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Introduction Preliminary definitions

Persistent homology

Definition

Let K be a simplicial complex. A filtration of K is a sequence of
subcomplexes: ∅ = K 0 ⊆ K 1 ⊆ K 2 ⊆ · · · ⊆ K m = K .

The filtration produces a sequence of groups and homomorphisms:

0 = Hn(K 0)
f 0,1
n→ Hn(K 1)

f 1,2
n→ · · · f m−1,m

n→ Hn(K m) = Hn(K )

Definition

The n-th persistent homology groups of K are defined as
H i ,j

n = Im f i ,j
n , for 0 ≤ i ≤ j ≤ m.

If γ is born at K i and dies entering K j , we denote pers(γ) = j − i .
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Introduction Preliminary definitions

Persistent homology

Example:

1 2 3 4 5 6 7

β0

β1

Roughly speaking:

Homology detects topological features (connected components, holes,
and so on).
Persistent homology describes the evolution of topological features
looking at consecutive thresholds.
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Introduction Preliminary definitions

Spectral sequences

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) ∼= E r+1 for every r ≥ 1.
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Since E r+1
p,q is a subquotient of E r

p,q for each r ≥ 1, one can define the final
groups of the spectral sequence as E∞p,q =

⋂
r≥1 E r

p,q.
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Introduction Preliminary definitions

Spectral sequences

Theorem

Let C be a chain complex with a filtration. There exists a spectral
sequence with

E r
p,q =

Z r
p,q + C p−1

p+q

dp+q+1(Z r−1
p+r−1,q−r+2) + C p−1

p+q

where Z r
p,q is Z r

p,q = {a ∈ C p
p+q| dp+q(a) ∈ C p−r

p+q−1} ⊆ C p
p+q, and

d r
p,q : E r

p,q → E r
p−r ,q+r−1 is the morphism induced by

dp+q : Cp+q → Cp+q−1. This spectral sequence converges to H∗(C ), that
is, there are natural isomorphisms

E∞p,q
∼=

Hp
p+q(C )

Hp−1
p+q (C )
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Computing persistent homology by means of spectral sequences Relation between persistent homology and spectral sequences

“Erroneous” relation

The so called “Spectral sequence theorem” in the book Computational
topology: an introduction by H. Edelsbrunner and J. Harer claims that:

“Erroneous” theorem

The total rank of the groups of dimension p + q in the level r ≥ 1 of the
associated spectral sequence equals the number of points in the (p + q)-th
persistence diagram whose persistence is r or larger, that is,

m∑
p=1

rank E r
p,q = card{a ∈ Dgmp+q(f )| pers(a) ≥ r}

where in the left side q decreases as p increases so that the dimension
p + q remains constant.

However, the formula is erroneous because in the left side there can be
more elements than in the right side; the formula should be therefore an
inequality.
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Computing persistent homology by means of spectral sequences Relation between persistent homology and spectral sequences

The correct relation

Theorem

The total rank of the images of the differential maps in the level r ≥ 1 of
the spectral sequence equals the number of points in the (p + q)-th
persistence diagram whose persistence is r :

m∑
p=1

rank Ar
p,q = card{a ∈ Dgmp+q(f )| pers(a) = r}

where Ar
p,q = Im(d r

p+r ,q−r+1 : E r
p+r ,q−r+1 → E r

p,q) ⊆ E r
p,q.

This theorem gives us an algorithm for computing the groups H i ,j
n when

one works with coefficients over a field F . However the information about
ranks is not sufficient if we work with coefficients over Z.

A. Romero, J. Heras, J. Rubio and F. Sergeraert. Defining and computing persistent
Z-homology in the general case. Preprint, 2013.
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Computing persistent homology by means of spectral sequences Computing spectral sequences of filtered complexes

A Kenzo module for spectral sequences

In a previous work, we developed a set of programs computing
spectral sequences associated with filtered chain complexes.

These algorithms were implemented in Common Lisp as a new
module for the Kenzo system. Kenzo implements the effective
homology method and the notion of reduction from one (big) chain
complex to a smaller one, such that the homology groups of the two
complexes are explicitly isomorphic and one can compute homology of
infinite spaces.

The new programs use the effective homology technique and allow
the Kenzo user to determine the different components of spectral
sequences of filtered complexes even in some cases where the chain
complex has infinite type.
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The new programs use the effective homology technique and allow
the Kenzo user to determine the different components of spectral
sequences of filtered complexes even in some cases where the chain
complex has infinite type.
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Computing persistent homology by means of spectral sequences Computing persistent homology by means of spectral sequences

Computing persistent homology

Using our programs for spectral sequences, and thanks to our theorem
expressing the relation between spectral sequences and persistent
homology, one can determine the ranks of the groups H i ,j

n .

In fact a small modification of our programs for spectral sequences is
sufficient to determine the groups H i ,j

n , which can be expressed as a
quotient:

H i ,j
n =

Ker dn ∩ C i
n

dn+1(Z j−i
j ,n−j+1)

=
Z i

i ,n−i

dn+1(Z j−i
j ,n−j+1)

The programs are also valid in the integer case and this makes it
possible to solve the possible extension problems.

Our programs can also be applied in the infinite case, where the
effective homology method can be used to determine the groups H i ,j

n

by means of a reduction of the initial chain complex C to an auxiliary
chain complex of finite type.
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Persistent homology of digital images Digital algebraic topology

Digital Algebraic Topology

Digital Image

Simplicial Complex Chain Complex

Homology Groups

C0 = vertices
C1 = edges
C2 = triangles

H1 = Z⊕ Z⊕ Z
H0 = Z⊕ Z
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Persistent homology of digital images Persistent homology of digital images

Persistent homology

If we have a filtered digital image, we can compute persistent homology
groups.

“Small” example:

> (prst-hmlg-group K 1 4 0) > (prst-hmlg-group K 2 4 1)

Persistent Homology H^{1,4}_0 Persistent Homology H^{2,4}_1

Component Z Component Z

Component Z Component Z

Component Z

Component Z
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Reducing images Discrete Vector Fields and effective homology

Discrete Vector Fields

Definition

Let C∗ = (Cp , dp)p∈Z be a free chain complex with distinguished Z−basis βp ⊂ Cp . A discrete
vector field on C∗ is a collection of pairs V = {(σi , τi )}i∈β satisfying the conditions:

1 Every σi is some element of βp , in which case the other corresponding component
τi ∈ βp+1. The degree p depends on i and in general is not constant.

2 Every component σi is a regular face of the corresponding component τi .

3 A generator of C∗ appears at most one time in V .

Definition

A V -path of degree p is a sequence π = ((σik , τik ))0≤k<m satisfying:

1 Every pair ((σik , τik )) is a component of V and the cell τik is a p-cell

2 For every 0 < k < m, the component σik is a face of τik−1
, non necessarily regular, but

different from σik−1

Definition

A discrete vector field V is admissible if for every p ∈ Z, a function λp : βp → Z is provided
satisfying the property: every V -path starting from σ ∈ βp has a length bounded by λp(σ).
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Reducing images Discrete Vector Fields and effective homology

Example: an admissible discrete vector field
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Reducing images Discrete Vector Fields and effective homology

Example: an admissible discrete vector field

Dvf x
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Example: an admissible discrete vector field

Dvf x Dvf X

Admissible x
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Reducing images Discrete Vector Fields and effective homology

Discrete Vector Fields and effective homology

Definition

A cell χ which does not appear in a discrete vector field V = {(σi , τi )}i∈β is called a critical cell.

Theorem

Let C∗ = (Cp , dp , βp)p be a free chain complex and V = {(σi , βi )}i∈β be an admissible discrete
vector field on C∗. Then the vector field V defines a canonical reduction
ρ : (Cp , dp) =⇒ (C c

p , d
′
p) where C c

p = Z
[
βc

p

]
is the free Z−module generated by the critical

p-cells.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • •

• • •

=⇒

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology,
2010. http://arxiv.org/abs/1005.5685v1.
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Reducing images Discrete Vector Fields and effective homology

Vector fields and matrices

Differential maps of a chain complex of finite type can be represented as matrices

. . .← Zm
2

M←− Zn
2 ← . . .

Definition

An admissible discrete vector field V for M is nothing but a set of integer pairs {(ai , bi )}
satisfying these conditions:

1 1 ≤ ai ≤ m and 1 ≤ bi ≤ n

2 The entry M[ai , bi ] of the matrix is 1 or −1

3 The indices ai (resp. bi ) are pairwise different

4 Non existence of loops

Algorithm

Input: A matrix M
Output: An admissible discrete vector field for M

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology,
2010. http://arxiv.org/abs/1005.5685v1.
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Reducing images Discrete Vector Fields and effective homology

Vector fields and matrices

0

1

2

3 4

5

6
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Reducing images Discrete Vector Fields and effective homology

Vector fields and matrices

0

1

2

3 4

5

6



{0, 1} {0, 2} {1, 2} {1, 3} {2, 3} {3, 4} {4, 5} {4, 6} {5, 6}
{0} 1 1 0 0 0 0 0 0 0
{1} 1 0 1 1 0 0 0 0 0
{2} 0 1 1 0 1 0 0 0 0
{3} 0 0 0 1 1 1 0 0 0
{4} 0 0 0 0 0 1 1 1 0
{5} 0 0 0 0 0 0 1 0 1
{6} 0 0 0 0 0 0 0 1 1
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Reducing images Discrete Vector Fields and effective homology

Discrete vector fields and persistence

Given an admissible discrete vector field on a digital image, a
reduction is obtained from the big chain complex to the critical
(small) chain complex, such that the homology groups of both chain
complexes are isomorphic.

If we want to determine persistent homology groups, we need a
discrete vector field which is compatible with the filtration (such that
the obtained reduction is compatible with the filtration).

To obtain such a filtered discrete vector field, we apply our algorithm
separately to the differential submatrices corresponding to each
filtration index.

This allows us to compute persistent homology groups of big digital
images by means of a reduced chain complex.
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