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Why did | decide to talk about spectral sequences?
@ They are a useful tool that can been used in many different situations.
@ Many people do not know them or are afraid of using them.
@ Many people think they are not a computational tool.

o | have worked with spectral sequences for a long time...
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Introduction

Consider the chain complex

dn d
Co: G = G Cryg -+

The n-homology group of C, is defined as

Ker d,

Hn(Cs) := Imdnis

Given a simplicial set X, a chain complex C,.(X) can be constructed such
that the homology groups of X are defined as

Hn(X) = Ha(C(X))
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Since E,;jgl is a subquotient of E,qu for each r > 1, one can define the final

groups of the spectral sequence as Ej = N1 E; 4- Under good
conditions (very frequently), the spectral sequence stabilizes.
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Why are spectral sequences useful?

They usually converge to interesting things (frequently homology or
homotopy groups).

Definition

Let H. = {Hp}nen be a graded group. A spectral sequence (E',d"),>1 is
said to converge to H, (denoted by E! = H,) if there is a filtration F of

c c oo ~ _FpHpiqg
H. and for each (p, g) one has an isomorphism Eoy = Fooifie

Examples:
@ The Serre spectral sequence converges to the homology groups of the
total space of a fibration.

@ The Eilenberg-Moore spectral sequence converges to the homology
groups of the loop space of a simplicial set.

o The Adams spectral sequence converges to the homotopy groups of a
simplicial set X.
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Problems of spectral sequences

@ The problem of differentials

Example: K(Z,2) < X — S3, where Hy;(K(Z,2)) = Z and
Haj1(K(Z,2)) = 0 for all i.
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@ The extension problem

A
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We obtain a short exact sequence:
0(—Zﬁ<—H6(E)<—Z2(—0

but now there are two possible extensions: the trivial one Zy @ Zg
and the twisted one Zq5.



Spectral sequences of filtered complexes



Spectral sequences of filtered complexes

Definition

An increasing filtration F of a chain complex C. = (Cp, dp)nen is a family
of sub-chain complexes ... C F,_1C. C F, G C Fp1 G C .




Spectral sequences of filtered complexes

An increasing filtration F of a chain complex C. = (Cp, dp)nen is a family
of sub-chain complexes ... C F,_1C. C F, G C Fp1 G C .

| N\

Theorem

Let C, be a chain complex with a filtration. There exists a spectral

sequence with . Zy g+ Fp-1Cpiqg

Pq —

—1
dP+q+1(Z;C+r—l,q—r+2) + Fp—lcp+q
where Z; ,is Zg o ={a € FyCpiq| dpiq(a) € Fp—rCpig-1} € FpCpiq,
and dj ,: Ej o — E; ., 1 Is the morphism induced by
dptq : Cp+q = Cpq—1. This spectral sequence converges to H,(C).

¥ S. Maclane. Homology. Springer, 1963.
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o First implementation: new module for the Kenzo system.
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@ Other implementations (in GAP, for finite type complexes):

ﬁ M. Barakat. Spectral Filtrations via Generalized Morphisms. Preprint, 2009.
https://arxiv.org/abs/0904.0240

ﬁ G. Ellis, P. Smith. Computing group cohomology rings from the
Lyndon-Hochschild-Serre spectral sequence. Journal of Symbolic
Computation 46 (4), 360-370, 2011.
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Remark: when the filtered chain complex is not of finite type, the groups
Ej 4 and the differential maps d;, , cannot be directly determined.

By using the effective homology theory, implemented in the Kenzo system,
it is also possible to determine spectral sequences of chain complexes
which are not of finite type.
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Computation 41 (10), 1059-1079, 2006.
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Given a chain complex C,, how is it possible to determine its effective
homology?

@ If a chain complex C, is effective, then we can choose the trivial
effective homology C, «= C, = C,.

@ In some cases, some theoretical results are available providing an
equivalence between some chain complex C, and an effective chain
complex. Example: C.(K(Z,1)) =5 C.(S%).

@ Given some topological spaces Xi,..., X, and a topological
constructor ® which produces a new topological space X; if effective
homology versions of the spaces Xi, ..., X, are known, then it should

be possible to construct the effective homology of the space X.

Particular algorithms are needed for all different constructors.
Examples: total space of a fibration, loop space of a simplicial set...
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Applications

Applications of programs computing spectral sequences of filtered
complexes:

@ We can compute the spectral sequence associated with a bicomplex.

@ We can compute the classical spectral sequences of Serre and
Eilenberg-Moore, defined by means of filtered complexes, even when
the spaces are not of finite type and (some) differential maps cannot
be easily deduced.
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Applications: Serre spectral sequence

One can compute the Serre spectral sequence associated with
X3 = K(Z3,3) Xk; K(Zy,2), total space of a fibration
K(Z2,3) — X3 — K(Z2,2).
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The object X3 is already of finite type, but its effective homology gives us
an associated effective chain complex which is much smaller.
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Applications: homotopy of suspended classifying spaces

The homotopy groups of suspended classifying spaces XK (G, 1) can be
computed by means of the Serre spectral sequence associated with some
fibrations involved in the Postnikov tower of these spaces, or directly using
the effective homology of these fibrations.

Our algorithms have made it possible to determine the homotopy groups
of spaces XK(G, 1) for different groups G, and our calculations have
found an error in the paper

ﬁ R. Mikhailov, J. Wu. On homotopy groups of the suspended classifying spaces.
Algebraic and Geometric Topology 10, 565-625, 2010.

Mikhailov and Wu say that:
Theorem 5.4: Let As be the 4-th alternating group.
Then 7T4(ZK(A4, 1)) = Z4

but we have obtained m4(XK(A4,1)) = Z12



Applications: homology of groups

From: Markus Szymik
jue 26/01/2017 22:14
To: Ana Romero

Dear Ana,
I hope this finds you well.
I am interested in computing homology with computers...

Let’s take two elementary abelian 2-groups A = (Z/2)"a and
B = (Z/2)"b and a map K( A, 1 ) -——> K( B, 2 )

and I would like to see the Eilenberg--Moore spectral
sequence for the fiber of this map...

.

Private communication with Prof. Markus Szymik, NTNU Norwegian
University of Science and Technology, Trondheim.
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Applications: homology of finite topological spaces

Ph.D. of Julidn Cuevas Rozo, started in November 2017 (supervised by
L. Lamban and A. R.):

“Effective computation of invariants of finite topological spaces”

Several techniques:
@ Beat and weak points
@ Discrete vector fields

@ Spectral sequence of a filtered complex associated with a poset
defined in

ﬁ N. Cianci, M. Ottina. On homology of finite topological spaces. Topology and
its Applications 217, 1-19, 2017.
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Bousfield-Kan spectral sequence

Associated with a simplicial set X, not defined by means of a filtered
complex, under good conditions converges to 7. (X).

Its definition is much more complicated and involves different
mathematical structures such as

@ Cosimplicial spaces

@ Loop spaces

@ Inverse limits

@ Towers of fibrations

There does not exist a formal expression for the groups E; ,'s as in the
case of the spectral sequence associated with a filtered complex.
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We have developed an algorithm computing all the components of the
Bousfield-Kan spectral sequence.
@ A. R., F. Sergeraert. A Bousfield-Kan Algorithm for Computing the Effective

Homotopy of a Space. Foundations of Computational Mathematics 17(5),
1335-1366, 2017.
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Bousfield-Kan spectral sequence

We have developed an algorithm computing all the components of the
Bousfield-Kan spectral sequence.
ﬁ A. R., F. Sergeraert. A Bousfield-Kan Algorithm for Computing the Effective

Homotopy of a Space. Foundations of Computational Mathematics 17(5),
1335-1366, 2017.

To this aim, we have developed first an effective homotopy theory.

ﬁ A. R., F. Sergeraert. Effective homotopy of fibrations. Appl. Algebra Eng.
Commun. Comput. 23(1-2), 85-100, 2012.
Other ingredients have been necessary.

ﬁ A. R. Computing the first stages of the Bousfield-Kan spectral sequence. Appl.
Algebra Eng. Commun. Comput. 21(3), 227-248, 2010.

ﬁ A. R., F. Sergeraert. Programming before theorizing, a case study. Proceedings
ISSAC 2012, 289-296.

ﬁ A. R., F. Sergeraert: A Combinatorial Tool for Computing the Effective Homotopy
of Iterated Loop Spaces. Discrete and Computational Geometry 53(1), 1-15, 2015.
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Persistent homology

Let K be a filtered simplicial complex:
P=K'CKICK?C...CK"=K
The filtration produces a sequence of groups and homomorphisms:

0= Hy(K®) = Hay(KY) = -+ = Hy(K™) = Ha(K)

Definition

The n-th persistent homology groups of K are defined as
Hi? = 1m(£7 - Hy(K') = Ha(K9)), for 0 <i<j<m.

If v is born at K' and dies entering K/, we denote pers(y) = j — i. If the
homology is computed with field coefficients, the groups Hy’ are
determined by their ranks, denoted 3;’. This allows one to represent all
groups Hy? by means of a barcode diagram.
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Persistent homology

Example:
1 2 3 4 5 6 7
="
Al 0]

Roughly speaking:
@ Homology detects topological features (connected components, holes,
and so on).

@ Persistent homology describes the evolution of topological features
looking at the different steps of the filtration.
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Programs computing persistent homology

@ The groups HEY can also be expressed in terms of the subgroups
involved in the spectral sequence:
H,‘J o Zil,nfi
n j—i
dn+1(ZJ’n_J+1)

@ In this way, it has been very easy to adapt our programs for spectral
sequences in order to compute Hy IJ for finite (filtered) simplicial
complexes.

@ Our programs are also valid in the integer case and this makes it
possible to solve the possible extension problems.

@ They can also be applied in the infinite case, where the effective
homology method can be used to determine the groups H,’ by means
of an equivalence between the initial chain complex C, and an
auxiliary chain complex of finite type.
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Programs computing persistent homology

New definition of barcode diagram for integer persistence, solving
extension problems:
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Multipersistence

Multidimensional filtration of a simplicial complex:

T
R T

K21 ‘—>K22 > - ‘—>K2m/

J J J

Ky —— Kig —— -+ —— Ky

Multipersistence groups:

HPQ = Im(fPQ . H\(Kp) = Ha(Kg)), P,QeZ% P =Q.
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Generalized spectral sequences

The notion of spectral sequence of a filtered complex has been recently
generalized by B. Matschke for a filtration indexed over a poset /, i.e. a
collection of sub-chain complexes {F;C,}ic; with F;C, C F;C, if i < j, as
a set of groups, for all z<s < p < bin | and for each degree n:

Fan N dn_l(FzCn_l)
dnt1(FpCog1) + Fs Gy

and differential maps d, : Sy[22, s2, p2, bo] — Sn—1[z1, 51, P1, b1]-

Sn[27 S, p, b] =

As classical spectral sequences, they usually converge to interesting things.
@ Generalized Serre spectral sequence for a tower of fibrations.

@ Generalized Eilenberg-Moore spectral sequence for a pull-back
diagram of fibrations.
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Programs computing generalized spectral sequences

@ By adapting our programs for classical spectral sequences, we can
also compute the groups S,[z, s, p, b] and the differential maps for all
indexes.

@ Our programs are also valid in the integer case and this makes it
possible to solve the possible extension problems.

@ They can also be applied in the infinite case, where the effective
homology method can be used to determine the groups S,[z, s, p, b]
by means of a pair of reductions between the initial chain complex C,
and an auxiliary chain complex of finite type.

ﬁ A. Guidolin, A. R. Effective Computation of Generalized Spectral Sequences. To
appear in Proceedings ISSAC 2018.
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