
A HARDY INEQUALITY FOR ULTRASPHERICAL EXPANSIONS

WITH AN APPLICATION TO THE SPHERE
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Abstract. We prove a Hardy inequality for ultraspherical expansions by us-

ing a proper ground state representation. From this result we deduce some
uncertainty principles for this kind of expansions. Our result also implies a

Hardy inequality on spheres with a potential having a double singularity.

1. Introduction and main result

For d ≥ 3, the classical Hardy inequality states that

(1)
(d− 2)2

4

∫
Rd

u2(x)

|x|2
dx ≤

∫
Rd
|∇u(x)|2 dx.

Due to its applicability, there is an extensive literature about the topic (see the
references in [16]) covering many extensions of this estimate in several and different
directions. We are interested in one involving the fractional powers of the Laplacian.
We can rewrite (1) as

(d− 2)2

4

∫
Rd

u2(x)

|x|2
dx ≤

∫
Rd
u(x)(−∆u(x)) dx

and, taking the fractional Laplacian (−∆)σ defined by ̂(−∆)σu = | · |2σû, a natural
extension is the inequality

(2) Cσ,d

∫
Rd

u2(x)

|x|2σ
dx ≤

∫
Rd
u(x)(−∆)σu(x) dx,

for which the sharp constant Cσ,d is well known (see [3, 20]).
From (2), we deduce the positivity (in a distributional sense) of the operator

(−∆)σ − Cσ,d
| · |2σ

.

Our target is to provide a Hardy inequality like (2) related to ultraspherical expan-
sions and apply it to prove the positivity of certain operator on the sphere with a
potential having singularities in both poles of the sphere.

Let Cλn(x) be the ultraspherical polynomial of degree n and order λ > −1/2. We
consider cλn(x) = d−1

n Cλn(x) with

d2
n =

∫ 1

−1

(
Cλn(x)

)2
dµλ(x), dµλ(x) = (1− x2)λ−1/2 dx.
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The sequence of polynomials {cλn}n≥0 forms an orthonormal basis of the space
L2
λ := L2((−1, 1), dµλ). For each cλn, it holds that Lλcλn = −(n+ λ)2cλn, where

Lλ = (1− x2)
d2

dx2
− (2λ+ 1)x

d

dx
− λ2.

The ultraspherical expansion of each appropriate function f defined in (−1, 1) is
given by

f 7−→
∞∑
n=0

aλn(f)cλn,

where aλn(f) is the n-th Fourier coefficient of f respect to {cλn}n≥0, i.e.,

aλn(f) =

∫ 1

−1

f(y)cλn(y) dµλ(y).

The fractional powers of the operator Lλ are defined by

(−Lλ)σ/2f =

∞∑
n=0

(n+ λ)σaλn(f)cλn, σ > 0.

This operator should be the natural candidate to prove a Hardy type inequality for
the ultraspherical expansion but, however, it is not the most appropriate in this
setting. We have to consider other one with an analogous behaviour to (−Lλ)σ/2,
in order to deduce some results on the sphere. For each σ > 0 we define (spectrally)
the operator

Aλσ =
Γ(
√
−Lλ + 1+σ

2 )

Γ(
√
−Lλ + 1−σ

2 )
.

Then for f defined on the interval (−1, 1)

Aλσf(x) =

∞∑
n=0

Γ(n+ λ+ 1+σ
2 )

Γ(n+ λ+ 1−σ
2 )

aλn(f)cλn(x).

Note that

(3)
Γ(n+ λ+ 1+σ

2 )

Γ(n+ λ+ 1−σ
2 )
' (n+ λ)σ,

then the behaviour of (−Lλ)σ/2 and Aλσ is similar. The natural Sobolev space to
analyse Hardy type inequalities is

Hσ
λ =

{
f ∈ L2

λ : ‖f‖Hσλ :=
( ∞∑
n=0

(n+ λ)σ(aλn(f))2
)1/2

<∞
}
.

We have to note that Hσ
λ is equivalent to the space L2

λ,σ introduced in [5].
With the previous notation our Hardy inequality for ultraspherical expansions

is given in the following result.

Theorem 1. Let λ > 0 and 0 < σ < 1. Then for u ∈ Hσ
λ

(4) Qσ,λ

∫ 1

−1

u2(x)

(1− x2)σ/2
dµλ(x) ≤

∫ 1

−1

u(x)Aλσu(x) dµλ(x),

where

(5) Qσ,λ = 2σ
Γ(λ2 + 1+σ

4 )2

Γ(λ2 + 1−σ
4 )2

.



A HARDY INEQUALITY FOR ULTRASPHERICAL EXPANSIONS 3

Inequality (4) can be rewritten in terms of the Fourier coefficients

(6) Qσ,λ

∫ 1

−1

u2(x)

(1− x2)σ/2
dµλ(x) ≤

∞∑
n=0

Γ(n+ λ+ 1+σ
2 )

Γ(n+ λ+ 1−σ
2 )

(aλn(u))2,

which is a kind of Pitt inequality for the ultraspherical expansions (for other Pitt
inequalities see [4, 11]). Note that for the right hand side of (4) we have, by (3),∫ 1

−1

u(x)Aλσu(x) dµλ(x) =

∞∑
n=0

Γ(n+ λ+ 1+σ
2 )

Γ(n+ λ+ 1−σ
2 )

(aλn(u))2 ' ‖u‖2Hσλ ,

so the space Hσ
λ is the adequated one.

The proof of Theorem 1 will be a consequence of a proper ground state repre-
sentation in our setting, analogous to the given one in the Euclidean case in [9].
Following the ideas in that paper, we can see that the constant Qσ,λ is sharp but
not achieved. Similar ideas have been recently exploited in [7, 16].

From (4), by using Cauchy-Schwarz inequality, we can obtain a Heisenberg type
uncertainty principle as it was done for the sublaplacian of the Heisenberg group
in [10], and for the fractional powers of the same sublaplacian in [16].

Corollary 2. Let λ > 0 and 0 < σ < 1. Then for u ∈ Hσ
λ

Qσ,λ

(∫ 1

−1

u2(x) dµλ(x)

)2

≤
∫ 1

−1

u2(x)(1− x2)σ/2 dµλ(x)

∫ 1

−1

u(x)Aλσu(x) dµλ(x),

where Qσ,λ is the constant given in (5).

Pitt inequality (6) allows us to prove a logarithmic uncertainty principle for
the ultraspherical expansions. The main idea comes from [3]. By an elementary
argument, for a derivable function such that φ(0) = 0 and φ(σ) > 0 for σ ∈ (0, ε),
with ε > 0, it is verified that φ′(0+) ≥ 0. Then, taking the function

φ(σ) =

∞∑
n=0

Γ(n+ λ+ 1+σ
2 )

Γ(n+ λ+ 1−σ
2 )

(aλn(u))2 −Qσ,λ
∫ 1

−1

u2(x)

(1− x2)σ/2
dµλ(x),

we have φ(0) = 0 (this is Parseval identity) and, by (6), φ(σ) > 0 for σ ∈ (0, 1),
then φ′(0+) ≥ 0 and this inequality gives the logarithmic uncertainty principle,
which is written as(

log 2 + ψ

(
λ

2
+

1

4

))∫ 1

−1

u2(x) dµλ(x)

≤
∞∑
n=0

ψ

(
n+ λ+

1

2

)
(an(u))2 +

∫ 1

−1

log(
√

1− x2)u2(x) dµλ(x),

where ψ(a) = Γ′(a)
Γ(a) .

In next section we will show an application of Theorem 1 to obtain a Hardy
inequality on the sphere. The results in Section 3 are the main ingredients in the
proof of Theorem 1 which is given in last section of the paper.
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2. An application on the sphere

It is well known that L2(Sd) = ⊕∞n=0Hn(Sd), where Hn(Sd) is the set of spherical
harmonics of degree n in d + 1 variables. If we consider the shifted Laplacian on
the sphere

−∆Sd = ˜−∆Sd +

(
d− 1

2

)2

,

where ˜−∆Sd is the Laplace-Beltrami operator on Sd, it is verified that

−∆SdHn(Sd) =

(
n+

d− 1

2

)2

Hn(Sd).

In this way, the analogous of the operator Aλσ on Sd is defined by

Aσf =
Γ
(√
−∆Sd + 1+σ

2

)
Γ
(√
−∆Sd + 1−σ

2

)f
=

∞∑
n=0

Γ
(
n+ d−1

2 + 1+σ
2

)
Γ
(
n+ d−1

2 + 1−σ
2

) projHn(Sd) f,

where projHn(Sd) f denotes the projection of f onto the eigenspace Hn(Sd).
The operator Aσ becomes the fractional powers of the Laplacian in the Euclidean

space through conformal transforms as was observed by T. P. Branson in [6]. So
Aσ is the natural operator to prove a Hardy type inequality on the sphere. In our
proof, we will write Aσ in terms of Aλσ and this is the main reason to consider Aλσ in
the case of the ultraspherical expansions. An analogous of the Hardy-Littlewood-
Sobolev inequality for Aσ and some other inequalities for it were given by W.
Beckner in [2]. The operators Aσ also appear in [18, p. 151] and [17, p. 525].

Each point x ∈ Sd can be written as

x = (t,
√

1− t2x′1, . . . ,
√

1− t2x′d),

for t ∈ (−1, 1) and x′ := (x′1, . . . , x
′
d) ∈ Sd−1, and so∫

Sd
f(x) dx =

∫ 1

−1

∫
Sd−1

f(t,
√

1− t2x′)(1− t2)(d−2)/2 dx′ dt.

With these coordinates, see [19, Section 3], we have that an orthonormal basis for
each Hn(Sd) is given by

φn,j,k(x) = ψn,j(t)Y
d
j,k(x′), j = 0, . . . , n,

with

ψn,j(t) = (1− t2)j/2c
j+(d−1)/2
n−j (t)

and {Y dj,k}k=1,...,d(j) an orthonormal basis of spherical harmonics on Sd−1 of degree

j. The value d(j) indicates the dimension of Hj(Sd−1); i.e.,

d(j) = (2j + d− 2)
(j + d− 3)!

j!(d− 2)!
.

Then, the orthogonal projection of f onto the eigenspace Hn(Sd) can be written as

projHn(Sd) f =

n∑
j=0

d(j)∑
k=1

fn,j,kφn,j,k,
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with

fn,j,k =

∫ 1

−1

Gj,k(t)c
j+(d−1)/2
n−j (t)(1− t2)j+(d−2)/2 dt,

Gj,k(t) = (1− t2)−j/2Fj,k(t) and Fj,k(t) =

∫
Sd−1

f(t,
√

1− t2x′)Y dj,k(x′) dx′.

It is easy to observe that

f(x) =

∞∑
j=0

d(j)∑
k=1

Fj,k(t)Y dj,k(x′) =

∞∑
j=0

d(j)∑
k=1

(1− t2)j/2Gj,k(t)Y dj,k(x′).

Moreover, from the definition of Aσ, we have

Aσf(x) =

∞∑
j=0

d(j)∑
k=1

(1− t2)j/2Aj+(d−1)/2
σ Gj,k(t)Y dj,k(x′).

Now, considering the Sobolev space

Hσ =
{
f ∈ L2(Sd) : ‖f‖Hσ :=

( ∞∑
n=0

(
n+

d− 1

2

)σ
‖projHn(Sd) f‖2L2(Sd)

)1/2

<∞
}
,

we have the following Hardy inequality on the sphere.

Theorem 3. Let d ≥ 2, 0 < σ < 1, and ed be the north pole of the sphere Sd.
Then for f ∈ Hσ

(7) 2σQσ,(d−1)/2

∫
Sd

f2(x)

(|x− ed||x+ ed|)σ
dx ≤

∫
Sd
f(x)Aσf(x) dx,

where Qσ,(d−1)/2 is the constant given in (5).

Proof. By the orthogonality of the spherical harmonics, it is elementary to show
that ∫

Sd
f(x)Aσf(x) dx =

∞∑
j=0

d(j)∑
k=1

∫ 1

−1

Gj,k(t)Aj+(d−1)/2
σ Gj,k(t) dµj+(d−1)/2(t).

Now, applying Theorem 1, we deduce that∫
Sd
f(x)Aσf(x) dx ≥

∞∑
j=0

d(j)∑
k=1

Qσ,j+(d−1)/2

∫ 1

−1

F 2
j,k(t)

(1− t2)σ/2
dµ(d−1)/2(t).

It is known (see [20]) that for 0 < x ≤ y and j ≥ 0 we have that Γ(j+y)
Γ(j+x) ≥

Γ(y)
Γ(x) . So,

Qσ,j+(d−1)/2 ≥ Qσ,(d−1)/2 and∫
Sd
f(x)Aσf(x) dx ≥ Qσ,(d−1)/2

∞∑
j=0

d(j)∑
k=1

∫ 1

−1

F 2
j,k(t)

(1− t2)σ/2
dµ(d−1)/2(t).

The proof of (7) is finished by using the identity

∞∑
j=0

d(j)∑
k=1

∫ 1

−1

F 2
j,k(t)

(1− t2)σ/2
dµ(d−1)/2(t) = 2σ

∫
Sd

f2(x)

(|x− ed||x+ ed|)σ
dx.

�
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The analogous role on the sphere of radially symmetric functions is played by
functions which are invariant under the action of SO(d−1). By SO(d−1)-invariance
we mean that f is invariant under the action of the group SO(d − 1) on Sd−1

whenever SO(d − 1) is embedded into SO(d) in a suitable way. Each function f
of this kind can be written as f(x) = g(〈x, ed〉), for a certain function g defined
in (−1, 1). Then for this kind of functions Theorem 3 reduces to Theorem 1 with
λ = (d − 1)/2, in this way we can deduce that the constant 2σQσ,(d−1)/2 in (7) is
sharp.

As in the classic case, from Theorem 3 we deduce that in a distributional sense

Aσ −
2σQσ,(d−1)/2

(|x− ed||x+ ed|)σ
≥ 0.

Note that in this case we are perturbing the operator Aσ adding a potential with
singularities in both poles of the sphere.

3. Auxiliary results

The following lemmas give the tools to prove Theorem 1. To be more precise,
Lemma 1 provides a nonlocal representation of the operator Aλσ with a kernel having
nice properties for our target. Lemma 2 shows the action of the operator Aλσ on
the family of weights (1− x2)−(λ/2+(1−σ)/4).

For f, g ∈ L2
λ we are going to set up the notation

〈f, g〉λ =

∫ 1

−1

f(x)g(x) dµλ(x)

to simplify the writing.

Lemma 1. Let λ > 0 and 0 < σ < 1. If f is a finite linear combination of
ultraspherical polynomials, then

(8) Aλσf(x) =

∫ 1

−1

(f(x)− f(y))Kλ
σ (x, y) dµλ(y) + Eσ,λf(x), x ∈ (−1, 1),

where the kernel is given by

Kλ
σ (x, y) = Dσ,λ

∫ 1

−1

dµλ−1/2(t)

(1− xy −
√

1− x2
√

1− y2t)λ+(1+σ)/2
,

with

Dσ,λ =
c2λ

2λ+(1+σ)/2

Γ( 1−σ
2 )Γ(λ+ 1+σ

2 )

|Γ(−σ)|Γ(1 + λ)
, cλ =

Γ(2λ+ 1)

22λ(Γ(λ+ 1/2))2
,

and

Eσ,λ =
Γ(λ+ 1+σ

2 )

Γ(λ+ 1−σ
2 )

.

Moreover, for f ∈ Hσ
λ we have

(9) 〈Aλσf, f〉λ =
1

2

∫ 1

−1

∫ 1

−1

(f(x)− f(y))2Kλ
σ (x, y) dµλ(y) dµλ(x) + Eσ,λ〈f, f〉λ

Proof. We start with the identity
(10)∫ ∞

0

(
e−(n+λ)t − e−(σ−1)t/2

)
(sinh t/2)

−σ−1
dt = 21+σΓ(−σ)

Γ(n+ λ+ 1+σ
2 )

Γ(n+ λ+ 1−σ
2 )



A HARDY INEQUALITY FOR ULTRASPHERICAL EXPANSIONS 7

for λ > 0 (actually it is also true for values λ > −1/2) and 0 < σ < 1. To
deduce the previous identity it is enough to apply integration by parts with u =
e−(n+λ+(1−σ)/2)t − 1 and v = −2e−σt/2(sinh t/2)−σ/σ, and use [14, eq. 8, p. 367]∫ ∞

0

e−ρt (cosh(ct)− 1)
ν
dt =

Γ(ρc − ν)Γ(2ν + 1)

2νcΓ(ρc + ν + 1)

for c > 0, 2ν > −1, and ρ > cν.
Now, we consider the Poisson operator for ultraspherical expansions. It is given

by

e−t
√
−Lλf(x) =

∞∑
n=0

e−(n+λ)taλn(f)cλn(x) =

∫ 1

−1

f(y)Pλt (x, y) dµλ(y),

with

Pλt (x, y) =

∞∑
n=0

e−(n+λ)tcλn(x)cλn(y).

By the product formula for ultraspherical polynomials [8, eq. B.2.9, p. 419]

Cλn(x)Cλn(y)

Cλn(1)
= cλ

∫ 1

−1

Cλn(xy +
√

1− x2
√

1− y2t) dµλ−1/2(t), λ > 0,

the identity [8, eq. B.2.8. p. 419]

∞∑
n=0

n+ λ

λ
Cλn(x)rn =

1− r2

(1− 2xr + r2)λ+1
, 0 ≤ r < 1,

and the relation d2
n = λ

cλ(n+λ)C
λ
n(1), we deduce the expression

Pλt (x, y) =
c2λ
2λ

∫ 1

−1

sinh t

(cosh t− w(s))λ+1
dµλ−1/2(s),

with w(s) = xy +
√

1− x2
√

1− y2s. The previous identity for Pλt is not new, it
appears as formula (2.12) in [12].

Combining (10) and the definition of the Poisson operator, it is clear that

Aλσf(x) =
1

21+σΓ(−σ)

∫ ∞
0

(
e−t
√
−Lλf(x)− f(x)e−(σ−1)t/2

)
(sinh t/2)

−σ−1
dt,

which can be splitted in

(11) Aλσf(x)

=
1

21+σΓ(−σ)

∫ ∞
0

(
e−t
√
−Lλf(x)− f(x)e−t

√
−Lλ1(x)

)
(sinh t/2)

−σ−1
dt

+
f(x)

21+σΓ(−σ)

∫ ∞
0

(
e−t
√
−Lλ1(x)− e−(σ−1)t/2

)
(sinh t/2)

−σ−1
dt.

From the obvious identity

e−t
√
−Lλ1(x) =

∫ 1

−1

Pλt (x, y) dµλ(y) = e−λt,
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for the second term in (11) we have

f(x)

21+σΓ(−σ)

∫ ∞
0

(
e−t
√
−Lλ1(x)− e−(σ−1)t/2

)
(sinh t/2)

−σ−1
dt

=
f(x)

21+σΓ(−σ)

∫ ∞
0

(
e−λt − e−(σ−1)t/2

)
(sinh t/2)

−σ−1
dt

= Eσ,λf(x),

where we have used (10) with n = 0.
The first integral in (11) verifies

1

21+σΓ(−σ)

∫ ∞
0

(
e−t
√
−Lλf(x)− f(x)e−t

√
−Lλ1(x)

)
(sinh t/2)

−σ−1
dt

=
1

21+σ|Γ(−σ)|

∫ ∞
0

∫ 1

−1

Pλt (x, y)(f(x)− f(y)) dµλ(y) (sinh t/2)
−σ−1

dt

=
1

21+σ|Γ(−σ)|

∫ 1

−1

(f(x)− f(y))

∫ ∞
0

Pλt (x, y) (sinh t/2)
−σ−1

dt dµλ(y)

=

∫ 1

−1

(f(x)− f(y))Kλ
σ (x, y) dµλ(y),

with

Kλ
σ (x, y) =

1

21+σ|Γ(−σ)|

∫ ∞
0

Pλt (x, y) (sinh t/2)
−σ−1

dt.

In last computation we have used Fubini theorem. This is justified for finite com-
binations of ultraspherical polynomials by using the estimate

Pλt (x, y) ≤ C sinh t

(1− x2)λ/2(1− y2)λ/2(cosh t− xy −
√

1− x2
√

1− y2)
,

which follows from the elementary inequality∫ 1

−1

(1− s2)λ−1

(A−Bs)λ+1
ds ≤ C

Bλ(A−B)
, A > B > 0, λ > 0,

and the mean value theorem. Indeed, taking Cf = max{|f ′(x)| : x ∈ [−1, 1]} and

using the inequality 1− xy −
√

1− x2
√

1− y2 ≥ C|x− y|2, we have∫ ∞
0

∫ 1

−1

Pλt (x, y)|f(x)− f(y)| dµλ(y) (sinh t/2)
−σ−1

dt

≤ Cf
(1− x2)λ/2

(
C1

∫ 1

0

∫ 1

−1

t−σ|x− y|
t2 + |x− y|2

(1− y2)λ/2−1/2 dy dt

+C2

∫ ∞
1

∫ 1

−1

e−(σ+1)t/2|x− y|(1− y2)λ/2−1/2 dy dt

)
=:

Cf
(1− x2)λ/2

(I1 + I2).

Obviously, I2 is a finite integral. For I1 the change of variable t = |x− y|s gives

I1 ≤ C1

∫ ∞
0

s−σ

s2 + 1
ds

∫ 1

−1

|x− y|−σ(1− y2)λ/2−1/2 dy <∞.
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To obtain the expression of Kλ
σ we observe that

Kλ
σ (x, y)

=
c2λ

2λ+1+σ|Γ(−σ)|

∫ ∞
0

∫ 1

−1

sinh t

(cosh t− w(s))λ+1
dµλ−1/2(s) (sinh t/2)

−σ−1
dt

=
c2λ

2λ+(1+σ)/2

Γ( 1−σ
2 )Γ(λ+ 1+σ

2 )

|Γ(−σ)|Γ(λ+ 1)

∫ 1

−1

dµλ−1/2(s)

(1− w(s))λ+(1+σ)/2
,

where we have applied Fubini theorem and the change of variable 2(sinh t/2)2 =
z(1− w(s)) in last equality. With the last identity we have concluded the proof of
(8).

To prove (9) we follow the argument in [16, Lemma 5.1]. First, we observe
that the kernel Kλ

σ (x, y) is positive and symmetric in the sense that Kλ
σ (x, y) =

Kλ
σ (y, x). Then, (9) is clear when f is a finite linear combination of ultraspherical

polynomials. For f ∈ Hσ
λ we consider a sequence of finite linear combinations

of ultraspherical polynomials {pk}k≥0 such that pk converges to f in Hσ
λ . Then,

by using the definition of Aλσ, it is clear that 〈Aλσpk, pk〉λ converges to 〈Aλσf, f〉λ.
Moreover, the result for polynomial functions implies

(12) 〈Aλσpk, pk〉λ =
1

2

∫ 1

−1

∫ 1

−1

(pk(x)− pk(y))2Kλ
σ (x, y) dµλ(y) dµλ(x)

+ Eσ,λ〈pk, pk〉λ <∞.
Consequently, the functions Pk(x, y) = pk(x) − pk(y) form a Cauchy sequence in
L2((−1, 1)× (−1, 1), dω) where dω(x, y) = Kλ

σ (x, y) dµλ(x) dµλ(y) which converges
to f(x) − f(y) in this norm. Hence, passing to the limit in (12), we complete the
proof of the lemma. �

Lemma 2. Let λ > 0 and 2λ+ 1 > σ > 0. Then

(13) Aλσ

(
1

(1− x2)λ/2+(1−σ)/4

)
=

Qσ,λ
(1− x2)λ/2+(1+σ)/4

,

where Qσ,λ is the constant given in (5).

Proof. First of all, we have to realize that the ultraspherical polynomial Cλn(x) is
odd for n = 2m+1, m ∈ Z+; therefore, for β > 0, the function (1−x2)β−1Cλ2m+1(x)
is an odd function and its integral over the interval (−1, 1) is zero. For n = 2m we
use [15, eq. 15, p. 519] to obtain∫ 1

−1

(1− x2)β−1Cλ2m(x) dx

=
√
π

(2λ)2m

(2m)!

Γ(β)

Γ(β + 1/2)
3F2(−2m, 2λ+ 2m,β; 2β, λ+ 1/2; 1)

= π
(2λ)2m

(2m)!

Γ(β)Γ(λ+ 1/2)Γ(β − λ+ 1/2)

Γ(1/2−m)Γ(λ+m+ 1/2)Γ(β +m+ 1/2)Γ(β − λ−m+ 1/2)
,

where in last identity we have evaluated the hypergeometric function with the
so-called Watson formula [13, eq. 16.4.6, p. 406]. Therefore, if we denote α =
λ/2 + (1− σ)/4, we obtain that

(14)

∫ 1

−1

(1− x2)α−1Cλ2m(x) dx = Rσ,λ

∫ 1

−1

(1− x2)α+σ/2−1Cλ2m(x) dx,
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with

Rσ,λ =
Γ(α)Γ(α− λ+ 1/2)

Γ(α+ σ/2)Γ(α− λ+ 1/2 + σ/2)

× Γ(α+m+ 1/2 + σ/2)Γ(α− λ−m+ 1/2 + σ/2)

Γ(α+m+ 1/2)Γ(α− λ−m+ 1/2)
.

In this way, if we prove the identity

(15) Rσ,λ = Q−1
σ,λ

Γ(2m+ 2α+ σ)

Γ(2m+ 2α)

we will conclude the proof, because (14) implies

aλn

(
1

(1− x2)α+σ/2

)
= Q−1

σ,λ

Γ(n+ 2α+ σ)

Γ(n+ 2α)
aλn

(
1

(1− x2)α

)
,

where we have had in mind that the n-th Fourier coefficient is null when n = 2m+1.
Let us check that (15) actually holds. Using the reflection formula [1, eq. 6.1.17,

p. 256] twice we have

Γ(α− λ−m+ 1/2 + σ/2)

Γ(α− λ−m+ 1/2)
=

Γ(α+m+ σ/2)

Γ(α+m)

sin(π(α− λ−m+ 1/2))

sin(π(α− λ−m+ 1/2 + σ/2))

=
Γ(α+m+ σ/2)

Γ(α+m)

Γ(α)Γ(α− λ+ 1/2 + σ/2)

Γ(α+ σ/2)Γ(α− λ+ 1/2)
,

and then

Rσ,λ =
Γ(α)2

Γ(α+ σ/2)2

Γ(α+m+ σ/2)Γ(α+m+ σ/2 + 1/2)

Γ(α+m)Γ(α+m+ 1/2)

= Q−1
σ,λ

Γ(2m+ 2α+ σ)

Γ(2m+ 2α)
,

by the duplication formula [1, eq. 6.1.18, p. 256]. �

4. Proof of Theorem 1

Polarizing the identity (9) in Lemma 1 we obtain

(16) 〈g,Aλσf〉λ =
1

2

∫ 1

−1

∫ 1

−1

F (x, y)Kλ
σ (x, y) dµλ(y) dµλ(x) + Eσ,λ〈g, f〉λ,

with F (x, y) = (g(x)− g(y))(f(x)− f(y)).
Let us take g(x) = (1 − x2)−λ/2−(1−σ)/4 and f(x) = u2(x)/g(x) for u ∈ Hσ

λ .
Then

F (x, y) = (u(x)− u(y))
2 − g(x)g(y)

(
u(x)

g(x)
− u(y)

g(y)

)2

and (16) becomes

〈g,Aλσf〉λ

= 〈u,Aλσu〉λ −
1

2

∫ 1

−1

∫ 1

−1

g(x)g(y)

(
u(x)

g(x)
− u(y)

g(y)

)2

Kλ
σ (x, y) dµλ(y) dµλ(x).

Now, by (13), we have

〈g,Aλσf〉λ = 〈Aλσg, f〉λ = Qσ,λ

∫ 1

−1

u2(x)

(1− x2)σ/2
dµλ(x)
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and then we can deduce the ground state representation

(17) 〈u,Aλσu〉λ −Qσ,λ
∫ 1

−1

u2(x)

(1− x2)σ/2
dµλ(x)

=
1

2

∫ 1

−1

∫ 1

−1

g(x)g(y)

(
u(x)

g(x)
− u(y)

g(y)

)2

Kλ
σ (x, y) dµλ(y) dµλ(x).

So, due to the positivity of the kernel Kλ
σ , we conclude the proof.
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