
From Homological Perturbation to

Spectral Sequences: a Case Study

Ana Romero

Universidad de La Rioja (Spain)

Daresbury, November 2006



Spectral sequences



Spectral sequences

Definition. A Spectral Sequence E = {Er, dr} is a family of Z-bigraded

modules E1, E2,. . . , each provided with a differential dr = {drp,q} of bide-

gree (−r, r − 1) and with isomorphisms H(Er, dr) ∼= Er+1, r = 1, 2, . . .



Spectral sequences

Definition. A Spectral Sequence E = {Er, dr} is a family of Z-bigraded

modules E1, E2,. . . , each provided with a differential dr = {drp,q} of bide-

gree (−r, r − 1) and with isomorphisms H(Er, dr) ∼= Er+1, r = 1, 2, . . .

“If we think of a spectral sequence as a black box, then the input is a differential bi-

graded module, usually E1
∗,∗ , and, with each turn of the handle, the machine computes

a successive homology according to a sequence of differentials. If some differential is

unknown, then some other (any other) principle is needed to proceed. [...] In the

nontrivial cases, it is often a deep geometric idea that is caught up in the knowledge

of a differential.”

John McCleary, User’s guide to spectral sequences (Publish or Perish, 1985)
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An example of spectral sequence

A fibration G ↪→ E → B

G is the fiber space, B the base space, and E = B ×τ G the total space.

Theorem (Serre spectral sequence). Let G ↪→ E → B be a

fibration with a base space B simply connected. Then a first quadrant

spectral sequence {Er
p,q, d

r
p,q}r≥2 is defined with E2

p,q = Hp(B,Hq(G))

and Er
p,q ⇒ Hp+q(E).

Using this spectral sequence, Serre computed many sphere homotopy groups.
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The Hurewicz theorem and the long exact sequence of homotopy imply

that π4(S
3) = π4(X4) = H4(X4) = Z2.
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An example of spectral sequence

• Then, a new fibration F3 ↪→ X5 → X4 is considered to determine

π5(S
3), where F3 = K(Z2, 3) is chosen because π4(X4) = Z2.

Again some extra information is needed to compute the differentials,

and we obtain π5(S
3) = π5(X4) = π5(X5) = H5(X5) = Z2.

• Similarly, Serre used a new fibration F4 ↪→ X6 → X5, with F4 =

K(Z2, 4), to compute π6(S
3).

Using his spectral sequence, he proved π6(S
3) has 12 elements, but

he was unable to choose between the two possible options Z12 and

Z2 + Z6.
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Definition. A reduction ρ between two chain complexes A and B (denoted by

ρ : A⇒⇒⇒B) is a triple ρ = (f, g, h)

A

h
�� f

++
B

g
kk

satisfying the following relations:

......fg = idB; gf + dAh+ hdA = idA;

......fh = 0; hg = 0; hh = 0.

Remark. If A⇒⇒⇒B, then A = B⊕C, with C acyclic, which implies thatH∗(A) ∼=
H∗(B).
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Definition. A (strong chain) equivalence between the complexesA andB (A⇐⇐⇐⇒⇒⇒B)

is a triple (D, ρ, ρ′) where D is a chain complex, ρ : D⇒⇒⇒A and ρ′ : D⇒⇒⇒B.

A⇐⇐⇐D⇒⇒⇒B

Definition. An object with effective homology is a triple (X,EC, ε) where EC is

an effective chain complex and C(X)
ε⇐⇐⇐⇒⇒⇒ EC.

Remark. This implies that H∗(X) ∼= H∗(EC).
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The Kenzo system

Uses the notion of object with effective homology to compute homology

groups of some complicated spaces.

If the complex is effective, then its homology groups can be determined

by means of elementary operations with integer matrices. Otherwise, the

program uses the effective homology.

Example: X5, total space of the fibration F3 ↪→ X5 → X4
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First, we construct the space X5

>(setf s3 (sphere 3))

[K1 Simplicial-Set]

> (setf f3 (z-whitehead s3 (chml-clss s3 3)))

[K37 Fibration K1 -> K25]

> (setf x4 (fibration-total f3))

[K43 Simplicial-Set]

> (setf f4 (z2-whitehead x4 (chml-clss x4 4)))

[K292 Fibration K43 -> K278]

> (setf x5 (fibration-total f4))

[K298 Simplicial-Set]

We can ask for the effective homology of X5:



The Kenzo system

First, we construct the space X5

>(setf s3 (sphere 3))

[K1 Simplicial-Set]

> (setf f3 (z-whitehead s3 (chml-clss s3 3)))

[K37 Fibration K1 -> K25]

> (setf x4 (fibration-total f3))

[K43 Simplicial-Set]

> (setf f4 (z2-whitehead x4 (chml-clss x4 4)))

[K292 Fibration K43 -> K278]

> (setf x5 (fibration-total f4))

[K298 Simplicial-Set]

We can ask for the effective homology of X5:

> (efhm x5)

[K608 Homotopy-Equivalence K298 <= K598 => K594]
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The Kenzo system

For the homology groups of X5 in dimensions 5 and 6 we obtain

> (homology x5 5)

Homology in dimension 5 :

Component Z/2Z

---done---

> (homology x5 6)

Homology in dimension 6 :

Component Z/6Z

---done---

which means H5(X5) = Z2 and H6(X5) = Z6
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Basic Perturbation Lemma (BPL)

Definition. Let (C, d) be a chain complex, a perturbation δ is an operator of

degree −1 satisfying the relation (dC + δ) ◦ (dC + δ) = 0.

Remark. If δ is a perturbation on (C, dC), then (C, dC +δ) is also a chain complex.

Problem. Given a reduction (C, dC)⇒⇒⇒ (D, dD) and a perturbation δ of the chain

complex (C, dC), how to determine a new reduction

(C, dC + δ)⇒⇒⇒ (D, ???)

Theorem (Basic Perturbation Lemma). Let ρ = (f, g, h) be a reduction ρ :

(C, dC)⇒⇒⇒ (D, dD) and δ a perturbation of dC, where the composite function h◦δ
is locally nilpotent. Then a new reduction ρ′ : (C, dC + δ)⇒⇒⇒ (D, dD + δ̄), ρ′ =

(f ′, g′, h′), can be constructed.
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Basic Perturbation Lemma (BPL)

Proof. 1. δ̄ = f ◦ δ ◦ φ ◦ g = f ◦ ψ ◦ δ ◦ g,

2. f ′ = f ◦ ψ = f ◦ (Id− δ ◦ φ ◦ h),

3. g′ = φ ◦ g,

4. h′ = φ ◦ h = h ◦ ψ,

where the operators φ and ψ are defined by

φ =
∞∑
i=0

(−1)i(h ◦ δ)i; ψ =
∞∑
i=0

(−1)i(δ ◦ h)i = Id− δ ◦ φ ◦ h,

(the series are convergent thanks to the locally nilpotency of h ◦ δ)
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Effective homology of the total space of a fibration

Example: F3 ↪→ X5 → X4, F2 ↪→ X4 → S3

• F3 = K(Z2, 3) is of finite type, its effective homology is trivial.

• To compute the effective homology of X4, the effective homologies of

F2 and S3 are necessary.

• The simplicial set S3 is already of finite type.

• And finally, the effective homology of F2 = K(Z, 2) is also computable.
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Computing spectral sequences

For the spectral sequence associated with a filtered chain complex, there

exists a formal expression for the groups Er
p,q and the differential maps drp,q,

but they can only be determined in very simple situations.

Theorem. Let C be a filtered chain complex with effective homology (HC, ε), with

ε = (D, ρ, ρ′), ρ = (f, g, h), and ρ′ = (f ′, g′, h′). Let us supose that filtrations are

also defined in the chain complexes HC and D. If the maps f , f ′, g, and g′ are

morphisms of filtered complexes (i.e., they are compatible with the filtrations) and

both homotopies h and h′ have order ≤ t (i.e. h(FpD), h′(FpD) ⊂ Fp+tD ∀p ∈
Z), then the spectral sequences of the complexes C and HC are isomorphic for

r > t:

E(C)r
p,q
∼= E(HC)r

p,q ∀r > t
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Computing spectral sequences

A new module (about 2500 lines) enhancing the Kenzo system has been

developed, allowing us to compute spectral sequences of filtered complexes.

• If the filtered complex is effective, then the formal expression of the

groups Er
p,q can be computed through elementary methods with integer

matrices.

• Otherwise, the effective homology is needed to compute the Er
p,q by

means of an analogous spectral sequence deduced of an appropriate

filtration on the associated effective complex.
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Computing spectral sequences

Example: F3 ↪→ X5 → X4

First of all, the space X5 and its effective equivalent object are filtered
>(change-chcm-to-fltrchcm x5 fbrt-flin ‘(fbrt-flin))

[K298 Filtered-Simplicial-Set]

>(change-chcm-to-fltrchcm (rbcc (efhm x5)) tnpr-flin

‘(tnpr-flin))

[K594 Filtered-Chain-Complex]

Computation of some groups:
>(print-spct-sqn-cmpns x5 4 8 0)

Spectral sequence E^4_{8,0}

Component Z/4Z

>(print-spct-sqn-cmpns x5 4 4 3)

Spectral sequence E^4_{4,3}

Component Z/2Z
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The differential maps can also be obtained

>(spct-sqn-dffr x5 4 8 0 ’(1))

(1)

The convergence level of the spectral sequence for p + q = 8 is r = 9

>(spct-sqn-cnvg-level x5 8)

9

And finally, we can determine the filtration of the homology groups

>(homology-fltr x5 6 5)

Filtration F_5 H_6

Component Z/2Z

>(homology-fltr x5 6 6)

Filtration F_6 H_6

Component Z/6Z
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