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Introduction

Why did I decide to talk about spectral sequences?

They are a useful tool that can been used in many different situations.

Many people do not know them or are afraid of using them.

Many people think they are not a computational tool.

I have worked with spectral sequences for a long time...
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Introduction

Consider the chain complex

C∗ : · · · ←− Cn−1
dn←− Cn

dn+1←−− Cn+1 ←− · · ·

The n-homology group of C∗ is defined as

Hn(C∗) :=
Ker dn

Im dn+1

Given a simplicial set X , a chain complex C∗(X ) can be constructed such
that the homology groups of X are defined as

Hn(X ) := Hn(C∗(X ))
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Definition of spectral sequence

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) = Ker d r/ Im d r ∼= E r+1 for every r ≥ 1.



4/29

Definition of spectral sequence

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) = Ker d r/ Im d r ∼= E r+1 for every r ≥ 1.



4/29

Definition of spectral sequence

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) = Ker d r/ Im d r ∼= E r+1 for every r ≥ 1.

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=1

//

OO

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=2

//

OO

d23,2

gg

d24,1

gg
d22,2

gg

d23,1

gg

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=3

//

OO

d33,0

dd d34,1

dd
d33,1

dd



4/29

Definition of spectral sequence

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) = Ker d r/ Im d r ∼= E r+1 for every r ≥ 1.

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=1

//

OO

d14,1

oo
d13,1

oo
d12,1

oo
d11,1

oo
d14,2

oo
d13,2

oo
d12,2

oo
d11,2

oo

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=2

//

OO

d23,2

gg

d24,1

gg
d22,2

gg

d23,1

gg

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=3

//

OO

d33,0

dd d34,1

dd
d33,1

dd



4/29

Definition of spectral sequence

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) = Ker d r/ Im d r ∼= E r+1 for every r ≥ 1.

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=1

//

OO

d14,1

oo
d13,1

oo
d12,1

oo
d11,1

oo
d14,2

oo
d13,2

oo
d12,2

oo
d11,2

oo

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=2

//

OO

d23,2

gg

d24,1

gg
d22,2

gg

d23,1

gg

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=3

//

OO

d33,0

dd d34,1

dd
d33,1

dd



4/29

Definition of spectral sequence

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) = Ker d r/ Im d r ∼= E r+1 for every r ≥ 1.

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=1

//

OO

d14,1

oo
d13,1

oo
d12,1

oo
d11,1

oo
d14,2

oo
d13,2

oo
d12,2

oo
d11,2

oo

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=2

//

OO

d23,2

gg

d24,1

gg
d22,2

gg

d23,1

gg

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=3

//

OO

d33,0

dd d34,1

dd
d33,1

dd



4/29

Definition of spectral sequence

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) = Ker d r/ Im d r ∼= E r+1 for every r ≥ 1.

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=1

//

OO

d14,1

oo
d13,1

oo
d12,1

oo
d11,1

oo
d14,2

oo
d13,2

oo
d12,2

oo
d11,2

oo

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=2

//

OO

d23,2

gg

d24,1

gg
d22,2

gg

d23,1

gg

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=3

//

OO

d33,0

dd d34,1

dd
d33,1

dd

Since E r+1
p,q is a subquotient of E r

p,q for each r ≥ 1, one can define the final
groups of the spectral sequence as E∞p,q =

⋂
r≥1 E

r
p,q.



4/29

Definition of spectral sequence

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) = Ker d r/ Im d r ∼= E r+1 for every r ≥ 1.

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=1

//

OO

d14,1

oo
d13,1

oo
d12,1

oo
d11,1

oo
d14,2

oo
d13,2

oo
d12,2

oo
d11,2

oo

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=2

//

OO

d23,2

gg

d24,1

gg
d22,2

gg

d23,1

gg

• • • • •

• • • • •

• • • • •

• • • • •

p

q r=3

//

OO

d33,0

dd d34,1

dd
d33,1

dd

Since E r+1
p,q is a subquotient of E r

p,q for each r ≥ 1, one can define the final
groups of the spectral sequence as E∞p,q =

⋂
r≥1 E

r
p,q. Under good

conditions (very frequently), the spectral sequence stabilizes.



5/29

Why are spectral sequences useful?

They usually converge to interesting things (frequently homology or
homotopy groups).

Definition

Let H∗ = {Hn}n∈N be a graded group. A spectral sequence (E r , d r )r≥1 is
said to converge to H∗ (denoted by E 1 ⇒ H∗) if there is a filtration F of

H∗ and for each (p, q) one has an isomorphism E∞p,q
∼= FpHp+q

Fp−1Hp+q

Examples:

The Serre spectral sequence converges to the homology groups of the
total space of a fibration.

The Eilenberg-Moore spectral sequence converges to the homology
groups of the loop space of a simplicial set.

The Adams spectral sequence converges to the homotopy groups of a
simplicial set X .
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Why are spectral sequences useful?

Theorem (Serre spectral sequence)

Let G ↪→ E → B be a fibration with a simply connected base space B.
Then a first quadrant spectral sequence E = (E r , d r )r≥1 can be defined
with E 2

p,q = Hp(B,Hq(G )) and E 1 ⇒ H∗(E ).

Suppose Hi (G ) and Hi (B) are zero for odd i and free abelian for even i .
The entries E 2

p,q of the E 2 page are then zero unless p and q are even.
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Problems of spectral sequences

The problem of differentials

Example: K (Z, 2) ↪→ X → S3, where H2i (K (Z, 2)) = Z and
H2i+1(K (Z, 2)) = 0 for all i .
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Z 0 0 0 0 0 Z6 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

Z2 0

p

q

r =∞

//

OO

We obtain a short exact sequence:

0← Z6 ← H6(E )← Z2 ← 0

but now there are two possible extensions: the trivial one Z2 ⊕ Z6

and the twisted one Z12.
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Spectral sequences of filtered complexes

Definition

An increasing filtration F of a chain complex C∗ = (Cn, dn)n∈N is a family
of sub-chain complexes . . . ⊆ Fp−1C∗ ⊆ FpC∗ ⊆ Fp+1C∗ ⊆ . . .

Theorem

Let C∗ be a chain complex with a filtration. There exists a spectral
sequence with

E r
p,q =

Z r
p,q + Fp−1Cp+q

dp+q+1(Z r−1
p+r−1,q−r+2) + Fp−1Cp+q

where Z r
p,q is Z r

p,q = {a ∈ FpCp+q| dp+q(a) ∈ Fp−rCp+q−1} ⊆ FpCp+q,
and d r

p,q : E r
p,q → E r

p−r ,q+r−1 is the morphism induced by
dp+q : Cp+q → Cp+q−1. This spectral sequence converges to H∗(C ).

S. MacLane. Homology. Springer, 1963.
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Programs computing spectral seq. of filtered complexes

Remark: when the initial chain complex is of finite type, the groups E r
p,q

(of all levels!) can be determined by means of diagonalization algorithms
on some matrices without knowing the differential maps.

First implementation: new module for the Kenzo system.

A. R., J. Rubio, F. Sergeraert. Computing spectral sequences. Journal of
Symbolic Computation 41 (10), 1059–1079, 2006.

Other implementations (in GAP, for finite type complexes):

M. Barakat. Spectral Filtrations via Generalized Morphisms. Preprint, 2009.
https://arxiv.org/abs/0904.0240

G. Ellis, P. Smith. Computing group cohomology rings from the
Lyndon-Hochschild-Serre spectral sequence. Journal of Symbolic
Computation 46 (4), 360–370, 2011.

https://arxiv.org/abs/0904.0240
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Programs computing spectral seq. of filtered complexes

Remark: when the filtered chain complex is not of finite type, the groups
E r
p,q and the differential maps d r

p,q cannot be directly determined.

By using the effective homology theory, implemented in the Kenzo system,
it is also possible to determine spectral sequences of chain complexes
which are not of finite type.
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Programs computing spectral seq. of filtered complexes

Our programs work in a similar way to the method that Kenzo uses to
determine homology groups of a given chain complex:

If a filtered complex C∗ is of finite type, its spectral sequence can be
determined by means of diagonalization algorithms on some matrices.

Otherwise, a pair of reductions C∗⇐⇐ Ĉ∗⇒⇒D∗ from the initial chain
complex C∗ to another one D∗ of finite type (also filtered) is
constructed, such that (thanks to some theoretical results) the
spectral sequences of C∗ and D∗ are isomorphic after some level.
The pair of reductions C∗⇐⇐ Ĉ∗⇒⇒D∗ is called the effective homology
of C∗ and D∗ is said to be effective.

Our programs determine the groups E r
p,q’s and the differential maps d r

p,q’s
for every level r .

A. R., J. Rubio, F. Sergeraert. Computing spectral sequences. Journal of Symbolic
Computation 41 (10), 1059–1079, 2006.
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Programs computing spectral seq. of filtered complexes

Given a chain complex C∗, how is it possible to determine its effective
homology?

If a chain complex C∗ is effective, then we can choose the trivial
effective homology C∗⇐⇐C∗⇒⇒C∗.

In some cases, some theoretical results are available providing an
equivalence between some chain complex C∗ and an effective chain
complex. Example: C∗(K (Z, 1))⇒⇒C∗(S

1).

Given some topological spaces X1, . . . ,Xn and a topological
constructor Φ which produces a new topological space X ; if effective
homology versions of the spaces X1, . . . ,Xn are known, then it should
be possible to construct the effective homology of the space X .

Particular algorithms are needed for all different constructors.
Examples: total space of a fibration, loop space of a simplicial set...
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Applications

Applications of programs computing spectral sequences of filtered
complexes:

We can compute the spectral sequence associated with a bicomplex.

We can compute the classical spectral sequences of Serre and
Eilenberg-Moore, defined by means of filtered complexes, even when
the spaces are not of finite type and (some) differential maps cannot
be easily deduced.
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Applications: Serre spectral sequence

One can compute the Serre spectral sequence associated with
X3 = K (Z2, 3)×k3 K (Z2, 2), total space of a fibration
K (Z2, 3) ↪→ X3 → K (Z2, 2).

Z 0 Z2 0 Z4 Z2 Z2 Z2

0 0 0 0 0 0 0

0 0 0 0 0 0

Z2 0 Z2 Z2 Z2

0 0 0 0

Z2 0 Z2

Z2 0

Z2 r = 4

p

q

//

OO

×1

cc

∼=

cc

0

cc

0

cc

Z 0 Z2 0 Z2 Z2 0 Z2

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 Z2 0

0 0 0 0

Z2 0 Z2

Z2 0

Z2 r = 5

p

q

//

OO

The object X3 is already of finite type, but its effective homology gives us
an associated effective chain complex which is much smaller.
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Z 0 Z2 0 Z4 Z2 Z2 Z2

0 0 0 0 0 0 0

0 0 0 0 0 0

Z2 0 Z2 Z2 Z2

0 0 0 0

Z2 0 Z2

Z2 0

Z2 r = 4

p

q

//

OO

×1

cc

∼=

cc

0

cc

0

cc

Z 0 Z2 0 Z2 Z2 0 Z2

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 Z2 0

0 0 0 0

Z2 0 Z2

Z2 0

Z2 r = 5

p

q

//

OO

The object X3 is already of finite type, but its effective homology gives us
an associated effective chain complex which is much smaller.



16/29

Applications: homotopy of suspended classifying spaces

The homotopy groups of suspended classifying spaces ΣK (G , 1) can be
computed by means of the Serre spectral sequence associated with some
fibrations involved in the Postnikov tower of these spaces, or directly using
the effective homology of these fibrations.

Our algorithms have made it possible to determine the homotopy groups
of spaces ΣK (G , 1) for different groups G , and our calculations have
found an error in the paper

R. Mikhailov, J. Wu. On homotopy groups of the suspended classifying spaces.
Algebraic and Geometric Topology 10, 565-625, 2010.

Mikhailov and Wu say that:
Theorem 5.4: Let A4 be the 4-th alternating group.
Then π4(ΣK(A4, 1)) = Z4

but we have obtained π4(ΣK (A4, 1)) = Z12
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Applications: homology of groups

From: Markus Szymik

jue 26/01/2017 22:14

To: Ana Romero

Dear Ana,

I hope this finds you well.

I am interested in computing homology with computers...

Let’s take two elementary abelian 2-groups A = (Z/2)^a and

B = (Z/2)^b and a map K( A, 1 ) ---> K( B, 2 )

...

and I would like to see the Eilenberg--Moore spectral

sequence for the fiber of this map...

Private communication with Prof. Markus Szymik, NTNU Norwegian
University of Science and Technology, Trondheim.
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Applications: homology of groups
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Applications: homology of finite topological spaces

Ph.D. of Julián Cuevas Rozo, started in November 2017 (supervised by
L. Lambán and A. R.):

“Effective computation of invariants of finite topological spaces”

Several techniques:

Beat and weak points

Discrete vector fields

Spectral sequence of a filtered complex associated with a poset
defined in

N. Cianci, M. Ottina. On homology of finite topological spaces. Topology and
its Applications 217, 1-19, 2017.
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Bousfield-Kan spectral sequence

Associated with a simplicial set X , not defined by means of a filtered
complex, under good conditions converges to π∗(X ).

Its definition is much more complicated and involves different
mathematical structures such as

Cosimplicial spaces

Loop spaces

Inverse limits

Towers of fibrations

There does not exist a formal expression for the groups E r
p,q’s as in the

case of the spectral sequence associated with a filtered complex.
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Bousfield-Kan spectral sequence

We have developed an algorithm computing all the components of the
Bousfield-Kan spectral sequence.

A. R., F. Sergeraert. A Bousfield-Kan Algorithm for Computing the Effective
Homotopy of a Space. Foundations of Computational Mathematics 17(5),
1335-1366, 2017.

To this aim, we have developed first an effective homotopy theory.

A. R., F. Sergeraert. Effective homotopy of fibrations. Appl. Algebra Eng.
Commun. Comput. 23(1-2), 85-100, 2012.

Other ingredients have been necessary.

A. R. Computing the first stages of the Bousfield-Kan spectral sequence. Appl.
Algebra Eng. Commun. Comput. 21(3), 227-248, 2010.

A. R., F. Sergeraert. Programming before theorizing, a case study. Proceedings
ISSAC 2012, 289-296.

A. R., F. Sergeraert: A Combinatorial Tool for Computing the Effective Homotopy
of Iterated Loop Spaces. Discrete and Computational Geometry 53(1), 1-15, 2015.



21/29

Bousfield-Kan spectral sequence

We have developed an algorithm computing all the components of the
Bousfield-Kan spectral sequence.

A. R., F. Sergeraert. A Bousfield-Kan Algorithm for Computing the Effective
Homotopy of a Space. Foundations of Computational Mathematics 17(5),
1335-1366, 2017.

To this aim, we have developed first an effective homotopy theory.

A. R., F. Sergeraert. Effective homotopy of fibrations. Appl. Algebra Eng.
Commun. Comput. 23(1-2), 85-100, 2012.

Other ingredients have been necessary.

A. R. Computing the first stages of the Bousfield-Kan spectral sequence. Appl.
Algebra Eng. Commun. Comput. 21(3), 227-248, 2010.

A. R., F. Sergeraert. Programming before theorizing, a case study. Proceedings
ISSAC 2012, 289-296.

A. R., F. Sergeraert: A Combinatorial Tool for Computing the Effective Homotopy
of Iterated Loop Spaces. Discrete and Computational Geometry 53(1), 1-15, 2015.



21/29

Bousfield-Kan spectral sequence

We have developed an algorithm computing all the components of the
Bousfield-Kan spectral sequence.

A. R., F. Sergeraert. A Bousfield-Kan Algorithm for Computing the Effective
Homotopy of a Space. Foundations of Computational Mathematics 17(5),
1335-1366, 2017.

To this aim, we have developed first an effective homotopy theory.

A. R., F. Sergeraert. Effective homotopy of fibrations. Appl. Algebra Eng.
Commun. Comput. 23(1-2), 85-100, 2012.

Other ingredients have been necessary.

A. R. Computing the first stages of the Bousfield-Kan spectral sequence. Appl.
Algebra Eng. Commun. Comput. 21(3), 227-248, 2010.

A. R., F. Sergeraert. Programming before theorizing, a case study. Proceedings
ISSAC 2012, 289-296.

A. R., F. Sergeraert: A Combinatorial Tool for Computing the Effective Homotopy
of Iterated Loop Spaces. Discrete and Computational Geometry 53(1), 1-15, 2015.



22/29

Persistent homology

Let K be a filtered simplicial complex:

∅ = K 0 ⊆ K 1 ⊆ K 2 ⊆ · · · ⊆ Km = K

The filtration produces a sequence of groups and homomorphisms:

0 = Hn(K 0)→ Hn(K 1)→ · · · → Hn(Km) = Hn(K )

Definition

The n-th persistent homology groups of K are defined as
H i ,j
n = Im(f i ,jn : Hn(K i )→ Hn(K j)), for 0 ≤ i ≤ j ≤ m.

If γ is born at K i and dies entering K j , we denote pers(γ) = j − i . If the
homology is computed with field coefficients, the groups H i ,j

n are
determined by their ranks, denoted βi ,jn . This allows one to represent all
groups H i ,j

n by means of a barcode diagram.
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Persistent homology

Example:

1 2 3 4 5 6 7

β0

β1

Roughly speaking:

Homology detects topological features (connected components, holes,
and so on).

Persistent homology describes the evolution of topological features
looking at the different steps of the filtration.
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Programs computing persistent homology

The groups H i ,j
n can also be expressed in terms of the subgroups

involved in the spectral sequence:

H i ,j
n =

Z i
i ,n−i

dn+1(Z j−i
j ,n−j+1)

In this way, it has been very easy to adapt our programs for spectral
sequences in order to compute H i ,j

n for finite (filtered) simplicial
complexes.

Our programs are also valid in the integer case and this makes it
possible to solve the possible extension problems.

They can also be applied in the infinite case, where the effective
homology method can be used to determine the groups H i ,j

n by means
of an equivalence between the initial chain complex C∗ and an
auxiliary chain complex of finite type.
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Programs computing persistent homology

New definition of barcode diagram for integer persistence, solving
extension problems:

0 1 2 3 4 5 6 7 8

H0
Z

H1

H2
Z2

H3
Z2

H4
Z2

H5

Z2

Z2

Z4

Z2

H6

Z2

Z2

H7

Z2

Z2

Z2

Z2 ⊕ Z4

Z2
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Multipersistence

Multidimensional filtration of a simplicial complex:

As A
(−1)
p (r) = 0, it is clear from Proposition 2.8 that every persistent Betti

number can be computed from the dimensions dimk E
r
p,q, even if expressing the

relation in a non-recursive formula could be difficult. For example, while for
n = 1 we have

esplicitare
anche per
n = 2?βp,p+r−1

1 =

p∑

i=1

dimk E
p+r−i
i,1−i +

p−r∑

i=1

(
dimk E

p+1−i
i,−i − dimk E

p−i−� p−r−i
2 �

i,−i

)

for all p, r ≥ 1, for n = 2 a similar formula is already quite complicated.

3 Multidimensional persistence

Multidimensional filtrations. If we consider again the filtration (1.1) in
Section 1, here summarized as

K1 ↪−→ K2 ↪−→ · · · ↪−→ Km,

we see that it can be interpreted as a family of simplicial complexes which“grow”
with respect to a single parameter. However, in several applications a setting in
which simplicial complexes vary according to two or more parameters may be
more interesting. We represent a filtration along two dimensions with a diagram
of the following type, where every square commutes:

Km1 Km2 · · · Kmm′

· · · · · · · · ·

K21 K22 · · · K2m′

K11 K12 · · · K1m′

(3.1)

Here the filtration is finite, in accordance with the previous sections. Let’s
make this concept more rigorous. Let d be a positive integer; given v, w ∈ Zd,
with v = (v1, . . . , vd), w = (w1, . . . , wd), we denote v � w if vi ≤ wi, for every
i = 1, . . . , d. The relation � is a partial order on Zd. A collection of simplicial
complexes {Kv}v∈Zd such that Kw ⊆ Kw′ if w � w′ is called multifiltration or
Zd-filtration. A multifiltration {Kv}v∈Zd of simplicial complexes is finite if there
exists w ∈ Zd such that fixing d − 1 parameters except the i-th, the resulting

Z-filtration, here denoted {K̂(i)
p }p∈Z, is finite (in the sense of Section 1), with

∅ = . . . = K̂
(i)
−1 = K̂

(i)
0 ⊆ K̂

(i)
1 ⊆ . . . ⊆ K̂(i)

wi
= K̂

(i)
wi+1 = . . .

In simpler terms, if we summarize in a diagram only the simplicial complexes
Questa def è
mia ma mi
sembra quella
giusta per
filtraz FINITE
multidimens

which are possibly non-empty and possibly different from each other, we obtain
a diagram involving only the indices v such that (1, 1, . . . , 1) � v � w, as
suggested by the bifiltration (d = 2) in the diagram (3.1), where w = (m,m′).

9

Multipersistence groups:

HP,Q
n := Im(f P,Q

n : Hn(KP)→ Hn(KQ)), P,Q ∈ Z2,P � Q.
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r
p,q, even if expressing the

relation in a non-recursive formula could be difficult. For example, while for
n = 1 we have

esplicitare
anche per
n = 2?βp,p+r−1

1 =

p∑

i=1

dimk E
p+r−i
i,1−i +

p−r∑

i=1

(
dimk E

p+1−i
i,−i − dimk E

p−i−� p−r−i
2 �

i,−i

)

for all p, r ≥ 1, for n = 2 a similar formula is already quite complicated.

3 Multidimensional persistence

Multidimensional filtrations. If we consider again the filtration (1.1) in
Section 1, here summarized as

K1 ↪−→ K2 ↪−→ · · · ↪−→ Km,

we see that it can be interpreted as a family of simplicial complexes which“grow”
with respect to a single parameter. However, in several applications a setting in
which simplicial complexes vary according to two or more parameters may be
more interesting. We represent a filtration along two dimensions with a diagram
of the following type, where every square commutes:

Km1 Km2 · · · Kmm′

· · · · · · · · ·

K21 K22 · · · K2m′

K11 K12 · · · K1m′

(3.1)

Here the filtration is finite, in accordance with the previous sections. Let’s
make this concept more rigorous. Let d be a positive integer; given v, w ∈ Zd,
with v = (v1, . . . , vd), w = (w1, . . . , wd), we denote v � w if vi ≤ wi, for every
i = 1, . . . , d. The relation � is a partial order on Zd. A collection of simplicial
complexes {Kv}v∈Zd such that Kw ⊆ Kw′ if w � w′ is called multifiltration or
Zd-filtration. A multifiltration {Kv}v∈Zd of simplicial complexes is finite if there
exists w ∈ Zd such that fixing d − 1 parameters except the i-th, the resulting

Z-filtration, here denoted {K̂(i)
p }p∈Z, is finite (in the sense of Section 1), with

∅ = . . . = K̂
(i)
−1 = K̂

(i)
0 ⊆ K̂

(i)
1 ⊆ . . . ⊆ K̂(i)

wi
= K̂

(i)
wi+1 = . . .

In simpler terms, if we summarize in a diagram only the simplicial complexes
Questa def è
mia ma mi
sembra quella
giusta per
filtraz FINITE
multidimens

which are possibly non-empty and possibly different from each other, we obtain
a diagram involving only the indices v such that (1, 1, . . . , 1) � v � w, as
suggested by the bifiltration (d = 2) in the diagram (3.1), where w = (m,m′).

9

Multipersistence groups:

HP,Q
n := Im(f P,Q

n : Hn(KP)→ Hn(KQ)), P,Q ∈ Z2,P � Q.



26/29

Multipersistence

Multidimensional filtration of a simplicial complex:

As A
(−1)
p (r) = 0, it is clear from Proposition 2.8 that every persistent Betti

number can be computed from the dimensions dimk E
r
p,q, even if expressing the

relation in a non-recursive formula could be difficult. For example, while for
n = 1 we have

esplicitare
anche per
n = 2?βp,p+r−1

1 =

p∑

i=1

dimk E
p+r−i
i,1−i +

p−r∑

i=1

(
dimk E

p+1−i
i,−i − dimk E

p−i−� p−r−i
2 �

i,−i

)

for all p, r ≥ 1, for n = 2 a similar formula is already quite complicated.

3 Multidimensional persistence

Multidimensional filtrations. If we consider again the filtration (1.1) in
Section 1, here summarized as

K1 ↪−→ K2 ↪−→ · · · ↪−→ Km,

we see that it can be interpreted as a family of simplicial complexes which“grow”
with respect to a single parameter. However, in several applications a setting in
which simplicial complexes vary according to two or more parameters may be
more interesting. We represent a filtration along two dimensions with a diagram
of the following type, where every square commutes:

Km1 Km2 · · · Kmm′

· · · · · · · · ·

K21 K22 · · · K2m′

K11 K12 · · · K1m′

(3.1)

Here the filtration is finite, in accordance with the previous sections. Let’s
make this concept more rigorous. Let d be a positive integer; given v, w ∈ Zd,
with v = (v1, . . . , vd), w = (w1, . . . , wd), we denote v � w if vi ≤ wi, for every
i = 1, . . . , d. The relation � is a partial order on Zd. A collection of simplicial
complexes {Kv}v∈Zd such that Kw ⊆ Kw′ if w � w′ is called multifiltration or
Zd-filtration. A multifiltration {Kv}v∈Zd of simplicial complexes is finite if there
exists w ∈ Zd such that fixing d − 1 parameters except the i-th, the resulting

Z-filtration, here denoted {K̂(i)
p }p∈Z, is finite (in the sense of Section 1), with

∅ = . . . = K̂
(i)
−1 = K̂

(i)
0 ⊆ K̂

(i)
1 ⊆ . . . ⊆ K̂(i)

wi
= K̂

(i)
wi+1 = . . .

In simpler terms, if we summarize in a diagram only the simplicial complexes
Questa def è
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Generalized spectral sequences

The notion of spectral sequence of a filtered complex has been recently
generalized by B. Matschke for a filtration indexed over a poset I , i.e. a
collection of sub-chain complexes {FiC∗}i∈I with FiC∗ ⊆ FjC∗ if i ≤ j , as
a set of groups, for all z ≤ s ≤ p ≤ b in I and for each degree n:

Sn[z , s, p, b] =
FpCn ∩ d−1n (FzCn−1)

dn+1(FbCn+1) + FsCn

and differential maps dn : Sn[z2, s2, p2, b2]→ Sn−1[z1, s1, p1, b1].

As classical spectral sequences, they usually converge to interesting things.

Generalized Serre spectral sequence for a tower of fibrations.

Generalized Eilenberg-Moore spectral sequence for a pull-back
diagram of fibrations.
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Programs computing generalized spectral sequences

By adapting our programs for classical spectral sequences, we can
also compute the groups Sn[z , s, p, b] and the differential maps for all
indexes.

Our programs are also valid in the integer case and this makes it
possible to solve the possible extension problems.

They can also be applied in the infinite case, where the effective
homology method can be used to determine the groups Sn[z , s, p, b]
by means of a pair of reductions between the initial chain complex C∗
and an auxiliary chain complex of finite type.

A. Guidolin, A. R. Effective Computation of Generalized Spectral Sequences. To
appear in Proceedings ISSAC 2018.
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The end

Thank you!
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