (Serre, 1951)

Let G ↪−→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Theorem (Matschke, 2013)

Consider a tower of fibrations

E N B

G M

and suppose the base B is 1-reduced. There exists a D(Z2)-spectral
system converging to H∗(E ) whose second page is given by

S∗n (P; 2) = Hp2(B;Hp1(M;Hn−p1−p2(G ))), P = (p1, p2) ∈ Z2.



7/15

Multidimensional persistence and persistence of
I -filtrations

Multidimensional filtrations (or Zm-filtrations) of simplicial complexes:

3.2. Multidimensional persistence 45

stability of the methods of persistent homology [CSEH07, CCSG+09].

Since in Section 3.3 we will explain the relation between persistent homology and spectral

sequences, let us conclude this section introducing the subject with a brief overview of the uses of

spectral sequences in persistence theory. The connection between spectral sequences and persistent

homology was first mentioned in the introduction of [ZC05], even if it was not detailed there. In

the book by Edelsbrunner and Harer [EH10, § VII.4] an algorithm to compute the barcode based

on the block reduction of a matrix is presented, which is inspired by spectral sequences: first, one

reduces the blocks corresponding to the 1-page E1, then the blocks corresponding to the 2-page,

repeating the process until the whole matrix is reduced. Some clarifications on the relation between

persistent homology and spectral sequences appear in [RHRS14]; eventually the paper [BP17]

illustrates the connection in a very explicit form, which we will generalize in the following. It is

worth mentioning the completely different approach introduced in [LSVJ11], where the authors

show how the Mayer-Vietoris spectral sequence (see for example [Bro82, Ch. VII.4]) can be used for

parallelized computation of persistent homology, an idea further developed in [LM15].

3.2 Multidimensional persistence

Consider again the filtration of simplicial complexes (3.1) of the previous section, here denoted

shortly by

K1 ↪−→ K2 ↪−→ · · · ↪−→ KN ,

recalling that it can be interpreted as a family of simplicial complexes which “grow”with respect to a

single parameter. In some applications a setting in which simplicial complexes vary according to two

or more parameters may be more interesting, for example because the interplay of the parameters

can reveal information on the data. For instance, consider again the filtration of Vietoris-Rips (or

Čech) complexes which can be constructed from a point cloud by letting the radius parameter ε

vary (Example 1.23). Since outliers in the point cloud can sometimes compromise the effectiveness

of topological methods, we can introduce (as in [CZ09, § 1.1]) a second parameter ρ related to the

density of the points, which allows to discard points located “far from the others”. Combining the

two parameters, we can build a filtration along two dimensions of the following form

K1N ′ K2N ′ · · · KNN ′

· · · · · · · · ·

K12 K22 · · · KN2

K11 K21 · · · KN1

(3.5)

where each row is a filtration with respect to the first parameter for a fixed value of the second one,

and each column is a filtration with respect to the second parameter for a fixed value of the first one.

Associated invariant: rank invariant

βP,Qn := dimF Im(Hn(KP)→ Hn(KQ)), P,Q ∈ Zm, P ≤ Q.

Similarly, for an I -filtration (Fi )i∈I , we define rank invariant the collection
of integers

βn(v ,w) := dimF Im(Hn(Fv )→ Hn(Fw )), v ,w ∈ I , v ≤ w .
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Čech) complexes which can be constructed from a point cloud by letting the radius parameter ε

vary (Example 1.23). Since outliers in the point cloud can sometimes compromise the effectiveness

of topological methods, we can introduce (as in [CZ09, § 1.1]) a second parameter ρ related to the

density of the points, which allows to discard points located “far from the others”. Combining the

two parameters, we can build a filtration along two dimensions of the following form

K1N ′ K2N ′ · · · KNN ′

· · · · · · · · ·

K12 K22 · · · KN2

K11 K21 · · · KN1

(3.5)

where each row is a filtration with respect to the first parameter for a fixed value of the second one,

and each column is a filtration with respect to the second parameter for a fixed value of the first one.

Associated invariant: rank invariant

βP,Qn := dimF Im(Hn(KP)→ Hn(KQ)), P,Q ∈ Zm, P ≤ Q.

Similarly, for an I -filtration (Fi )i∈I , we define rank invariant the collection
of integers

βn(v ,w) := dimF Im(Hn(Fv )→ Hn(Fw )), v ,w ∈ I , v ≤ w .
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Algorithms

We have developed a set of programs computing generalized spectral
sequences implemented in the Computer Algebra System Kenzo.

If the I -filtered chain complex C∗ is of finite type, the groups Sn[z , s, p, b]
can be determined by means of diagonalization operations on matrices.

The result is a basis-divisors description of the group, that is:

a list of combinations (c1, . . . , cα+k)

a list of torsion coefficients (b1, . . . , bk , 0, α. . ., 0).
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Algorithms

To compute the differential map
d : S2 ≡ S [z2, s2, p2, b2]→ S1 ≡ S [z1, s1, p1, b1] applied to an element
a = [x ] given by a list of coordinates (a1, . . . ar ):

We compute the basis-divisors representation of both groups S1 and
S2.

We build the projection of x ∈ Fp ∩ d−1(Fz) + Fs over the factor
Fp ∩ d−1(Fz), denoted y .

We apply the differential map d to the element y ∈ Fp ∩ d−1(Fz).

We compute the coefficients of d(y) with respect to the set of
generators of S1.

We reduce them considering the corresponding divisors.
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Algorithms

If a I -filtered chain complex C∗ is not of finite type, we use the effective
homology method and we consider a pair of reductions C∗⇐⇐ Ĉ∗⇒⇒D∗
from the initial chain complex C∗ to another one D∗ of finite type (also
filtered over I ). The chain complex D∗ is called effective.

Theorem

Let ρ = (f , g , h) : C∗ ⇒ D∗ be a reduction between the I -filtered chain
complexes (C∗,F ) and (D∗,F

′), and suppose that f and g are compatible
with the filtrations. Then, given four indices z ≤ s ≤ p ≤ b in I , the map
f induces an isomorphism f z,s,p,b : S [z , s, p, b]n → S ′[z , s, p, b]n whenever
the homotopy h : (C∗,F )→ (C∗+1,F ) satisfies the conditions

h(Fz) ⊆ Fs and h(Fp) ⊆ Fb.
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Discrete vector fields for algorithmic efficiency

Our programs use discrete vector fields to reduce the number of generators
of the chain complex.

Theorem

Let F = (Fi )i∈I be an I -filtration of (C∗, β), and let V = {(σj ; τj)}j∈J be
an admissible discrete vector field on (C∗, β) such that, for all j ∈ J, the
cells σj and τj appear together in the filtration. Then there exists a
reduction ρ =: C∗⇒⇒C c

∗ , where C c
∗ is the critical chain complex

(generated by the cells which do not appear in the vector field), which is
compatible with the filtrations.

Corollary

Under the same hypotheses, the generalized spectral sequences associated
with the I -filtrations of C∗ and C c

∗ are isomorphic.
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Example

1

2

1 2

> (gen-spsq-group K ’(1 1) ’(1 2) ’(2 2) ’(2 2) 1)

Generalized spectral sequence S[(1 1),(1 2),(2 2),(2 2)]_{1}

Component Z

> (gen-spsq-group K ’(1 1) ’(1 1) ’(2 2) ’(2 2) 1)
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Discrete vector fields: example

Filtration over Z2 of a digital image:

Associated simplicial complex: 203 vertices, 408 edges and 208 triangles.
Reduced chain complex: 21 vertices, 23 edges and 5 triangles.



13/15

Discrete vector fields: example

Filtration over Z2 of a digital image:

Associated simplicial complex: 203 vertices, 408 edges and 208 triangles.

Reduced chain complex: 21 vertices, 23 edges and 5 triangles.



13/15

Discrete vector fields: example

Filtration over Z2 of a digital image:

Associated simplicial complex: 203 vertices, 408 edges and 208 triangles.
Reduced chain complex: 21 vertices, 23 edges and 5 triangles.



14/15

Generalized Serre spectral sequence: example

First stages of the Postnikov tower for computing the homotopy groups of
the sphere S3, given by the following tower of fibrations:

E N B = S3

G = K (Z2, 3) M = K (Z, 2)

> (gen-spsq-group K ’((1 -2)) ’((1 -1)) ’((0 0)) ’((0 1) (1 0)) 6)

Generalized spectral sequence S[((1 -2)),((1 -1)),((0 0)),((0 1)

(1 0))]_{6}

Component Z/2Z

> (gen-spsq-group K ’((-1 -1)) ’((-1 -1)) ’((12 12)) ’((12 12)) 6)

Generalized spectral sequence S[((-1 -1)),((-1 -1)),((12 12)),

((12 12))]_{6}

Component Z/6Z
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.

Thank you!


