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1 Introduction

The homology groups of topological spaces can be difficult to reach, for exam-
ple when loop spaces or classifying spaces are involved. In particular, knowing
the homology groups of a topological group or space does not imply that the
homology groups of its classifying space or loop space can also be determined.
In the same way, given a fibration F ↪→ E → B, there does not exist a general
algorithm computing the homology groups of E from the homology groups
of B and F .

The methods of effective homology (introduced in [14] and explained in
depth in [12] and [13]) solve the previous problem and give their user algo-
rithms for computing for example the homology groups of the total space
of a fibration, of an arbitrarily iterated loop space (Adams’ problem), of a
classifying space, etc. One of the main ideas in this method is the notion of
a solution for the homological problem of a chain complex [15], which consists
of four algorithms describing in a constructive way the homology groups of
a space, which is said to have effective homology. These algorithms produce
in particular the homology groups of the chain complex but they give also
some additional information which is necessary if we want to use the space in-
side more complicated constructors. The effective homology method has been
concretely implemented in the Kenzo system [6], a Common Lisp program de-
veloped by Francis Sergeraert and some coworkers which has made it possible
to compute some complicated homology groups so far unreachable.

The computation of homotopy groups is even harder than homology and is
in fact one of the most challenging problems in the field of Algebraic Topology.
In 1953 Serre obtained a general finiteness result [16] which states that, if X
is a simply connected space such that the homology groups Hn(X; Z) are of
finite type, then the homotopy groups πn(X) are also Abelian groups of finite
type. In 1957, Edgar Brown published in [4] a theoretical algorithm for the
computation of these groups, based on the Postnikov tower and making use
of finite approximations of infinite simplicial sets, transforming in this way
the finiteness results of Serre into a computability result. Nevertheless, Edgar
Brown himself quoted in his paper that his algorithm has no practical use,
even with the most powerful computer you can imagine: it is a consequence of
the hyper-exponential complexity of the algorithm designed by Brown. Other
theoretical methods have been also designed trying to determine homotopy
groups of spaces, but up to our knowledge there does not exist a real im-
plementation in a computer of a general algorithm producing the homotopy
groups of a space.

Inspired by the fundamental ideas of the effective homology method, we
try now to develop an effective homotopy theory, which would allow the com-
putation of homotopy groups of spaces. The most important notion will be
that of a solution for the homotopical problem of a simplicial set. As in the
case of homology, we will start with some spaces whose effective homotopy can
be directly determined, and then different constructors of Algebraic Topology
should produce new spaces with effective homotopy. As a first work in this
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research, we have developed some results allowing in particular to determine
homotopy groups of fibrations when the fiber and the base spaces are objects
with effective homotopy.

The paper is organized as follows. Section 2 begins with some elementary
definitions and ideas about simplicial sets and homotopy groups. In Section 3
we present the notion of a solution for the homotopical problem of a simplicial
set, which will be the main ingredient of our theory. As a first important
result, an algorithm determining a solution for the homotopical problem of a
Kan fibration is constructed in Section 4. Section 5 contains some examples
of applications of the previous algorithm. The paper ends with a section of
conclusions and further work.

2 Preliminaries

In this section we introduce some elementary ideas about simplicial sets, which
can be considered a useful combinatorial model for topological spaces. More
concretely, given a Kan simplicial set K with a base point ? ∈ K0, an alge-
braic definition of the homotopy groups of K can be given such that they are
isomorphic to the homotopy groups of the corresponding topological space by
means of the realization functor. All the definitions and results of this section
(and details about the connection of simplicial sets and topological spaces)
can be found in [7].

Definition 1 A simplicial set K is a simplicial object over the category of
sets, that is to say, K consists of

– a set Kn for each integer n ≥ 0;
– for every pair of integers (i, n) such that 0 ≤ i ≤ n, face and degeneracy

maps ∂i : Kn → Kn−1 and ηi : Kn → Kn+1 satisfying the simplicial
identities:

∂i∂j = ∂j−1∂i if i < j

ηiηj = ηj+1ηi if i ≤ j
∂iηj = ηj−1∂i if i < j

∂iηj = Id if i = j, j + 1
∂iηj = ηj∂i−1 if i > j + 1

The elements of Kn are called the n-simplices of K.

Definition 2 A simplicial set K is said to satisfy the extension condition if
for every collection of n+ 1 n-simplices x0, x1, . . . , xk−1, xk+1, . . . , xn+1 which
satisfy the compatibility condition ∂ixj = ∂j−1xi for all i < j, i 6= k, and j 6= k,
there exists an (n+ 1)-simplex x ∈ Kn+1 such that ∂ix = xi for every i 6= k.
A simplicial set which satisfies the extension condition is called a Kan simpli-
cial set.
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Definition 3 Let K be a simplicial set. Two n-simplices x and y of K are said
to be homotopic, written x ∼ y, if ∂ix = ∂iy for 0 ≤ i ≤ n, and there exists an
(n+1)-simplex z such that ∂nz = x, ∂n+1z = y, and ∂iz = ηn−1∂ix = ηn−1∂iy
for 0 ≤ i < n.

If K is a Kan simplicial set, then ∼ is an equivalence relation on the set
of n-simplices of K for every n ≥ 0.

Let ? ∈ K0 be a 0-simplex of K, called a base point ; we also denote by ?
the degeneracies ηn−1 . . . η0? ∈ Kn for every n. We define Sn(K) as the set of
all x ∈ Kn such that ∂ix = ? for every 0 ≤ i ≤ n, which is said to be the set
of n-spheres of K.

Definition 4 Given a Kan simplicial set K and a base point ? ∈ K0, we
define

πn(K, ?) ≡ πn(K) = Sn(K)/(∼)

The set πn(K, ?) admits a group structure for n ≥ 1 and it is Abelian for n ≥ 2.
It is called the n-homotopy group of K.

The Kan simplicial sets K which will be considered in this paper will be
connected simplicial sets, that is to say, such that π0(K) has only one homotopy
class, π0(K) = {?}.

Definition 5 A Kan simplicial set K is said to be minimal if, for every pair
of n-simplices x, y ∈ Kn and 0 ≤ k ≤ n such that ∂ix = ∂iy for all 0 ≤ i ≤ n
with i 6= k, then ∂kx = ∂ky.

It can be proved that a Kan simplicial set K is minimal if and only if x ∼ y
implies x = y, so that each homotopy class has only one element.

Definition 6 Let p : E → B be a simplicial map. The map p is a Kan fibration
if for every collection of n + 1 n-simplices x0, . . . , xk−1, xk+1, . . . , xn+1 of E
which satisfy the compatibility condition ∂ixj = ∂j−1xi, i < j, i 6= k, j 6= k,
and for every (n+ 1)-simplex y of B such that ∂iy = p(xi), i 6= k, there exists
an (n+ 1)-simplex x of E such that ∂ix = xi, i 6= k, and p(x) = y. E is called
the total complex and B is the base complex. If Φ denotes the simplicial set
generated by a vertex of B (usually the base point ?), then F = p−1(Φ) is
called the fiber over Φ.

We finish this section by introducing two interesting examples of Kan sim-
plicial sets which will appear in our work.

Definition 7 Let π be a group. An Eilenberg-MacLane space K(π, n) is a
minimal Kan complex K such that πn(K) ∼= π and πi(K) = 0 for i 6= n.

Given an Abelian group π and n ≥ 1, there exist several models which
define Eilenberg-MacLane spaces K(π, n), but all of them are isomorphic (and
are simplicial Abelian groups, which means that each component K(π, n)i is
an Abelian group and the face and degeneracy operators are compatible with
the group operation). If π is not Abelian, then one can only construct K(π, n)
for n = 1. See [7] for details.
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Definition 8 The standard simplex ∆ is a simplicial set built as follows. An
n-simplex of ∆ is any (n+ 1)-tuple (a0, . . . , an) of integers such that 0 ≤ a0 ≤
· · · ≤ an, and the face and degeneracy operators are defined as

∂i(a0, . . . , an) = (a0, . . . , ai−1, ai+1, . . . , an)
ηi(a0, . . . , an) = (a0, . . . , ai, ai, ai+1 . . . , an)

3 The homotopical problem of a Kan simplicial set

Although in Section 2 we have introduced a combinatorial definition for the
homotopy groups of a Kan simplicial set K, in general this formal notion is
not sufficient to produce an algorithm computing these groups. In some good
situations, some theoretical reasoning could lead to claim that a homotopy
group πn(K) is equal to some given group, for instance π6(K) = Z12. The
result π6(K) “=” Z12 is in fact a shorthand for the more precise statement:
there exists an isomorphism between the group π6(K) and the well-known
group Z12, to be considered as a preferred representative of an isomorphism
class. But it is exceptional this proof is constructive, we mean such an isomor-
phism is rarely made explicit. If we then intend to determine some unknown
homology or homotopy group H after calculations involving the intermedi-
ate group π6(K) (and perhaps other intermediate groups), if the result about
the computed π6(K) is not constructive, then often the alleged algorithm
π6(K)→ H in fact fails: maybe for example some necessary differential in a
spectral sequence is in fact out of scope, or some extension problem is unsolv-
able with the available information. The effective homotopy method tries to
avoid this problem by defining in a precise way what a constructive solution
for the problem of computing the homotopy groups of a space is.

Let K be a simplicial set satisfying the Kan extension condition (Defini-
tion 2). Let us observe that the existence of the (n + 1)-simplex x ∈ K for
each collection of n-simplices x0, x1, . . . , xk−1, xk+1, . . . , xn+1 satisfying the
compatibility condition does not imply it is always possible to obtain it. We
say that the Kan simplicial set K is constructive if the desired x is given
explicitely by an algorithm.

Definition 9 A constructive Kan simplicial set is a simplicial set K together
with an algorithm σK , which given an integer n, an index k, and a list of
n+ 1 n-simplices x0, x1, . . . , xk−1, xk+1, . . . , xn+1 such that ∂ixj = ∂j−1xi for
all i < j, i 6= k, and j 6= k, returns an (n+ 1)-simplex x ∈ Kn+1 with ∂ix = xi
for every i 6= k.

Although the word constructive is sometimes omitted, all Kan simplicial
sets which appear in this paper are supposed to be constructive Kan simplicial
sets. Furthermore, since we aim to work with the groups π∗(K) in a construc-
tive way, we only consider Kan simplicial sets whose homotopy groups π∗(K)
are Abelian groups of finite type. One could also consider simplicial sets K
where π1(K) is not Abelian (πi(K) is always Abelian for i ≥ 2), but we have
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decided to focus on the Abelian situation because, as we will see later, this
is the case of our examples of applications (more concretely, we will usually
work with simply connected simplicial sets, that is, such that π1(K) = 0).

Definition 10 A solution for the homotopical problem (SHmtP) posed by a
constructive Kan simplicial set K is a graded 4-tuple (πn, fn, gn, hn)n≥1 where:

– The component πn is a standard presentation of a finitely generated Abelian
group (that is to say, each πn is a direct sum of several copies of the infinite
cyclic group Z and some finite cyclic groups Zpni , πn = Zαn⊕Zβ

n
1
pn1
⊕· · ·⊕Zβ

n
r
pnr

.
The component πn is therefore a well-known group which is given and
where computations can be done). As we will see later, this group will be
isomorphic to the desired homotopy group πn(K) = Sn(K)/(∼).

– The component gn is an algorithm gn : πn → Sn(K) giving for every
“abstract” homotopy class a ∈ πn a sphere x = gn(a) ∈ Sn(K) representing
this homotopy class.

– The component fn is an algorithm fn : Sn(K) → πn computing for every
sphere x ∈ Sn(K) “its” homotopy class a = fn(x) ∈ πn. This algorithm fn
must satisfy the following properties. First of all, the composition fngn
must be the identity of πn. Moreover, given z ∈ Kn+1 such that ∂iz = ?
for all 0 ≤ i ≤ n, then fn(∂n+1z) = 0; in other words, fn(x) = 0 for all
x ∈ Sn(K) with x ∼ ?. Furthermore, f must be a “group” morphism, in
the following sense: given x, y ∈ Sn(K) and w =“x + y” representative of
the homotopy class [x] + [y] (computed by using the Kan property of K as
explained in [7]), then fn(w) = fn(x) + fn(y).

– The component hn is an algorithm hn : ker fn → Kn+1 satisfying ∂ihn = ?
for all 0 ≤ i ≤ n and ∂n+1hn = Idker fn . This algorithm produces a certifi-
cate for a sphere x ∈ Sn(K) claimed having a null homotopy class by the
algorithm fn.

If K is a Kan simpicial set and a solution for its homotopical problem is
given, we say the K is an object with effective homotopy. The interesting point
of this definition is the fact that, if K has effective homotopy, one can easily
construct an algorithm computing the homotopy groups πn(K).

Proposition 1 Let K be a constructive Kan simplicial set, (πn, fn, gn, hn)n≥1

a solution for the homotopical problem of K. Then, for each n ≥ 1, the homo-
topy group πn(K) = Sn(K)/(∼) is isomorphic to the given group πn.

Proof The isomorphism is given by a map φ : πn(K) = Sn(K)/(∼) → πn
defined as φ[x] = fn(x) and its inverse ψ : πn → πn(K) = Sn(K)/(∼) con-
structed as the composition of gn with the projection to the corresponding
quotient. Both maps are well-defined morphisms of groups and provide an ex-
plicit isomorphism between the “formal” group πn(K) = Sn(K)/(∼) and the
group πn.

In this way, a solution for the homotopical problem of a simplicial set allows
one to determine its homotopy groups. More concretely, from the given 4-tuple
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(πn, fn, gn, hn)n≥1 we can obtain a standard presentation of the groups (that
is, the component πn) and also the generators, which could be useful when
these groups are involved in other constructions. Now the problem is: how can
we determine a solution for the homotopical problem of a given Kan simplicial
set K?

In some simple situations, the effective homotopy of a space can be deter-
mined in an easy way. This is the case, for example, of Eilenberg-MacLane
spaces K(π, n) for finitely generated Abelian groups π or the standard sim-
plex ∆. It is not difficult to observe that both of them are constructive Kan
simplicial sets (see [7]).

Proposition 2 Let π be a finitely generated Abelian group π = Zα ⊕ Zβ1
p1 ⊕

· · · ⊕ Zβrpr , and K = K(π, n). Then one can define a tuple (πn, fn, gn, hn)n≥1

which provides a solution for the homotopical problem of K.

Proof By the definition of the space K(π, n), one has πn(K(π, n)) ∼= π and
πi(K(π, n)) = 0 for every i 6= n. Moreover, one can observe that in fact
Sn(K(π, n)) = K(π, n)n ∼= π and Si(K(π, n)) = {?} ∼= 0 for i 6= n. Then it
is clear that the components πn, fn, gn and hn can be given in the following
way:

– πn = π = Zα ⊕ Zβ1
p1 ⊕ · · · ⊕ Zβrpr and πi = 0 for each i 6= n.

– gi : πi → Si(K(π, n)) is the identity morphism in dimension n and the null
map for i 6= n.

– fi : Si(K(π, n))→ πi is again the identity if i = n and null if i 6= n.
– ker fi = {?} for every i and therefore hi is always null.

Proposition 3 Let K = ∆ be the standard simplex introduced in Definition 8.
Then one can define a tuple (πn, fn, gn, hn)n≥1 which provides a solution for
the homotopical problem of K.

Proof The standard simplex∆ is known to be contractible, and in fact Sn(∆) =
{?} for all n. Again the definition of the solution for the homotopical problem
follows in a straightforward manner.

Unfortunately the spaces for which a solution for the homotopical problem
can be constructed in a direct way are not common, and more powerful tech-
niques are necessary to show the interest of our definition. The main idea of the
effective homotopy method should be the following: given some Kan simplicial
sets K1, . . . ,Kn, a topological constructor Φ produces a new simplicial set K.
If solutions for the homotopical problems of the spaces K1, . . . ,Kn are known,
then one should be able to build a solution for the homotopical problem of K,
and this construction would allow us to compute the homotopy groups π∗(K).
The following section presents an outstanding example of this type of situation:
given two constructive Kan simplicial sets F and B with effective homotopy
and a constructive fibration F ↪→ E → B, an algorithm is obtained producing
a solution for the homotopical problem of the total space E.
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4 Solution for the homotopical problem of a Kan fibration

Let p : E → B be a Kan fibration (Definition 6), where the extension condition
is again constructive.

Definition 11 A Kan fibration p : E → B is said to be a constructive Kan
fibration if the following algorithm σp is provided: given a dimension n, an
index k, a list of n+ 1 n-simplices x0, x1, . . . , xk−1, xk+1, . . . , xn+1 of E which
satisfy the compatibility condition ∂ixj = ∂j−1xi for all i < j, i 6= k and j 6= k,
and an (n+ 1)-simplex y of B such that ∂iy = p(xi) for i 6= k, then σp returns
an (n+ 1)-simplex x of E such that ∂ix = xi for i 6= k and p(x) = y.

One can observe that, if p : E → B is a constructive Kan fibration and B is
a constructive Kan simplicial set, then E and F are constructive Kan simplicial
sets. The proof for the non constructive case is included in [7] and can be
automatically suited to the constructive framework.

We suppose now that the groups π∗(F ) and π∗(B) are known: is it then
possible to determine the homotopy groups of the total space, π∗(E)? The
answer is negative in general. However, the effective homotopy problem allows
one to solve this problem: if instead of only knowing π∗(F ) and π∗(B), both F
and B are provided with a solution for their homotopical problems (that is,
we also have the algorithms fn, gn and hn), then one can also determine
a solution for the homotopical problem of E, which in particular makes it
possible to determine its homotopy groups.

Theorem 1 An algorithm can be written down:

– Input:
– A constructive Kan fibration p : E → B where B is a constructive Kan

complex (which implies F and E are also constructive Kan simplicial
sets), and F or B are simply connected.

– Respective SHmtPF and SHmtPB for the simplicial sets F and B.
– Output: A SHmtPE for the Kan simplicial set E.

Proof The proof is a bit tedious; it follows from successive applications of
the Kan properties of F , B, E and p and the solutions for the homotopical
problems of B and F . First of all we include here a general sketch summarizing
the main steps and then we detail some of them; some parts will be skipped
here, but the complete proof can be found in [10].

Beginning with the summary, let us say that the proof starts with the long
exact sequence of homotopy [7]:

· · · p∗−→ πn+1(B) ∂−→ πn(F ) inc∗−→ πn(E)
p∗−→ πn(B) ∂−→ πn−1(F ) inc∗−→ · · ·

From this one can deduce a short exact sequence

0 −→ Coker[πn+1(B) ∂→ πn(F )] i−→ πn(E)
j−→ Ker[πn(B) ∂→ πn−1(F )] −→ 0
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which implies the desired group πn(E) can be expressed as an extension
of Ker ≡ Ker[πn(B) ∂→ πn−1(F )] by Coker = Coker[πn+1(B) ∂→ πn(F )],
πn(E) ∼= Coker×χ Ker, for a cohomology class χ ∈ H2(Ker,Coker) classi-
fying the extension. This cohomology class is in principle unknown, but can
be determined if the short exact sequence is constructive [15]. The most im-
portant part of the proof consists in proving that this is the case: the short
exact sequence can be made constructive; in other words, we are going to de-
fine a set-theoretic section σ : Ker → πn(E) and a set-theoretic retraction
ρ : πn(E)→ Coker such that ρi = IdCoker, iρ+ σj = Idπn(E) and jσ = IdKer;
both maps will be defined by means of a suitable game of successive appli-
cations of the Kan properties of B, F and the fibration p, and the solutions
for the homotopical problems of B and F . From the maps σ and ρ we will
give a constructive definition of the cohomology class which will allow us to
compute the homotopy group πn(E). Furthermore the algorithms fn and gn
will be immediately deduced from i, j, σ and ρ. We will end the proof with the
computation of hn.

Once we have given an overview of the main ideas of the proof, let us begin
detailing some parts of it.

As already said, the Kan fibration p : E → B produces a long exact
sequence of homotopy [7]:

· · · p∗−→ πn+1(B) ∂−→ πn(F ) inc∗−→ πn(E)
p∗−→ πn(B) ∂−→ πn−1(F ) inc∗−→ · · ·

where the maps p∗ and inc∗ are the morphisms between the corresponding
homotopy groups induced respectively by the fibration p : E → B and the
inclusion F ↪→ E, and ∂ : π∗(B) → π∗−1(F ) is the connection morphism
(see [7] for the definition of this map).

Let us emphasize that the groups π∗(B) and π∗(F ) with the corresponding
generators can be computed thanks to the SHmtP for both simplicial sets B
and F . The connection morphism ∂ : π∗(B)→ π∗−1(F ) can also be construc-
tively defined thanks to the Kan property of the fibration p and the solutions
for the homotopical problems of B and F (see [10] for details). Since π∗(B)
and π∗(F ) are Abelian groups of finite type, it is possible to determine by
means of elementary operations the groups Ker ≡ Ker[πn(B) ∂→ πn−1(F )] and
Coker ≡ Coker[πn+1(B) ∂→ πn(F )] = πn(F )/ Im ∂. We obtain then a short
exact sequence

0 −→ Coker[πn+1(B) ∂→ πn(F )] i−→ πn(E)
j−→ Ker[πn(B) ∂→ πn−1(F )] −→ 0

which implies πn(E) ∼= Coker×χ Ker, for a cohomology class χ ∈ H2(Ker,Coker)
classifying the extension. Although the cohomology class χ ∈ H2(Ker,Coker)
is in principle not known, it can be determined if the short exact sequence is
made constructive [15], that is to say, if one is able to define a set-theoretic
section σ : Ker → πn(E) and a set-theoretic retraction ρ : πn(E) → Coker
such that ρi = IdCoker, iρ + σj = Idπn(E) and jσ = IdKer. Let us focus now
therefore on the construction of the desired σ and ρ.
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In order to represent the elements of πn(E), instead of homotopy classes
inside an unknown group, we will use n-spheres in Sn(E) representing these
homotopy classes.

Let us observe that the map i of the short exact sequence is obtained by
following the diagram chasing path:

Coker −→ πn(F )
gn−→ Sn(F )

inc
↪→ Sn(E)

where the map gn is the algorithm given in SHmtPF , and the map Coker→ πn(F )
consists in choosing a representative of an element of the cokernel (which can
be elementary done since πn(F ) is an Abelian group of finite type). The mor-
phism i : Coker→ πn(E) is therefore implemented as a map i : Coker→ Sn(E).

The map j of the diagram is implemented as a map j : Sn(E) → Ker,
simply obtained from the path:

Sn(E)
p−→ Sn(B)

fn−→ Ker ⊆ πn(B)

The map fn is in fact defined as fn : Sn(B) → πn(B), but one can observe
that given an element of Sn(B) which is in the image of p, then its homotopy
class is necessarily in Ker.

Let us define now the desired section σ : Ker → πn(E), which will be
implemented as a map σ : Ker → Sn(E). Let β ∈ Ker ⊆ πn(B), we choose
a representative b ∈ β produced by gn in SHmtP of B. Since ∂[b] = [?] ∈
πn−1(F ), and following the definition of the connection morphism ∂ [7], the
algorithm σp produces x ∈ En with ∂ix = ? for 1 ≤ i ≤ n and p(x) = b, and
then hn−1 of SHmtPF provides us z ∈ Fn such that ∂iz = ? for 0 ≤ i < n
and ∂nz = ∂0x.

Let us consider now the n + 1 n-simplices z, ?, . . . , ?,−, x of En which
clearly satisfy the necessary compatibility conditions ∂ixj = ∂j−1xi. The al-
gorithm σE (which is available since E is a constructive Kan simplicial set)
returns an (n+ 1)-simplex y ∈ E such that ∂0y = z, ∂iy = ? for 1 ≤ i ≤ n−1,
and ∂n+1y = x. Then the n-simplex ∂ny is an n-sphere of E. Moreover,
one can prove p(∂ny) ∼ b in B. Therefore, given β ∈ Ker ⊆ πn(B) we de-
fine σ(β) = ∂ny ∈ Sn(E). The map is well defined since the selection of a rep-
resentative b for the homotopy class β is uniquely done by the algorithm gn of
SHmtPB and it can be proved that jσ(β) = β (see [10]). In this way σ satisfies
the desired property jσ = IdKer.

The construction of a retraction ρ : πn(E)→ Coker that we implement as a
map ρ : Sn(E)→ Coker follows the same ideas but is a bit more complicated.
The details can be found in [10].

Once that a section σ : Ker→ πn(E) and a retraction ρ : πn(E)→ Coker
satisfying ρi = IdCoker, iρ+σj = Idπn(E) and jσ = IdKer have been defined, one
can construct the 2-cocycle χ ∈ H2(Ker,Coker) which classifies the extension.
Given α, β ∈ Ker two homotopy classes, χ(α, β) is defined as:

χ(α, β) = ρ(σ(α) + σ(β)− σ(α+ β))
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One can observe that χ satisfies the necessary properties of a 2-cocycle. The
standard extension theory proves then that πn(E) ∼= Coker×χ Ker and an ele-
mentary calculation can produce some explicit isomorphism πn ↔ Coker×χ Ker
for some finitely generated Abelian group πn (that is to say, πn is a well-known
group πn = Zα⊕Zβ1

p1 ⊕ · · · ⊕Zβrpr ). The condition of B or F being simply con-
nected is necessary here in order to avoid the possibility of π1(E) being a non-
Abelian extension of two (non-null) Abelian groups π1(B) and Coker ⊆ π1(F ).
In this way the first element πn of the 4-tuple in dimension n of the solution
for the homotopical problem of E has been reached.

We need also the three components fn, gn and hn to achieve the con-
struction of SHmtPE . We define fn and gn firstly with respect to the model
Coker×χ Ker of πn(E). It is easy to justify gn(α, β) = i(α) + σ(β) ∈ Sn(E) if
α ∈ Coker and β ∈ Ker. In the same way, fn(x) = (ρ(x), j(x)) is the unique
possible definition of fn. In this way, one has the desired identity fngn =
IdCoker×χ Ker and it is not difficult to prove that fn satisfies the two addi-
tional conditions that we have required. The definitions of gn : Coker×χ Ker→
Sn(E) and fn : Sn(E)→ Coker×χ Ker can then be converted into correspon-
dances with πn thanks to an arbitrary group isomophism Coker×χ Ker ∼= πn,
so that the required properties are still satisfied.

Constructing the map hn is a little more complicated, a small game with
the different Kan extension properties and the solutions for the homotopical
problems of B and F is again necessary. Let e ∈ Sn(E) such that e ∈ Ker fn,
that is to say, ρ(e) = 0 ∈ Coker = πn(F )/ Im ∂ and j(e) = 0 ∈ Ker ⊆ πn(B).
We begin with the second property j(e) = 0, which implies p(x) ∼ ? in B.
Following the definition of ρ, there exists b ∈ Bn+1 with ∂1b = p(e) and ∂ib = ?
for all i 6= 1, and x ∈ En+1 such that ∂0x ∈ Sn(F ), ∂1x = e and ∂ix = ?
for all 2 ≤ i ≤ n + 1. The map ρ was defined then as ρ(e) = [fn(∂0x)] ∈
πn(F )/ Im ∂. Now, since ρ(e) = 0, one has fn(∂0x) ∈ Im ∂ and taking into
account that both πn+1(B) and πn(F ) are finite type Abelian groups one can
find β ∈ πn+1(B) such that ∂(β) = fn(∂0x) in πn(F ).

Let v ∈ Sn+1(B) be a representative of β given by the algorithm gn of
SHmtPB , the definition of ∂ considers w ∈ En+1 such that p(w) = v, ∂0w ∈
Sn(F ) and ∂iw = ? for 1 ≤ i ≤ n + 1, and then ∂(β) is defined as ∂(β) =
fn(∂0w). Since one knows that ∂(β) = fn(∂0x), we deduce fn(∂0w) = fn(∂0x)
and then fn(∂0w − ∂0x) = 0. Then the algorithm hn for F returns a ∈ Fn+1

with ∂ia = ? for 0 ≤ i ≤ n, ∂n+1a = ∂w− ∂x. Using the Kan property of F it
is not difficult to obtain then t ∈ En+1 with ∂it = ? if 0 ≤ i ≤ n−1, ∂nt = ∂0w
and ∂n+1t = ∂0x. The n + 2 (n + 1)-simplices of E t,−, ?, . . . , ?, w, x satisfy
the compatibility condition and therefore there exists y ∈ En+2 with ∂0y = t,
∂it = ? for 2 ≤ i ≤ n, ∂n+1t = w and ∂n+2t = x. Then the unknown face ∂1y
satisfies ∂0∂1y = ∂0t = ?, ∂i∂1y = ? for all 1 ≤ i ≤ n − 1, ∂n∂1y = ∂1w = ?
and ∂n+1∂1y = ∂1x = e. Therefore we can define hn(e) = ∂1y which satisfies
the desired properties, and a solution for the homotopical problem of E has
been finally obtained. In this way the proof has been finished. ut
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As we will see in the following section, this result makes it possible to
determine, for instance, the homotopy groups of fibrations where the base
and the fiber spaces are Eilenberg-MacLane spaces. Moreover, it has been
an important ingredient in the development of a constructive version of the
Bousfield-Kan spectral sequence.

5 Examples and applications

5.1 Fibrations of Eilenberg-MacLane spaces

As already said in Section 3, given a finitely generated Abelian group π and
an integer n ≥ 1, one can construct in an elementary way a solution for the
homotopical problem of the space K(π, n). If we have now two Eilenberg-
MacLane spaces F = K(π, n) and B = K(π′,m) where both π and π′ are
finitely generated groups, and a constructive Kan fibration F ↪→ E → B, our
Theorem 1 allows one to construct a solution for the homotopical problem of
the total space E.

We observe that this does not give new information when n 6= m, since in
that case the long exact sequence of homotopy of the fibration provides directly
the homotopy groups of E, which are πn(E) ∼= π, πm(E) ∼= π′ and πi(E) = 0
for i 6= n,m. A particular case is obtained when m = 1 and n = 2, then E is
called a 2-type [5] and it is well known that it corresponds to a cohomology
class [f ] in H3(π′, π).

The interest of our application can be seen when n = m 6= 1. Then the
long exact sequence of homotopy produces

0 −→ π −→ πn(E) −→ π′ −→ 0

which implies πn(E) is an extension of π′ by π, but several extensions could be
possible and in general πn(E) can not always be determined. Let us observe
that the condition n = m 6= 1 implies F = K(π, n) and B = K(π′,m) are
simply connected. Then, thanks to our algorithm, one can determine a solution
for the homotopical problem of E, compute πn(E) with its generators, and
then use this group inside other constructions.

Our results can also be applied when the fiber and the base space of a
fibration are direct sums (or Cartesian products) of Eilenberg-MacLane spaces.
For example, let us consider a fibration

K(π1, n1)⊕K(π2, n2) ↪→ E −→ K(π′1,m1)⊕K(π′2,m2)

where B or F are simply connected, that is to say, n1, n2 6= 1 or m1,m2 6= 1.
Several non-null groups appear now in the long exact sequence of homo-

topy. Depending on n1, n2,m1 and m2 it can happen that the information of
the long exact sequence is not sufficient to determine π∗(E). But both the fiber
and the base spaces are objects with effective homotopy (a solution for their
homotopical problem can be easily determined from the solutions for the ho-
motopical problems of the different Eilenberg-MacLane spaces); if the fibration
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satisfies the Kan property, one can determine a solution for the homotopical
problem of E, and in particular its homotopy groups.

Once that all these total spaces E are objects with effective homotopy,
they can be used as fiber or base spaces of different Kan fibrations producing
new spaces with effective homotopy.

5.2 Bousfield-Kan spectral sequence

The Bousfield-Kan spectral sequence first appeared in [3]. It presents the
Adams spectral sequence [1] in the setting of combinatorial topology and makes
its algebraic properties more accessible. The Adams spectral sequence and its
satellite spectral sequences were designed to compute homotopy groups, in
particular stable and unstable sphere homotopy groups. They did allow topol-
ogists to compute some homotopy groups, but no constructive version of this
spectral sequence is yet available; in other words no routine translation work
allows a programmer to implement this spectral sequence on a theoretical or
concrete machine to produce an algorithm computing homotopy groups.

A spectral sequence [8] is a family of “pages” Er = (Erp,q, d
r
p,q) of differen-

tial bigraded modules, each page being made of the homology groups of the
preceding one. In many cases, only the first levels are given, and then some
extra information is necessary to determine the successive differential maps.
This implies that a spectral sequence can only be computed in some simple
situations and in general it is not an algorithm.

In a previous work [9] we used the effective homology method [13] to pro-
duce algorithms computing the first two levels of the Bousfield-Kan spectral
sequence of a simplicial set, but the higher levels of the spectral sequence were
not determined. Our new effective homotopy technique makes it possible now
to develop general algorithms computing the different components of all levels
of the Bousfield-Kan spectral sequence.

Given a simplicial set X, the Bousfield-Kan spectral sequence is defined by
means of a tower of fibrations

. . . f4 // Y3
f3 // Y2

f2 // Y1
f1 // Y0

f0 // ?

F3

i

OO

F2

i

OO

F1

i

OO

and under good conditions this spectral sequence converges to the homo-
topy groups π∗(X) (see [2] for the complete definition and details about the
Bousfield-Kan spectral sequence). More concretely, the long exact sequence of
homotopy of a fibration [7] provides us the following diagram:
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πq−p+1(Yp−2) πq−p(Yp−1) πq−p−1(Fp)

πq−p+1(Yp−1) πq−p(Fp) πq−p(Yp)

πq−p+1(Yp) πq−p(Yp+1) πq−p−1(Fp+2)

f

��

f

��

f

��

f

��

f

��

f

��

f

��

f

��

∂ // i //

∂ //

∂ //

where Fn is the fiber of fn, ∂ : π∗(Yn−1) → π∗−1(Fn) is the connection mor-
phism and i : π∗(Fn) → π∗(Yn) is induced by the inclusion Fn ↪→ Yn. The
groups Erp,q of the spectral sequence are defined then as

Erp,q =
i−1(Im fr−1)
∂(Ker fr−1)

for q ≥ p

Erp,q = 0 otherwise

It is clear that, if the homotopy groups π∗(Yn) and π∗(Fn) are finitely gen-
erated Abelian groups and they are explicitly known (with the corresponding
generators) for all n, then the groups Erp,q are computable because the in-
volved maps f , i and ∂ can be expressed as finite integer matrices. In this
way, as we want to develop an algorithm computing the spectral sequence as-
sociated with the tower of fibrations, we will first try to construct algorithms
which determine the homotopy groups of the simplicial sets Yn and of the fiber
spaces Fn.

The first space in the tower is Y0 = RX, the simplicial Abelian group

RX =
R[X]
R[?]

where R[X] denotes the simplicial Z-module freely generated by the simplices
of X, and R[?] is the simplicial submodule generated by the base point ? and
its degeneracies. It is well-known that, given X a pointed simplicial set, there
exists a canonical isomorphism

π∗(RX) ∼= H̃∗(X; Z)

where H̃∗(X; Z) denotes the reduced homology groups of X with coefficients
in Z. Let us observe then that, if X is a finite simplicial set (as for instance one
of the spheres Sn), its homology groups H̃∗(X; Z) (with generators) can be el-
ementarily computed and therefore it is not difficult to construct a solution for
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the homotopical problem of RX. In a more general framework, if the simpli-
cial set X has effective homology, that is to say, there exists a solution for the
homological problem of X, thanks to the isomorphism π∗(RX) ∼= H̃∗(X; Z)
it is also possible to determine a solution for the homotopical problem of the
simplicial Abelian group RX.

If we apply the constructor R to the simplicial set RX, we obtain a new
simplicial Abelian group

R2X = R(RX) =
R[R[X]/R[?]]

R[R[?]]

which satisfies π∗(R2X) ∼= H̃∗(RX). Since RX is an infinite simplicial set, in
principle it is not easy to compute its (reduced) homology groups. However,
in [9] we developed an algorithm which determines the effective homology
of RX from the effective homology of a simplicial set X, supposing that X
is 1-reduced (that is to say, X has only one simplex in dimension 0 and has
not non-degenerate simplices in dimension 1. In particular, it implies that X is
simply connected). Therefore, if X is a 1-reduced simplicial set with effective
homology (or, in particular, if it is finite), then RX has effective homology
and therefore R2X is an object with effective homotopy. And the result can
be iterated obtaining that RnX has effective homotopy for every n ≥ 1.

The first fiber in the Bousfield-Kan tower of fibrations is F1 = Ω(R2X ∩
Ker η0), where Ω is the loop space constructor and η0 : R2X → RX is the
first codegeneracy map [2]. Its homotopy groups are

π∗(F1) = π∗(Ω(R2X ∩Ker η0)) ∼= π∗+1(R2X ∩Ker η0) ∼= π∗+1(R2X) ∩Ker η0

The relation π∗(ΩK) ∼= π∗+1(K) is well-known for every Kan simplicial
set K. In the particular situation of K being a simplicial Abelian group (as
is the case of R2X ∩Ker η0) the isomorphism can be made explicit by means
of discrete vector fields [11]. The second equation π∗+1(R2X ∩ Ker η0) ∼=
π∗+1(R2X) ∩ Ker η0 is a direct consequence of η0 being a simplicial Abelian
group morphism. Using now that, given a 1-reduced simplicial set X with effec-
tive homology, RX and R2X have effective homotopy, one can determine their
homotopy groups π∗(RX) and π∗(R2X) (with generators). The kernel of the
maps η0 : π∗(R2X)→ π∗(RX) can be elementarily computed and therefore a
solution for the homotopical problem of π∗(F1) can be given.

On the other hand, by using again discrete vector fields [11] we have proved
that the fibrations in the Bousfield-Kan tower are constructive Kan fibrations.
In this way, from our Theorem 1 (let us observe that the base Y0 = RX and the
fiber F1 = Ω(R2X ∩ Ker η0) are 1-reduced, and therefore simply connected)
one can deduce that the first total space Y1 has effective homotopy. A similar
reasoning proves that all the fibers Fn in the tower have effective homotopy,
and iterating the process over the fibrations we obtain that all the spaces Yn are
objects with effective homotopy. Once we can determine the homotopy groups
of Fn and Yn we can compute the different components of the Bousfield-Kan
spectral sequence, producing our desired general algorithms. The details of
this process will be explained in a subsequent paper.



16 Ana Romero, Francis Sergeraert

6 Conclusions and further work

Following the ideas of the effective homology method, in this paper we have
started to develop a new effective homotopy theory, which can make it possi-
ble to compute homotopy groups of interesting spaces. We have beginning by
introducing the definition of a solution for the homotopical problem of a simpli-
cial set and showing some examples where this can be determined in a direct
way. The main result of the paper is an algorithm computing the effective
homotopy of the total space of a fibration from solutions for the homotopical
problems of the base and the fiber. As a direct application of our algorithm, we
can compute the homotopy groups of fibrations of Eilenberg-MacLane spaces.
Furthermore, it has been an important ingredient in the development of an
algorithm computing all levels of the Bousfield-Kan spectral sequence.

The theorem computing the effective homotopy of the total space of a fibra-
tion could be enhanced by obtaining similar algorithms producing the effective
homotopy of the base space (respectively the fiber space) from the effective ho-
motopies of the total space and the fiber (resp. the base). Furthermore, other
constructions (loop spaces, classifying spaces, suspensions, etc) in Algebraic
Topology should be studied, as already done in the effective homology frame-
work (see [13]). In other words, given a Kan simplicial set and a solution for its
homotopical problem, algorithms should be designed computing the effective
homotopy of its loop space, suspension, etc.

With respect to implementation, this should be done in Common Lisp as
new modules for the Kenzo system, where the effective homology method has
been implemented and which is already capable of computing some homotopy
groups of spaces.
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